
San Jose State University
SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

Fall 2015

SSCT Score for Malware Detection
Srividhya Srinivasan
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

Part of the Computer Sciences Commons

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU ScholarWorks. It has been
accepted for inclusion in Master's Projects by an authorized administrator of SJSU ScholarWorks. For more information, please contact
scholarworks@sjsu.edu.

Recommended Citation
Srinivasan, Srividhya, "SSCT Score for Malware Detection" (2015). Master's Projects. 444.
DOI: https://doi.org/10.31979/etd.4brm-b25z
https://scholarworks.sjsu.edu/etd_projects/444

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by SJSU ScholarWorks

https://core.ac.uk/display/70424796?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.sjsu.edu?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F444&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F444&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F444&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F444&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F444&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/444?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F444&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

SSCT Score for Malware Detection

A Project

Presented to

The Faculty of the Department of Computer Science

San Jose State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

by

Srividhya Srinivasan

December 2015

c○ 2015

Srividhya Srinivasan

ALL RIGHTS RESERVED

The Designated Project Committee Approves the Project Titled

SSCT Score for Malware Detection

by

Srividhya Srinivasan

APPROVED FOR THE DEPARTMENTS OF COMPUTER SCIENCE

SAN JOSE STATE UNIVERSITY

December 2015

Dr. Mark Stamp Department of Computer Science

Dr. Thomas Austin Department of Computer Science

Dr. Christopher Pollett Department of Computer Science

ABSTRACT

SSCT Score for Malware Detection

by Srividhya Srinivasan

Metamorphic malware transforms its internal structure when it propagates, mak-

ing detection of such malware a challenging research problem. Previous research con-

sidered a score based on simple substitution cryptanalysis, which was applied to the

metamorphic detection problem. In this research, we analyze a new score based on

a combined simple substitution and column transposition (SSCT) cryptanalysis. We

show that this SSCT score significantly outperforms the simple substitution score—

and other malware detection scores—in many cases.

ACKNOWLEDGMENTS

I would like to thank my project advisor Dr. Mark Stamp for all his guidance and

mentoring during the course of this project. I would also like to thank my committee

members Dr. Thomas Austin and Dr. Christopher Pollett for reviewing my work and

providing valuable feedback.

v

TABLE OF CONTENTS

CHAPTER

1 Introduction . 1

2 Previous Work . 4

2.1 Jakobsen’s Algorithm . 4

2.2 Simple Substitution Distance . 5

3 Simple Substitution Columnar Transposition 8

3.1 SSCT Encryption . 8

3.2 Attack on SSCT Using Jakobsen’s Algorithm 9

3.3 SSCT for Malware Detection . 11

4 Experiments and Results . 14

4.1 Dataset . 14

4.2 Parameters . 16

4.3 Results . 17

5 Conclusion and Future Work . 22

APPENDIX

Experiments . 26

vi

LIST OF TABLES

1 Caesar Cipher with key = 2 . 5

2 Expected digraph frequency E . 7

3 Putative key . 7

4 Digraph frequency D . 7

5 Digraph frequency D . 7

6 Substitution Key . 8

7 Intermediate matrix . 9

8 Ciphertext matrix . 9

9 Final ciphertext matrix . 9

10 Initial ciphertext matrix . 10

11 Compute 𝐸 Matrix . 11

12 Compute Score . 12

13 Jakobsen’s Algorithm . 13

14 Dataset . 15

15 AUC values . 18

vii

LIST OF FIGURES

1 Scatter Plot NGVCK . 18

2 NGVCK ROC Curve . 19

3 Scatter Plot Cridex . 19

4 Cridex ROC Curve . 20

A.5 Scatter Plot MWOR 0.5 . 26

A.6 Scatter Plot MWOR 1 . 27

A.7 Scatter Plot MWOR 1.5 . 27

A.8 Scatter Plot MWOR 4 . 28

A.9 Scatter Plot SecurityShield . 28

A.10 Scatter Plot ZBOT . 29

A.11 Scatter Plot SmartHDD . 29

A.12 Scatter Plot Harebot . 30

A.13 Scatter Plot Winwebsec . 30

A.14 MWOR0.5 ROC Curve . 31

A.15 MWOR1 ROC Curve . 31

A.16 MWOR1.5 ROC Curve . 32

A.17 MWOR4 ROC Curve . 32

A.18 SecurityShield ROC Curve . 33

A.19 ZBOT ROC Curve . 33

A.20 SmartHDD ROC Curve . 34

A.21 Harebot ROC Curve . 34

viii

ix

A.22 Winwebsec ROC Curve . 35

A.23 Scatter Plot Winwebsec IC Scores 35

A.24 Winwebsec ROC Curve(IC Scores) 36

CHAPTER 1

Introduction

Malware is a piece of software written with malicious intent. Over the years,

malware have evolved to be more like benign software and hence it has become in-

creasingly difficult to tell them apart from a normal harmless program [19]. The

techniques used to detect malware files can be broadly classified under two categories

- dynamic and static malware analysis. In dynamic analysis, the malware is allowed

to be live in an emulated environment and its actions are observed. In static analysis,

the information extracted from the malware file is used to analyze and decide whether

the file is a malware or a benign file. Even from this high level definition, we can

see that dynamic analysis techniques are, in most cases, more expensive in terms of

running times than their static analysis counterparts.

Many malware detection techniques have been proposed and analyzed in the lit-

erature. Examples of such malware detection techniques include the Hidden Markov

Model approach in [1, 2], as well as a score that relies on simple substitution crypt-

analysis [8]. The Simple Substitution Distance (SSD) malware score in [8] is based on

Jakobsen’s algorithm [6], which is an extremely efficient attack on simple substitution

ciphers. Consequently, the SSD score computation is fast and efficient, and in [8] it

is shown to be very effective against some challenging classes of malware.

Signature-based virus detection systems search for a known pattern of bits or a

signature in the body of the malware. If malwares had stopped evolving, all viruses

could be detected by these systems. Unfortunately, that is not the case. Malware

developers constantly look for techniques to break the performance of the virus de-

1

tection systems and sadly, keep succeeding in their attempts. Morphing the malware

code is one such technique used to evade signature detections.

Polymorphic malware consists of the malware code, which is encrypted, and a

module containing the decryption logic [13]. The decryption module is also morphed

so that it does not adopt a common signature. Metamorphic virus follows a similar

principle and mutates the virus body before infecting a system. There are several

techniques available to achieve this including, but not limited to register renaming,

renaming of subroutines and dead code insertion [13].

In both polymorphic and metamorphic viruses, each version of malware is differ-

ent from the previous known version. Due to this, they are difficult to detect using the

conventional signature based security systems. It is interesting to note that, through

the evolution of different versions of these malware, the underlying functionality re-

mains more or less the same. In such cases, it seems logical to view the known version

of a malware as the “plaintext” and the newer, unknown version to be an encrypted

cipher text. The unknown file or the ciphertext can be decrypted to see if it yields

any of the known malware. If it cannot be decrypted successfully, we can assume that

the unknown file is benign.

In this paper, we will discuss the use of an encryption technique called Simple

Substitution Columnar Transposition as a way to distinguish a malware file from

a benign file and compare the results obtained by this method with the existing

techniques in static analysis. This paper is organized into the following sections. In

this chapter, we have given a brief summary about polymorphic and metamorphic

malware and how encryption techniques can be used as malware detection techniques.

Chapter 2 talks about some existing implementation of this idea. In Chapter 3, we

have an overview of the SSCT cryptanalysis technique followed by a detailed account

2

of our implementation. In Chapter 4, we present our experiments and the results

obtained. We conclude with Chapter 5, which talks about the future work in this

area.

3

CHAPTER 2

Previous Work

In this chapter, we will see some of the existing research that form the basis of

our SSCT implementation. Since SSCT encryption is an extension of the Simple Sub-

stitution technique, a deeper understanding of both the simple substitution method

and the Jakobsen’s algorithm which helps in solving it, will help us in breaking the

SSCT cipher.

2.1 Jakobsen’s Algorithm

The naive approach to decrypt a simple substitution cipher is outlined below:

1. Guess an initial key 𝐾

2. Decrypt the cipher using 𝐾

3. If the decrypted message does not make sense, modify the key 𝐾

4. Go to step 2

Jakobsen’s algorithm [6] provides a faster attack on the simple substitution cipher.

This method makes use of digraph statistics of the plaintext and the ciphertext.

Initially, the digraph frequencies of the plaintext letters are populated in the matrix

𝐸 and the digraph frequencies for the ciphertext are filled in the matrix 𝐷. We

compute the score for the initial 𝐷 matrix using the formula

Score =
∑︁

|𝑒𝑖𝑗 − 𝑑𝑖𝑗|

4

Table 1: Caesar Cipher with key = 2

A B C D E F G H I J K L . . . S T U V W X Y Z
C D E F G H I J K L M N . . . U V W X Y Z A B

An initial key 𝐾 is guessed by comparing the individual letter frequencies in the

plaintext and the ciphertext [4]. For every change in 𝐾, the 𝐷 matrix changes as

follows: if 𝐾𝑖 and 𝐾𝑗 are swapped, then we swap the 𝑖𝑡ℎ and 𝑗𝑡ℎ columns and rows

in the 𝐷 matrix. We compute the score for the modified 𝐷 matrix. If the score

improves, we retain the changes, otherwise we swap the rows and columns again and

continue with a different key.

2.2 Simple Substitution Distance

One of the earliest forms of encryption is the Caesar Cipher [13]. Here, the key is

an integer indicating the shift in the alphabet position. For example, if the key is 2,

every character in the alphabet maps to the character two units away from itself, as

shown in Table 1. Simple Substitution is a modification of the Caesar Cipher where

instead of a constant displacement, the key can be any permutation of the characters

in the alphabet.

In static analysis, opcode sequences are often extracted from a known malware

and compared to the opcode sequence from an unknown file [16]. By obtaining a

similarity measure between the two sequences, the unknown file is classified either

as a malware or a benign file. In these methods, opcodes are usually represented by

characters from the English alphabet, making the extracted opcode sequence a string

of letters from the English alphabet. Combining this representation and the opcode

substitution that we saw in Chapter 1 to morph the malware, we can look at an

unknown file as a cipher and try to decrypt it using the Simple Substitution method

5

to see if resembles any known version of the virus.

An effective implementation of the Simple Substitution method to detect malware

is given in [8]. This implementation uses the Jakobsen’s algorithm to avoid repeated

decryption of the cipher or the unknown file.

Let us try to simulate the Jakobsen’s algorithm on an example. Let us consider

an alphabet with characters J,G,S,V and P in the decreasing order of their occurrence.

Let the original digraph frequency in this alphabet be the matrix shown in Table 2.

If our ciphertext is “GPSSPVJPSPSVJGSPJVJGSVSPVS”, based on the frequency,

we can come with the putative key shown in Table 3. The decrypted text using this

putative key is “PGJJGSVGJGJSVPJGVSVPJSJGSJ”. From this, we calculate the

digraph frequencies and arrive at the matrix 𝐷 given in Table 4. We calculate the

score for this putative key using these two matrices 𝐸 and 𝐷. As per Jakobsen’s

algorithm, the next step is two modify this putative key 𝐾 and recompute the score.

There are several ways to modify the key, but to maintain the simplicity of this ex-

ample, we swap the first two elements. When we decrypt now, the text obtained is

“PJGGJSVJGJGSVPGJVSVPGSGJSG”. With this plaintext, the new digraph fre-

quency matrix is given in Table 5. When we compare this with Table 4, we see that

columns 1 and 2 and rows 1 and 2 are swapped. This means that we do not have to

decrypt the ciphertext during every iteration in order to compute the score. Instead

we can build the 𝐷 matrix once, and swap its rows and columns based on the changes

to the key 𝐾.

6

Table 2: Expected digraph frequency E

J G S V P
J 2 3 0 4 1
G 1 0 2 1 2
S 1 2 1 0 0
V 1 0 0 1 1
P 1 2 0 1 0

Table 3: Putative key

S P V J G
J G S V P

Table 4: Digraph frequency D

J G S V P
J 1 4 2 0 0
G 3 0 2 1 0
S 2 0 0 3 0
V 0 1 1 0 2
P 2 1 0 0 0

Table 5: Digraph frequency D

J G S V P
J 0 3 2 1 0
G 4 1 2 0 0
S 0 2 0 3 0
V 1 0 1 0 2
P 1 2 0 0 0

7

CHAPTER 3

Simple Substitution Columnar Transposition

We will first see how a piece of plaintext is encrypted using the simple substi-

tution columnar transposition method. Once we have a clear understanding of the

encryption, we can work backwards and come up with the steps to retrieve the plain-

text from the ciphertext. This is crucial in implementing the scoring technique used

in our project.

3.1 SSCT Encryption

Simple Substitution Columnar Transposition is a form of encryption that adds

one more level of complexity to the simple substitution method. In this method, after

the plaintext symbols are replaced with the ciphertext symbols, the text is written in

the form of a matrix. The columns of this matrix are shuffled and the resulting text

forms the ciphertext.

Let us encrypt the text “either the well was very deep or she fell very slowly”

using SSCT, using the substitution key shown in Table 6. After substitution, the

text now becomes “abcdaecdafaggfhijaeklaamneidaoaggjaekignfgk”. We fill this in-

termediate ciphertext in a matrix as shown in Table 7. If the transposition key is

(1,4,5,2,10,8,9,7,6,3), we get the final matrix as shown in Table 9. We obtain the

ciphertext from this matrix, which in our case is “adabfdacecafhgkaejiglmnaodaieaa-

Table 6: Substitution Key

e i t h r w l a s v y d p o f
a b c d e f g h i j k l m n o

8

Table 7: Intermediate matrix⎡⎢⎢⎢⎢⎣
𝑎 𝑏 𝑐 𝑑 𝑎 𝑒 𝑐 𝑑 𝑎 𝑓
𝑎 𝑔 𝑔 𝑓 ℎ 𝑖 𝑗 𝑎 𝑒 𝑘
𝑙 𝑎 𝑎 𝑚 𝑛 𝑒 𝑖 𝑑 𝑎 𝑜
𝑎 𝑔 𝑔 𝑗 𝑎 𝑒 𝑘 𝑖 𝑔 𝑛
𝑓 𝑔 𝑘 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥

⎤⎥⎥⎥⎥⎦
Table 8: Ciphertext matrix⎡⎢⎢⎢⎢⎣

𝑎 𝑏 𝑐 𝑑 𝑎 𝑒 𝑐 𝑑 𝑎 𝑓
𝑎 𝑔 𝑔 𝑓 ℎ 𝑖 𝑗 𝑎 𝑒 𝑘
𝑙 𝑎 𝑎 𝑚 𝑛 𝑒 𝑖 𝑑 𝑎 𝑜
𝑎 𝑔 𝑔 𝑗 𝑎 𝑒 𝑘 𝑖 𝑔 𝑛
𝑓 𝑔 𝑘 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥

⎤⎥⎥⎥⎥⎦

jagnigkegfxxgxxxxxk”.

3.2 Attack on SSCT Using Jakobsen’s Algorithm

An approach to break the Zodiac-340 cipher using a combination of the Simple

Substitutuion Columnar Transposition technique and the Jakobsen’s algorithm has

been outlined in the research paper [20]. A major difference between the SSD and

SSCT techniques is that in SSD, the plaintext and the ciphertext are a stream of

characters, whereas in SSCT, they are represented as a matrix. If the initial ciphertext

is represented as shown in Table 10, we need to store the digraph frequencies for every

permutation of the columns. We should also note that when the matrix is flattened

Table 9: Final ciphertext matrix⎡⎢⎢⎢⎢⎣
𝑎 𝑑 𝑎 𝑏 𝑓 𝑑 𝑎 𝑐 𝑒 𝑐
𝑎 𝑓 ℎ 𝑔 𝑘 𝑎 𝑒 𝑗 𝑖 𝑔
𝑙 𝑚 𝑛 𝑎 𝑜 𝑑 𝑎 𝑖 𝑒 𝑎
𝑎 𝑗 𝑎 𝑔 𝑛 𝑖 𝑔 𝑘 𝑒 𝑔
𝑓 𝑥 𝑥 𝑔 𝑥 𝑥 𝑥 𝑥 𝑥 𝑘

⎤⎥⎥⎥⎥⎦

9

Table 10: Initial ciphertext matrix

⎡⎢⎢⎢⎣
𝑐11 𝑐12 𝑐13 . . . 𝑐1𝑛
𝑐21 𝑐22 𝑐23 . . . 𝑐2𝑛
...

...
... . . .

...
𝑐𝑚1 𝑐𝑚2 𝑐𝑚3 . . . 𝑐𝑚𝑛

⎤⎥⎥⎥⎦

out, the last element of the 𝑖𝑡ℎ row will be adjacent to the first element of the 𝑖+ 1𝑡ℎ

row. [20] describes a data structure to effectively store this information by parsing

the ciphertext. Given a transposition key

𝐾 = (𝑘1, 𝑘2, 𝑘3, ...𝑘𝑛)

the digraph matrix D is given by

𝐷 = 𝐷𝑘1,𝑘2 +𝐷𝑘2,𝑘3 + · · ·+𝐷𝑘𝑛−1,𝑘𝑛 +𝐷𝑘𝑛,𝑘1′

where 𝐷𝑖,𝑗 is the digraph frequencies matrix when column 𝑗 is next to column 𝑖 and

𝐷𝑖,𝑗′ accounts for the digraph frequencies for the wrap around case

If we were to apply the Jakobsen’s algorithm directly to this case, then, during

every iteration, we would need to swap the rows and columns for each 𝐷𝑖,𝑗 matrix.

This would be time consuming. Instead, it is shown in [20] that swapping the rows

and columns of the 𝐸 matrix would yield the same score. Hence we avoid the cost of

recomputing the 𝐷 matrix during every iteration. With this modification, the steps

to compute the score for each putative key is given by:

∙ Assemble the 𝐷 matrix from the already computed 𝐷𝑖,𝑗 matrices, based on the

key 𝐾

∙ s =
∑︀

|𝑒𝑖𝑗 − 𝑑𝑖𝑗|

10

3.3 SSCT for Malware Detection

In order to use SSCT as a scoring technique for malwares, we need to represent

the data from the known virus files, which we will refer to as the model, as the

plaintext and the data from the file to be scored, as the ciphertext. In both the

model and the file to score, we take only the 𝑘 top opcodes. All other opcodes are

categorized as ‘other’.

The 𝐸 matrix should reflect the digraph statistics of all the files in the model.

The algorithm to compute this matrix is given in Table 11. To build this matrix,

we compute the normalized digraph frequencies for each file separately and sum up

the individual matrices to get the final 𝐸 matrix. It should be noted that in this

approach, we have two keys—one corresponding to the opcode substitution and the

other for the columns transposition in the matrix. We will denote the former as the

substitutionKey and the latter as the transpositionKey.

Table 11: Compute 𝐸 Matrix

Initialize 𝐸 to 0
for each file in model

Initialize digraph matrix 𝑚 to 0
opcodeCurrent = readOpcode from file
opcodeNext = readOpcode from file
total = 0
while opcodeNext is not NULL

𝑚[opcodeCurrent][opcodeNext] + +
opcodeCurrent = opcodeNext
opcodeNext = readOpcode from file
total++

end while
𝑚 = 𝑚/total
𝐸 = 𝐸 +𝑚

end for

11

The opcodes from the file to be scored are populated in a matrix. This would

be our ciphertext matrix 𝐶. We use this to compute the 𝐷𝑖,𝑗 matrices. We then

guess an initial substitution key based on the opcode frequencies in the model and

the file to score. The unknown file is scored using a nested hill climb approach against

the model. The algorithm used to compute the score is outlined in Table 12. This

function, in turn, calls the Jakobsen’s algorithm explained in Table 13.

Table 12: Compute Score

Input: currentScore

Initialize transposition key 𝐾
tempKey = 𝐾
𝑎 = 0
𝑏 = 0
score = 0
while 𝑏 < 𝐾𝐸𝑌 𝑆𝐼𝑍𝐸

temp = tempKey[𝑎]
tempKey[𝑎] = tempKey[𝑏]
tempKey[𝑏] = temp
𝑎++
if 𝑎+ 𝑏 < 𝐾𝐸𝑌 𝑆𝐼𝑍𝐸

tempScore = Jakobsen(tempKey, currentScore)
if tempScore < currentScore and tempScore! = 0

currentScore = tempScore
𝐾 = tempKey
𝑎 = 0
𝑏 = 1

end if
else

𝑎 = 0
𝑏++
tempKey = 𝐾

end if
end while
return currentScore

12

Table 13: Jakobsen’s Algorithm

Input: 𝑡𝑒𝑚𝑝𝐾𝑒𝑦, 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑐𝑜𝑟𝑒

𝑎 = 0
𝑏 = 0
score = 0
while 𝑏 < 26

𝑖 = 𝑎
𝑗 = 𝑎+ 𝑏
swap substitutionKey[𝑎], substitutionKey[𝑎+ 𝑏]
swap 𝑖𝑡ℎ and 𝑗𝑡ℎ rows and columns in 𝐸
score = GetScoreForKey(tempKey)
if score < currentScore

currentScore = score
𝑎 = 0
𝑏 = 1

else
swap substitutionKey[𝑎], substitutionKey[𝑎+ 𝑏]
swap 𝑖𝑡ℎ and 𝑗𝑡ℎ rows and columns in 𝐸
𝑎++
if 𝑎+ 𝑏 >= 26

𝑎 = 0
𝑏++

end if
end if

end while
return currentScore

13

CHAPTER 4

Experiments and Results

Malware are categorized into several families based on their characteristics. As

anyone would correctly assume, the response to any malware detection technique

differs from one family to another. In this chapter, we will briefly describe the several

malware families we have considered and present our experiments and their results.

4.1 Dataset

The SSCT implementation described in this project has been run on several

malware families like Metamorphic Worm (MWOR), Next Generation Virus Creation

Kit (NGVCK), Cridex, Security Shield, ZBOT, Smart HDD, Harebot and Winwebsec.

A brief description of these families is given below.

∙ MWOR [12] is a type of worm that includes a metamorphic engine. This meta-

morphic engine is responsible in mutating the worm across generations, helping

it to evade detection by security systems

∙ NGVCK is a self replicating, metamorphic virus. The NGVCK morphing engine

uses techniques like function ordering and dead code insertion to morph the

virus [18]

∙ Cridex is a Trojan that spreads by infecting removable disk drives. It infects

the system by creating a backdoor entry point [9]

∙ Security Shield is a variant of the winwebsec family. It is a malicious software

that displays fake alerts in the system [10]

14

Table 14: Dataset

Family Number of files
MWOR 100
NGVCK 50
Cridex 74
Security Shield 58
ZBOT 2136
Smart HDD 68
Harebot 53
Winwebsec 4360
Benign set 214

∙ ZBOT or Zeus is a trojan horse that steals information from infected systems

by techniques like form grabbing [17]

∙ Smart HDD is a virus that disables the security softwares in the infected sys-

tems [7]

∙ Harebot is a rootkit that uses keystroke logging to get unauthorized information

from the infected system

∙ Winwebsec is a malicious software that displays fake warning messages and

popups in the infected system [11]

Benign files used in the experiments for Linux malware were taken from several Linux

utility programs like mv, cp, mkdir etc., Several Cygwin utility files were used as the

benign files to score the malware files for Windows platform. The number of virus

files in each family can be found in Table 14. All the files in each family were grouped

into five sets and a five fold cross validation was done in order to obtain the malware

and the benign scores.

15

4.2 Parameters

When we disassemble both the malware and the benign files, we find that they

contain a large number of distinct opcodes. Of these opcodes, only a certain number of

them appear consistently and contribute to the inherent malicious or benign nature

of these files. All other opcodes occur quite infrequently and can collectively be

categorized as the ‘other’ category. Hence, the opcode sequence of the files now

contain the top 𝐾 frequently occurring opcodes and the ‘other’ opcodes. In the

previous research involving Simple Substitution Distance [8], it has been shown that

taking the top 25 distinct opcodes yields the best results. Hence, in our experiments,

we adopt the same value.

We have tried out three different approaches for our implementation. In the first

approach, we use the same number of columns for all the test files and compute their

scores. This is repeated for various column configurations, that is, all test files are

scored by arranging them in a two column matrix first, then 5, 10 and so on. In the

second approach, each file is scored using various number of columns and then the

scores are collected for all test files. Since the scores did not differ from each other by

a large margin, and since the first approach is faster, we have continued all further

experiments using the first approach. The third approach uses Index Coincidence

scores to find the correct column permutation and then uses a hill climb approach

to arrive at the best possible substitution key. The difference between this and the

first two approaches is that, in this approach, we separate the transposition and the

substitution layers in our problem. We have tested this approach on a subset of

Winwebsec files. Figure A.24 and Figure A.23 represent the ROC curve and the

scatter plots for this approach.

In this project, we have also experimented with different number of columns for

16

the ciphertext matrix shown in Table 10. The number of columns taken were 2, 5,

10, 15, 20 and 25. Since the score obtained was the same in all these cases and since

the running time is lesser when the number of columns is 2, we have continued all

our experiments using that value.

4.3 Results

We obtained the malware and benign scores for the test data from the experi-

ments we carried out on the different malware families. Using this data, we calculate

the false positive and the false negative rates for each of the families and use them

to plot Receiver Operating Characteristics curve (ROC curve) [5]. The area under

the ROC curve (AUC value) is a value between 0 and 1, inclusive. This value gives

the probability with which our system will correctly classify any random file as a

malware or a benign file [3]. Table 15 gives a comparison of the AUC values for

the different malware families obtained by using the SSCT, SSD and HMM tech-

niques [1, 2, 16, 15, 14]. The visualization of the results in this table are provided

through scatterplots and ROC curves for each of the families and are included in the

Appendix A.

As we see from Table 15, for some families, the AUC value obtained using the

SSCT technique is 1, which is the ideal value we strive for, and for a few others,

the value drops. The AUC value of 1 is obtained when there is a clear demarcation

between the malware and the benign scores. For example, from the scatterplot of

these values for the family NGVCK given in Figure 1, we see that the range of values

for the malware and benign scores do not overlap. As, a result, we have a perfect

ROC curve with an AUC value of 1, as shown in Figure 2. On the other hand, in

the case of the Cridex family of malware, there is some overlapping of the malware

17

Table 15: AUC values

Malware Family AUC using SSCT AUC using SSD AUC using HMM
MWOR0.5 0.51 1 1
MWOR1 0.58 1 0.99
MWOR1.5 0.70 0.9921 0.9625
MWOR4 0.80 0.9933 0.8225
NGVCK 1 1 1
Cridex 0.96288 0.58306 0.596
SecurityShield 1 0.62902 0.994
ZBOT 0.867 0.8664 0.9874
Smart HDD 1 0.8855 0.99875
Harebot 1 0.5606 1
Winwebsec 0.7328 0.8374 1

and the benign scores, as shown in Figure 3. This results in the ROC curve shown

in Figure 4. The scatterplot and the corresponding ROC curves for the remaining

families are included in the Appendix A.

0 5 10 15 20 25 30 35 40 45 50

20

40

60

80

100

120

140

160

180

Test Files

S
co
re

Malware
Benign

Figure 1: Scatter Plot NGVCK

We see from Table 15 that the SSCT scores give a better result compared to

18

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate

T
ru
e
P
os
it
iv
e
R
at
e

Figure 2: NGVCK ROC Curve

0 5 10 15 20 25 30 35 40 45 50

20

40

60

80

100

120

140

Test Files

S
co
re

Malware
Benign

Figure 3: Scatter Plot Cridex

19

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate

T
ru
e
P
os
it
iv
e
R
at
e

Figure 4: Cridex ROC Curve

the other techniques considered in the literature. We can attribute this performance

improvement to two factors. First is the opcode substitution which is handled by the

substitutionKey in our implementation. This addresses morphing techniques that

replace opcodes with other interchangeable opcodes. It should be noted that the

SSD technique also handles this case. The second, and the distinguishing factor, is

the column transpositions in our ciphertext matrix, handled by the transpositionKey.

Rearranging the columns in the matrix could account for morphing techniques that

use sub-routine re-ordering and hence increase the detection rate in morphed malware.

This might also be the reason causing this technique to not perform as well as the

SSD method, in case of families like Winwebsec.

Another interesting fact to note from the results is that, when we observe the

scatter plots in Figure A.5 to Figure A.8 in Appendix A for the different padding

ratios in the MWOR family, the gap between the benign and the malware scores

20

seems to increase with the increase in the padding ratio. This can be due to the fact

that as more and more dead code is inserted, the malware files become more similar

to one another than to the benign files.

21

CHAPTER 5

Conclusion and Future Work

In this project we have implemented the SSCT algorithm to score several malware

families. Our implementation takes a set of training files and builds a model out

of those files. This model is then used to score a set of test files, which may be

benign or malign. One of the challenging aspects of this project was to represent the

information from all the files in the training set, in the model. We have used five fold

cross validation to ensure that the results are unbiased. Our experiments were carried

out on several hundreds of malware files across different families and this has given

us a chance to observe how each of these families reacts to this scoring technique.

In addition to the SSCT module, we have also implemented the SSD technique to

compare our scores and to verify the correctness of our implementation.

On comparing the SSCT scores with the scores from previous researches like the

Simple Substitution Distance for malware detection, we see that the SSCT technique

gives better results in many families.

This project has sufficient scope for future research and optimization. Currently,

we observe an increase in the running time of the module when the number of columns

is increased. This aspect has definite room for improvement and any future work can

attempt to optimize the running time of the algorithm. Another aspect that could

be improved is the performance of the SSCT technique on families like Winwebsec

and MWOR, where the detection rate is lower than that of the rate for the SSD

method. We can try out different swapping techniques for the substitution key and

the transposition key as discussed in [8] and compare the AUC values obtained in

22

each case. In this project, except for the MWOR family, we have not taken the

padded variants of other families. It would be interesting to see if the SSCT method

continues to detect these other families even with increased padding ratios.

23

LIST OF REFERENCES

[1] C. Annachatre, T. H. Austin, M. Stamp, Hidden Markov Models for Malware
Classification, Journal of Computer Virology and Hacking Techniques, 11(2):59–
73, May 2015

[2] T. Austin, E. Filiol, S. Josse, M. Stamp, Exploring Hidden Markov Models for
Virus Analysis, A Semantic Approach, Proceedings of the 46th Hawaii International
Conference on System Sciences, 5039–5048, January 2013

[3] A. P. Bradley, The Use of the Area Under the ROC Curve in the Evolution of
Machine Learning Algorithms, Pattern Recognition, 30:1145–1159, 1997

[4] A. Dhavare, R. M. Low, M. Stamp, Efficient Cryptanalysis of Homophonic Sub-
stitution Ciphers, Cryptologia, 37:250–281, 2013

[5] T. Fawcett, An Introduction to ROC Analysis, Pattern Recognition Letters,
27(8):861–874, 2006

[6] T. Jakobsen, A Fast Method for the Cryptanalysis of Substitution Ciphers, Cryp-
tologia, 19:265–172, 1995

[7] Kaspersky–Rogue Security Software, http://support.kaspersky.com/

viruses/rogue?qid=208286454, Accessed November 2015

[8] R. M. Low, G. Shanmugam, M. Stamp, Simple Substitution Distance and
Metamorphic Detection, Journal of Computer Virology and Hacking Techniques,
9(3):159–170, March 2013

[9] Microsoft Malware Protection Center, Cridex, http://www.microsoft.com/

security/portal/threat/encyclopedia/entry.aspx?Name=Win32%2FCridex,
Accessed November 2015

[10] Microsoft Malware Protection Center, SecurityShield, http://www.

microsoft.com/security/portal/threat/encyclopedia/Entry.aspx?Name=

SecurityShield, Accessed November 2015

[11] Microsoft Malware Protection Center, Winwebsec, https://www.microsoft.

com/security/portal/threat/encyclopedia/entry.aspx?Name=Win32%

2fWinwebsec, Accessed November 2015

[12] S. M. Sridhara, Metamorphic worm that carries its own morphing
engine, http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.344.

549&rep=rep1&type=pdf, 2012

24

http://support.kaspersky.com/viruses/rogue?qid=208286454
http://support.kaspersky.com/viruses/rogue?qid=208286454
http://www.microsoft.com/security/portal/threat/encyclopedia/entry.aspx?Name=Win32%2FCridex
http://www.microsoft.com/security/portal/threat/encyclopedia/entry.aspx?Name=Win32%2FCridex
http://www.microsoft.com/security/portal/threat/encyclopedia/Entry.aspx?Name=SecurityShield
http://www.microsoft.com/security/portal/threat/encyclopedia/Entry.aspx?Name=SecurityShield
http://www.microsoft.com/security/portal/threat/encyclopedia/Entry.aspx?Name=SecurityShield
https://www.microsoft.com/security/portal/threat/encyclopedia/entry.aspx?Name=Win32%2fWinwebsec
https://www.microsoft.com/security/portal/threat/encyclopedia/entry.aspx?Name=Win32%2fWinwebsec
https://www.microsoft.com/security/portal/threat/encyclopedia/entry.aspx?Name=Win32%2fWinwebsec
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.344.549&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.344.549&rep=rep1&type=pdf

[13] M. Stamp, Information Security: Principles and Practice, second edition, Wiley,
2011

[14] T. Singh, Support Vector Machines and Metamorphic Malware Detection, http:
//scholarworks.sjsu.edu/etd_projects/409/, 2015

[15] S. Vemparala, Malware Detection Using Dynamic Analysis, http:

//scholarworks.sjsu.edu/cgi/viewcontent.cgi?article=1403&context=

etd_projects, 2015

[16] M. Stamp, W. Wong, Hunting for Metamorphic Engines, Journal in Computer

Virology, 2:211–229, 2006

[17] Symantec Security Response, ZBOT, http://www.symantec.com/security_

response/writeup.jsp?docid=2010-011016-3514-99, Accessed November 2015

[18] P. Szor, The Art of Computer Virus Research and Defense, Pearson Education,
2005

[19] W. Williamson, Evolution of Malware, http://www.securityweek.com/

evolution-malware, Accessed November 2015

[20] J. Yi, Cryptanalysis of Homophonic Substitution-Transposition Cipher,
http://scholarworks.sjsu.edu/cgi/viewcontent.cgi?article=1359&

context=etd_projects, 2014

25

http://scholarworks.sjsu.edu/etd_projects/409/
http://scholarworks.sjsu.edu/etd_projects/409/
http://scholarworks.sjsu.edu/cgi/viewcontent.cgi?article=1403&context=etd_projects
http://scholarworks.sjsu.edu/cgi/viewcontent.cgi?article=1403&context=etd_projects
http://scholarworks.sjsu.edu/cgi/viewcontent.cgi?article=1403&context=etd_projects
http://www.symantec.com/security_response/writeup.jsp?docid=2010-011016-3514-99
http://www.symantec.com/security_response/writeup.jsp?docid=2010-011016-3514-99
http://www.securityweek.com/evolution-malware
http://www.securityweek.com/evolution-malware
http://scholarworks.sjsu.edu/cgi/viewcontent.cgi?article=1359&context=etd_projects
http://scholarworks.sjsu.edu/cgi/viewcontent.cgi?article=1359&context=etd_projects

APPENDIX

Experiments

In this section, we provide the scatterplots and the ROC curves for all the families

we have experimented on. When running the experiments on each of the families, we

recorded the malware scores and the benign scores and used these to generate the

scatterplots shown in figures A.5 to A.13. From these scores, we calculated the true

positive and the false positive rates and used them to generate the ROC curves shown

in figures A.14 to A.22. The ROC curves given here correspond to the AUC values

displayed in Table 15.

0 5 10 15 20 25 30 35 40 45 50

20

40

60

80

100

120

140

160

180

Test Files

S
co
re

Malware
Benign

Figure A.5: Scatter Plot MWOR 0.5

26

0 5 10 15 20 25 30 35 40 45 50

20

40

60

80

100

120

140

160

180

Test Files

S
co
re

Malware
Benign

Figure A.6: Scatter Plot MWOR 1

0 5 10 15 20 25 30 35 40 45 50

20

40

60

80

100

120

140

160

180

Test Files

S
co
re

Malware
Benign

Figure A.7: Scatter Plot MWOR 1.5

27

0 5 10 15 20 25 30 35 40 45 50

20

40

60

80

100

120

140

160

180

Test Files

S
co
re

Malware
Benign

Figure A.8: Scatter Plot MWOR 4

0 5 10 15 20 25 30 35 40 45 50

20

40

60

80

100

120

140

160

180

Test Files

S
co
re

Malware
Benign

Figure A.9: Scatter Plot SecurityShield

28

0 5 10 15 20 25 30 35 40 45 50

10

20

30

40

50

60

70

80

Test Files

S
co
re

Malware
Benign

Figure A.10: Scatter Plot ZBOT

0 5 10 15 20 25 30 35 40 45 50

20

40

60

80

100

Test Files

S
co
re

Malware
Benign

Figure A.11: Scatter Plot SmartHDD

29

0 5 10 15 20 25 30 35 40 45 50

10

20

30

40

50

60

70

80

Test Files

S
co
re

Malware
Benign

Figure A.12: Scatter Plot Harebot

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000

10

20

30

40

50

60

70

Test Files

S
co
re

Malware
Benign

Figure A.13: Scatter Plot Winwebsec

30

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate

T
ru
e
P
os
it
iv
e
R
at
e

Figure A.14: MWOR0.5 ROC Curve

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate

T
ru
e
P
os
it
iv
e
R
at
e

Figure A.15: MWOR1 ROC Curve

31

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate

T
ru
e
P
os
it
iv
e
R
at
e

Figure A.16: MWOR1.5 ROC Curve

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate

T
ru
e
P
os
it
iv
e
R
at
e

Figure A.17: MWOR4 ROC Curve

32

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate

T
ru
e
P
os
it
iv
e
R
at
e

Figure A.18: SecurityShield ROC Curve

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate

T
ru
e
P
os
it
iv
e
R
at
e

Figure A.19: ZBOT ROC Curve

33

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate

T
ru
e
P
os
it
iv
e
R
at
e

Figure A.20: SmartHDD ROC Curve

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate

T
ru
e
P
os
it
iv
e
R
at
e

Figure A.21: Harebot ROC Curve

34

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate

T
ru
e
P
os
it
iv
e
R
at
e

Figure A.22: Winwebsec ROC Curve

0 20 40 60 80 100 120 140 160 180 200
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Test Files

S
co
re

Malware
Benign

Figure A.23: Scatter Plot Winwebsec IC Scores

35

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate

T
ru
e
P
os
it
iv
e
R
at
e

Figure A.24: Winwebsec ROC Curve(IC Scores)

36

	San Jose State University
	SJSU ScholarWorks
	Fall 2015

	SSCT Score for Malware Detection
	Srividhya Srinivasan
	Recommended Citation

	Introduction
	Previous Work
	Jakobsen's Algorithm
	Simple Substitution Distance

	Simple Substitution Columnar Transposition
	SSCT Encryption
	Attack on SSCT Using Jakobsen's Algorithm
	SSCT for Malware Detection

	Experiments and Results
	Dataset
	Parameters
	Results

	Conclusion and Future Work
	Experiments

