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    ABSTRACT 

Improving Accuracy and Robustness of Self-Tuning Histograms by Subspace 

Clustering 

   by Sai Kiran Padooru 

Self-tuning histograms are a type of histograms very popular these days, as they allow 

the usage of multidimensional datasets. The main advantage of them is that they have a 

low computational cost due to their capacity to understand the dataset. Also, they proposed 

a better approach as they stay up-to-date and have adaptability to query patterns. According 

to the above, many researchers have worked on improving the accuracy of these type of 

histograms, which has led to the use of subspace clustering methods as initialization values. 

Following this approach in this study, a self-tuning histogram code was developed with the 

objective of comparing two different subclustering methods (Proclus and Mineclus) for the 

initialization values. The script was tested with two different datasets (2-D and 4-D). It was 

found that the Proclus algorithm performed better than the Mineclus. Also, it was proved 

that the size of the bucket was crucial to achieve more accuracy (Khachatryan, Clustering-

initialized adaptive histograms and probabilistic cost estimation for query optimization, 

2012).   
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                                                       Introduction  

 

 

Histograms are a representation of the distribution of numerical data. An estimation of the 

probability distribution of a continuous variables, and have become more important tool 

for data summarization techniques, as they don’t assume any type of distribution. Also, 

histograms are widely used for commercial as for scientific purposes in several fields, 

firstly regarding databases approaches due to its flexibility. For the present paper, we will 

be referring to query optimization [1]. 

Query optimizers rely on query predicate selectivities to estimate the cost of different 

plans in an accurate way. The importance of the selectivities lies on its use when comparing 

physical access method, as well as when choosing the method and the order of joints. This 

is why most of the times histograms are used for that, due to its potential to obtain 

selectivity estimates. Hence, the objective of this paper would to improve the use of 

histograms in query optimizers [1]. 

In order to do that, we should consider the two different approaches to histogram 

construction: Static and self-tuning histograms, to further on select the best suited paradigm 

for our purpose.  

As mentioned above, on the first hand, we have static histograms. They are built by 

analyzing the whole set of data, and required to be built again over time to be updated. 

Also, the construction of a multi-dimensional static histogram it is really expensive, both 
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in terms of time and space consumed, and that is just for non-optimal histograms.  

As a way to solve that issue, a new approach was taken to create static histogram by 

escalating against number of tuples, instead of escalating against number of dimensions. 

This way it was possible to remove less relevant attributes. Another methodology to do so, 

was using the SASH framework, which skipped irrelevant attributes for the whole dataset. 

Still, dimensionality reduction techniques, were not completely solving static histogram 

problems, as (even for non-extensive dimensional datasets) it was not taking into account 

local correlations, which could affect the accuracy of the histogram. And even though there 

are techniques that take advantage of local correlations, they required the system to know 

about them previous to its use, which is not possible when talking about large, multi-

dimensional datasets [1]. 

Moving on, on the other hand, we have traditional self- tuning histograms. This approach, 

opposed to the above paradigm, use feedback from the query to study the dataset, which 

reduces built cost significantly. Also, they have shown impressive advantages against static 

histograms in terms of estimation accuracy, as well as in their adaptability to query patterns 

and capability to stay up-to-date to the changes of the dataset [1]. 

The data structure method used for the paper was STHoles, which works by finding 

rectangular regions within the dataspace with a very uniform density. Unfortunately, as for 

the static histograms, traditional self-tuning histograms also failed when talking about data 

spaces of high dimensionality, mainly because of the bad selection of initial top level 

buckets. This was a major issue, because irrespective of the training efforts, it was not 

going to be accurate [1]. 
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In order to solve the issue above mentioned, subspace clustering for self tuning 

histograms were introduced. Meaning that it uses the self-tuning capability to understand 

the dataset from scratch, but combining it with an initial configuration obtained using 

subspace clustering. This way, the self-tuning procedures would only be used for refining 

the histogram, but not creating it, fixing the issues regarding the bad initial top level 

buckets. Taking this into account, the main objective of this paper was to create a script 

able to run a self-tuning histogram, using both the Mineclus and the Proclus algorithms to 

create a sub-cluster initialization [1]. 

                                                   

 

 

 

 

                                                          

 

 

                                                 

                                               

                                                         Background  
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Histograms are a abridged portrayal of data. They are used in many databases and alike 

applications. A histogram represents the distribution of the values of an attribute in a 

cluster. Histograms are used in databases for the estimation of selectivity. 

Clustering: 

Analysis of clustering of data found objects that are similar in a sense to one another. The 

members of a cluster are more similar to each other that are like members of other 

groups. The aim of the clustering analysis is to find clusters of high quality that the inter-

cluster similarity is low and the similarity of intra-cluster is high [5]. 

Clustering, such as classification, are used to segment the data. Unlike the models of 

classification, clustering segment the data into groups that were not previously defined. 

Models for classifying data segment of assigning classes defined previously, that are 

specified in a destination. The models of clustering do not use a destination [5]. 

Clustering is useful to explore the data. If there are many cases and non-obvious 

groupings, clustering algorithms can be used to find natural groupings. Clustering can 

also serve as a preprocessing step of useful data to identify homogeneous groups on 

which to build models supervised [5]. 

Clustering can also be used for the detection of abnormalities. Once the data has been 

segmented into clusters, you might find that some cases do not fit well in any clusters. 

These cases are anomalies or outliers [5]. 
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Cons of Static Multi-Dimensional Histograms 

 We cannot change static histograms after their building is over. This implies that the 

constructing of histograms needed to be done periodically to see modifications in the 

data. The building costs of histograms which are high dimensional amplify quickly with 

different data set dimensions. For datasets of high dimensions, the very grand cost of 

building and way to build histograms again and again, is a greater hurdle to the 

implementation of approaches multi-dimensional [1]. 

Self Tuning Histograms  

These type of histograms use the final outcomes of the consultations that have already 

implemented to improve their own. This type of learning is superintended. These are 

adept to retaliate the construction costs, acclimate to the assigned tasks and consultation 

are commonly treated as a formative substitute to the ways which are static, which builds 

them and allow it to be consistent [1]. 

 

These utilize the consultation assessment to modify themselves.  The main aim in the 

back of these histograms is once the execution of queries is over, the outcomes are 

familiar, and these outcomes can be utilized to filter the histogram. This is substantially a 

way of schooling histograms superintendedly [1]. 
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 Figure 1 shows how the user provides a query and is analyzed by the database 

management system and are polished [1].Histograms are assessed by the optimizer during 

the process of optimization . Then, the query is run by the system. The user gets the 

results of current consultation; the same outcomes are also seen in the histogram and are 

used for making its structure well filtered. 

 

Figure 1. The STHoles Histogram [1]. 

 STHoles generally has a root bucket in which it includes the entire space of values of 

attribute. Figure 2 is the bucket r [1]. In buckets next to each segment is the number of 

tuples.  

Figure 2. Left shows STHoles histogram and right shows bucket tree [1]. 
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We will begin with cardinalities as estimates and then we will display how new buckets 

are added by utilizing the consultation comments, and finally, as compact the histogram, 

space is freed up to cover space of the budgetary rules [1]. 

 

 

 

 

 

 

 

 

 

 

Algorithm 1: STHoles "Estimate, Refine, Compact" cycle [1]. 
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 Cardinality Estimation  

To proximate tuple cardinalities, STHoles makes use of continuous value assumptions.  

 

Figure 3: histogram(STHoles) with query 
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Here dashed rectangle is the query q. It intersects with r and b1, histogram buckets.  By 

applying the Continuous Value Assumption, STHoles estimates the number of tuples in 

intersection of a bucket and a query to be proportional to the volume of the intersection.  
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                                            METHODOLOGY 

Following is the methodology used to achieve the objectives of this study. First, a brief 

explanation of how the subclusters methods (Mineclus and Proclus) work will be made. 

Second, the algorithm to convert the cluster results to buckets will be explained. Third, the 

STHoles data structure will be shown as it is the structure used to manage the histogram. 

Lastly, the self-tuning algorithms will be shown.   

In order to completely understand the methodology, some important definitions are 

required. 

 

 Histograms: It is a data structure that allows to represent a dataset by discretizing 

the domain into spaces (buckets). 

 Bucket: geometrical space that represents a number of elements (tuples), 

uniformly distributed within it. Buckets do not contain the information from each 

tuple, but only the total count of them. 

 Tuple: every entry in a dataset. It has a geometrical position in every dimension. 

 Frequency: is the number of tuples within a bucket. 

 Dimension: represents every attribute of the dataset (should be a numeric value). 

 Cluster: is a representation of a section of a dataset. Each cluster contains one or 

more tuples. Contrary to bucket, they don’t have geometric boundaries. 

 Query: is a geometrical spaced restriction that allows to evaluate the 

performance of the buckets, in order to represent the histogram.  
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Both Mineclus and Proclus are subspace clustering methodologies used to set up the 

initialization of the buckets. The scripts used to run both methodologies were available 

online from the Open subspace framework of Weka. As the script making process was not 

part of the approach of this paper, no further explanations will be given. 

 

Converting clusters to buckets 

When creating clusters with either one of the approaches above mentioned, there are not 

geometric boundaries, but just a group of tuples assigned to a cluster id. This is an issue 

because the histogram needs specific boundaries as the idea is not to use the position of the 

tuples, but to compact the dataset into different frequencies within the dataspace. In order 

to fix that the following algorithm was used. 

First of all, the median of each dimension of the tuples was set as the center of the cluster, 

to then be able to create the specific boundaries of the bucket at a distance of 5% from the 

median to all directions.  

Once this first buckets was created, an iterative process begins were the dimensions of 

the bucket are increased by 5% each time, to compare both buckets and select the most 

suitable one. This process ends once the new bucket is less suitable than the one before.  

To evaluate the above comparison, the following equation was used: 
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|RR'-C|-|C-RR||CRR|-|CRR'|)RR'(RR,    (1) 

 

Where, 

RR: Old bucket volume 

RR’: New bucket volume 

C: Cluster volume 

 

In order to calculate the intersections, the following equation was used: 

 

M

E[m]
*|RR||CRR|      (2)       

    

 

Where, 

M: Number of tuple within RR (or RR’) 

E[m]: Number of tuples within 𝑅𝑅 ∩ 𝐶 

 

Whenever 𝜆 from equation (1) for a new bucket is greater than the old 𝜆, it is said that 

the new bucket is suitable, hence a new iteration begins [1]. 
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STHoles data structure 

STHoles is the data structure used to represent the histogram. It has a tree structure, 

meaning that there is a parent bucket that has childs, and those childs may or may not be 

parents to another childs. In Figure 4, it is shown the above explained structure [1]. 

 

 

      Figure 4. STHoles structure. 

 

 

Self-Tuning Algorithm 

The self-tuning algorithm is composed of three different main steps: 

 

1. Query: In this step a query is created. To be able to create it, a random point is 

formed for each dimension, and the longitude of the query in that dimension is 
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obtained as 1% from that point to each direction.  

 

2. Shrink: The objective of this step is to divide the buckets intercepting with the 

query. In order to explain this algorithm a little better, a graphic example is shown 

in Figure 5. 

 

 

                                              Figure 5. Shrink Algorithm Example 

The above figure shows the shrinking method between bucket r and query q, 

where b1 and b2 are children of r, and b3 is the child of b2. 

The process is as follows: 

 

 All children of r that intersect q are determined. For this case: b1 and b2. 

 For every intersected child, the boundaries of q are changed, until there is no 
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intersection. They could be adjust by any dimension. For the case: q was 

resized to the right, to avoid intersection with b1. Then, q is resized upwards 

to elude intersecting b2, and hence b3 [1]. 

 For each child, every resizing dimension is considered. The selected resized 

query will be the one with highest volume within all the possibilities.  

 Once the above is done, the process is repeated for the intersection of original 

q with buckets b1 and b2 [1]. 

 

3. Some buckets are merged, so the total number of buckets remains constant. To 

further explain this, please see Figure 6: 

 

                                                    Figure 6. Merge algorithm example. 

The merging process consists on merging together two buckets to create a new 

bigger bucket. As there is no knowledge of what would be the best merging 

option, all possible merge options between parent-child and sibling-sibling are 

evaluated, and the combination with less penalty value will be the chosen one to 

be merged [1]. The next steps are followed: 
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 For Figure 6 the merge combination that is going to be evaluated is between 

sibling b1 and b4.  

 First of all, the smallest possible bucket, that contains both buckets, is 

generated. This new bucket will be called bnew for this example. 

 The intersection between bnew and any other bucket is determined. For this 

case, it is intersecting b2 and b3. 

 bnew boundaries are increased until it contains all buckets that were being 

intersected. This process is repeated until no intersection remains. For this 

case: b1 and b4 buckets are replaced by bnew bucket, which will contain b2 

bucket as a child. 

 The penalty for this merging option is calculated, according to equation 3. 

 

|
)(

)4(
*)()4(|

|
)(

)1(
*)()1(|b4),Penalty(b1

bnewvol

bvol
bnewnbn

bnewvol

bvol
bnewnbn




                             (3) 

 

 After determining the penalty for all possible merging options, the one with 

lower penalty will be merged. 

 

4. Lastly, all the frequency and volumes are updated according to the steps below. 

The algorithm proceeds to evaluate a new query [1]. 
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                                                       Case Study 

 

The methodology explained above, was implemented with two different datasets: cross 

dataset and 4D dataset. 

The first one, was a 2-Dimensional dataset, with 21000 instances. The graphical 

representation of it can be seen in Figure 7. 
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Figure 7. 2-Dimensional dataset representation. 

The second one, a 4-Dimensional dataset, it is a real dataset for the Road 4D of North 

Jutland, in Denmark. It has approximately 400000 instances. 

For each dataset evaluation, both Proclus and Mineclus subclustering algorithms were 

used. Additionally, three different maximum bucket limits were stablished, of 50, 100 and 

150.  
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                                                     Results 

Following there are the results for both datasets, after running a 1000 queries for training, 

and another 1000 to compare it with the original dataset. 

For both datasets the parameters used to implement the Proclus and Mineclus algorithms 

are find in Table 1 and Table 2, respectively.  

 

 

Table 1. Proclus parameters used for both datasets. 

PROCLUS PARAMETERS 

PARAMETER VALUE 

K 50 

D 4 

 

 

Table 2. Mineclus parameters used for both datasets. 

MINECLUS PARAMETERS 

PARAMETER VALUE 

A 0.01 

B 0.1 

K 50 
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M -1 

N 1 

W 10 

 

 

 

 

 

 

Cross dataset results 

In Figure 14, the results for Cross dataset are shown. There, a normalized error, for both 

subclustering algorithms, is reported for three different bucket limits (50, 100 and 150). 
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Figure 8. Normalized error for Cross dataset. 

The normalized errors represent a percentage difference between the self-tuning 

histogram and the original dataset, for 1000 different queries. In this case, it can be seen, 

as a general observation, that the Proclus algorithm has a lower error margin than the 

Mineclus algorithm, which means it approaches better to the original dataset. 
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Figure 9. Relative error between Proclus and Mineclus algorithms. 

Also, in Figure 9, it is shown the relative error between both subclustering algorithms. 

From this it can be determined that Proclus algorithm is, in average, a 16.6% more accurate 

than the Mineclus algorithm. 

Lastly, from the above figures, it is possible to see that 100 buckets is the case with best 

results, with a lower error rate in both cases. This is mainly due to bucket size, where when 

there are 50 buckets, they group together a wider dataspace; and on the other hand, when 

there are 150 buckets the size is much smaller making many compatibles groups be 

separated [1].  
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4D Dataset results 

In Figure 10, the results for the 4D dataset are shown. There, it is seen a normalized error, 

for both subclustering algorithms, for three different bucket limits (50, 100 and 150). As 

mentioned above, this error represent the percentage change between the representation of 

the dataset by the histogram, and the original dataset itself.  

 

 

Figure 10. Normalized error for 4D dataset. 

 

 

 

It can be seen that, for both Mineclus and Proclus algorithm, there is a low error. And, 

even though the Mineclus algorithm presents lower errors for 50 and 100 buckets, it 
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retrieves a bigger error for 150 buckets. From there, it can also be concluded that Proclus 

algorithm’s error decreases when more buckets are generated, for this case, so it would be 

expected a much lower error for 200 and more [1]. 

 

 

Figure 11. Relative error between Proclus and Mineclus algorithms. 

Figure 11 shows the relative error between the Proclus and Mineclus algorithms. From 

there, it can be said that the difference between the results of each algorithm is lower when 

100 buckets are created. 
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                                                       Future work 

 

 

As future work, it is proposed to consider the quality of the results of the sub clustering 

methods. The objective of this would be to improve the initialization values of the self-

tuning algorithm, as the results of the sub clustering methods vary highly according to its 

own initialization, so it is important to understand how good they are before proceeding 

with the methods. This way, it will be possible to determine the best values to retrieve 

results as close to the original dataset. 

Also, it is important to work on the time when running the scripts, as at the moment the 

computational cost is high when running big histograms. 

 

 

 

                                                       

 

 

 

 

                                                  

 

 



35 
 

                                                    Conclusions 

 

 

 A self-tuning algorithm was implemented, using two different subclustering 

approaches as the initialization values. 

 The script was evaluated in two different datasets, of two and four dimensions, in order 

to prove the scope of it.  

 For the Cross dataset, it was possible to determine that the Proclus algorithm is 16.6% 

more accurate than the Mineclus one, meaning that it represents better the original 

dataset. 

 Also, for the same dataset, it was concluded that 100 buckets gives more accurate 

results, due to the bucket size. However, the difference in accuracy, with 50 buckets is 

not as big (with a difference of 0.06), but the second one runs much faster.  

 For the 4D dataset it was determined that the Mineclus algorithm was a better approach 

than the Proclus algorithm until 100 buckets where created. However, the Proclus 

algorithm performs better every time when creating more buckets, achieving a better 

error than the Mineclus algorithm for the case of 200 buckets. This meaning that the 

Mineclus was more accurate than the Proclus, at representing the original dataset, when 

lower number of buckets were created, and vice versa when more buckets were created 

[1].  
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                                            Additional Screen-shots 

 

 

                                  Figure A.12. Calculation of Results for Proclus Method 
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                                            Figure A.13.  Parameters used for Mineclus Method 
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                                       Figure A.14.  Calculation of Results for Mineclus Method 
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                                                Figure A.15.  Parameters used for Proclus Method 
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