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ABSTRACT 

Recommendation System Using Collaborative Filtering 

by Yunkyoung Lee 

 

 

Collaborative filtering is one of the well known and most extensive 

techniques in recommendation system its basic idea is to predict which items a 

user would be interested in based on their preferences. Recommendation 

systems using collaborative filtering are able to provide an accurate prediction 

when enough data is provided, because this technique is based on the user’s 

preference. User-based collaborative filtering has been very successful in the 

past to predict the customer’s behavior as the most important part of the 

recommendation system. However, their widespread use has revealed some real 

challenges, such as data sparsity and data scalability, with gradually increasing 

the number of users and items.  

 To improve the execution time and accuracy of the prediction problem, 

this paper proposed item-based collaborative filtering applying dimension 

reduction in a recommendation system. It demonstrates that the proposed 

approach can achieve better performance and execution time for the 

recommendation system in terms of existing challenges, according to evaluation 

metrics using Mean Absolute Error (MAE).  
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CHAPTER 1  

Introduction 

 

E-commerce markets have been restructured into new markets revolving 

around mobile commerce since the advent of smart devices. User has more 

opportunity to access diverse information and the amount of information that can 

be collected has exponentially increased. The immense growth of the World 

Wide Web has led to an information overload problem. It is difficult for users to 

quickly obtain what they want from massive information. In recent years, each 

customer can actively share their review and get a discount based on customer 

participation such as in social surveys on E-commerce sites. It has become 

essential for E-commerce markets to effectively take advantage of these data by 

evolving new marketing strategy based on such data.  

Besides, E-commerce markets have actively introduced an automated 

personalization service to analyze the customer’s behavior and patterns as 

purchase factors. E-commerce sites try to collect various users’ interests, such 

as purchase history, product information in the cart, product ratings, and product 

reviews in order to recommend new relevant products to customers. 

Collaborative filtering is the most commonly used algorithm to build personalized 

recommendations on the website including Amazon, CDNOW, Ebay, Moviefinder, 

and Netflix beyond academic interest [1, 14]. 
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Collaborative filtering is a technology to recommend items based on 

similarity. There are two types of collaborative filtering: User-based collaborative 

filtering and Item-based collaborative filtering [8]. User-based collaborative 

filtering algorithm is an effective way of recommending useful contents to users 

by exploiting the intuition that a user will likely prefer the items preferred by 

similar users. Therefore, at first, the algorithm tries to find the user’s neighbors 

based on user similarities and then combines the neighbor user’s rating score by 

using supervised learning like k-nearest neighbors algorithm and Bayesian 

network or unsupervised learning like k-means algorithm [8, 9].  

Item-based collaborative filtering algorithm fundamentally has the same 

scheme with user-based collaborative filtering in terms of using user’s rating 

score. Instead of the nearest neighbors, it looks into a set of items; the target 

user has already rated items and this algorithm computes how similar items are 

to the target item under recommendation [8, 9]. After that it also combines the 

customer’s previous preferences based on these item similarities.  

Collaborative Filtering has been effective in several domains, but their 

widespread use has revealed some potential challenges, such as rating data 

sparsity, cold-start, and data scalability [2, 6, 8, 9]. Therefore, to solve the 

problems of sparsity and scalability in the collaborative filtering, in this paper, I 

proposed collaborative filtering applying dimension reduction.  

The rest of this paper is organized as follows: Chapter 2 summaries the 

related work and their capabilities and limitation. The proposed approach is 
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described in Chapter 3. Chapter 4 describes the experimental configuration and 

evaluation metrics. Experimental results are given in Chapter 5. Finally, Chapter 

6 concludes this paper and provides directions for future work. 
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CHAPTER 2  

RELATED WORK 

 

 Since the advent of the information age, the immense growth of the World 

Wide Web gives rise to the difficulty for users to quickly find what they want given 

a variety of applications. Recommendation systems have rigorously been used in 

various applications as a way to suggest items that a customer would likely be 

interested in by predicting customer preference. The most popular applications 

using recommendation systems are movies, music, news, grocery shopping, 

travel guides, online dating, books, restaurants, E-commerce sites and so forth.  

Recommendation systems can be broadly categorized as contents-based 

filtering, collaborative filtering, and hybrid approach [3]. Contents-based filtering 

systems are used to recommend items based on a description of items the user 

used to like before, or corresponding with pre-defined attributes of the user, such 

a system having its roots in information retrieval techniques. Collaborative 

filtering systems recommend items to user based on the past preferences of 

items rated by all users. Hybrid techniques combine both these approaches. In 

this paper, I will deal mainly with collaborative filtering (CF). 
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2.1 Collaborative Filtering (CF) 

 Recommendation systems in various applications have tried to provide 

users with an accurate recommendation to meet the needs of the user and to 

bring higher benefits to companies. Collaborative filtering is an effective and well-

known technology in recommendation systems. Many web sites, particularly E-

commerce sites, have used collaborative filtering technology in their 

recommendation systems to personalize the browsing experience for each user 

as seen [Figure 1]. As successful use cases of collaborative filtering, Amazon 

increased sales by 29% [11], Netflix increased movie rentals by 60% [12], and 

Google news increased click-through rates by 30.9% [13]. 

	

[Figure 1] Shopping cart recommendation at Amazon 

 

Collaborative filtering (CF) can be categorized into two main methods as 

user-based collaborative filtering (memory-based) and item-based collaborative 

filtering (model-based) [8].  
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2.1.1 User-based Collaborative Filtering (UBCF) 

 User-based collaborative filtering approach is to predict items to the target 

user that are already items of interest for other users who are similar to the target 

user. For example, as seen [Figure 2] [15], let User 1 and User 3 have very 

similar preference behavior. If User 1 likes Item A, UBCF can recommend Item A 

to User 3. UBCF needs the explicit rating scores of items rated by users [8] to 

calculate similarities between users and exploits k-nearest neighbor algorithms to 

find the nearest neighbors based on user similarities. And then, it generates 

prediction in terms of items by combining the neighbor user’s rating scores based 

on similarity weighted averaging [9].  

 

	

[Figure 2] User-based collaborative filtering 

 

	

2.1.2 Item-based Collaborative Filtering (IBCF) 

Item-based collaborative filtering approach is to predict items by inquiring 

into similarities between the items and other items that are already associated 

1	 3	2	
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with the user. For example, as seen in [Figure 3] [15], let’s say Item A and Item C 

are very similar. If a User likes Item A, IBCF can recommend Item C to the User. 

IBCF needs a set of items that the target user has already rated to calculate 

similarities between items and a target item. And then, it generates prediction in 

terms of the target item by combining the target user’s previous preferences 

based on these item similarities [9]. In IBCF, users’ preference data can be 

collected in two ways. One is that user explicitly gives rating score to item within 

a certain numerical scale. The other is that it implicitly analyzes user’s purchase 

records or click-through rate [8]. 

 

	

[Figure 3] Item-based collaborative filtering 

 

2.2 Collaborative Filtering Process 

 In a fundamental scenario, collaborative filtering (CF) processing can be 

mainly divided into three steps; Step 1) collecting user ratings data matrix, Step 2) 

selecting similar neighbors by measuring the rating similarity, and then Step 3) 

generating prediction as seen diagram [Figure 1] [4, 6, 7, 8, 9].  



	

	
	

12 

	

[Figure 4] The Collaborative filtering process 

 

2.2.1 User Rating Score Data Input  

 Generally, input data in recommendation system based on the CF 

technology consists of user, item, and user opinions on observed items as a 

matrix m × n as shown in [Table 1]. Symbol m symbolizes the total number of 

users and n symbolizes the total number of items. 𝑅!,! is the score of item In 

rated by user Um.  

 

        Item 
User I1 I2 I3 … In 

U1 𝑅!,! 𝑅!,! 𝑅!,! … 𝑅!,! 

U2 𝑅!,! 𝑅!,! 𝑅!,! … 𝑅!,! 

U3 𝑅!,! 𝑅!,! 𝑅!,! … 𝑅!,! 

… … … … … … 

Um 𝑅!,! 𝑅!,! 𝑅!,! … 𝑅!,! 

[Table 1] User-Item ratings matrix 
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2.2.2 The Formation of Neighbors 

The CF approaches use statistical techniques to analyze the similarity 

between users and to form a set of users called neighbors. A set of similarity 

measures is a metric of relevance between two vectors [9]. User-based similarity 

is to compute the relevance between users as the values of two vectors. In 

UBCF, after the similarity is calculated, it is used in building neighborhoods of the 

current target user. For example, as seen in [Figure 5] [4], the distance between 

the target node (black node) and every other node is calculated by a similarity 

measure. And then, 5 users in the center are selected by k-nearest neighbor 

algorithm (k = 5). 

	

[Figure 5] The neighborhood formation process 
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[Figure 6] Item based similarity computation 

 

In contrast, it should be noted that IBCF does not form neighborhoods 

after the similarity is calculated. This is because IBCF already begins computing 

the similarity between co-rated items only as the value of two vectors [9,14]. For 

example, as seen in [Figure 6] [2], this item-based similarity is calculated by 

looking into Item i and Item j rated by User 2, l, and n. Each of these pairs are 

given by different users. This is a similar process to the formation of neighbors in 

UBCF. 

Since the similarity measure plays a significant role in improving accuracy 

in prediction algorithms, it can be effectively used to balance the ratings 

significance [9]. There are a couple of popular similarity algorithms that have 

been used in the CF recommendation algorithms [8]. In this paper, I present four 

similarity methods; Cosine vector similarity, Pearson correlation, Euclidean 

distance similarity, and Tanimoto coefficient [14, 16]. 
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2.2.2.1 Cosine Vector Similarity 

 Cosine vector similarity is one of the popular metrics in statistics. Since it 

notionally considers only the angle of two vectors without the magnitude, it is a 

very useful measurement with data missing preference information as long as it 

can count the number of times that term appears in the data [17]. 

In the following formula, the cosine vector similarity looks into the angle 

between two vectors (the target Item i and the other Item j) of ratings in n-

dimensional item space. 𝑅!,! is the rating of the target Item i by User k. 𝑅!,! is the 

rating of the other Item j by user k. n is the total number of all rating users to Item 

i and Item j.  

𝑠𝑖𝑚 𝑖, 𝑗 = cos 𝚤, 𝚥 =  
𝚤 × 𝚥

𝚤 !
 × 𝚥 ! =  

𝑅!,!𝑅!,!!
!!!

𝑅!,!! 𝑅!,!!!
!!!

!
!!!

 

When the angle between two vectors is near 0 degree (they are in the 

same direction), Cosine similarity value, sim(i,j), is 1, meaning very similar. When 

the angle between two vectors is near 90 degree, sim(i,j) is 0, meaning irrelevant. 

When the angle between two vectors is near 180 degree (they are in the 

opposite direction), sim(i,j) is -1, meaning very dissimilar. In case of information 

retrieval using CF, sim(i,j) ranges from 0 to 1. This is because the angle between 

two term frequency vectors cannot be greater than 90 degrees [17].  
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2.2.2.2 Pearson Correlation Coefficient 

 Pearson correlation coefficient is one of the popularly used methods in CF 

to measure how larger a number in one series is, relative to the corresponding 

number. As following formula shows, it is used to measure the linear correlation 

between two vectors (Item i and Item j).  

𝑠𝑖𝑚 𝑖, 𝑗 =
𝑅!,! − 𝐴! ,  𝑅!,! − 𝐴!
𝑅!,! − 𝐴!  𝑅!,! − 𝐴!

=  
(𝑅!,! − 𝐴!) (𝑅!,! − 𝐴!)!

!!!

(𝑅!,! − 𝐴!)!× (𝑅!,! − 𝐴!)!!
!!!

!
!!!

 

It measures the tendency of two series of numbers, paired up one-to-one, 

to move together [14]. When two vectors have a high tendency, the correlation, 

𝑠𝑖𝑚(𝑖, 𝑗), is close to 1. When two vectors have a low tendency, 𝑠𝑖𝑚(𝑖, 𝑗) is close 

to 0. When two vectors have opposite tendency, 𝑠𝑖𝑚(𝑖, 𝑗) is close to -1. As 

mentioned above in [Figure 6], item-based similarity is computed with the co-

rated items where users rated both (Item i and Item j). 

 𝑅!,! is the rating of the target Item i given by User k. 𝑅!,! is the rating of the 

other Item j given by User i. 𝐴! is the average rating of the target Item i for all the 

co-rated users, and 𝐴! is the average rating of the other Item j for all the co-rated 

users. n is the total number of ratings users gave to Item i and Item j. 

 

2.2.2.3 Euclidean Distance Similarity 

 Euclidean distance method is based on the distance between items. It 

forms coordinates to put preference values between items and measures 

Euclidean distance between each point. When distance value between two 
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points, 𝑠𝑖𝑚 𝑖, 𝑗 , is large, it means the two points are not similar. When 𝑠𝑖𝑚(𝑖, 𝑗) is 

small, it means two points are similar. This is Euclidean distance formula is given 

below.  

𝑠𝑖𝑚(𝑖, 𝑗) = (𝑅!,! − 𝑅!,!)!
!

!!!

 

 𝑅!,! is the ratings of the target Item i given by User k. 𝑅!,! is the ratings of 

the other Item j given by User k. n is the total number of rating users to Item i and 

Item j. 

	

2.2.2.4 Tanimoto Coefficient 

 Tanimoto coefficient is known as the Jaccard similarity coefficient. It does 

not take into account preference values of an item rated by a user. It only 

considers if users express a preference. Tanimoto coefficient is the ratio of the 

size of the intersection, or overlap, in two users’ preferred items, to the union of 

users’ preferred items [14]. When two items are completely overlapped, 

Tanimoto coefficient,  𝑠𝑖𝑚 𝑖, 𝑗  , is 1. When two items are not completely 

overlapped, 𝑠𝑖𝑚 𝑖, 𝑗  is 0. 

As shown in the following formula, it examines the overlapped degree 

between two sets to compare the similarity and diversity of two sets. 𝑓! is a set of 

Item i for which users express preference. 𝑓! is a set of Item j for which users 
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express preference. 𝑓! ∩ 𝑓! is intersection of Item i and Item j for items where 

preference is expressed by users.  

𝑠𝑖𝑚 𝑖, 𝑗 =  
𝑓! ∩ 𝑓!

𝑓! + 𝑓! − 𝑓! ∩ 𝑓!
 

  In fact, many users tend not to rate items or recommendation system 

might not have enough users’ information. This metric would be helpful to 

compute similarity as long as at least preference information as Boolean type is 

available.  

 

2.2.3 Prediction generation 

 Once CF computes the similarity between users (in UBCF) or items (in 

IBCF) and then finds the set of most similar user or similar items, it generates 

prediction of the target user’s interest as the most significant step in CF.  

 

2.2.3.1 Prediction Computation of UBCF 

 Since UBCF gets the neighborhood of user, UBCF can calculate the 

predictive rating for the target User u on the target Item i. It is scaled by the 

weighted average of all neighbors’ ratings on the target Item i as following [2, 4]:  

𝑃!,! = 𝐴! +
𝑅!,! −  𝐴!  × 𝑠𝑖𝑚(𝑢,𝑤)!

!!!
𝑠𝑖𝑚(𝑢,𝑤)!

!!!
 

 𝐴! is the average ratings of the target User u to all other rated items and 

𝐴! is the average ratings of the neighbor User w to all other rated items. 𝑅!,! is 
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the rating of the neighbor User w to the target item i. 𝑠𝑖𝑚(𝑢,𝑤) is the similarity of 

the target User u and the neighbor User w. And n is the total number of 

neighbors. 

 

2.2.3.2 Prediction Computation of IBCF 

 Since IBCF has got the neighborhood of items, IBCF tries to make sure 

how the target user rates similar items. To check if the prediction is in the 

predefined range [8], the predictive rating for the target User u on the target Item 

i is scaled by the weighted average of all neighbor items’ ratings given by the 

target User u according to the following formula [8, 10]. 

𝑃!,! =  
𝑅!,!×𝑠𝑖𝑚(𝑖, 𝑗)!

!!!

𝑠𝑖𝑚(𝑖, 𝑗)!
!!!

 

𝑅!,!  is the rating of the target User u to the target Item i. 𝑠𝑖𝑚(𝑖, 𝑗) is the weighted 

similarity of the target Item i and the neighbor Item j, n is the total number of 

neighbor items.  

 

2.3 Existing Limitations of Collaborative Filtering  

Since the number of users and items in each application has steadily 

increased at the same time as the growth of World Wide Web, collected input 

data has been a big problem in producing an accurate prediction and in running 
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recommendation system using collaborative filtering. There are two main 

challenges in user-based collaborative filtering [8, 9, 10, 15]. 

2.3.1 Data Sparsity  

 User-based collaborative filtering depends on explicit feedback, such as 

ratings given by user to item. User-item input data matrix could have a few rating 

scores of the total number of items available, even though users are very active. 

In addition, because users tend not to rate actively, calculating similarity over co-

rated set of items could be a challenge. These problems give rise to inaccurate 

performance of the recommendation system.  

Even the cold-start problem is caused by the data sparsity. Collaborative 

Filtering predicts items based on user’s previous preference behavior. That is, it 

could not predict recommendable items to new users unless new users rate 

many items. Also, new items could be considered for recommendation, because 

they have less rating scores by a sufficient number of users. 

  

2.3.2 Data Scalability 

 For over millions of users and millions of items in user-item input data 

matrix, the nearest neighbor algorithm is required for high scalability of 

computation between users as the values of two vectors. Also, recommendation 

systems could not quickly react to online requirements and immediately make 

recommendations as it was a time-consuming job. 
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CHAPTER 3  

Item Based Collaborative Filtering Applying Dimension 

Reduction 

 

UBCF is easy to implement and good to scale correlated items [2]. 

However, as stated previously above, it comes up against a couple of problems: 

data sparsity and data scalability. Data sparsity problem could lead to a skewed 

prediction and low reliability of predictions. Besides, data scalability requires low 

operation time and high memory feature to scale with all users and items in the 

database.  

  To address these issues in UBCF, this paper proposes IBCF approach 

applying dimension reduction [6].  

 

3.1 IBCF Applying Dimension Reduction 

 Enormous users and products have been added at E-commerce domains. 

A typical example is Amazon. Amazon added 30 million new customers in 2013 

and had had over 244 million active customers as Geekwire reported in 2014 [18]. 

Also, Amazon had sold over 200 million products as ReportX reported in 2013 

[19]. Currently in 2015, it is expected that Amazon would have more than these 

numbers of users and products. If the recommendation system using UBCF at 
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Amazon should look into all datasets similar to a 244 million × 200 million matrix, 

it will encounter data scalability and data sparsity issues. In UBCF, more the 

number of users and items increase, more the number of matrix dimensions 

increase and runtime takes long to find nearest neighbor of users. Therefore, it is 

assumed that using denser data having much more preference information given 

by users with IBCF effectively addresses data scalability and data sparsity 

problems. To focus on active items assuming that they have many ratings given 

by users, matrix is required to reduce dimension in IBCF without regard to 

passive items.  

 
      Item 
User I1 I2 I3 I4 I5 

U1 2.0 4.0 3.0 3.0 3.0 
U2   1.0 3.0  
U3 5.0 1.0 5.0 5.0  
U4 4.0  3.0   

[Table 2] User-Item matrix before dimension reduction 

 

      Item 
User I1 I3 I4 

U1 2.0 3.0 3.0 
U2  1.0 3.0 
U3 5.0 5.0 5.0 

U4 4.0 3.0  
[Table 3] User-Item matrix after dimension reduction 
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For instance, as seen in [Table 2], each item can get up to a maximum of 

4 ratings by users. Item I2 has 2 ratings and Item I5 has 1 rating, which means 

the number of ratings for Item I2 and Item I5 is not bigger than half of the total 

number of ratings. We can assume that Item I2 and Item I5 do not carry much 

weight with this matrix. Hence, when matrix has impactful items like Item I1, Item 

I3, and Item I4 as seen in [Table 3], running time of the recommendation system 

in computing similarity between items and to provide more accurate prediction is 

expected to reduce. 

  

3.2 Architecture of IBCF Applying Dimension Reduction  

Here is a scenario of IBCF applying dimension reduction as seen in 

[Figure 7]. This is mainly divided into four steps. This approach is based on 

general collaborative filtering algorithm. To compute similarity between items, the 

algorithm uses an optimized data by reducing dimention of items that have the 

number of ratings less than a specific value. For example, if it needs to consider 

items that have over 20 ratings from users, it extracts data in terms of items 

having over 20 ratings. In other words, such items are rated by over 20 users. 
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[Figure 7] Diagram of IBCF applying dimension reduction 
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Compute similarity between Items and find neighbors of an item 

Optimize data; which Items have over a particular number of ratings 

Input dataset [User ID, Item ID, Rating] 
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CHAPTER 4  

Experiments And Evaluation Metrics 

 

 In this section, I describe dataset, evaluation metrics, and methodology to 

optimize data by reducing dimension based on Apache Mahout. 

  

4.1 Experiments Dataset 

 The data used in this experiment is the MovieLens 1m datasets by 

GroupLens Research [20]. It contains 1,000,000 ratings by 6040 users on 3952 

movies. Each user has rated at least 20 movies [21]. The range of ratings is from 

1 (less interesting) to 5 (very interesting) as integer type. 

 These are a few parts of MovieLen dataset. It consists of user ID, Item ID 

and Rating as seen in [Table 4]. I consider it as the User-Item matrix as seen in 

[Table 5]. 
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User ID Item ID Rating 

1 1035 5 
1 1287 5 
1 3408 4 
6 1035 5 
6 1380 5 
6 3408 5 

10 1035 5 
10 1380 5 
10 1287 3 
10 3408 4 
10 1201 2 
26 1035 2 
26 1380 4 
26 3408 2 
26 1201 2 
… … … 

[Table 4] Raw dataset of MovieLens 

	
      Item 
User 1035 1380 1287 3408 1201 … 

1 5  5 4  … 
6 5 5  5  … 

10 5 5 3 4 2 … 

26 2 4  2 2 … 
… … … … … … … 

[Table 5] User-Item Matrix by raw dataset 

	

4.2 Performance Evaluation Criteria  

 To evaluate the accuracy of a recommendation system, I use statistical 

accuracy metrics. Mean Absolute Error (MAE) is a widely used metric in the 
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recommendation system using collaborative filtering to measure the deviation of 

recommendations from their true user actual ratings.  

  In the following formula, N is the total number of actual ratings in an item 

set. 𝑝! is the prediction of user’s ratings. 𝑞! is corresponding real ratings data set 

of users. 

𝑀𝐴𝐸 =
𝑝! − 𝑞!!

!!!

𝑁  

 It computes the average of the absolute difference between  𝑁 pairs; 

prediction scores of users’ ratings and actual user ratings for the user-item pairs 

in the test dataset [2]. Lower the MAE value, better is the recommendation 

system’s accuracy of prediction of user ratings.  

 

4.3 Experiment Environment  

• Processor: 2.6 GHz Intel Core i5 

• Memory: 8 GB 1600 MHz DDR3 

• Operation System: OS X El Capitan Version 10.11.1 

• Language: Java  

• Platform: Apache Mahout with a pseudo-distributed mode in Apache 

Hadoop 
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4.4 Architecture of Apache Mahout 

 To implement this experiment, I used Apache Mahout, widely used in 

recommendation system using collaborative filtering. Apache Mahout is one of 

the most powerful open source platforms in supporting scalable machine learning 

and distributing processing of a large dataset cluster of computers using the 

Apache Hadoop system required for recommender development [15]. Developer 

can effectively customize recommendation system with a rich set of modules 

abstractions provided by Apache Mahout. There are five key abstractions to 

define the Mahout interface shown in [Figure 8] [15].  

1) DataModel is the interface to repository about users and their 

associated preferences from any source. Users and items are identified 

solely by an ID value as numeric type [14, 15]. A GernericPreference 

object encapsulates the relation between an item and preference score. A 

GenericUserPreference object stores preferences for all users. A 

PreferenceArray object encapsulates the relation between item and 

preferred items by users.  

2) UserSimilarity measures similarity between users used in UBCF. 

3) ItemSmilarity measures similarity between items used in IBCF. 

4) UserNeighborhood finds K-nearest neighborhood of similar users near 

a target user in UBCF. Since IBCF begins with a list of a user’s preferred 

items, it does not need to find K-nearest neighborhood of items. 

5) Recommender provides items with a target user given a DataModel. 
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[Figure 8] Apache Mahout architecture 

 

	

4.5 Algorithm of IBCF Applying Dimension Reduction  

Input: A: MovieLens dataset “UserID,ItemID,Rating,”  

U: a target user U,  

I: Item what user is interested, 

M: Minimum ratings, 

N: the number of items to recommend 
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1) Parse raw dataset and count the number of ratings per item 

  FastByIdMap C is a map of the total number of ratings per item. 

  ArrayList D is a list of all ratings. 

  For each line L in A Do 

 Array P ← Convert L to [UserID, ItemID, Rating]  

Integer S = the number of ratings per item 

 If C(P[ItemID]) exists Then 

 C ← <P[ItemID], S+1 > 

 Else 

C ← <P[ItemID], 1 > 

D ← P 

2) Create optimized data structure by checking if each item’s total number of 

ratings is bigger than M.  

  FastByIdMap O = <P[UserID], R> 

  For each P in D Do 

 If (C(P[ItemID]) > M) Then 

ArrayList<GenericPreference> R  

       ← GenericPreference (P[UserID], P[ItemID], P[Rating])  

 O ← <P[UserID], R> 

3)	Convert users’ ArrayList<GenericPreference> to GenericUserPreferenceArray 

  For each <P[UserID], R> in O Do 

FastByIdMap X ← <P[UserID], GenericUserPreferenceArray(R)> 

4) Create W = GenericDataModel (X) 

5) Compute Similarity between I and other items in W 

6) Create GenericItemBasedRecommender 
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7) Select the most similar N items against I 

Output: N recommended ItemIDs for U  

 

4.6 Benchmark UBCF  

 To compare the performance of recommendation system using IBCF, I 

also implemented UBCF with Apache Mahout.  
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CHAPTER 5  

PERFORMACE RESULTS 

  

In this chapter, I implemented item-based collaborative filtering applying 

dimension reduction (R-IBCF). The goal of the proposed R-IBCF is to provide 

better quality of prediction in terms of the MAE measure and to make faster 

execution time. I compared the R-IBCF algorithm to IBCF in order to find an 

optimal similarity algorithm and training/test ratio of the dataset. Also, I selected 

an optimal value of the number of ratings per item on R-IBCF as I varied the 

value of it. 

In addition, I implemented UBCF as a benchmark to compare runtime of 

R-IBCF and IBCF to UBCF and the quality of prediction with optimal parameters. 

 

5.1 Optimum Similarity Measurement 

 I implemented four different similarity measurements: Cosine vector 

similarity, Pearson correlation coefficient, Euclidean distance, and Tanimoto 

coefficient as described in Section 2.2.2. For each similarity algorithms, I 

measured MAE to find an optimal similarity on IBCF and R-IBCF for this dataset. 
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[Figure 9] The impact of the similarity computation on IBCF and R-IBCF 

  

[Figure 9] shows the experiments results. I observed that IBCF applying 

dimension reduction generally produced better quality of predictions more than 

IBCF with four similarity measurements. In particular, Tanimoto coefficient has a 

clear advantage, as MAE is the lowest on IBCF and R-IBCF. Therefore, I select 

Tanimoto coefficient similarity for the rest of my experiments.  

 

5.2 Optimum The Number of Ratings per Item 

 If a user does not rate at least one item, the system cannot recommend 

any items to the user. In this dataset, each item needs to have at least 627 

ratings in order to recommend items to all users. That is, each item has to be 

rated by at least 627 users. For example, if I use the optimized data with items 
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having at least 628 ratings, after dimension reduction based on it, one person 

among 6040 users cannot get item recommendation. This is because that user 

did not give items any ratings at all. Therefore, to prevent non-recommendation 

from happening, I performed these experiments to find the optimal number of 

ratings per item ranging from 50 (similar to raw data) to 627 (smaller dataset) in 

mostly increments of 50, and computed MAE.  

 

	

[Figure 10] Comparison of Impact of the number of ratings on R-IBCF to IBCF 

	

My results are shown in [Figure 10]. I observed that the quality of 

prediction increases as I apply reducing dimensions on IBCF based on the 

number of ratings, x. When I reduce a few dimensions (x = 50), the quality of 

prediction is almost same with IBCF (MAE = 0.786). On the other hand, when I 

reduce lots of dimensions (x = 627), the quality of prediction is the best (MAE = 
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0.745). Therefore, I select 627 as an optimal value in terms of the number of 

ratings per item for the rest of my experiments. 

 

5.3 Optimum Training/Test Ratio  

 To determine the sensitivity of density of the dataset, I ran these 

experiments where I varied the value of training/test ratio ranging from 0.2 to 0.9 

in an increment of 0.1 and computed MAE. For instance, x is 0.2 means that my 

experiments run with 20% of dataset as training data and 80% of dataset as test 

data. 

 

	

[Figure 11] Sensitivity of the parameter x in IBCF and R-IBCF 
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The results are shown in [Figure 11]. I observed that applying dimension 

on IBCF generally makes the quality of prediction better than IBCF. When the 

training ratio is 0.7, R-IBCF tends to be flat. Hence, I select 0.7 as optimal choice 

of training/test ratio for the rest of my experiments. 

 

5.4 Optimum The Neighborhood Size of UBCF 

 The size of neighborhood on UBCF plays an important role in affecting the 

prediction quality [8]. To find the sensitivity of neighborhood size, I ran an 

experiment where I varied the number of neighbors ranging from 10 to 50 in an 

increment of 5 to be used, and measured MAE on UBCF.  

 

	

[Figure 12] Sensitivity of neighborhood size in UBCF 
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 [Figure 12] shows the experimental results. I observed that neighborhood 

size has an effect on the quality of prediction. The quality of prediction gets better 

by increasing the number of neighbors and when the rate is 30, the quality of 

predictions tends to be flat. Therefore, I select 30 as an optimum value of the 

neighborhood size for subsequent experiments with UBCF. 

 

5.5 Comparison of Prediction Quality with Benchmark 

 Once I obtained the optimal values of the parameters, I compared both 

IBCF and R-IBCF approaches with the benchmark UBCF. The purpose of this 

experiment was to determine how each similarity algorithm influences the quality 

of prediction accuracy of IBCF, R-IBCF, and UBCF. It is a critical step in 

collaborative filtering to compute the similarity between each item or each user in 

selecting the most similar neighbors of them.  

I present the results in [Figure 13]. I performed them with selected values: 

0.7 as the optimum training on three CFs, 627 as an optimal value of the number 

of ratings per item on R-IBCF, and 30 as an optimal size of a neighbor on UBCF. 

Overall, R-IBCF provides better quality of predictions than IBCF and UBCF. It 

can be observed that data sparsity and data scalability problems affect the 

quality of predictions in computing similarity between items. Reducing 

dimensions means that it does not take into account items having fewer ratings 

by users, but considers typical or representative items. Therefore, the results 
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show that reducing dimensions on IBCF contributes greatly to improve the quality 

of predictions in terms of data sparsity and data scalability. 

 

	

[Figure 13] Comparison of the prediction quality of IBCF, R-IBCF, and UBCF 

 

5.6 Comparison of Runtime with Benchmark  

 Runtime of performance is also an important point in terms of data 

scalability. I implemented R-IBCF consuming memory. I ran each experiment 

with four similarity algorithms 30 times and got the average of their runtime 

excluding the first 5 times.  

These results are shown in [Figure 14]. Even though it takes more time to 

filter data based on the number of ratings per item, I observed that it is faster 
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than computing similarity between all co-rated items or all users. Therefore, 

reduction of dimension on IBCF has considerable impact on runtime being fast in 

terms of data scalability. In addition, because IBCF and R-IBCF only consider co-

rated items to compute similarity, they do not take finding the nearest neighbors 

step. Therefore, it generally influences on better runtime of IBCF and R-IBCF by 

comparison with UBCF.  

	

	

[Figure 14] Comparison of runtime of IBCF, R-IBCF, and UBCF 
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CHAPTER 6  

	

CONCLUSION AND FUTURE WORK 

 

Recommendation systems have been an important in E-commerce on the 

web for the customer to suggest items what they would be interested. With the 

increasing number of users and items, recommendation systems encounter the 

main shortcoming: data sparsity and data scalability problems, which bring out 

the poor quality of prediction and the inefficient time consuming. 

In this paper, I have proposed item-based collaborative filtering approach 

applying dimension reduction to improve the predictive accuracy and 

recommendation quality in overcoming the existing limitations. By reducing the 

noise of dimensional data, it focuses on typical and popular items to compute the 

similarity between them and to predict the most similar items to users. The 

experimental results show that this approach makes a considerable impact on 

providing better accuracy of prediction and much faster execution time in 

comparison with traditional UBCF and IBCF. It results in improving the quality of 

recommendation system using collaborative filtering.  

The potential limitation would use this approach with dataset widely 

consisting of not enough ratings by users, expecting less accuracy. Therefore, to 

overcome this challenge, I propose an approach to mix both explicit and implicit 

ratings to alleviate the data sparsity problem further in this aspect. 
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