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ABSTRACT

Metamorphic Java Engine

by Sailee Choudhary

Malware is a software program outlined to damage or perform other unwanted

actions to a computer system. Metamorphic malware is a category of malignant

software programs that has the ability to change its code as it propagates. A hidden

Markov model (HMM) is a statistical model where the system is assumed to be a

Markov process with unseen states. An HMM is based on the use of statistics to

detect patterns, and hence in metamorphic virus detection. Previous work has been

done in order to create morphing engines using LLVM-bytecode format.

This project includes the creation of a morphing engine for Java bytecode, using

different code obfuscation techniques. The next aspect is to focus on detection

techniques, specific HMM for validation of the created engine. The results presented

show that HMM fail to detect the presence of morphing, provided specific set of rules

have been followed while creation of metamorphic engine.
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CHAPTER 1

Introduction

In today’s world, we prefer to get things handily with no effort. The majority

of transactions, forms, and other sensitive information is accessed from computers.

It is pivotal to consider information security as an issue of supreme relevance. In

today’s world, computer systems are under threat from a variety of sources ranging

from viruses, worms, hackers and phone freaks. Viruses are becoming difficult for

detection and elimination [1].

Malware can be defined as a software designed by authors with an aim of damaging

or abducting hosts, data, or network [2]. These malicious software can further be

classified as viruses and worms. They self-replicate and spread copies of themselves.

Metamorphic malware is rewritten every time, so that the next version of the

code is different. Metamorphic viruses use different manipulation techniques to modify

the code structure. These techniques include subroutine permutation, insertion of

jumps, equivalent instruction replacement, dead-code insertion, and transposition.

There are certain bytecode manipulation libraries that can be used to obfuscate code

using instruction substitution, dead-code insertion, etc. Some of these libraries are

ASM, Javassist, BCEL, CGLib. These libraries allow us to create classes on the fly or

modify existing classes directly in the binary form.

The detection techniques are also getting very sophisticated. The code revision

makes it challenging for signature-based software programs to detect metamorphic

viruses. The antivirus programs do not recognize that distinct iterations are the same

program. To be specific, the paper [28] provides an evidence that metamorphic viruses
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can evade signature-based detection if it has been built using specified guidelines.

Hidden Markov models (HMMs) have been reliable for statistical analysis [26]. These

models use machine learning techniques, and probability for each file can be determined

against the trained model, to check for its classification.

Previously techniques have been included to achieve obfuscation in Java files

which mainly include renaming of methods, fields and variables within a class file, with

the intent to avoid reverse engineering [31]. Along with these mentioned techniques,

some other techniques have been used which include replacing method body, addition

of new fields, etc [22]. The purpose of this project is to develop a metamorphic

engine using other code obfuscation techniques which include subroutine permutation,

instruction permutation and dead-code insertion. The obfuscation is performed on Java

class files using ASM bytecode manipulation library for achieving obfuscation. We

test the effectiveness of obfuscation using HMMs. The goal of this project is to evade

the HMM-based detection, so that any changes made to the files are undetectable.

This paper is arranged as follows:

∙ Chapter 2 consists of malware and its classification. It also describes the different

methods used in detection of malware.

∙ Chapter 3 gives a detailed explanation at metamorphic malware and, different

code obfuscation techniques.

∙ Chapter 4 provides accurate details about bytecode and bytecode manipulation

library - ASM.

∙ Chapter 5 introduces Hidden Markov Models in-depth.

∙ Chapter 6 focuses on a detailed look at the design and implementation of this

2



project.

∙ Chapter 7 contains the experiments and the results of the experiments.

∙ Chapter 8 draws the conclusion based on our studies and explains the possible

future scope.
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CHAPTER 2

Malware and Malware Detection

2.1 Malware

As mentioned in Chapter 1, malware is a malicious piece of code. Malware can be

further subdivided into more categories. Malware families [3] include worms, viruses,

backdoor or trapdoor, Trojans, rabbit, spyware, adware, etc. There are various reasons

for which malware can be written. Some may write it as pranks, others with the

intent of affecting or stealing personal, confidential or business information. We will

narrow our discussion to viruses in this section.

2.1.1 Virus

A virus relies on external entities to propagate itself [3]. The properties of a virus

are [1]:

∙ It should clone itself.

∙ A program that can act as a transporter is needed.

∙ It is triggered by some external activity.

∙ Its cloning is restricted to the (virtual) system.

The most important issue faced by the malware producers, is to stretch the life

of the malware. The main generations in virus development are:
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2.1.1.1 Encryption

For hiding the functionality of the program, the easiest and the first method used

by virus writers was encryption. It consists of two main parts [3]:

∙ the decryptor

∙ the encrypted body of the virus

The reasons for using encryption are as follows [3]:

1. Prevention of static code analysis: It involves disassembling the code

to examine it for skeptical content such as blocks of the code. The use of

encryption can cover skeptical instructions and so the use of static analysis can

fail in encrypted viruses.

2. Prolonging the dissection process: Even though encryption makes the

analysis of the code more difficult, it only adds a few extra minutes to the time

required for analysis [3].

3. To prevent tampering: The process of modification or creation of new vari-

ants of the virus becomes complex if the virus is encrypted.

4. Evading detection: The previously encrypted viruses used an identical decryp-

tor for all files infected by it, making it easier for detection [3]. However, more

sophisticated viruses use self-changing encryption making detection impossible.

DOS virus Cascade used encryption [6]. The encryption method of cascade

consists of XOR-ing every byte twice with variable values. The length of the program

is one factor of determining variable value. The decryptor of the Cascade virus is as

follows [6]:

5



Figure 1: Cascade Decryptor [6]

2.1.1.2 Oligomorphism

Oligomorphic viruses are like encrypted viruses, but they differ in that, each new

generation changes their decryptor [6].

Win95/Memorial could build 96 different decryptor patterns. This made detection

based on the decryptor practically impossible. The oligomorphic properties were first

used by Memorial. The code below is one instance for decryptor of the Memorial virus

published in [6]:
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Figure 2: Memorial Decryptor [6]

The instructions can be rearranged to some extent and the decryptor can use

diverse instructions for looping [6]. A slightly different version of the decryptor for

the same virus is as follows [6] :

7



Figure 3: Different version of Memorial Decryptor [6]

2.1.1.3 Polymorphism

A polymorphic virus comprises of a decryptor and a virus body. The decryption

routine takes command of the computer, and then decrypts the virus body. In addition

to these, it consists of a third component, which is a mutation engine that develops

arbitrary decryption routines [10]. The mutation engine as well as the virus body is

encrypted. On execution of an infected program, the decryptor takes command of the

computer and then decrypts the virus body as well as the mutation engine.

The first known polymorphic virus written was 1260 [6]. The virus inserts

junk instructions in its decryptor and uses two keys to decrypt its body. The junk

instructions are used for altering the appearance of the code. The extraction of simple

8



search strings from the code became difficult. The decryptor can change its size based

on the junk instructions inserted. Example of an instance taken from [6] is as follows:

Figure 4: Instance of 1260 [6]

Each group contains five non-repeated junk instructions. Two nop instructions

always appear. 1260 produces a high range of decryptors.
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2.1.1.4 Metamorphism

Metamorphic viruses are acknowledged as body-polymorphic. These viruses do

not use encryption, and hence the decryptor is not needed. It is similar to polymorphic

viruses in a way that it uses a mutation engine for replicating itself. The behavior of

the virus does not change, even if the structure, properties and code sequence changes

with each iteration [11]. Metamorphic computer viruses avoid generating instances

similar to the shape of their parent [6].

There are various techniques that can be used to create metamorphic viruses like

dead code insertion, subroutine permutation, etc. We will focus more on metamorphic

viruses and its detection evasion techniques in the Chapter 3.

2.2 Malware Detection

The approaches that can be used to detect viruses as described in [4] are:

2.2.1 Signature Detection

Signature based virus detection is the most common technique employed in

antivirus software for identifying viruses. The signature of the file is computed

according to the contents of the file and this signature is compared with the database

of the signatures that are already present in the antivirus software. If a signature

match is found, the file is considered as infected and needs to be repaired or deleted

from the system.

For example, according to [6], the signature used for the W32/Beast virus is

83EB 0274 EBOE 740A 81EB 0301 0000. After searching in the system for this

signature in all files, we cannot be sure that it is infected, since a benign file can also

10



contain this signature. So, even if a matching signature exists, more proofs may be

required to be assured, it is the W32/Beast virus [4].

Advantage of Signature based virus detection [4]:

∙ This type of malware detection technique is effective for known malware and

whose signature can be easily extracted.

∙ It requires less work from users and administrator end as only signature files

need to be updated.

Disadvantage of Signature based virus detection [4]:

∙ The signature files can become too lengthy and thus could result in slower

scanning.

∙ Signature detection works for only known signatures. A file with a minute

variation can cause a miss in the detection of an infected file.

2.2.2 Change Detection

If we find a change in the system, it can be an indication of infection. This is

known as change detection. One method of implementing change detection is by

using hash functions. For using this method, we first compute the hashes of the files

and store them in the system securely. At regular intervals, we re-compute the hash

values of the files and compare them with these stored hashes. If any changes have

been found in the hash values, we can check them for infection.

Advantages of change detection [4]:

∙ There are no false negatives, as changes in hash values will always be detected.

11



∙ Previously unknown malware can be detected.

Disadvantages of change detection [4]:

∙ Many false positives can be encountered as many files on the system often

change. This may be a burden for users and administrators.

2.2.3 Anomaly Detection

The purpose of anomaly detection is to search any unusual behavior, which could

potentially be malicious [4]. The elementary challenge in anomaly detection is to

decide what is normal and what is abnormal. Another challenge is that the definition

of normal changes with the requirements of the system. So, this detection technique

can give false positives.

Advantages of anomaly detection system [4]:

∙ Previously unknown malware can be detected.

Disadvantages of anomaly detection system [4]:

∙ It cannot work as a standalone system and hence is often combined with signature

detection.

Apart from these general approaches that are used for virus detection, various

machine learning techniques such as Hidden Markov Models (HMM) can be used for

virus detection as mentioned in Chapter 1. Chapter 5 provides detailed understanding

of HMM and its working.
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CHAPTER 3

Metamorphic Malware

Metamorphism aims at changing the appearance of the virus, without changing

its functionality. These viruses alter their code during propagation in the system.

These viruses evade the risk of signature based detection. Metamorphic viruses use

various metamorphic techniques like code permutation, dead-code insertion, etc.

Metamorphic virus as described in [6], does not have a decryptor and a consistent

body as a polymorphic virus. Nonetheless, they are capable of creating a generation

that looks different every time.

The units for model of the anatomy of the metamorphic engine published in [7]

are as follows:

Figure 5: Units in metamorphic model [7]

Locate own code: It is important that the metamorphic viruses are able to

discover their own code in different generations.

Decode: The information that is necessary for morphing must be decoded by

13



the engine. The engine must have some depiction of itself in order to know how to

make transformations to it.

Analyze: In order to achieve metamorphosis precisely, some information must

be accessible. The register liveliness information is needed for the performance of

some transformations. If it is not available, the engine must be able to construct such

information by itself.

Transform: Metamorphic code transformation without changing the functional-

ity occurs at this point. Instruction blocks are replaced with equivalent blocks at this

stage.

Attach: The last step is to adhere a recently transformed copy of the virus to a

file. The execution of the units of the metamorphic engine might not be in order as in

the figure. They can be randomly executed.
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The book of "Art of Computer Virus Research and Defense" [1] denotes meta-

morphic malware as:

Figure 6: Metamorphic malware [1]

In the figure above, each subsequent generation G (𝐺1, 𝐺2, 𝐺3....𝐺𝑛) changes its

byte patterns. This makes it possible to change their appearance, but functionally

remains the same. This will evade the signature based detection of the virus.
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3.1 Techniques for generation of metamorphic malware

The techniques used to create metamorphic virus are as follows:

3.1.1 Garbage code insertion

Garbage code insertion is a methodology used by virus variants to evolve their

code. By doing so, the appearance of their code changes, making the extraction of a

usable hexadecimal string impractical [3]. The functionality of the code is not affected

by garbage code insertion.

The Win95/Evol virus used dead code insertion. Two different versions of this

virus appear distinct, even though their functions are same. The function of both

of them is to transfer two double words into the memory address stated by esi.

This makes it impossible to find a common sequence of bytes that can be used as a

signature string. The following code taken from [3] shows dead-code insertion used in

Win95/Evol virus:
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Figure 7: Win95/Evol dead-code insertion [3]

3.1.2 Register swap

Register usage exchange relies on the use of different registers in each variant. Dif-

ferent variants use the same code, but the registers used are different. Win95/Reswap

virus used this method for morphing. The two different generations of Win95/Regswap

virus as published in [3] are as follows:

17



Figure 8: Win95/Evol register swap [3]

It can be seen that ‘move edi, 004h’ is substituted by the ‘move ebx, 004h’.

Similarly, ‘move eax, 000Ch’ is substituted by ‘move edi, 000Ch’.

3.1.3 Subroutine Permutation

In subroutine permutation technique, the virus code remains consistent. The

code is divided into frames, which are placed randomly. The branch instructions are

used for connecting them and preserving the process flow. The flow of control always

remains the same irrespective of the branching complexity.

TheWin32/Ghost and the Win95/Zperm were among the first viruses that used

permutation techniques. The Win32/Ghost virus, re-positioned its own subroutines

with each new generation. If there are n subroutines, the different possible generations

of the virus is n!. The Win32/Ghost possessed 10 subroutines, thus the total number

18



of virus generations possible is 3628800. BadBoy is another example of a virus that

uses this technique. It has 8 subroutines and hence the total number of generations

possible are 40320. The BadBoy virus uses subroutine permutation. The subroutines

on the left are the original subroutines whereas those on the right are the permuted

ones. The figure referred from [6] shows subroutines of BadBoy:

Figure 9: Badboy subroutines [6]
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3.1.4 Random jump instructions

Metamorphism can be achieved by introducing jumps randomly in the code. The

randomness of jumps has no effect on the execution of the virus. The Win95/Zperm

virus inserts and deletes jump instructions in its own code. Every jump instruction

points to an another instruction of the virus body. Zperm never generates a consistent

body, to avoid the detection of the virus using a search string. For this, it also does

not generate virus body, even in memory. The following figure referred from [6] shows

the ZPerm jump instruction insertion:

Figure 10: Zperm random jump instructions [6]

3.1.5 Equivalent code substitution

Some viruses are capable of replacing some instructions with other equivalent

instructions. Win95/Zperm has the capability to perform instruction substitution.

For example, "sub eax, eax" is replaced by its equivalent instruction, "xor eax, eax".

Both these instructions are functionally the same, but have different opcodes.

Another example of a virus that uses equivalent code substitution is Win95/Zmist.

The types of replacements implemented by this virus, as described in [8] are:

∙ branch conditions are reversed
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∙ push/pop operations are used as a replacement for register moves

∙ alternative opcode encrypting

Win95/Bistro performs identical replacements. The code for Win95/Bistro as in

[6] is as follows:

Figure 11: Win95/Bistro instruction replacement [6]
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CHAPTER 4

Bytecode Manipulation

4.1 Java Classes

4.1.1 Structure of Class

A compiled Java class retains its structural information and symbols from the

source code. As described in [21], the compiled class consists of:

∙ The section that describes the name, the modifiers, the annotations, the interfaces

and the super class of the class.

∙ A section for each field, which describes the name, modifiers, type and annota-

tions of the field.

∙ Each constructor as well as a method that is declared within the class have

a dedicated section. This section comprises of the return type, modifiers, the

annotations, etc. for the constructor or method. Along with this, it also includes

the compiled code of the method as a sequence of bytecode instructions.

A compiled class consists of a constant pool segment, which is an array of the

numeric, type and string constants that exist within a class [21]. They are defined

once, and are referenced in all the other sections using their index. The figure below

from [21] shows, the overall structure of a compiled class:
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Figure 12: Compiled class file format [21]

Java types are represented in a different way in the compiled class than the

source class. The exceptions that are raised by a method cannot be primitive types.

They can only be interface or class types and hence are defined by internal names.

For example, java/lang/String is the internal name for String.

Type descriptors are used for representing field types. The following figure

referred from [21] represents type descriptors for some Java types:
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Figure 13: Type descriptors [21]

The descriptors of primitive types, class type and an array are shown in the figure

above.

A method descriptor consists of a list of type descriptors which include return

type and parameters of a method. Some sample method descriptors as represented in

[21] are:

Figure 14: Sample method descriptors [21]
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4.1.2 Structure of Method

A method code is stored as a series of bytecode instructions inside a compiled

class. Bytecode is the transitional representation of Java programs [9]. The figure

below shows the overview of Java program execution, and where bytecode resides in

the entire process [29]:

Figure 15: Java program execution [29]
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To understand the bytecode thoroughly, we must understand the internal execu-

tion process of Java Virtual Machine (JVM). A JVM is a stack-based engine [9]. Every

thread retains a JVM stack that stores frames. Each method invocation generates a

new frame. A frame consists of an operand stack, which is an array of local variables.

It also consists of reference to the run-time constant pool of the current method. The

figure referred from [9] below shows how the JVM works:

Figure 16: JVM bytecode execution [9]
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The local variable table or the array of local variables consists of the method

parameters and is used for holding the values of the local variables. Beginning at

index 0, the parameters are stored first. Location 0 holds the reference if the frame is,

for instance, method or constructor. It is followed by other locations which contain

the next formal parameters. In case of a static method, location 0 is used for storing

the first formal method parameter, and so on [9].

The size of the local variable table is calculated at the time of compilation,

depending on the attributes of local variables as well as formal method parameters. A

LIFO stack is used for pushing and popping values. Some opcode instructions retrieve

values from the stack for computation, while others push values on it. The return

values from methods are also handled by the operand stack.

4.1.3 Bytecode Instructions

A bytecode instruction has two parts, opcode, and arguments.

∙ The opcode is an unsigned byte value [21].

∙ The arguments are static values that are used for defining the instruction

behavior [21].

The bytecode instructions can be divided into mainly two categories: one that

are used for the exchange of values from local variables to the operand stack and vice

versa; the others only work on the operand stack. They are used for computation of

results, popping and pushing values on the stack.

In this paragraph, we discuss the first kind of bytecode instructions that are

used to load and store from local variables and operand stack. The ILOAD, ALOAD,

FLOAD, LLOAD and DLOAD instructions are used for reading a local variable and
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pushing the value on the stack [21]. The index i of the local variable is taken as the

argument. FLOAD, LLOAD and DLOAD are used for loading float, long and double

respectively. ILOAD is used for loading of boolean, char, byte, int, or short local

variable. Non-primitive values, which are objects and array references are loaded using

ALOAD. In a similar way, ISTORE, FSTORE, LSTORE, ASTORE and DSTORE

are used for popping the values from the operand stack and saving them back to the

local variable at index i.

The next set of instructions is those that function only on the operand stack.

They are as follows [21]:

∙ Stack - All possible instructions that can be used for manipulation of values on

stack come under this category: POP, SWAP, DUP, PUSH, etc.

∙ Constants - A constant value is pushed on the operand stack by these instructions.

For example, ICONST_0 pushes int value 0, ACONST_NULL pushes null,

LDC cst pushes the random long, float, double, int, class or String constant cst,

etc.

∙ Arithmetic and Logic - They do not have any argument and are used for

performing arithmetic and logical operations on values, by popping them from

the operand stack. After performing the operations, the result is saved back

on the operand stack. The operations include xADD, xSUB, xDIV, xREM and

xMUL, where x is either I, L, D or F [21].

∙ Casts - These instructions are used for typecasting operations like I2F, L2D,

F2D, etc., which are converted from one numeric type to another.

∙ Objects - These instructions are used for creation and locking of new objects. A
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new object can be pushed on the stack using NEW type, where type is internal

name.

∙ Fields - These instructions are used for reading or writing the values of the field.

GETFIELD and PUTFIELD are used for this purpose.

∙ Methods - These instructions are used for invoking a constructor or a method.

These instructions first pop the values same as the number of method arguments

and one extra for pushing the result. INVOKEVIRTUAL, INVOKESTATIC,

INVOKESPECIAL, INVOKEINTERFACE, etc. are used for invoking different

kinds of methods and constructors.

∙ Arrays - Reading and writing of values in arrays is performed by these instruc-

tions. Some instructions are xASTORE, where x can be I, F, L, D, A, B, C,

S.

∙ Jumps - Jumps are used to go to an arbitrary instruction on the occurrence

of a certain condition. Examples of these instructions include IFNE, IFGE,

TABLESWITCH, etc.

∙ Return - RETURN and xRETURN are used to return the result and terminate

the method.

Let us consider an example given in [21], to get a clear understanding:
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The bytecode of this method is:

The local variable 1 is pushed on the operand stack using the first instruction.

The next instruction compares the value popped from the operand stack to 0. If

the value is lower than 0, it jumps to the instruction label label, otherwise the next

instruction is executed. The next instruction pushes this on the stack, followed by

pushing the local variable 1 on the stack. The PUTFIELD instruction, then stores

the value i of the f field of the object, i.e. this.f. The GOTO instruction goes to

the designated instruction addressed by the end label. The end label contains the

RETURN instruction. The instructions after the label create and throw an exception:

the NEW instruction is used for creating an exception object and pushing it on the
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stack. The value is duplicated using the DUP instruction. The INVOKESPECIAL

pops one copy, followed by the exception constructor invocation on it. Lastly, the

ATHROW instruction is used to throw an exception by popping the remaining copy

[21].

4.2 Bytecode Manipulation Library - ASM

Bytecode manipulation is an effective technique that can be used to alter existing

classes or generate classes dynamically. There are various bytecode manipulation

frameworks and libraries available. Some of them are ASM [11], BCEL [12], CGLib

[13], Javassist [14], Serp [15], Cojen [16], Soot [17], etc.

After evaluating the existing frameworks used for bytecode manipulation, en-

gineers developed a more efficient framework to boost performance and memory

efficiency. ASM can be used for different purposes like analysis and manipulation of

Java bytecode [11].

4.2.1 Objectives of ASM

The following are the objectives or motivations for ASM as described by Eric

Bruneton in [21]:

1. In generating the source code dynamically, there is an overhead of compiling the

source code. It not only adds to the time, but also to the size of the code. The

objective of ASM was to use a small tool which is time as well as size efficient.

2. One main rule of optimizing the performance of any application is to optimize

frequently used codes first. So, the second objective of ASM is to build a tool

for the most frequent dynamic class manipulations.
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3. The final objective of ASM was to build a general tool, which could be used for

class manipulation operations.

4.2.2 Overview

The primary objective of ASM library is analyzing, transforming and generating

Java classes. Byte arrays can be read, written and transformed by using higher level

concepts, and not restricting to bytes by ASM [21]. ASM skips the process of class

loading and is restricted to reading, writing, analyzing and transforming classes.

The ASM library provides two APIs for manipulation of compiled Java classes:

one is the core API and other is the tree API.

Core API - An event-based depiction of classes is provided by this API. A class

is denoted as a sequence of events, with every event denoting an element of the class.

These elements may be headers, fields, instructions, method declarations, and others.

The core/event-based API defines a set of all the possible events and prioritizes them

in order of occurrence. It also provides a class parser and writer, which are used to

generate one event per element and to generate compiled classes from these sequences

of events respectively.

Tree API - It is also known as an object-based model. In this API, a class is

denoted as a tree of objects, with each object denoting some part of a class, which are

a field, a method, or the class itself. This API facilitates the conversion of events that

represent a class to the object tree and, vice-versa. In other words, it can be said that

the object-based API resides over the event-based API [21].

ASM provides both of these APIs as it cannot be said that one of them is

best. Both of them have their advantages and disadvantages. The event-based API
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requires less memory and is faster as compared to tree API, as it does not need to

create and store objects representing classes [21]. However, it has a drawback that

transformations are difficult as only one element of a class is available at one time,

which is in contrast with the tree-based API. In tree based API, the whole class is

available for transformation in memory [21].

4.2.3 Interfaces and Components

In this section, we would be focusing more on the use of the ASM Tree API for

understanding its interaction with class files. The tree API is based on the ClassNode

class as described in [21]:

Similar classes exist for FieldNode and MethodNode, which contain a structure

similar to the contents of the subsections of class file structure.
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As mentioned earlier, ASM allows generation of the classes. This can be achieved

by simply generating a ClassNode object and initializing its values for the field. Adding

class members or removing them can be accomplished by adding or deleting elements

in the parameters of a ClassNode object [21].

In addition, the ClassNode class extends the ClassVisitor class [21]. The ClassVis-

itor class also provides an accept method, which is used to generate events depending

on the field values of ClassNode.

∙ A ClassNode can be constructed from a byte array by constituting it with a

ClassReader. The ClassNode component depletes the events that are generated

by the ClassReader, which results in the field initialization.

∙ Similarly, a ClassNode can be transformed to its byte array format by using it

with a ClassWriter. In this case, the accept method produces events that are

absorbed by the ClassWriter.

∙ Transforming the classes can be achieved by combining ClassReader, ClassWriter

and addition of transformation code.

The details about how classes can be actually transformed are mentioned in

Chapter 6.
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CHAPTER 5

Hidden Markov Models

Hidden Markov Models are known to be used in various areas like speech recog-

nition, biological sequence selection, piracy detection, and study of protein structure.

In the past few years, they were known to be used for detecting the metamorphic

malware. The HMMs are trained with the use of known malware opcodes. They can

then be used for scoring the files [28].

5.1 Overview of HMMs

The HMMs (i.e. state machine based models) is useful to describe a set of obser-

vations developed by a stochastic process [24]. These processes can be demonstrated

as state sequences, where the succeeding state depends entirely on the present state.

Let us demonstrate the Hidden Markov Models using Dr. Stamp’s paper [25].

In an example from this paper, the problem is to calculate the temperature at

a specific location at the particular instance of the time. Also, let us consider that

there was no accurate way to determine the temperature during the period of time

under question. As there are no recorded past temperatures, we would consider only

two annual temperature descriptions, one is ‘hot ’and another is ‘cold’. Suppose, the

scientists have arrived at the probability of 0.6 for a cold year to be after a cold year,

and ‘0.7 ’for a hot year that is after a hot year. This information can be denoted in

the form of matrix as follows:
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Figure 17: Matrix for temperature probabilities [25]

where H denotes hot and C denotes cold.

Also, we assume that an interrelation exists among the temperature and tree

growth ring sizes [25]. Let us consider three different rings, small, medium and large

denoted by S, M, and L respectively. Let us assume the relation between annual

temperature and the tree ring sizes to be as follows [25]:[︂
0.1 0.4 0.5
0.7 0.2 0.1

]︂

For above example, the state is the average annual temperature —H or C. The

next state depends only on the current state, and hence it is a Markov process. We

cannot directly have access to temperatures of the past, and so the actual states are

known to be ‘hidden’. Although the temperature cannot be observed directly, the

tree ring sizes are observable. Since, the states are hidden, the model is known as a

Hidden Markov model.

The transition matrix will look as follows:

𝐴 =

[︂
0.7 0.3
0.4 0.6

]︂
and

𝐵 =

[︂
0.10.40.5
0.70.20.1

]︂
Let us assume that the initial state distribution is: 𝜋 = [0.6 0.4]
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All the matrices above are row stochastic, that is, the summation of all elements

in every row is 1 and each element is a probability. Let us consider a span of four

years, for which the sequence of the rings is S, M, S, L. Let S be 0, M be 1 and L be 2.

Therefore, the observation sequence O is (0, 1, 0, 2).

The most likely state series of the Markov process can be determined from given

observations. For instance, if we want to determine the average annual temperature,

it can be defined as the state sequence which will exploit the number of correct states.

We can use HMMs to find this sequence. We will now have a look at the notations,

which are the most challenging part of HMM. The notations as described in [25] are

as follows:

Let

T = the observation sequence length

N = number of states

M = number of observation symbols

Q = 𝑞0, 𝑞1, ..., 𝑞𝑁¯1 = states of the Markov process

V = 0, 1, . . . , M—1 = set of possible observations

A = state transition probabilities

B = observation probability matrix

𝜋 = initial state distribution

O = (𝑂0, 𝑂1, . . . , 𝑂𝑇¯1) = observation sequence.
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Figure 18: Markov process [23]

The above figure taken from [23] denotes a generic HMM. 𝑋0, 𝑋1, . . . , 𝑋𝑇 repre-

sents the hidden state sequence. The observations corresponding to the hidden states

are connected by B.

For the temperature example described above, we have T = 4, N = 2, M =3, Q

= H,C, V =0, 1, 2 where 0, 1, 2 represent the tree ring sizes. The model is defined

using A, B and 𝜋. The HMM can be denoted as 𝜆 = (A, B, 𝜋). The HMM is denoted

as 𝜆 = (A, B, 𝜋). Let us assume that the length of a state sequence is four. X =

(𝑥0, 𝑥1, 𝑥2, 𝑥3) with corresponding observations O = (𝑂0, 𝑂1, 𝑂2, 𝑂3)

Then, for starting in the state 𝑥0 the probability would be 𝜋𝑥0. Also, 𝑏𝑥0 (𝑂0) is

the probability of 𝑂0. Similarly, 𝑎𝑥0, 𝑥1 denotes the probability of transition from 𝑥0

to 𝑥1. Further, the probability of the state sequence X can be denoted by P(X) =

𝜋𝑥0 𝑏𝑥0 (𝑂0) 𝑎𝑥0, 𝑥1 𝑏𝑥1(𝑂1) 𝑎𝑥1, 𝑥2 𝑏𝑥2 (𝑂2)𝑎𝑥2,𝑥3𝑏𝑥3(𝑂3).

With the example described above, we have the sequence O = (0, 1, 0, 2). The

probability is computed as follows:

P(H H C C ) = = 0.6(0.1)(0.7)(0.4)(0.3)(0.7)(0.6)(0.1) = 0.000212

In a similar way, the probability of each possible state can be calculated. To find

the most probable sequence, we have to look at each position independently and find

which of the two ‘H’ or ‘C’ have a higher probability for that particular position. We
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then choose the state having the higher probability for that position. We can add the

normalized probabilities of all sequences starting with either H or C. The one with the

higher probability best fits that position. The calculated probabilities of each position

are given in the table below [23]:

Table 1: Probabilities [23]

Using the table below, we can now pick up the state with the highest probability.

Table 2: State with highest probabilities [23]

The optimal sequence will be CHCH.

5.2 Threshold Approach

As described in Wong and Stamp’s paper, threshold approach [26] can be used for

detecting the malware. The HMMs after being trained are used for malware detection.
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The working of the threshold model can be described as follows:

1. Malware file opcode sequences can be used to train an HMM.

2. This result can be observed by performing multiple runs to obtain a threshold

value. Once, the threshold value is obtained, all the files scoring above are

considered as malicious.

We will implement threshold approach for detection. The details for testing are

included in Chapter 7.
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CHAPTER 6

Design and Implementation

This chapter consists of all the design principles that were carried during this

project. It also comprises of the machine configurations that were used during the

experiments.

6.1 Machine Configurations and Programming Languages

6.1.1 Machine Configurations

Host Machine:

∙ Operating System: Windows 8

∙ Model: Lenovo Ideapad Z400

∙ Processor: Intel (R) Core (TM) i5-3230M CPU @ 2.60 GHz

∙ RAM: 6.00 GB

∙ System type: 64-bit Operating System, x64 based processor

Guest Machine:

∙ Operating System: Ubuntu 12.04 LTS

∙ Model: Lenovo Ideapad Z400

∙ Processor: Intel (R) Core (TM) i5-3230M CPU @ 2.60 GHz

∙ RAM: 1.00 GB

∙ System type: 64-bit Operating System, x64 based processor
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6.1.2 Programming Languages - Java

∙ Java bytecode manipulation library ASM was used for code obfuscation.

∙ JAHMM, which is a Java library was used for building Hidden Markov Models.

6.2 Design

The metamorphic engine is constructed using the tree API of ASM library. This

section will give a brief and detailed explanation of the algorithm. The figure below

explains the overview of the algorithm:

Figure 19: Metamorphic Engine Algorithm
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6.2.1 Algorithm

The detailed algorithm that is used for the design of the morphing code is as

follows:

1. A class MyClassAdapter that inherits ClassNode class in tree package is written.

Also, ClassReader is used to read from a file, and ClassWriter writes the altered

bytecode to the output file. The MyClassAdapter class takes two arguments:

the class file name that needs to be modified and the percentage of modification

that needs to be performed.

∙ Engine.jar sample.class 30

2. The class MyClassAdapter reads from a file with the use of ClassReader, and

makes a clone of that class.

3. The main transformation function is used to perform dead-code insertion, sub-

routine permutation and instruction permutation.

(a) This function visits the methods in order, transforms it, and then add it to

the new cloned class.

(b) This method creates two objects, one for the insertion of dead-code, and

the other for instruction permutation. Both these operations are performed

in such a way that the overall meaning of the code remains unchanged.

(c) The next step performed is subroutine permutation. According to the

position of new added methods, the last position of methods is determined.

this.method.add(0, method) means add new modified method to the front

of the method list, so the methods are ordered randomly.
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4. Once the transformation has been achieved, the last step is to write the class

in bytecode format to the output file. The new modified class is written to the

output file by the ClassWriter.

6.2.2 Overall Transformation Process

As mentioned in Chapter 4, the tree API relies on the use of the ClassNode class

for generation and transformation of Java classes.

A class can be generated by creating a ClassNode object and then initializing

field values. Class members can be added or removed by the addition or removal of

members in the fields or methods of a ClassNode object [21].

The ClassNode class extends the ClassVisitor class [21]. The ClassVisitor class

provides an accept method, which can be used to generate events depending on the

field values of ClassNode. The ClassVisitor methods implement the opposite operation

of setting the ClassNode fields depending on the received events. The following code

snippet from [21] shows the accept method, along with class hierarchy:

∙ A ClassReader and a ClassNode can be used together to construct a ClassNode

from a byte array. The events produced by the ClassReader are absorbed by

the ClassNode component, which results in the field initialization. The following

code snippet from [21] shows how ClassReader can be used:
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∙ Similarly, a ClassNode can be changed to its byte array format by using it with

a ClassWriter. In this case, the events produced by the accept method are

consumed by the ClassWriter. The code below from [21] shows how ClassWriter

is used for converting a ClassNode to its byte representation :
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∙ Transformation of the classes can be achieved by integrating the ClassReader,

the ClassWriter and the addition of transformation code. The transformation

code from [21] is:

6.2.3 Code Transformation

Three methods have been used for code transformation, which include dead-code

insertion, subroutine permutation and instruction permutation. Let us consider a

small code snippet on which we would perform these techniques individually, and

then combine all of them to get our end result.
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Let us consider a simple program for addition of two numbers:

47



The bytecode for this program is as follows:

6.2.3.1 Dead Code Insertion

Dead code insertion is performed by inserting junk instructions in every method

of the class file depending on the percentage of the obfuscation that needs to be

performed. Each method is visited and depending on the instructions and the number

of instructions present in the method, new junk instructions is inserted in the method

body. Dead code is added to avoid over-fitting the model. If the instruction ends
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with "LOAD", the size of the stack is increased by cloning, which returns a copy

of the instruction and adding extra instructions before RETURN statement. Also,

AbstractInsNode list that exists within a method is used for adding junk instructions

to the InsnList, which is the instruction list for the method. An AbstractInsnNode

denotes a bytecode instruction. One InsnList can contain an instruction at most once

at a time. The dead-code insertion for the above program is as follows:
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6.2.3.2 Subroutine Permutation

All the methods are stored in a list and transformation is performed by iterating

on each method. According to the position of modified methods, the last position

of methods is determined. this.method.add(0, method) adds the newly modified

method to the front of the method list, so the new output class that is written by the

ClassWriter has its methods in random order. The subroutine permutation for the

program given above is:
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6.2.3.3 Instruction Permutation

Instruction permutation modifies the method body, by re-ordering the flow of

instructions which are not dependent on each other. This is achieved by using jump

instructions, to change the flow of the order in which instructions are executed. The

meaning of the code still remains the same. The following code shows instruction

permutation for add function:
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The combination of all three techniques performed on the above code produces

the following result:
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6.3 Generation of metamorphic variants

This section will include the details for the generation of metamorphic variants

based on the algorithm described in the Design section of this chapter.
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6.3.1 Original files

A hundred copies of a single Java class file were generated each having different

amounts of dead-code inserted between 20% to 30% as the original files, which were

modified using different techniques specified in the next section. These 100 files are

used as original files.

6.3.2 Modified files

The copies of the base file are modified with increments of 20% of code obfuscation.

In order to test the efficiency of each obfuscation technique, we test each technique

separately, as well as in combination:

∙ Original files are obfuscated using only dead-code insertion.

∙ Original files are obfuscated using only subroutine permutation.

∙ Original files are obfuscated using only instruction permutation.

∙ Original files are obfuscated using an aggregation of subroutine permutation

and dead-code insertion.

∙ Original files are obfuscated using an aggregation of instruction permutation

and dead-code insertion.

∙ Original files are obfuscated using a combination of subroutine permutation and

instruction permutation.

∙ Original files are obfuscated using a combination of all three techniques: sub-

routine permutation, dead-code insertion and instruction permutation.
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Thus, we have 100 files for each of the obfuscation performed. These gives us

a huge data-set, as obfuscation is performed in multiples of 20%. The testing of

generated files is explained in the next chapter.
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CHAPTER 7

Experiments and Results

For testing the validity of generated variants of the base file, we will Hidden

Markov Models(HMM). We focus on the use of threshold approach to test the

obfuscated files. In this approach, we used k-fold cross validation. In our case, we

used five-fold cross validation.

The goal of the project was to create a morphing engine which could evade HMM

based detection. If some of the modified files that we generated score higher than

the normal Java class files, the modified files will not be detected by the HMM. So,

we use additional 100 Java class files, from simple programs that we write daily.

Some of these programs were written by me in the past for some coding assignments.

Others were gathered online from [30]. We then score these normal files, as well as the

modified files against our model. We first divide the original files in five sets of 20 files

each. In threshold approach, HMM is trained using four sets of the original code and

tested using a fifth subset of obfuscated files as well as normal files. To understand

the efficiency of each technique, we would morph the base files individually, increasing

the percentage of obfuscation in multiples of 20%, until we are unable to distinguish

between normal and modified files.

It was also observed that the number of states have no significant effect on the

results. Therefore, we use only 4-state model for testing purposes.
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7.1 Dead-code Insertion

The original files were modified by inserting only dead-code in them, starting

from 20% and above. It was observed that inserting 40% of dead-code in the original

files was enough to evade the HMM-based detection. The figure below shows the

graph that represents the overlap between the normal files and the modified file, when

40% of dead-code is inserted:

Figure 20: HMM result with dead-code insertion
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7.2 Subroutine Permutation

The original files were modified by only using subroutine permutation. It was

observed that, there is very less overlap between the modified files and the normal

files. The detection might be still possible in this case. The graph below shows the

results of modifications performed on the original files versus the normal files:

Figure 21: HMM result with subroutine permutation

58



7.3 Instruction Permutation

Instruction permutation is used to modify the class files. The HMM-based

approach is unable to detect this permutation. It cannot easily distinguish between

the modified and the normal files for all the increments of percentage. In the graph

below, we can see that there is less though enough overlap between the normal and

the modified files, evading HMM-based detection:

Figure 22: HMM result with instruction permutation
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7.4 Dead-code Insertion and Subroutine Permutation combination

With obfuscating the files with 40% of dead-code insertion and subroutine permu-

tation, we can evade HMM-based detection of original files. In the graph presented

below, we can see that it is difficult to distinguish between the normal and the modified

files:

Figure 23: HMM result with dead-code and subroutine permutation
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7.5 Dead-code Insertion and Instruction Permutation combination

When using dead-code insertion and instruction permutation in combination, it

is observed that, a high percentage of obfuscation needs to be performed to evade

HMM-based detection. This combination of techniques is able to escape HMM-based

over 60% of obfuscation. The figure below shows the results when using 60% of

dead-code insertion and instruction permutation:

Figure 24: HMM result with dead-code and instruction permutation

61



7.6 Subroutine Permutation and Instruction Permutation combination

The combination of subroutine permutation and instruction permutation is able

to escape HMM-based detection. Although there is very little overlap between the

normal files and modified files, it is not possible to distinguish between them. The

figure below shows the result of combination for these techniques:

Figure 25: HMM result subroutine permutation and instruction permutation
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7.7 Combination of all three techniques

It is is observed that when using all the three techniques together, it is possible

to evade HMM-based detection. Staring at 20%, we increment the obfuscation. It is

observed that, for 40% the normal files and modified files overlap. Further increase in

percent of obfuscation results into more overlapping of files. The figure below shows

the results for using this combination:

Figure 26: HMM result with all three techniques
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From the above observations and charts presented in Appendix A, it can be

observed that the most effective modifications to the files are observed when using

the dead-code insertion individually, and combination of dead-code insertion with

instruction permutation. Along with that, the combination of all three techniques

have an effective result. The combination of dead-code insertion with subroutine

permutation also shows a considerable overlap between the normal files and modified

files. The tale below summarizes the techniques and their effectiveness:

Technique Detected with HMM? % of obfuscation required
to evade HMM

Dead-code Insertion No 40%
Subroutine Permutation Can be detected partially -
Instruction Permutation No -
Dead-code Insertion +

Subroutine Permutation No 40%

Dead-code Insertion +
Instruction Permutation No 60%

Subroutine Permutation +
Instruction Permutation Can be detected partially -

Combination of all three techniques No 40%
Table 3: Obfuscation Results for different techniques

Additional detailed charts for all the techniques and their combinations are

presented in Appendix A.
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CHAPTER 8

Conclusion and Future Work

This project proposed the idea of using bytecode manipulation libraries in order

to manipulate Java class files, so as to escape detection by HMM. There are various

bytecode manipulation libraries like Javassist, BCEL, ASM, Soot, out of which,

ASM was chosen for performing various code obfuscation techniques. The code

obfuscation techniques, which included dead code insertion, subroutine permutation,

and instruction permutation were performed abiding by the rules that are necessary

to achieve obfuscation without changing the meaning of the original code.

In order to better understand the efficiency of each technique, they were imple-

mented individually and in combinations to achieve the best possible obfuscation. It

was observed that the combination of all three techniques, and using instruction per-

mutation, dead-code insertion individually provides the best possible code obfuscation.

Along with that, and using combination of dead-code insertion with other techniques

individually also provide a good obfuscation.

It was observed that the HMMs could partially some obfuscation techniques

correctly like subroutine permutation, as there was very little overlap between normal

and modified files. But, the model failed to detect modifications in techniques like

instruction permutation, dead-code insertion and various other combinations. The

tool was successfully able to evade detection in most of the cases.

A good future project would be to perform obfuscation using libraries like Soot,

BCEL, and compare their efficiency with the obfuscation performed by ASM. These

libraries provide a similar framework and hence, their advantages and drawbacks with
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respect to ASM need to be studied.
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APPENDIX

Threshold Approach Results

A.1 4-State HMM for combination of all three techniques

Figure A.27: Combination of all three techniques
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A.2 4-State HMM for Subroutine Permutation

Figure A.28: Subroutine permutation HMM
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A.3 4-State HMM for Instruction Permutation

Figure A.29: 4-State HMM for instruction permutation
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A.4 4-State HMM for Dead-code Insertion and Subroutine Permutation
combination

Figure A.30: 4-State HMM for Dead-code Insertion and Subroutine Permutation
combination
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A.5 4-State HMM for Dead-code Insertion and Instruction Permutation
combination

Figure A.31: 4-State HMM for Dead-code Insertion and Instruction Permutation
combination
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A.6 4-State HMM for Subroutine Permutation and Instruction Permu-
tation combination

Figure A.32: 4-State HMM for Subroutine Permutation and Instruction Permutation
combination
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