
San Jose State University
SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

Fall 2015

Designing a Programming Contract Library for
Java
Neha Rajkumar
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

Part of the Computer Sciences Commons

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU ScholarWorks. It has been
accepted for inclusion in Master's Projects by an authorized administrator of SJSU ScholarWorks. For more information, please contact
scholarworks@sjsu.edu.

Recommended Citation
Rajkumar, Neha, "Designing a Programming Contract Library for Java" (2015). Master's Projects. 426.
DOI: https://doi.org/10.31979/etd.urbd-323n
https://scholarworks.sjsu.edu/etd_projects/426

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by SJSU ScholarWorks

https://core.ac.uk/display/70424775?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.sjsu.edu?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F426&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F426&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F426&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F426&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F426&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/426?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F426&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

Designing a Programming Contract Library for Java

A Project

Presented to

The Faculty of the Department of Computer Science

San Jose State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

by

Neha Rajkumar

December 2015

c○ 2015

Neha Rajkumar

ALL RIGHTS RESERVED

The Designated Project Committee Approves the Project Titled

Designing a Programming Contract Library for Java

by

Neha Rajkumar

APPROVED FOR THE DEPARTMENTS OF COMPUTER SCIENCE

SAN JOSE STATE UNIVERSITY

December 2015

Dr. Thomas Austin Department of Computer Science

Dr. Chris Pollett Department of Computer Science

Mr. Ron Mak Department of Computer Science

ABSTRACT

Designing a Programming Contract Library for Java

by Neha Rajkumar

Programmers are now developing large and complex software systems, so it’s

important to have software that is consistent, efficient, and robust. Programming

contracts allow developers to specify preconditions, postconditions, and invariants in

order to more easily identify programming errors. The design by contract principle [1]

was first used in the Eiffel programming language [2], and has since been extended

to libraries in many other languages.

The purpose of my project is to design a programming contract library for Java.

The library supports a set of preconditions, postconditions, and invariants that are

specified in Java annotations. It incorporates contract checking for objects of classes

following the bean notation [3]. The library also supports checking for user-defined

functions as contract conditions. This feature allows the user to check for complex

contract conditions. In addition to these, the library supports contracts using lambdas

in Java 8 [4], which to our knowledge has not been done in previous works on Java

contracts. While the results show us that enabling contracts lowers the performance

of the system, especially when lambda contracts are used, we also demonstrate how

careful design can significantly reduce the overhead.

ACKNOWLEDGMENTS

I am very thankful to my advisor Dr. Thomas Austin for his continuous guidance

and support throughout this project. His patience, answers to my questions, and that

he was always there helped me complete this project.

I would also like to thank the committee members Dr.Chris Pollett and Mr.Ron

Mak for their valuable time taken to monitor the progress of the project.

Finally, I would like to thank all of my family and friends, who in many ways

helped me in my journey of Masters.

v

Contents

Chapter

1 Introduction . 1

1.1 Blame Assignment . 2

2 History . 4

2.1 “Famous” Software Failures . 5

2.2 Example : Writing Contracts for a Function 6

2.3 Specifying Annotation Conditions 9

3 Background Motivation . 11

3.1 Java Assertion . 11

3.2 Existing Contracts . 14

3.3 Contracts in other Programming Languages 15

3.3.1 Contracts in Racket . 16

3.3.2 Contracts in C++ . 16

3.3.3 Contracts in Python . 17

3.4 Contracts for Higher-Order Functions 17

4 Implementation of the Contract Library for Java 19

4.1 Custom Annotations . 19

4.2 Modularizing Cross-cutting Concerns using AspectJ 20

4.3 Contract Checking for Objects . 25

4.4 Contract Checking using User-defined Functions 27

4.5 Contracts using Lambdas in Java 8 29

vi

vii

5 Sample Contracts and Performance Results 31

5.1 System Configuration . 31

5.2 Contracts in File System Access Permission 31

5.3 Contracts in an Account Application 34

5.4 Performance Results . 36

6 Conclusion . 39

List of Figures

1 Contract between a Car Rental Company and a Customer. 3

2 Writing Contracts for a Method in Eiffel Programming Language. 4

3 Contracts for Ariane 5 . 6

4 Contracts for a method which calculates the sum of 1..n 7

5 Output of the function when the input is 8 8

6 Output of the function when the input is -5 9

7 “before” Advice . 10

8 “after” Advice . 10

9 Function using Assert . 12

10 Function using Contracts . 13

11 Output . 13

12 Contracts in Racket . 16

13 Contract Annotation . 19

14 Run time Execution using AspectJ 21

15 Contracts for the method : methodproduct which returns product
of numbers . 23

16 Output for methodproduct . 24

17 Program Flow . 25

18 Contracts for a Library Application 26

19 Contracts for Quick sort . 28

20 Example for Lambda Contracts 30

viii

ix

21 Contracts for File Permission . 32

22 Output for Contracts in File Permission 33

23 Output for contracts in File Permission where file does not exist . 33

24 Contracts for Account Application 35

25 Output for Contracts in an Account Application 35

26 Quick sort Recursive . 36

27 Quick sort Recursive with Wrapper class 36

28 Performance Results . 37

CHAPTER 1

Introduction

Software is getting larger. For example in 1985, Windows 1 had 1 to 3 million

lines of code whereas now in 2015, Windows 10 have more than 60 million lines of

code. As new software development tools and methods are built, more importance is

given to productivity.

Reliability is a major component of the quality of a software: a system’s ability

to execute the software according to the given specifications and to handle abnormal

situations [34]. Software must work correctly without giving erroneous outputs, it

should also be able to restore to a consistent phase even when an error occurs while

informing the programmer about the cause of the error [5]. A programmer must be

able to specify what actions each software element is supposed to do and determine

the cause of a fault in order to improve software reliability. This can be achieved

by programming contracts [35]. Design by contract has applications throughout the

process of building software, from analysis and design to implementation, document-

ation, debugging, and even project management. As mentioned before contracts are

specified by preconditions, postconditions, and invariants.

A contract denotes a relationship between a client and a supplier. The contract

is said to be broken if the client has not met the preconditions of the supplier or

the supplier has not met the postconditions. Software is correct when all of its

preconditions, postconditions, and the invariants are true. According to R. Mitchell

and J. McKim [1] design by contract helps to build bug-free software leading to safe

exception handling.

1

To be more specific:

∙ A precondition is a condition on a method that must be true prior to the

execution of the method.

∙ A postcondition is a condition on a method that will become true after the

successful completion of the method.

∙ Invariant is a condition that must hold true in all cases.

1.1 Blame Assignment

Design by contracts are based on blame assignment [24]. If the precondition is

violated it is the caller’s fault; if the postcondition is violated it is the fault of the

called function. So with the help of the contract library we know who to blame,

whether its the caller or the called method. Java assertions are another technique to

check for the correctness of the program as given in [15]. Using assertions along with

exceptions, users are able to develop robust programs. Assertions are enabled using

the “assert” keyword. More on assert will be covered in the next chapter.

The table in Figure 1 illustrates a simple example of a contract between a car

rental company and a customer [6].

2

Figure 1: Contract between a Car Rental Company and a Customer.

This example gives a rough description of the mutual agreement between the

client(customer) and the supplier(car rental company). The purpose of my project is

to implement a programming contract library for Java that supports a set of precon-

ditions, postconditions, and invariants which helps in error checking.

Chapter 2 takes one through the history of design by contracts along with the

examples of few famous software failures. Chapter 3 describes some background

information on design by contracts and shows how contracts are better than assert

statements. Chapter 4 describes the language definition for specifying contracts along

with the implementation and how the support for Java 8 lambdas are added to the

library. Chapter 5 takes one through the examples of design by contracts and Chapter

6 gives the conclusion along with future work.

3

CHAPTER 2

History

Bertrand Meyer came up with the term design by contract during his design of

the Eiffel Programming Language [2]. The concepts behind design by contracts were

stated in articles starting from 1986 [7] followed by later editions (1988,1997) in the

book Object Oriented Software Construction [8]. Eiffel Software got their trademark

in December 2004 [10]. The current owner of this trademark is Eiffel Software.

The Eiffel programming language use the keywords requires to check for the

preconditions, and ensures to check for the postconditions.

Figure 2: Writing Contracts for a Method in Eiffel Programming Language.

Nowadays contracts are used to document software elements. This helps the

clients to get information about the interface properties of the class. The use of

contracts in testing, debugging, and quality assurance is worth noting. Apart from

the above mentioned cases, design by contracts are used in exception handling -

handling abnormal conditions [9].

4

2.1 “Famous” Software Failures

Several studies have shown the emphasis of design by contract in the construction

of reliable software. On June 4th, 1996 the European Ariane 5 launcher crashed about

40 seconds after takeoff [11]. Media reports state that there was a loss of a half-billion

dollars as the rocket was not insured. The French Space Agency and the European

Space Agency were appointed immediately for investigation. After a month they

reported that the explosion was due to a software error. Particularly distressing is

the fact that the explosion was caused due to an exception which was not caught.

The exception was due to a floating - point error where the flight’s horizontal bias,

the horizontal velocity of the rocket which was represented by a 64-bit floating-point

value was converted to a 16-bit signed integer [11]. So the value that was converted

was greater than the 16-bit signed integer. This resulted in an uncaught exception

followed by a software crash and mission failure. Reports state that this piece of code

was directly reused from the Ariane 4 launcher.

The programmers had made an assumption that the horizontal velocity of Ariane

4 would never exceed the maximum speed limit that can cause trouble. But unfor-

tunately, Ariane 5 was much more faster than Ariane 4 and was able to achieve five

times more velocity and acceleration resulting in an overflow error. This example

illustrates that the specification associated with the reused module was absent. As

explained before, one of the key fundamentals of design by contract includes stating

the fundamental constraints of the software elements explicitly.

Assuming a positive value for horizontal_bias, the most likely value for

maximum_bias is 32767 which is the maximum value of a 16-bit signed integer. So we

have the postcondition as horizontal_bias <= maximum_bias. The example in Fig-

5

Figure 3: Contracts for Ariane 5

ure 3 gives us an idea of how design by contracts plays an important role in checking

the correctness of reusable code.

2.2 Example : Writing Contracts for a Function

To know more about contracts let us take a simple example of a function that

takes a positive integer value, as input and returns the sum of 1 to that number as

output. This program uses my contract library, which was implemented as part of

the thesis project. Let’s assume that this function is part of a very large software

system [1].

Assume: The input is “var” and output is “sum”

Invariant condition : var > 0

Precondition 1: var >= 1

Postcondition 1: sum > var

In my contract library, the conditions to be evaluated are defined in the

custom annotation @Contract [12]. The invariant conditions are specified in

invariant_cond, preconditions in pre_cond, and postconditions in post_cond.

6

Figure 4: Contracts for a method which calculates the sum of 1..n

As seen in Figure 4, the invariant condition is “var>0”, precondition is

“var≥1”, and the postcondition is “sum>var”. When the method methodsum is

called, the contracts are checked at run time and shows whom to blame, whether

the caller; or the called method. The library shows whom is to blame if either of

these conditions fail. The figure below shows the output of the program after the

execution of the program.

Testcase 1 : The input is 8

As seen in Figure 5, the library checks for the contract conditions for the method

methodsum. It checks for the invariants first, followed by the preconditions, the

execution of the method, the postconditions and the invariants again to confirm

that even after the execution of the method the invariants hold true, since invariants

7

Figure 5: Output of the function when the input is 8

must be true at all times. In this example the invariants, preconditions and the

postconditions are true and there is no Contract Violation.

Testcase 2 : The input is -5

8

Figure 6: Output of the function when the input is -5

In this example the invariant condition fails as the input is not greater than 0.

Hence the program exits with the “Invariant violation” error. The example above

gives us the first taste of design by contract.

2.3 Specifying Annotation Conditions

The main challenge involved in implementing the library was to check for the

preconditions and the postconditions. The preconditions, postconditions, and the

invariants are functionalities that are mixed with the application code. AspectJ [13]

is used to separate these functionalities and to check the conditions at run time.

AspectJ modularizes “cross-cutting” [14] concerns, where code is scattered across

many files; logging is the canonical example of such a cross-cutting concern. The

dynamic parts of AspectJ include join points, pointcuts, and advice. The contracts

are specified through annotations and the conditions are checked at run time through

the “before” and the “after” advice in AspectJ. The figure below shows the “before”

and the “after” advice.

9

Figure 7: “before” Advice

Figure 8: “after” Advice

As seen in Figure 8, the Object objret gives the return value after the execution

of the method which helps in checking for the conditions. More on the implementation

using AspectJ will be covered in chapter 4.

10

CHAPTER 3

Background Motivation

This chapter explores existing approaches for guaranteeing the correctness of a

program, followed by the approach used in my project.

3.1 Java Assertion

Java assertion is another technique to check for the correctness of the program

as given in [15]. Using assertions along with exceptions enables the users to develop

robust programs. Assertions are enabled using the assert keyword. The assert

keyword can be used in two different ways as given below:

∙ assert booleanExp;

∙ assert booleanExp : errorMessage;

In both the cases the booleanExpression is checked at run time. If it evaluates

to false, Java throws an AssertionError and the program terminates. Consider a

function that takes a positive parameter as input and returns the square root of that

number, shown in Figure 9.

The assert keyword checks whether the return value is greater than zero. In

this case, a negative value was given as input giving an “ Assertion error ”, since

findsquareroot returns NaN in this case.

11

Figure 9: Function using Assert

12

Figure 10: Function using Contracts

Figure 11: Output

13

Figure 10 shows the same function using my custom annotations to capture the

same requirements/guarantees as the Java assertions. Figure 11 shows the result of

executing this program.

The two examples illustrates that assert statements do not explicitly specify

whether it’s an invariant, precondition, or a postcondition. Asserts do not provide

contract checking. As seen in the example for method findsquareroot in Figure 9,

asserts are included in the actual code, which can cause a serious issue when a pro-

grammer accidentally removes it without knowing the design requirements. Such

errors can be avoided by contracts since they are written outside of the particular

method that needs to be tested. Enabling contracts as in Figure 10 helps the pro-

grammers in the design phase as each module is specified. Asserts do not explicitly

map contract requirements to parameters. So here the developers is expected to have

to manually maintain the JavaDoc comments within the code and make it clear under

what cases the assert will fail.

3.2 Existing Contracts

There exists several design by contract libraries for Java programming language.

One such library is iContract [16]. In iContract the contracts are added as JavaDoc

comments. So the library uses a preprocessor to generate the Java code with contracts.

The library converts the comments into assertion check codes. Since the contracts

are written as comments, the entire processing can be done using Java, but these do

not allow switching the contract checking dynamically. The library implemented as

part of my thesis project is quite different from the approach given in iContract.

Another library is jContractor [17], which is a pure Java implementation of design

by contract. The contracts are written as methods that follow a naming convention

14

and provides run time contract checking by adapting the bytecode of classes where

contracts are enabled. The library uses the Java reflection API [18] for dynamic

checking. We have a similar approach as mentioned in jContractor, as the contract

library supports runtime checking. Cofoja [19], which is short for Contracts for Java,

is another library which was developed by an intern working at Google. Cofoja is a

programming framework for Java which uses bytecode and annotation processing for

run-time checking.

The Cofoja model specifies the contracts based on the Eiffel model and contracts

are written as strings in annotations. The contracts for Java are annotated with its

own contracts, which can be compiled, tested, and bundled into the resulting JAR

file so it checks its own contracts when compiling [19]. An additional @ThrowEnsures

annotation is included that handles the exceptions thrown from the method where

contracts are enabled if the postcondition refers to a result that does not exist. My

library uses a similar approach since the contracts are written as strings in the form

of custom annotations which are checked at runtime.

Adbc [20] is another library that supports design by contract for the AspectJ

programming language [13]. Here the contracts are written as JavaScript expressions

within the annotations. The contracts are checked at run-time with AspectJ. When a

contract is broken, an exception is thrown that shows whether to blame the supplier

or the client. A similar approach is used in my library where the dynamic parts of

AspectJ are used for contract checking.

3.3 Contracts in other Programming Languages

Design by contract is a major research topic and they are extensively used in

other programming languages as well.

15

3.3.1 Contracts in Racket

The higher order contracts were first introduced in the Racket’s contract sys-

tem [23]. Here contracts are enforced at module boundaries. Programmers specify

the behavior of a module through the provide clause as in provide (contract-out

....) and the constraints are enforced by the require clause as in (require racket/-

contract). The figure in 12 gives an example of contracts in Racket. The example

Figure 12: Contracts in Racket

in Figure 12 promises the client that the value of amount will always be positive.

3.3.2 Contracts in C++

There exists several design by contract libraries for C++ programming language.

One such library was developed by P. Guerreiro [21] where assertion conditions were

expressed as comments. The preprocessor converts the comments into executable

code and the compiler checks the syntax. All the assertion functions are placed in the

Assertions class and are inherited by classes where its functions perform assert

checking. The mechanism allows the user to comment out the assertions as and when

required.

16

3.3.3 Contracts in Python

The principles of design by contract is integrated into Python [22] similar to the

approach given in iContract [16]. The assertion statements are added through com-

ments and the dynamic type checking for method parameters and instance variables

are added by using the contract principles.

3.4 Contracts for Higher-Order Functions

Contracts for higher−order functions have a strong practical potential as they

allow the programmers to write complex conditions. Findler and Felleisen [25] in-

corporated the support for higher−order function contracts using 𝜆 𝐶𝑂𝑁 , which is

a typed lambda calculus that supports higher−order functions. The higher−order

contract checker must be able to track down from the point the contract is estab-

lished to the point of contract violation. The code shows an example of contracts for

higher−order functions.

CheckEven : (integer -> integer) -> boolean

(define/contract save

((bigger-than-zero? -> bigger-than-zero?) -> isEven?)

(𝜆 (f) (...)))

The function called CheckEven denotes the type specifications. Like Racket,

the define/contract is used to define contracts on methods. Here the contract

((bigger-than-zero? -> bigger-than-zero?) -> isEven?) describes the

functions that accept other functions as input to check for contracts.

The code shows another example of contracts for higher−order functions.

17

∙ function1 is a procedure that takes an integer and returns a function.

∙ GeneratePrime is a function that takes an integer and returns the prime

number.

Contract : (function1 -> GeneratePrime)

function1 : takes input of type integer?

GeneratePrime : (-> integer? integers_prime?)

(define/contract :

positiveinteger? (-> positiveinteger? integers_prime?)

....

The example shows a contract applied to a curried function. The pro-

cedure function1 takes an input of type integer and returns another function

GeneratePrime that accepts the second argument and returns a prime number. So

if another software component calls function1, and if it returns a value instead of a

function, then function1 is to blame; if the function GeneratePrime returns a number

which is not prime, then the function GeneratePrime is to blame.

18

CHAPTER 4

Implementation of the Contract Library for Java

This reviews the implementation details of the contract library which was de-

veloped as part of my thesis along with the support of Java 8 lambdas.

4.1 Custom Annotations

Contracts are written as Java code within strings in custom annotations [36].

Annotations are metadata that can be incorporated into the code. This feature was

added to Java in version 5 [26]. Annotations can be processed in two ways; at compile

time by pre−compiler tools or at run time by Java reflection [27].

1 package annotations;

2 import java.lang.annotation.ElementType;

3 import java.lang.annotation.Retention;

4 import java.lang.annotation.RetentionPolicy;

5 import java.lang.annotation.Target;

6

7 @Target(value = ElementType.METHOD)

8 @Retention(value = RetentionPolicy.RUNTIME)

9

10 public @interface Contract {

11

12 String Description ();

13 String [] invariant_cond () default " ";

14 String [] pre_cond () default " ";

15 String [] post_cond () default " ";

16 }

Figure 13: Contract Annotation

As shown in Figure 13 in line #10, the “@” in front of interface denotes that it

is an annotation. In the library, the invariant conditions are specified in the String

19

array, invariant_cond, preconditions in pre_cond, postconditions in post_cond,

and Description specifies the comments(line #12,#13,#14,#15). The conditions

have a default value a String, since there can be situations where the user does

not specify the conditions. In such cases, a default value of "", denotes an empty

condition. Multiple conditions are specified with comma separated strings. For ex-

ample, pre_cond={"low>-1","high>low"}, means that the two preconditions should

be satisfied for a valid precondition check.

Directives in annotation definition:

∙ @Retention(value = RetentionPolicy.RUNTIME) means that the annota-

tions can be accessed by reflection during run time.

∙ @Target(value = ElementType.METHOD) means that annotations can be used

on classes and interfaces.

4.2 Modularizing Cross-cutting Concerns using AspectJ

Aspect - oriented programming is used for contract enforcement since contracts

are scattered all over the code. The annotation conditions in @Contract are checked

at run time through the dynamic parts of AspectJ. A join point defines a point in

the program flow. A pointcut selects certain join points and values at these points.

Advice is a block of code that is executed when it reaches a join point. In this library

we use the before and the after advice during the execution of preconditions and

postconditions.

20

1 import java.lang.reflect.Method;

2 import java.lang.annotation .*;

3 import annotations.Contract;

4

5 public aspect asp

6 {

7 pointcut function () : execution (* *(..));

8

9 before () : function ()

10 {

11 Signature sig = thisJoinPoint.getSignature ();

12 Method method = ((MethodSignature)sig).getMethod ();

13

14 // Annotations for @Contract

15 Annotation [] annost = method.getDeclaredAnnotations ();

16

17 Contract annos = (Contract) annotation;

18

19 String [] invariant_cond = annos.invariant_cond ();

20 String [] pre_cond = annos.pre_cond ();

21

22 }

23 after() returning(Object objret): function ()

24 {

25 Signature sig = thisJoinPoint.getSignature ();

26 Method method = ((MethodSignature)sig).getMethod ();

27

28 // Annotations for @Contract

29 Annotation [] annost = method.getDeclaredAnnotations ();

30

31 Contract annospost = (Contract) annotation;

32 String [] post_cond = annospost.post_cond ();

33 String [] invariant_cond = annospost.invariant_cond ();

34

35 }

36 }

Figure 14: Run time Execution using AspectJ

In Figure 14, line #5 shows the aspect asp which encapsulates the pointcut

function, the before advice, and the after advice. Line #7 denotes the pointcut

21

function that uses wildcards; which means that the pointcut picks the point during

the execution of any method regardless of its parameter types, name, or return type.

The before advice (line #9 to #20) will be executed before all method executions

that are matched by the function() join point, and the after advice (line #24 to

#35) will be called after the method execution.

In line #11, Signature sig = thisJoinPoint.getSignature() returns the

signature object where the join point function() is matched. Method method =

((MethodSignature)sig).getMethod() in line 12, gives the method object from

the join point. The annost of type Annotation[] mentioned in line #15, contains

all the annotations that are present in the method. If no annotations are present, an

array of length null is returned.

Lines #19,#20 specifies that the string array invariant_cond will have the in-

variant conditions. So invariant_cond[0] will have the first condition mentioned

in the contract annotation. Similarly the string array pre_cond will have the pre-

conditions and post_cond will have the postconditions as specified in line #32 in

Figure 14. The example in Figure 17 gives us an outline of the program flow during

execution of the program specified in Figure 15. Here the block of code in before

advice is executed first followed by the after advice. The output of the program is

specified in Figure 16.

In before advice, the invariant_cond is executed first followed by the exe-

cution of pre_cond. If either of these conditions fail, the program exits with the

ContractViolationmessage. The method is executed and the after advice is called.

Here the post_cond and the invariant_cond are executed.

22

1 public class Program_Product

2 {

3 @Contract(invariant_cond ={"var >-1"},

4 pre_cond ={"var >1","var <100"},

5 post_cond ={"product_val >1"},

6 Description="Check Contracts for methodproduct")

7 /**

8 * Method to compute the product of 1 to n numbers

9 * @param var : var is the input to the function

10 * @return product : returns the product

11 */

12 public static int methodproduct(int var)

13 {

14 int product_val =1,i;

15 for(i=1;i<=var;i++)

16 {

17 product_val = product_val * i;

18 }

19 System.out.println("Product of 1 to ..n is "

20 +product_val);

21

22 return product_val;

23

24 }

25 }

Figure 15: Contracts for the method : methodproduct which returns product of
numbers

23

Figure 16: Output for methodproduct

24

Figure 17: Program Flow

4.3 Contract Checking for Objects

Let us look at an example of contract checking for objects. The example in

Figure 18 shows a library application. The pre_cond is "libraryobj.membership

== ‘Student membership’". The libraryobj is the object of the class

LibraryApplication. When an object is given as a condition, the corresponding

method is called using Java reflection and the condition is checked at run time. In

Java reflection class.getDeclaredMethods() returns all the methods declared for

the particular class using reflection API.

25

1 public class LibraryApplication

2 {

3 public static int age =14;

4 public static String getMembership ()

5 {

6 if(age <=14)

7 {

8 return "Student membership";

9 }

10 else if(age >14 && age <=50)

11 {

12 return "Adult membership";

13 }

14 return "Senior membership";

15

16 }

17

18 @Contract(invariant_cond ={"age >=6"},

19 pre_cond ={"libraryobj.membership ==

20 ‘Student membership ’"},

21 post_cond ={"age >10"},

22 Description="Check Contracts")

23

24 public static void process_library(LibraryApplication

libraryobj ,int age)

25 {

26

27 System.out.println("Processing applicants");

28

29 }

30

31 public static void main(String [] args)

32 {

33 LibraryApplication libraryobj = new LibraryApplication ();

34

35 process_library(libraryobj ,age);

36

37 }

38

39 }

Figure 18: Contracts for a Library Application

26

4.4 Contract Checking using User-defined Functions

Writing complicated conditions helps the user in error checking during the initial

stages. While I was working on the contract library, I came across several examples

which had complex conditions. One such example was the quick sort function. Quick

sort is a sorting algorithm that follows a divide and conquer approach. If low is the

lower bound and high is the upper bound of an array to be sorted, the conditions are

as follows as shown in Figure 19.

∙ invariant_cond = "low >= 0"

∙ pre_cond = "low > -1","high > low"

∙ Array.isSorted == true , is a complex condition to handle

To handle complex conditions like checking whether an array is sorted, I took the

approach where user could specify functions as a contract condition. So user-defined

functions were checked as contract conditions allowing the user to handle complex

error conditions. The functions are defined as FUNCTIONCHECK:. So if the condition

is of the form,

post_cond = "FUNCTIONCHECK:obj.isSort"

then the function isSort() is called with the class object obj and executed using the

Java reflection API. The function checked with the FUNCTIONCHECK: should always

have the same number of arguments as the method which has contracts enabled.

Consider the quick sort example in Figure 19. Lines #6 to #9 shows the contract

conditions. Lines #11 to #33 gives the quick sort code. The postcondition for

the method is “ FUNCTIONCHECK:obj.isSort ”. So here the function isSort() is

executed using the Java reflection API, where obj is the object of the main class.

27

1 public static void sort(int[] arr)

2 {

3 quickSort(0, arr.length - 1,arr ,obj);

4 }

5

6 @Contract(invariant_cond ={"low >=0"},

7 pre_cond ={"low >-1","high >low"},

8 post_cond ={"FUNCTIONCHECK:obj.isSort"},

9 Description="Check Contracts")

10

11 public static void quickSort(int low , int high ,int

arr[], Sort_Quicksort obj)

12 {

13 int i = low , j = high;

14 int tempval;

15 int pivot = arr[(low + high) / 2];

16 while (i <= j)

17 {

18 while (arr[i] < pivot)

19 i++;

20 while (arr[j] > pivot)

21 j--;

22 if (i <= j){

23 tempval = arr[i];

24 arr[i] = arr[j];

25 arr[j] = tempval;

26 i++;

27 j--;}}

28 if (low < j)

29 quickSort(low , j,arr ,obj);

30

31 if (i < high)

32 quickSort(i, high ,arr ,obj);

33 }

34 @FUNCTIONCHECK(Description="Include functions in conditions")

35 public static boolean isSort(int low , int high ,int

arr[], Sort_Quicksort obj)

36 {

37 for(int i=1;i<arr.length;i++)

38 {

39 if(!(arr[i-1] <= arr[i]))

40 {

41 return false;

42 }

43 }

44 return true;

45 }

46

Figure 19: Contracts for Quick sort

28

4.5 Contracts using Lambdas in Java 8

Lambdas are a new feature added in Java SE 8 [29]. Lambdas in Java 8 provide

an easier way to convert to functional interfaces. Using Java 8 lambdas to write

contracts has not been done in previous work. Since the lambda contracts are given

as string expressions, my first concern was to convert a lambda expression to a lambda

object. There were two possible ways:

∙ Using the Nashorn JavaScript engine. Java 8 supports the Nashorn engine

where a lambda expression can be evaluated with the JavaScript function [32].

∙ Use a library that converts a String expression to a lambda expression and

execute it on the fly.

I used the second approach, as it allows a user to stay within the Java world. I

used Pawel Chorazyk’s library [33] to add support for java 8 lambdas. The library

LambdaFromString written by Pawel did not work for complicated operations on

objects.

The library compiles the new class using the Java Compiler API and compiles the

lambda expression on the fly. Currently the library supports only the standard library

functions. Let us see a simple example using lambda contracts. Lines #1 to #5 in

Figure 20, denotes the lambda contracts. The invariant condition is "input_val ->

input_val >= 0" and the postcondition is "sum -> sum % 2 == 0". The method

print_even finds the sum of all even numbers from 1 to input_val. As seen in

Figure 20, the return value sum, should be an even number. The postcondition checks

whether sum % 2 == 0.

29

1 @ContractLambda(invariant_cond_lambda=

2 {"input_val -> input_val >= 0"},

3 pre_cond_lambda ={" "},

4 post_cond_lambda ={"sum -> sum%2 == 0"},

5 Description="Check Lambda Expression Contracts")

6

7 /*

8 * The method print_even calculates the sum of even numbers

from 2 to input_val

9 * input : input_val is the user input

10 * output : sum , which is sum of even numbers till input_val

11 */

12 public static int print_even(int input_val)

13 {

14

15 int i,sum=0;

16 for(i=2;i<= input_val;i++)

17 {

18 if(i%2==0)

19 {

20 sum = sum + i;

21 }

22 }

23 System.out.println("The results are: ");

24 System.out.println("Sum of even numbers to ..n is "

+sum);

25 return sum;

26

27 }

28

Figure 20: Example for Lambda Contracts

30

CHAPTER 5

Sample Contracts and Performance Results

This chapter reviews the sample contracts along with the performance results.

5.1 System Configuration

All my sample contracts were run on a Windows 7 Enterprise system. The system

is running with 2.67GHz Intel Core i7 CPU with 2 cores and 4 GB of memory.

5.2 Contracts in File System Access Permission

File permissions are important as they keep the data secure and prevents un-

authorized read/write operations. Let us take an example of applying design by

contracts to a file permission system. The file given in the file path should exist and

only the authorized user should have access to the file. The conditions for the method

Access_level_operation can be given as follows:

∙ invariant_cond = "FUNCTIONCHECK:obj.isFileExists"

∙ pre_cond = "access_obj.accesslevel==‘W/write’"

∙ post_cond = "count>0"

The invariant condition states that the file should exist for the user to access it.

The precondition checks for the accesslevel of the user, the postcondition performs

the file operation, and increments a counter by 1.

31

1 @Contract(invariant_cond ={"FUNCTIONCHECK:access_obj.isFileExists"},

2 pre_cond ={"access_obj.accesslevel ==‘W/write’"},

3 post_cond ={"count >0"},

4 Description="Check Contracts")

5 /*

6 * The function : Access_level_operation checks for the

access level

7 * Input : Object access_obj , the object of class

8 Contracts_grantingAccess and the file path

9 * return : returns a count if file operation is success

10 */

11

12 public static int

Access_level_operation(Contracts_grantingAccess

13 access_obj ,String filepath)

14 {

15 System.out.println("File testfileinput.txt has been

modified");

16 count = 1;

17 return count;

18 }

19 /*

20 * The function : isFileExists checks for the invariant

21 * Input : String filepath , the file path

22 * return : returns a boolean

23 */

24

25 @FUNCTIONCHECK(Description="Include functions in

conditions")

26 public static boolean isFileExists(Contracts_grantingAccess

27 access_obj ,String filepath)

28 {

29 File access_file = new File(filepath);

30

31 if(access_file.exists () == false)

32 {

33 return false;

34 }

35 return true;

36 }

Figure 21: Contracts for File Permission

32

Lines # 1 to # 4, shows the contract conditions. The access_obj.accesslevel,

returns the permission access for the particular user. The method

Access_level_operation is defined in lines # 12 to # 17. The function

isFileExists is checked as invariant condition to check whether the file exists

before performing a write operation.

Figure 22: Output for Contracts in File Permission

Figure 23: Output for contracts in File Permission where file does not exist

33

As shown in Figure 22, the contract conditions are correct and the counter is

updated which indicates that the file operation is a success. Figure 23, shows that

the invariant condition is wrong and the file does not exist. So from this example we

know whom to blame making error checking easier.

5.3 Contracts in an Account Application

Let us take an example of applying design by contracts to an account application

using Java 8 lambdas. The method create_user as given in Figure 24 creates a new

account for the user. The user should have a user name that starts with an uppercase

letter followed by lower case letters and a maximum length of 12. The conditions for

the method create_user can be given as follows:

∙ invariant_cond_lambda = "username -> username ! = null"

∙ pre_cond_lambda = "username -> Character.isUpperCase(username.charAt(0))

== true","username -> username.length()<=12"

∙ post_cond_lambda = "minbalance -> minbalance <= 100"

The invariant condition states that the username given by the user should not be

null. The precondition checks whether the username starts with an uppercase letter

followed by lower case letters and the maximum length of the username is 12, and

postcondition checks whether the minimum balance is updated.

34

1 @ContractLambda(invariant_cond_lambda=

2 {"username -> username != null"},

3

4 pre_cond_lambda ={"username ->Character.isUpperCase

5 (username.charAt (0)) == true",

6 "username -> username.length () <=12"},

7

8 post_cond_lambda ={"minbalance -> minbalance <= 100 "},

9 Description="Check Lambda Expression Contracts")

10

11 /*

12 * The function : create_user creates an account for a user

13 * Input : String username , username

14 * return : returns the minimum balance

15 */

16 public static int create_user(String username)

17 {

18 int minbalance = 100;

19 return minbalance;

20 }

Figure 24: Contracts for Account Application

Lines # 1 to # 5, shows the contract conditions. The method create_user

is defined in lines # 16 to # 19. The function create_user is executed when the

conditions are true and the minimum balance is updated.

Figure 25: Output for Contracts in an Account Application

35

As shown in Figure 25, the contract condition is wrong. Here we see that that

one of the preconditions are wrong. Precondition 1 is wrong and it can be concluded

that the given user input did not follow the specifications.

5.4 Performance Results

To understand the trade-offs and performance in incorporating contracts, sample

contracts were run and the time taken for execution was noted down. In chapter 4

Figure 19, we saw the quick sort example where the contract conditions were enabled

on the recursive function. Let us modify the quick sort example such that contracts

are applied on the wrapper function instead of the recursive function as shown in

Figure 27.

Figure 26: Quick sort Recursive
Figure 27: Quick sort Recursive with Wrapper
class

Table 28 shows the time taken for execution when contracts are enabled and

when they are disabled.

36

Test case

Runtime(in nanoseconds)
Overhead of adding
contracts

Contracts
enabled

Contracts
disabled

Time
difference [Slowdown factor]

Contracts for file permission 25,441,570 3,069,541.60 22,372,028.40 8.3x times slower

Contracts for account ap-
plication (using lambda
contracts)

945,511,326.80 3,499,843.8 942,011,483 270x times slower

Quick sort on array of 50
numbers (using recursion)

5,572,116,637 3,180,479,513 2,391,637,124 1.8x times slower

Quick sort on array of 50
numbers (using a wrapper
function)

4,237,491,114 3,259,894,164 977,596,950 1.2x times slower

Contracts for library applic-
ation

27,956,183.2 2,908,351.4 25,047,831.8 9.6x times slower

Figure 28: Performance Results

From the table 28, it is seen that contracts for account application had a higher

slow down factor of 270. This is because the lambda contracts are compiled on the

fly using the Java compiler API before evaluating. The quick sort example using

recursion had a slowdown factor of 1.8 and the quick sort example with the wrapper

function had a factor of 1.2. From the quick sort example it can be seen that contracts

should be applied in an efficient way as given in Figure 27 to reduce the overhead.

The contracts for file permission in Figure 18 and the library application in Figure

37

21 had slow down factors 8.3 and 9.6 respectively. These had user-defined functions

of the form FUNCTIONCHECK: as a contract condition. As mentioned in chapter 4,

the contract conditions with FUNCTIONCHECK: are executed using the Java reflection

API. So from Figure 28, we can see an increase in overhead for the file permission and

the library application examples. Performance results states that enabling contracts

takes more time in execution, but it guarantees error free code.

38

CHAPTER 6

Conclusion

Design by contracts can be implemented by different approaches, but it is still

an ongoing field of research. Enabling contracts makes it easier for a user to fix errors

in the initial stages. Adding contracts for Java 8 lambdas to the existing research

on design by contracts helps the user to provide complicated conditions. From the

performance results, it is seen that contracts lowers the performance of the system, but

the user can be sure that his software works under all conditions. The contract library

designed as part of the thesis does not require the user to learn other programming

languages as the syntax for conditions are closely related to Java.

The topics in future work include extending the library to support contract check-

ing for objects using Java 8 lambdas. This will help programmers to write complicated

conditions by using the features of Java 8.

39

LIST OF REFERENCES

[1] R. Mitchell and J. McKim, Design by Contract: by Example, second edition,
Addison Wesley Longman Publishing Co. Inc., 2001

[2] B. Meyer, Eiffel: The Language, first edition, Prentice Hall, 1991

[3] T. Sobh and K. Elleithy, Advances in Systems, Computer Sciences and Software
Engineering, first edition, Springer Netherlands, 2006

[4] M. Arefin and R. Khatchadourian, Porting the NetBeans Java 8 enhanced for
loop lambda expression refactoring to eclipse, Proceedings of the 2015 ACM SIG-
PLAN International Conference on Systems, Programming, Languages and Ap-
plications: Software for Humanity , 58–59, 2015

[5] C. Ghezzi, M. Jazayeri and D. Mandrioli Fundamentals of Software Engineering,
second edition, Prentice Hall, 1991

[6] Building bug-free O-O software: An Introduction to Design by Contract,accessed
April 2015,
https://www.eiffel.com/values/design-by-contract/introduction/

[7] B. Meyer, Eiffel: Basic Reference (manual), Technical Report TR-EI-2/BR, In-
teractive Software Engineering Inc., 1986-1988

[8] B. Meyer, Object - Oriented Software Construction, second edition, Prentice Hall,
1998

[9] B. Meyer, Design by Contract: The Eiffel Method, Technology of Object-Oriented
Languages, 1998. TOOLS 26. Proceedings, 1998

[10] Design by Contract,accessed May 2015,
https://en.wikipedia.org/wiki/Design_by_contract

[11] J. Jazequel and B. Meyer, Design by Contract : The Lessons of Ariane, IEEE
Computer Society, Vol. 30, pp. 129–130, 1997

[12] J. Nigul and E. Mah, Software maintainability benefits from annotation-driven
code, IEEE International Conference, pp. 417–421, 2009

[13] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, W. Griswold, An
Overview of AspectJ, ECOOP ’01 Proceedings of the 15th European Conference
on Object-Oriented Programming, pp. 327–353, 2001

40

[14] A. Mesbah and A. Deursen, Crosscutting Concerns in J2EE Applications, WSE
’05 Proceedings of the Seventh IEEE International Symposium on Web Site
Evolution, pp. 14–21, 2005

[15] J. Payne, M. Schatz and M. Schmid, Implementing assertions for java, Dr.
Dobb’s Journal, Vol. 23, pp. 40–44, 1998.

[16] R. Kramer, iContract : The Java Design by Contract Tool, In Proceedings of
Technology of Object-Oriented Languages, TOOLS26, IEEE Computer Society,
1998

[17] M. Karaorman, U. Holzle, and J. Bruno jContractor: A Reflective Java Library
to Support Design by Contract, In Proceedings of Metal-Level Architectures and
Reflection, Lecture Notes in Computer Science, Springer Verlag, 1999.

[18] B. Livshits, J. Whaley, and M. Lam Reflection analysis for Java, In Proceeding
APLAS’05 Proceedings of the Third Asian conference on Programming Lan-
guages and Systems, pp. 139–160, 2005.

[19] Nhat Minh Le, Cofoja github page, accessed October 20th, 2015,
https://github.com/nhatminhle/cofoja

[20] Tim Molderez, adbc github page, accessed October 12th, 2015,
https://github.com/timmolderez/adbc

[21] P. Guerreiro, Another mediocre assertion mechanism for C++ , In Proceedings of
Technology of Object-Oriented Languages, TOOLS33, IEEE Computer Society,
pp. 226–237, 2002.

[22] R. Plosch, Design by Contract for Python, In Proceedings of Asia Pacific Software
Engineering Conference, IEEE Computer Society, pp. 213–219, 1997.

[23] The Racket Guide, accessed October 14th, 2015,
http://docs.racket-lang.org/guide/contract-boundaries.html

[24] R. Plosch, Computational contracts, Science of Computer Programming, Special
Issue on Advances in Dynamic Languages, Vol. 98, pp. 360–375, 2015.

[25] R. Findler and M. Felleisen, Contracts for higher-order functions, In Proceedings
of the seventh ACM SIGPLAN international conference on Functional program-
ming , Vol. 37, pp. 48–49, 2002.

[26] D. Tang, A. Plsek and J. Vitek, Static checking of safety critical Java annota-
tions, In Proceedings of the 8th International Workshop on Java Technologies
for Real-Time and Embedded Systems , pp. 148–154, 2010.

41

[27] Annotations and the Java Reflection API, accessed October 24th, 2015,
https://keyholesoftware.com/2014/09/15/java-annotations-using-reflection/

[28] S. Maguire, Writing Solid Code, first edition, Microsoft Press, 1993

[29] Java SE 8: Lambda Quick Start, accessed November 1st, 2015,
http://www.oracle.com/webfolder/

technetwork/tutorials/obe/java/Lambda-QuickStart/index.html#overview

[30] J. Gosling, B. Joy, G. Steele, G. Bracha and A. Buckley, The Java Language
Specification : Java SE 8 Edition, eighth version, Addison-Wesley Longman
Publishing Co., 2015

[31] JDK Bug, accessed November 5th, 2015,
https://bugs.openjdk.java.net/browse/JDK-8027181

[32] Nashorn: JavaScript made great in Java 8, accessed November 9th, 2015,
http://www.infoworld.com/article/2607426/

application-development/nashorn--javascript-made-great-in-java-8.html

[33] stack overflow : How to convert a string to a lambda expression?, accessed Oc-
tober 14th, 2015,
http://stackoverflow.com/questions/22207447/

how-to-convert-a-string-to-a-lambda-expression

[34] Building bug-free O-O software: An Introduction to Design by Contract, accessed
October 14th, 2015,
https://www.eiffel.com/values/design-by-contract/introduction/

[35] Defensive programming and Design by Contract on a routine level, accessed Au-
gust 12th, 2015,
http://weblogs.asp.net/fredriknormen/

defensive-programming-and-design-by-contract-on-a-routine-level

[36] Using an Aspect for Wrapping Method Logging, accessed August 3rd, 2015,
http://michaelhoffmaninc.com/2015/03/

using-an-aspect-for-wrapping-method-logging/

42

	San Jose State University
	SJSU ScholarWorks
	Fall 2015

	Designing a Programming Contract Library for Java
	Neha Rajkumar
	Recommended Citation

	Introduction
	Blame Assignment

	History
	``Famous'' Software Failures
	Example : Writing Contracts for a Function
	Specifying Annotation Conditions

	Background Motivation
	Java Assertion
	Existing Contracts
	Contracts in other Programming Languages
	Contracts in Racket
	Contracts in C++
	Contracts in Python

	Contracts for Higher-Order Functions

	Implementation of the Contract Library for Java
	Custom Annotations
	Modularizing Cross-cutting Concerns using AspectJ
	Contract Checking for Objects
	Contract Checking using User-defined Functions
	Contracts using Lambdas in Java 8

	Sample Contracts and Performance Results
	System Configuration
	Contracts in File System Access Permission
	Contracts in an Account Application
	Performance Results

	Conclusion

