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ABSTRACT

Interactive Phishing Filter

by Rushikesh Joshi

Phishing is one of the prevalent techniques used by attackers to breach security

and steal private and confidential information. It has compromised millions of users’

data. Blacklisting websites and heuristic-based methods are common approaches to

detect a phishing website. The blacklist method suffers from a window of vulnerabil-

ity. Many heuristics were proposed in the past. Some of them have better accuracy

but a lower performance. A phishing filter should have better accuracy and pefor-

mance. It should be able to detect fresh phishing websites. Jo et al. [2] present a list

of attributes of the web page to find the disparity between an original website and a

spoofed website. The main aim of this project is to integrate the approach presented

by Jo et al. [2] into web browser via Firefox add-on. Our phishing filter collects the

list of attributes and compares it with the help of approximate string matching al-

gorithms and WHOIS [14] server queries. For machine learning techniques, we used

Weka [21]. All the algorithms, available in Weka were applied to our testing data set.

Our phishing filter achieves 94.3% accuracy with reasonable performance.
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CHAPTER 1

Introduction

The Internet, today, has become another world in itself, capable of providing all

basic necessities with a click of a button. According to statistics, almost 3 billion

users have access to the Internet [40]. On the one hand, the advent of on-line services

like e-banking has made life of people convenient by allowing them to manage their

transactions, sitting at home. The other side of this has exposed them to countless

security threats. Internet banking, e-commerce and email services share a significant

amount of usage in today’s modern world which requires transmission of confidential

and critical data. Therefore, it is imperative to keep these security aspects in mind

while making such an application.

There are many security threats on the Internet like phishing, malware attack,

man-in-the-middle attack, etc., among which Phishing is the most prevalent of all.

Phishing is a fraudulent act wherein the attacker contacts the user in e-mail, a phone

call or other communication channels, pretending to be an authorized person, to

learn sensitive and confidential information like user-id and password. According to

Kaspersky Lab, an increase of around a million phishing cases have been reported

since the first quarter of 2015. Many solutions exist to detect phishing websites, such

as CANTINA approach [6] and blacklist. However, none of these solutions provide

good accuracy and performance when it comes to real-time safe browsing.

Most browsers use a "Blacklist", a database of verified phishing websites to detect

malicious websites. However, a "Window of vulnerability" is a major drawback of

blacklists. Window of vulnerability is the time period between detection of a threat
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and protective steps taken for it. Insoon Jo, EUNJIN Jung, and HEON Y. Yeom [2]

wrote a paper, providing a theoretical concept to solve this problem. In this project,

we will implement this solution using WHOIS query, string similarity algorithm and

machine learning approach [2].

1.1 What is phishing

"Phishing" was first identified and defined by International HP Users Group,

Interex in 1987 [1] and can be defined as a fraudulent activity of collecting sensitive

and confidential information such as username, password, credit card details, etc

where the attacker pretends to be an authorized organization or person. Typically,

the user under attack will receive a message or email that would appear to have been

sent by an authorized user or community. This email or message would either result

in the installation of a malware on the user’s system or redirecting the user to a

malicious website.

Phishing can be done in the following ways: [12]

• Link manipulation [12]

This is done by designing a URL such that it appears to be authentic and

similar to original website’s URL. This can be done by modifying the display

text between <a> tags and redireting the users to the phisher’s site [12].

• Filter evasion [12]

This is done by using images to provide malicious links, which can redirect the

users to phisher’s website. This way the user fails to identify malicious links

hidden behind the image. However, most of anti-phishing filters apply image

processing techniques to recover hidden text from images, thereby identifying
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the attacks [12].

• Website forgery [12]

A very common attack, also known as "cross-site scripting" [12] is used to

redirect the user to phisher’s site using JavaScript code. Since the user is

oblivious to the execution of this malicious code, this type of attack is one of

the most difficult to identify attacks.

• Phone phishing [12]

As the name suggests, the users receive fake calls from the phishers pretending

to have valid authorization. They try to convince the user to give confidential

information over the phone like account number and PIN [12].

The main focus of our project will be on "Link manipulation" type of phishing

in which malicious URLs are obfuscated to appear as if they belong to valid organi-

zations, making it difficult to be detected by human eyes. Figure 1 shows an example

of a website that claims to be PayPal, a worldwide online payment system company.

Figure 2 shows the original website of PayPal. On close observation, you can see some

differences between the two websites, which are very difficult to identify otherwise.

Some of the differences include difference in logo, favicon and a secured certificate.

There can be multiple ways to re-direct the users to these malicious websites and

sometimes the users fail to see these differences, therefore becoming victims of the

phishing site.

Once the desired data is collected from the user, different types of forgeries can be

done by the hackers, sometimes resulting into a loss of millions of dollars. Sometimes

these attacks are aimed at private and confidential information of celebrities, which

are later leaked online for monetary or other benefits.
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Figure 1: Fake Paypal website

Figure 2: Original Paypal website

1.2 Problems

A lot of academic and business research has been done so far to address the

problem of "Phishing". Most of the solutions either use blacklist or some type of

heuristics or machine learning techniques. The blacklist method is the most common

approach, adapted by most of the browsers, in which each browser defines and stores

a list of verified phishing websites. Based on this list, a browser can easily identify
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phishing attacks. However, since the list contains previously identified websites, it is

still susceptible to new attacks.

The second approach is to adopt heuristics. Different features of a websites are

collected and based on this information, the authenticity of a website is determined.

Accuracy and performance are the two prime filters to measure phishing. The solution

should be flexible enough to identify new threats. Keeping this in mind, the authors

of this [2] paper derived a technique to find disparity between two websites using

approximate string matching and the WHOIS[14] server queries. Various attributes

of each of the websites were collected and experimented upon with a different machine

learning classifiers. The test results using this filter showed some promising results.

With the help of these attributes and approach, we were able to achieve 94% accuracy

and 0.978 ROC area.

One more research paper [3] was proposed to use image processing techniques

with emphasis on the favicon of a website. Limitation of this approach is that a web-

site should have a favicon otherwise this method will fail. As per a recent survey [24]

40% of most visited mobile websites do not have favicon.

1.3 My contribution

The goal of this project is to give a practical shape to the idea presented in the

research paper [2].

We split this entire add-on in three different parts. The first component resides

on the client side. The second component is a web service. Machine learning classifier

is the third component. Web services is the middle layer between browser add-on and

machine learning algorithm.
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We decided to make Firefox add-on as it has rich libraries for an add-on devel-

opment. There were a couple of options available for the machine learning libraries

out of which we selected "Weka" libraries. Weka [21] is a popular machine learning

tool that has implementation of various machine learning algorithms and is easy to

use with its Java API.

We collected different samples of phishing websites from Phishtank [9], which is

a regcognized organization for providing a database of phishing websites. We used

Alexa, an Amazon company, to get samples of benign websites [10]. We collected

a total of 1773 URLs for the training data set. Out of 1773 URLs, 829 URLs were

phishing and 944 URLs were benign. We experimented with different machine learn-

ing classifiers to get the best accuracy. Our results showed almost 94% accuracy to

detect phishing websites using these classifiers.
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CHAPTER 2

Background

2.1 How big a problem is

The amount of information transmitted through the internet has increased ex-

ponentially in the last couple of years [15]. Cloud computing has played a big role

in inspiring phishing. Gigabytes of data have been uploaded to the cloud every year.

As usage of the cloud increases, a lot of data becomes available to steal and manipu-

late. The purpose of phishing attacks could be to hack personal accounts, to spy on

someone's personal life, etc.

The “Anti Phishing Group” is an international association focused on unifying

the global response to cybercrime [16]. This group provides a platform to discuss

cybercrime issues, potential technology solutions to cybercrime, and an access to

data related to cybercrime forensics. According to a quarterly report published by

this group, "Retail/Service" is the most popular industry sector for hackers [13]. In

Figure 3, almost 75% of phishing attacks are targeted to "Retail/Service," "Financial"

and "Payment services".

Paypal is the top victim of phishing [41]. Paypal has been the most successful

way of payment for many online shopping websites for many years [38]. Banks are the

second most popular target of attackers. Many users receive warnings that appear to

come from a bank. Sometimes they are warned to authorize their bank accounts to

save them. Many such big scams are reported every year [39]. A common trend is to

save a user's bank account and credit card details on an e-commerce website. Once

account credentials are revealed, getting the other details of bank account is easy.
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Figure 3: Phishing attack by industry[13]

Other popular sectors are “Emails” and “Social Networking”. Many times phish-

ing pages are created to hack individuals’ social networking accounts. This trend has

increased remarkably over the past few years as per the figure 3.

The number of phishing attacks globally reported in the 4th quarter of 2014 is

197,252 [13]. This number increased by 18% from the third quarter of 2014 [13]. One

common observation from this report is that the number of unique domains have

decreased from the quarter of 2014. The same domains have been used iteratively for

phishing attacks.

In summary, phishing has been a generic problem to all kinds of industries.

Financial and e-commerce sectors are the most affected. These attacks have increased
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Figure 4: The number of phishing attack

in the last couple of years. Extensive research has been going on to prevent this cyber

crime, but still nothing has been able to reduce the number of attacks.

2.2 Previous and Existing Solutions

A lot of research has been conducted going on by different universities and pro-

fessional organizations to address phishing issues. Here is an overview of different

approaches.

1. Anti-prevention (offense and defense) [4]

Chuan Yue and Haining Wang proposed the offense and defense approach [4].

This approach does not warn users to help them detect phishing websites. It

takes the help of the blacklist method to implement the idea.

When any web page is identified as a phishing web page by the blaklist method,

this filter is triggered. If the user ignores the warning and continues browsing
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the same page, this filter modifies the victim's response and fills out the irrel-

evant data in response. It creates (S - 1) bogus credentials and hides the real

credentials between S credentials [4] where S is an integer with very high value .

Within a few milliseconds, those S credentials are sent to the phishing website.

The same action is taken when a user heeds the warning. However, in this case,

total S bogus credentials are being generated instead of (S - 1).

Overall, the aim of this approach is to confuse the phisher with many responses

from the victim's machine. It would be difficult for the phisher to filter out the

real credentials among thousands of data.

The limitation of this method is that it assumes that the phisher can not have

access a query to the targeted website for the validation of any individual user-

name [4]. This might not be the case for email-based services and many other

social networking services. For financial websites, this could be very effective.

2. Heuristic

Heuristic-based approaches are widely accepted and becoming more popular

now. These approaches are divided into two components. The first component

fetches the required properties from the web page, and the second component

is the classifier algorithm to classify given data and make a prediction for the

given input.

Keywords retrieval and identity discovery-based approach [23] [7] uses search

engines to get the rank of the given web page. The given web page is scanned

and many terms are extracted. Those terms are sent to one or more search

engines, such as Yahoo, Google, and Bing. That webpage is declared safe by the

heuristic approach if the domain name is in the top N search results. However,
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the approach suffers from performance issue because of the total time taken by

the round trip to search the terms.

3. Visual Similarity

As the name itself suggests, the approach is related to a comparison between

visual appearance of the website. Though we think that a phishing website and

the original website look similar in terms of design and look, sometimes there

are significant differences.

One way to differentiate is based on the favicon of the webpage URL [3]. This

algorithm compares the original favicon and the spoofed webpage URLs favicon

using image processing techniques [3]. This algorithm gives some value. If the

score of the page is above some threshold value then the URL is flagged as a

phishing URL. The cone of this method [3] is that the website must have a

favicon otherwise it gets failed.

The second solution proposed to decompose the webpage in to block regions [5].

The visual similarity of the two webpages is then evaluated in three matrics.

Those are block level similarity, layout similarity and overall style similarity. If

any one of these matrics has got gerater value than the predefined threshold

value, then two website is reported as a phishing website.

4. Blacklist

“Blacklist” is the most efficient method to detect phishing website. It collects the

list of verified phishing websites from all over the world. Whenever a user visits

the websites, it searches in to the database and responds as per result. It gives a

minimum false positive rate, but it fails to detect fresh phishing websites. It has

window vulnerability problem [11]. The average time to be added in a blacklist
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is significantly long, it is not effective for detecting fresh phishing website.

5. Content-based approach

“CANTINA” [6] is the implementation of this approach. CANTINA [6] is based

on TF-IDF information retrieval algorithm [6]. It extracts the content of the

webpage to decide whether website is a phishing site or not. The contents can

be the URL and domain of the page, etc. It uses search engine results. It uses

information retrieval techniques and the “Robust Hyperlinks” algorithm to im-

prove broken hyperlinks [6]. The author has claimed that this algorithm achieves

approximately 95 percent accuracy in detecting phishing websites. They also

suggested to use CANTINA along with heuristic approaches to reduce false

positives.

There are certain downsides to this algorithm as well. This approach is heavily

dependent on searching algorithms. If phishers achieve good page rank for the

phishing websites in top search engines, then it might be difficult to detect the

phishing website. The second issue is with performance, as it sends a query to

search engines and processes the results. Language is also another constraint of

this phishing technique.
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CHAPTER 3

Problem Solution

3.1 Outline of the Solution

Our interactive filter adopts the heuristic approach to detect the phishing web-

sites. The disparity between the website's true identity and observed identity is the

main feature of this filter.

Observed Identity: The features that are part of the web page content and can

be spoofed easily [2].

True Identity: The features that represents the real identity of the website and

are difficult to spoof [2].

Frequent terms, source domains of iFrames and source of images are observed

identities. On the other hand, the host domain is the true identity. The disparity

between these two identities is measured by their textual relevance [2]. The unique

challenge with this approach is to find the intersection of those characteristics that are

also efficient to detect. It is not easy to find such disparity because it could be hidden

in any form of the webpage. We use the approximate string matching algorithm [17]

to find such disparities. Users are warned for suspected websites-based on threshold

values are set. It is their decision whether they want to visit such websites or not.

Through the human interaction, our heuristic can gain more accurate knowledge to

improve its decision capacity. Our results show that approach suggested by Insoon

Jo, EUNJIN Jung, and HEON Y. Yeom [2] is a better solution.

Let's take a small example to understand the disparity between two identities.

We will compare it with the original website.
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Figure 5: A fake Apple website

Figure 6: An original Apple website

In Figure 5 and 6, both websites claim to be the Apple website. Let's review both

websites. In Figure 5, we see the observed identities such as “Verify Apple ID” from

its title and “apple.com” from its image/anchor domains in the web page content. The

textual relevance between the title of the website and the domain of the images and

anchor tags is very high. Now let's take the observed identities and true identities

for comparison. The true identity is its domain name, which is “medical4u.ru”. You

can observe a less textual relevance between the true identity and observed identities.

Now for Figure 6, observed identities are “apple.com” and “Apple - My Apple ID” from

its respective title and domain names of images. It has a higher textual relevance

between the true identity(apple.com) from the URL. All the content of this webpage

has the same origin compare to WHOIS record and copyright holder.

By seeing an example, we can say that there is higher textual relevance between

observed identities for the fake website whereas there is less textual relevance between

the true identities and observed identities. We can easily differentiate between a

phishing website and a benign website with the help of this set of settings.
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3.2 The Component of the Solution

We divided all features into two groups. One is URL features and the second is

content features. Let's see the definition and understanding of each features in detail.

It would be easy to understand the classification scheme with a better understanding

of these features.

3.2.1 URL features [2]

Before going through the URL features let's see the component of the URL.

Consider this example URL:

http://blog.rushikeshjoshi.com/p/resume.html?date=oct28

1 2 3 4

1. Protocol

2. Hostname

3. Path

4. Query Parameter

The URL Obfuscation technique is the common characteristics of phishing web-

sites. No benign website does the same. The Following are the six different categories

of URL obfuscation techniques:

1. The existence of IP address and different port number other than 80 [2]

Many phishing websites contain IP address instead of hostname. It is rare to

find a legitimate website that uses IP address instead of a hostname. This
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could be a good point to differentiate between legitimate websites and phishing

website.

Example: http://200.98.201.164/psh/pshcm1.html [9]

2. URL contains domains name except hostname [2]

A Phishing website tries to make the URL looks similar to the original website.

To do so they tend to put the actual website hostname in the pathname of the

URL. In the case of the original web site, you don't find the domains name in

the pathname.

Example: http://www.yozgatfirmarehberi.net/paypal.com/login/

auth/ [9]

3. Multiple domain names embedded the name in hostname [2]

Multiple domain names are very frequently found in the phishing websites.

Often this includes the domain name of the targeted website. The purpose

of putting this in the hostname is to make the victims feel that this must be

subdomain of the targeted website.

Example: http://paqpal-userz-inter-setting.com.3agroupeg.com/

app/inc/intery/main/946a8b07ea1a08c9067ab8f45da5d4a7/index.html?

dispatch=xM7XsSPwHpsgiCSB5 [2]

4. The existence of unusual characters in the URL [2]

Usually any benign website's URL is clean. This is not the case for phishing

sites. It might contain multiple unusual characters in the URL.

Example: http://itunes.com.care.app-server-updates-members.

returnby-default-help.7215-8562-2514.renew-accounts-onlinesetup.

adaspmt.org.br/efe2b42ef448716d96047%2006b4e%20152a55/home/index.
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html [9]

5. The use of HTTPS protocol [2]

few phishing websites use the secure “https” connection protocol. It is very

difficult to host such website with the verified secure certificate. Not much

cases have been so far with this arrangement. In fact, in Figure 6 you can

easily differentiate the difference between the original and the fake website using

“https” connection.

3.2.2 The Content features [2]

Content features can be considered as an observed identity. Page source a con-

tains lot of such identities.

• Entity Names [2]

Any legitimate website generally contains its brand name or entity name in the

header, meta tags, the title of the page, and copyright information. Since the

phishing websites aim is to replicate the targeted website, its content also holds

similar names as its target. Such entity names are collected by our filter.

• Frequent Terms [2]

Any legitimate website generally repeats its entity names throughout the web

page. Phishing websites also contains the same entity as they are in the original

website. Our filter scans the whole DOM of the web page and strips out HTML

keywords from the page source. It sorts the rest other terms and makes the list

of the top 10 terms only.

• Resource Domains [2]
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Websites usually contains different images, links and scripts in the web page.

If you consider legitimate websites, the majority of the resources are hosted on

the same server. On the other hand, most of the resources are referenced to

targeted servers in phishing websites. These external references can be good

hints to detect phishing websites. Our filter extracts the domain name of the

image, link, anchor, form and script tags from, the source of the webpage.

3.2.3 WHOIS Features [2]

The WHOIS server is a service which provides the details of a domain name. You

can query with an URL and in response you get useful details for that domain name.

Greater disparity has been observed in spoofed website compared to the original

website. The kind of date we can get from the WHOIS server includes:

• Date when the domain was registered

• Date of expiration of the domain when it will get expire

• Registrant name, address, and the organization name of the domain

• Domain of the name server

All of this information can be compared with the actual URL and the content of

the webpage. Lower the textual relevance the higher chance of a phishing website.

3.3 Approximate string matching algorithm

Our phishing filter collects the attributes like a title, a copyright holder, etc of

a web page. In addition, it collects the information from WHOIS [14] server. We

find the textual relevance between all of these attributes. Jo et al. [2] proved that a
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benign website has more textual relevance and a spoofed or phishing website has less

textual relevance between those attributes. We used the approximate string matching

algorithms to find the textual relevance.

3.3.1 What is an approximate string matching

String matching is a significant problem in information retrieval and computa-

tional biology [25]. There are various versions of string matching problems. In many

problems, it is required to match both the strings. There are different algorithms

available for exact string matching like Naive string search algorithm [28], Rabin–

Karp string search algorithm [26], Boyer-âĂŞMoore string search algorithm [27], etc.

All of their time complexity varies from Θ(𝑛2) to Θ(𝑛).

Sometimes a system needs to find similar types of a string, not an exact match.

These problems can be solved by an approximate string matching algorithm. Let's

take a practical example. A large number of keywords are searched per day on Google,

including many mistakes. I think similar kind of issue would happen with everyone.

In Figure 7, we can see that I wanted to search “interview questions” instead of

“intervew questions”. Google immediately recognized the right word and suggests an

improvement to correct your typo.

Figure 7: Google smart suggestion
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Approximate String Matching is a technique of finding strings whose patterns

matches very closely but not exactly [18].

The number of operation required to convert one string to another string is called

Edit Distance.

The closeness of two strings is measured in terms of “Edit Distance” [19] where a

lower score means two strings are more similar. There are three different operations

defined: [18] [19].

• Insertion

sign → signal

• Deletion

loose → lose

• Substitution

affect → effect

Dynamic programming is a efficient way to find “Edit Distance” of any two

strings. Let's say the m and n are the length of the first and second string respec-

tively. The total time taken to find the edit distance between strings is Θ(𝑚𝑛). Space

complexity is Θ(𝑚𝑛) when the edit distance matrix is constructed.

Table 1 shows an example of the distance matrix of two strings. Two strings

are "bcdat" and "abcde". In the matrix, "E" represents the "NULL" string. As you

can see, the final edit distance between two strings is 3, which means any one of the

strings needs 3 operations to convert from one to another.

There are different applications of approximate string matching algorithms.

Intrusion detection [20], lagiarism detection [20], bio-informatics, text-mining re-
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Table 1: Edit Distance Matrix Example

E b c d a t
E 0 1 2 3 4 5
a 1 1 2 3 3 4
b 2 1 2 3 4 4
c 3 2 1 2 3 4
d 4 3 2 1 2 3
e 5 4 3 2 2 3

search [20], video retrieval [20] and digital forensic [20]. We used this string matching

to find the similarity of the different strings like page title, domain name registrant,

etc.

3.3.2 Q-Gram distance

As we saw that “Levenshtein distance” can be solved by a dynamic programming

approach which takes Θ(𝑚𝑛). Ukkonen [8] proposed a better approach to improving

the time complexity different to find the similarity using the pattern matching [8].

This q-gram method is the lower bound of the “Levenshtein distance”. Its complexity

is Θ(𝑚 + 𝑛) where m and n are the lengths of the two strings. Q-gram distance

represents the difference of two string's q-profiles.

A Q-gram is the vector which contains the number of patterns of q length in the

string.

Let
∑︀

be a finite alphabet and let
∑︀* denote the set of all strings over

∑︀
and∑︀𝑞 be all the strings of length q over

∑︀
, for 𝑞 = 1, 2, ... A q-gram is any string

𝑣 = 𝑎1𝑎2...𝑎𝑞in
∑︀𝑞 [8].

Now Let 𝐺(𝑥)[𝑣] represents the total count of the pattern v in x. The q-gram
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profile of string x is defined as the vector

𝐺𝑞(𝑥) = (𝐺(𝑥)[𝑦]), 𝑣 ∈
𝑞∑︁

Q-gram distance: Let x and y are the strings in
∑︀*, and 𝑞 > 0 be an integer.

Q-gram distance of two strings x and y is defined as

𝐷𝑞(𝑥, 𝑦) =
∑︁
𝑣∈

∑︀𝑞

|𝐺(𝑥)[𝑣] −𝐺(𝑦)[𝑣]|.

3.3.3 Examples

Let us take an example to understand the concepts related to Q-gram distance

of two given strings.

Example 1: Let us say s1 = “wxyzv”, s2 = “wxzvvy” and q = 2. 𝑉1 and 𝑉2 are

the q-profiles of the respective strings.

Answer: There are four 2-grams in the string s1. Those are "wx", "xy", "yz",

and "zv". s2 string has five 2-grams. Those are "wx", "xz", "zv", "vv", and "zv". As

per the definition, 𝑉1 = (1, 1, 1, 1) and 𝑉2 = (1, 1, 1, 1, 1). We have to combine both

the vectors in order to take the difference of vectors. 𝑉1 becomes (1, 1, 1, 1, 0, 0, 0) and

𝑉2 becomes (1, 0, 0, 1, 1, 1, 1). We take positive difference between these two vectors

and do summation which is equal to 5.

Example 2: Let us say s1 = “wxyzv”, s2 = “wxyzx” and q = 3. 𝑉1 and 𝑉2 are

the q-profiles of the respective strings.

Answer: There are 3 3-grams in the string s1. Those are "wxy", "xyz", and
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Table 2: Q-gram distance example 1

wx xy yz zv xz vv vy
𝑉1 1 1 1 1 0 0 0
𝑉2 1 0 0 1 1 1 1
|𝑉1 − 𝑉2| 0 1 1 0 1 1 1∑︀

|𝑉1 − 𝑉2| 5

"yzv". s2 string has five 2-grams. Those are "wxy", "xyz", and "yzx". For this

example, 𝑉1 = (1, 1, 1, 1) and vector 𝑉2 = (1, 1, 1, 1, 1). We have to combine both

the vectors in order to take the difference of vectors. 𝑉1 becomes (1, 1, 1, 0) and 𝑉2

becomes (1, 1, 0, 1). Difference of the vector is (0, 0, 1, 1). 3-gram distance for both

the strings is computed by adding all the pairs which is 2.

Table 3: Q-gram distance example 2

wxy xyz yzv yzx
𝑉1 1 1 1 0
𝑉2 1 1 0 1
|𝑉1 − 𝑉2| 0 0 1 1∑︀

|𝑉1 − 𝑉2| 2

Example 3: Let us say s1 = “distance”, s2 = “distance” and q = 3. 𝑉1 and 𝑉2

are the q-profiles of the respective strings.

Answer: There are 6 3-grams in the string s1. Those are "dis", "ist", "sta",

"tan", "anc", and "nce". s2 string has five 2-grams. "wxy","xyz", and "yzx" are the

3-grams for string s2. 3-gram profiles for both the strings are 𝑉1 = (1, 1, 1, 1, 1, 1) and

vector 𝑉2 = (1, 1, 1, 1, 1, 1). We have to combine both the vectors in order to take

the difference of vectors. 𝑉1 becomes (1, 1, 1, 1, 1, 1) and 𝑉2 becomes (1, 1, 1, 1, 1, 1).

Difference of the vector is (0, 0, 0, 0). 3-gram distance for both the strings is computed
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by adding all the pairs which is 0. Here zero number represents that both strings are

similar.

Table 4: Q-gram distance example 3

dis ist sta tan anc nce
𝑉1 1 1 1 1 1 1
𝑉2 1 1 1 1 1 1
|𝑉1 − 𝑉2| 0 0 0 0 0 0∑︀

|𝑉1 − 𝑉2| 0

3.4 Machine learning approach

Over the past two decades, data has become an integral part of every company.

Everyone wants to use the data in a productive way. When we talk about data

statistics and data analysis “Big Data” is the right answer. “Big Data” has been

proved the robust solution for terabytes of data, “Machine Learning” has demostrated

its utitlity for many problems like artificial intelligence, natural language processing,

image recognition, and malware detection [29]. Machine learning has played a key

role to solve all of these big problems in the past couple of years. Data can be used

more smartly if you apply machine learning techniques in the right direction.

3.4.1 Machine learning

What is machine learning? Let us take an example to understand this com-

plex problem. We receive emails on a daily basis in our inbox. Most of us have

experienced spam messages. In the early days, we were used to seeing those spam

messages in the main inbox folder directly. Now, such emails directly go into the

spam folder. This has been made possible all because of “Machine learning”. There

are serveral algorithms which are used to detect the spam emails. Those are "Naive
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Bayes Classifier", "Artificial Neural Networks", "k Nearest Neighbors" and "Support

Vector Machines" [34]. These algorithms usally ignores the header, and high fre-

quencey words of the email [34]. Remaning body of the email is scanned and fetched

important attributes.

3.4.2 Machine learning process

Machine learning is often a continuous process. As time passes, it gathers more

knowledge and tries to become more accurate in its prediction. These enable a com-

puter program to automatically analyse a large body of data and decide what infor-

mation is most relevant. There are different stages of machine learning process.

• Prepare Data

In this step, we start with collecting the data from various websites such as

"Alexa" [10] and "Phishtank" [9]. We collected around 1700 websites. The

data is in the form of URLs. Our filter fetches various attributes such as title,

domain name, registrar name, etc. After fetching the data, we used string

matching algorithm q-gram [8] to produce a set of data showing similarity for

each website.

• Select machine learning algorithm

There are different classifiers available. We applied 75 different classifiers to

our data set. In our experiment, tree classifiers have better accuracy compared

to other classifiers. We selected "RandomForest" [36] tree classifier that has

the highest accuracy amongst all other tree algorithms. Performance is also

another decisive factor. Many classifiers have good accuracy but tree classifiers

have better speed for large data sets [35].
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• Algorithm predicts the result

Next step is to build a model for given data set. We can input a new URL

with all the attributes to algorithm to predict the result. As we mentioned

in the previous point, we built a model using "RandomForest" algorithm. We

load saved model every-time whenever we want to check whether given URL is

phishing or not.

• Human Interaction to improve the accuracy

This step is helpful to improve the accuracy. It is not a common step for all

data set. It depends on the type of data set, and type of algorithm you selected.

Sometimes, it does not show any improvement even if you put thousands of data

verified by human. Our filter interacts with the user to validate the predicted

result and updates the knowledge if it is required.

3.4.3 Types of machine learning tasks

There are mainly two types of machine learning tasks. One is supervised learning

and another is unsupervised learning.

• Supervised learning: The training data set is given to the algorithm in this

task. The expected output and inputs are defined in the training data set.

The Algorithm learns from the initial inputs and predicts the result for future

inputs. This approach is similar to our conventional education system where

the student first learns and then appears for an exam.

• Unsupervised learning: No data or expected inputs are given to algorithm.

It is algorithm's job to learn about required parameters for the best result. In

this task, the algorithm learns by itself. The more data inputs are given, the
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better the accuracy will be.

3.4.4 Weka - machine learning algorithm library

Weka is an open source software that consists wide range of machine learning

libraries [21]. We used Weka libraries to classify our dataset in our project. Weka

was developed by the Machine Learning Group at the University of Waikato. It is an

open source tool. The following functionalists are available from Weka [22]:

• Data preprocessing and visualization

In Weka, you can randomized the data set, solve the balancing problem of data

set, and handle the missing value problem in the data set. There are many more

functionalisties in Weka that gives you a power to make data more effective. It

gives nice visualization for distribution of the value for each attribute. You can

easily summarize the statistics of a data set for one attribute by seeing an visual

graphs.

• Attribute selection

You can select and remove the list of attributes of a data set while building a

classification model. In real world problem, you do not get perfect data most

of the time. Many times you would like to deal with few attributes present in

the file.

• Classification

Weka has many classification algorithms available. Weka has very user friendly

GUI to classify the data using different classification algorithm. You can also

save the classified model for future use.
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• Prediction

Once you apply classification to data. In future, you can apply the previously

saved classified model to predict the result for a given instance.

• Model evaluation

This is the most useful feature of Weka. You can easily get an overview of

any machine learning algorithm once you apply on the given data set. Weka

presents all the statistical numbers once you load the model. You can even plot

the different types of graphs like ROC curve.

• Clustering

Weka has few algorithms available for clustering the data. You can change the

different attributes of the clustering algorithm to get the best result.

Weka provides APIs for different languages like Java, and Python. Weka supports

“.arff” files by default to load, classify, and cluster the data. You can also load a CSV

file, but there are a few drawbacks to use it. We used Java APIs to interact with

Weka.

3.4.5 Classification with Weka

Let us see how can we load the data in Weka through the GUI and classify it using

different classifiers. The data set taken for an example is available in the sample data

set folder while you install Weka. This data set is weather. You can decide whether

you can play out door games or not. This depends on certain attributes of whether.

There are five attributes present in the data set file. In the file, there are 14 instances

to train the model.

In Figure 8, the GUI is divided into four parts. The first section contains the

28



core functionality that is associated with the data. Our first task is to load the data

so we have to select “Preprocess” tab. The fourth section in the figure 8 holds all

the attribute associated with data. The second section represents the statistics of

one particular attribute.“Outlook” attribute can contain 3 distinct values. Out of 14

instances, 5 instances hold "sunny", 4 instances hold "overcast" and 5 instances hold

"rainy" values. The third section depicts all instances and their value in a coloured

graph. You can download the data from here [37].

Figure 8: Weka Preprocess Data

Figure 9 represents the classification process. As we saw in the previous figure,

the first section shows that we are in classification mode. The second section contains

all the list of classifiers. We applied “J48”, a tree classifier. In Figure 9, the fourth

section holds various test options, like how to use this data, how many percentages

of data to use for the training data set. The third section displays the classification
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output and summary of the results. It shows all the required information for a given

classifier.

Figure 9: Weka Classification Data
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CHAPTER 4

Phishing filter

This chapter reviews my phishing filter that detects phishing website and warns

the user. Jo et al. [2] defines the solutions in the research paper. Our role is to apply

their research ideas and solutions [2] to implement the phishing filter. In a practical

approach, the phishing filter is not a stand alone application that runs on the client,

but it contains multiple components in its design. There are multiple layers in its

architecture. All of these layers are interconnected to each other. As we have defined

in the previous chapter, we used Weka for machine learning libraries, Firefox add-on

to start with.

4.1 Phishing Filter architecture and workflow

Figure 10 depicts the work flow of the phising filter process. The steps of this

process are:

1. The user enters a URL.

2. The URL is captured and processed by the browser add-on on the client side.

The RESTful API is called with the given URL and data by add-on.

3. The Webserver calls the phishing filter Backend system.

4. The phishing filter Backend calls third party services like WHOIS server.

5. Third party services send back the response to the phishing filter Backend sys-

tem.
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6. The phishing filter Backend system processes the request using machine learn-

ing algorithms and the responses received from the third party services. The

Backend system sends the result to the webserver.

7. The Webserver sends the response to the browser add-on.

8. The Browser add-on warns the user if the given URL is a phishing website

otherwise it will do nothing.

9. The user will decide whether the warning given by the add-on is legitimate or

not, and sends the response back to the add-on.

10. The browser add-on sends the last request of the final decision from the user to

the webserver.

11. The webserver forwards the user's decision to phishing filter Backend system to

upgrade the knowledge if it is wrong.

12. The phishing filter Backend system updates its knowledge base as per the user's

response.

32



Figure 10: Phishing filter workflow

4.2 Firefox add-on

Firefox add-ons can modify the default behaviour of a web browser. You can

enhance the overall experience of browsing by providing some extra features like

modifications of theme and security. Some add-ons provide extremely useful features

like developer tools, security tools, password management tools and many more [32].

For more information and better understanding of the add-on please visit appendix B.

4.3 Phishing Filter Backend

As described, in the beginning of this section, the main idea and solution is refer-

enced from this [2] paper. The Backend system is uses approximate string matching

algorithms, machine learning algorithms and a WHOIS server API. The Backend sys-

tem fetches all the attributes of the URL and performs string matching comparison.

The following are the list of attributes that are compared with each other:

• Type of protocol (HTTP or HTTPS)
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• The top 10 most frequent terms in the webpage except for html tags

• The title of the webpage

• The name of the Registrant

• Whether the URL contains an IP address

• The copyright holder, if it is in the webpage

• The domains of the anchor tags

• The domains of the image tags

• The domains of the form submission

• The name of the domain name registrant

• The name server domain

Now this is the only list of attributes related to any URL or web page. The

next task for the Backend system is to find textual relevance between the attributes,

which are the strongest factors to decide whether a website is phishing website. most

for the decision of the phishing websites. Following are the final attributes and its

possible value or data type [2]:

• Whether URL uses HTTPS connection

• The Textual relevance between the most frequent terms and the name of the

domain name registrant

• The Number of anchors tag, images and form element that uses the correct

hostname
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• Whether the URL has an ip address as a hostname

• The string similarity between the title of the webpage and registrant of the

hostname

• The maximum string similarity between the title of the webpage and domain

name candidates in the hostname.

• The maximum string similarity between the most frequent terms and the host

domain

• The string similarity between the domain name registrant and the copyright

holder

• The maximum string similarity between the different hostnames of the anchor

tags and the domain name registrant

The Backend system is developed in the Spring framework [33]. Weka APIs for

java are used for the implementation of the machine learning algorithms in Java. In

addition, Weka is used to get the overall summary of the classifiers. Roc curves are

also plotted by the Weka tool.
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CHAPTER 5

Testing Result

Weka has a rich libraries of different machine learning algorithms. We tested

our results by using all the classifiers and selected few final candidates for our im-

plementation. Our data set contains 1761 websites. Our source of phishing website

was Phishtank [9]. Phishtank contains large collections of on-line as well as offline

phishing websites. We used Alexa [10] as a source for benign websites. Alexa contains

list of top N websites across the world. All our tests were performed on the macbook

pro with the following configuration and software versions:

Table 5: Hardware configuration

System Macbook Pro (Retina, 15-inch, Mid 2015)
Processor Name Intel Core i7
Processor Speed 2.8 GHz

Number of Processors 1
Total Number of Cores 4

L3 Cache 6 MB
Total Number of Cores 4

Memory 16 GB 1600 MHz DDR3
Startup Disk Macintosh HD
Disk Capacity 1 TB
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Table 6: Software Version configuration

FireFox version 42.0
Add-on SDK jpm version 1.0.1

Java JDK version 1.8.0_45
Weka version 3.6.12

Table 7 shows the distribution of the training data sets.

Table 7: Dataset distribution for accuracy

Phishing website Benign website
Number of URLs 829 932

Total URLs 1761

5.1 Accuracy

Figure 11 shows the comparison between different classifiers-based on different

accuracy class. We run the tests of all the available classifier algorithms. In the figure,

you can find the classifiers whose results look promising with respect to others.

In the figure, there are total 6 types of accuracy measures. Among six mea-

sures, we give more importance to "Roc Area" and "F-measure" classes. Evaluation

of classifier is a debatable topic. It can be evaluated differently for each problem.

In our problem, it is advisable to balance between false positive and false negative.

"F-measure" and "Roc Area" are the correct accuracy measures in that case. "Ran-

dom Forest" and "LAD Tree" are the two final candidates whose accuracy are best.

"Random Forest" classifier represents better balance between false positive and false

negative. On the other hand, "LAD Tree" classifier has better accuracy when it comes

to true positive. We can argue that it would be annoying for users to get too many
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false alarms.

Table 8: Accuracy measures for different classifier

Classifiers TP FP Precision Recall F-measure ROC Area
LADTree 0.915 0.079 0.92 0.915 0.915 0.965

RandomForest 0.943 0.058 0.943 0.943 0.943 0.978
tree.adTree 0.909 0.092 0.909 0.909 0.909 0.967

tree.FT 0.918 0.079 0.919 0.918 0.918 0.929
tree.J48 0.906 0.097 0.906 0.906 0.906 0.919

tree.J48graft 0.912 0.092 0.912 0.912 0.912 0.929
tree.LMT 0.918 0.083 0.918 0.918 0.918 0.934

tree.NBTree 0.912 0.089 0.912 0.912 0.912 0.97
lazy.KSTar 0.918 0.082 0.918 0.918 0.918 0.965

AttributeSelectedClassifier 0.92 0.08 0.92 0.092 0.92 0.922
meta.Baggin 0.923 0.075 0.924 0.923 0.923 0.975

ClassificationViaRegression 0.915 0.083 0.916 0.915 0.915 0.97
meta.Decorate 0.915 0.087 0.915 0.915 0.915 0.963

meta.FIlteredClassifier 0.915 0.084 0.915 0.915 0.915 0.956
meta.RandomCommittee 0.926 0.075 0.926 0.926 0.926 0.973
meta.RandomSubSpace 0.923 0.076 0.924 0.923 0.923 0.973
meta.RotationForest 0.932 0.069 0.932 0.932 0.932 0.973

rules.Jrip 0.92 0.077 0.922 0.92 0.921 0.939
rules.PART 0.929 0.067 0.931 0.929 0.929 0.945
tree.BFTree 0.926 0.078 0.927 0.926 0.926 0.912

meta.LogitBoost 0.912 0.087 0.912 0.912 0.912 0.966
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Figure 11: Comparision of accuracy between different classifiers

5.2 Performance

Performance is decisive factor for phishing filter. Performance impacts the user

experience of browsing. Security should not be achieved at the cost of a browsing

experience. Table 5 shows the system of server where testing was done. Server and

client both are on the same system in our testing. Our filter gives a fairly good

performance. We measured the total time taken by an add-one to take the decision.

We did not calculate the time that involves the user’s input. We did not include the

time taken by updating the file on server. Average time is calculated by taking the 200

sample websites. These 200 websites include phishing and benign websites. Average

time is 2.55 seconds for 200 websites. We used Alexa [10] as a source for benign

websites for our performance testing. Phishtank [9] is the source for our phishing
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Figure 12: ROC curve for Randomforest classifier

websites.

Table 9: Dataset distribution for performance

Phishing website Benign website
Number of URLs 100 100

Total URLs 200

Table 10: Performance distribution

Phishing website Benign website
Average time for decision 2.70 Sec 2.41 Sec

Average time for decision for all the websites 2.55 Sec
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Performance varies sometimes. There are lots of factors that can affect the

performance. Speed of the Internet, size of the source code of the web page could be

the major factors. It also depends on the system because string matching algorithm

does lot of computation sometimes.
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CHAPTER 6

Conclusion and future work

6.1 Summary

Our aim was to build the phishing filter in a web browser by taking the reference

of Jo et al. research paper [2]. We built a Firefox add-on that gives minimal overhead

in browsing and detects fresh phishing websites, overcoming the problem of window

of vulnerability. Our test results show that our filter is able to detect the many kind

of phishing websites.

We tested our filter with different classifiers available in Weka [21]. As per our

test results, we were able to achieve up to 94.3% accuracy. Our experimental results

show that our filter helps to overcomes the problem of the window of vulnerability.

Performance is another major factor is to be considered. Results showed that average

time to detect the phishing website is 5 seconds on our hardware and environment.

6.2 Future work

Though our filter achieves up to 94.3% accuracy, there could be many things that

can be improved. Performance can be increased by detecting other attributes that

differ from the original websites. We can include those attributes in our data set. We

can also combine the several approaches that were proposed earlier [3, 4]. To provide

a double layer of protection, we can also combine the apporach of "Anti-Phishing in

Offense and Defense" proposed by Yue and Wang [4]. We believe that performance

can also be increased by several techniques like caching the values of whois queries [3]

and load balancing the servers. Our filter currently detects only phishing websites

developed in "English". Extending the ideas of philter to other languages could be
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another interesting direction of this research.
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APPENDIX A

Screen Shots of a Phishing filter

Figure A.13: Warning by phishing filter to users

Figure A.14: Spoofed URL
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Figure A.15: Phishing filter in Firefox

Figure A.16: Icon becomes red when user ignores the warning

Figure A.17: Icon turns into green without warning when benign website is visited

49



APPENDIX B

Firefox add-on

B.1 Firefox add-on installation

Let us start with an installation of all the required tools for the development of

Firefox add-ons. Previously they were using “cfx” tool to install the SDK. Now they

replaced it with the “jpm SDK” [30]. We are going to install “jpm SDK”. We are

assuming that "Node.js" and "npm" package manager is installed on your system. If

it is not then you have to install both the software first on your system.

1 sudo npm i n s t a l l jpm −−g l oba l

2 npm

Listing B.1: jpm installation

Following are the improtant commands which are used most frequently during

the development:

• jpm init : creates the basic folder structure and required files to start with

simple add-on.

• jpm run : runs the firefox instance with installed add-on

• jpm xpi : packages the whole add-on in one file which is installation file for

firefox

B.2 Playing with add-ons

Mozilla has serveral tutorials available [31]. This add-on is very simple. Just

a bunch of lines and you are done. This add-on don not let you open a new tab.
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Whenever you open a new tab, it will immediately close it. Let us call it a "New tab

killer".

In the add-one, we add a function that listens for a new tab. As soon as the user

open a new tab, the function is called. We pass the object of tab as a argument in

the function. We close the tab in the function using passed object of tab.

1 // importing the tab sdk

2 var tabs = r equ i r e ("sdk/tabs" ) ;

3

4 // registering the event whenever new tab

5 // will be opened

6 tabs . on (’open’ , function ( tab ) {

7 tab . on (’ready’ , function ( tab ) {

8 // closes the tab as soon as the

9 // user will try to open the tab.

10 tab . c l o s e ( ) ;

11 }) ;

12 }) ;

Listing B.2: Tab Killer

B.3 shows the code for an add-on that does not allow the user to open same

tab two times. Same tabs are defined as two tabs with the same URL. An add-on

listens for the new tab when a user opens it. It will iterate through all the open tabs

in the browser. The new tab is immediately closed, if it’s URL is matched with any

previously opened tab.

1 // import tabs package and register the function

2 // when tab’s content will be laoded

3 r e qu i r e ("sdk/tabs" ) . on ("load" , logURL) ;

4

51



5 /**

6 * function to remove duplicate tabs

7 * called when new url is loaded in the tab

8 */

9 function logURL( tab ) {

10 // url which is requested by user

11 var u r l = tab . u r l ;

12 var tabs = r equ i r e ("sdk/tabs" ) ;

13

14 // flag because loop will be iterate

15 // for current requeseted url as well

16 var f l a g = 0 ;

17 f o r ( l e t l i s t_tab o f tabs ) {

18 i f ( l i s t_tab . u r l==ur l ) {

19 // if flag is not set then

20 // set it to 1

21 i f ( f l a g==0) {

22 f l a g = 1 ;

23 }

24 // if flag is set and still duplicate url

25 // is detected then close the tab

26 else {

27 tab . c l o s e ( ) ;

28 break ;

29 }

30 }

31 }

32 }

Listing B.3: Duplicate Tab killer
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