
San Jose State University
SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

Fall 2015

Extensible Authentication Protocol Vulnerabilities
and Improvements
Akshay Baheti
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

Part of the Computer Sciences Commons

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU ScholarWorks. It has been
accepted for inclusion in Master's Projects by an authorized administrator of SJSU ScholarWorks. For more information, please contact
scholarworks@sjsu.edu.

Recommended Citation
Baheti, Akshay, "Extensible Authentication Protocol Vulnerabilities and Improvements" (2015). Master's Projects. 425.
DOI: https://doi.org/10.31979/etd.umye-6qrp
https://scholarworks.sjsu.edu/etd_projects/425

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by SJSU ScholarWorks

https://core.ac.uk/display/70424769?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.sjsu.edu?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F425&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F425&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F425&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F425&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F425&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/425?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F425&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

Extensible Authentication Protocol Vulnerabilities and Improvements

A Project

Presented to

The Faculty of the Department of Computer Science

San Jose State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

by

Akshay Baheti

Dec 2015

c○ 2015

Akshay Baheti

ALL RIGHTS RESERVED

The Designated Project Committee Approves the Project Titled

Extensible Authentication Protocol Vulnerabilities and Improvements

by

Akshay Baheti

APPROVED FOR THE DEPARTMENTS OF COMPUTER SCIENCE

SAN JOSE STATE UNIVERSITY

Dec 2015

Thomas Austin Department of Computer Science

Mark Stamp Department of Computer Science

Teodoro Cipresso Department of Computer Science

ABSTRACT

Extensible Authentication Protocol Vulnerabilities and Improvements

by Akshay Baheti

Extensible Authentication Protocol(EAP) is a widely used security protocol for

Wireless networks around the world. The project examines different security issues

with the EAP based protocols, the family of security protocols for Wireless LAN. The

project discovers an attack on the subscriber identity module(SIM) based extension of

EAP. The attack is a Denial-of-Service attack that exploits the error handling mech-

anism in EAP protocols. The project further proposes countermeasures for detection

and a defense against the discovered attack. The discovered attack can be prevented

by changing the protocol to delay the processing of protocol error messages.

ACKNOWLEDGMENTS

I am highly indebted to Dr. Thomas Austin, for his guidance and constant

supervision. And also for providing necessary information regarding the project and

his support in completing the project. I would like to thank my thesis committee

members, Dr.Mark Stamp and Professor Teodoro Cipresso for their encouragement,

insightful comments, and hard questions.

v

TABLE OF CONTENTS

CHAPTER

1 Introduction . 1

1.1 Overview of Extensible Authentication Protocol 1

1.2 The EAP protocol family . 2

1.3 Vulnerabilities in EAP based Protocols 3

2 EAP based protocols . 5

2.1 Wireless Connection . 5

2.2 EAP - Architecture . 5

2.3 Security Issues in EAP Protocol 8

2.4 Transport Layer Security [TLS] 10

2.5 EAP-TLS Protocols . 11

2.6 Weakness of EAP-TLS Protocols 12

2.7 EAP-SIM protocol . 13

2.8 EAP-SIM Weakness . 15

3 Implementation of Security Attack 17

3.1 Error Message Attack . 17

3.2 Misleading Message Attack . 21

3.3 Attack on Challenge-Response EAP Methods 22

3.4 Implementation framework . 23

3.5 Optimization of the Attack . 27

4 Defenses and Improvements . 30

vi

vii

4.1 EAP Queuing Enhancement . 30

4.2 EAP-SIM Protocol Improvement 31

5 Conclusion . 34

APPENDIX

Code Changes . 37

A.1 . 37

A.2 . 37

LIST OF FIGURES

1 EAP Protocol Family . 3

2 Wireless LAN Connection . 6

3 EAP Authentication Stack . 7

4 EAP TLS Handshake . 12

5 EAP Error Message Attack 1 . 18

6 EAP Error Message Attack 2 . 20

7 EAP Mislead Message Attack . 21

8 EAP SIM Messages . 23

9 EAP Failure Packet . 26

10 Hardware Stimulated Wireless Interfaces 26

11 EAP-SIM Connection Failing . 28

12 EAP-SIM Attack success versus packets injected 29

13 EAP SIM Exchange with IPSec 32

viii

CHAPTER 1

Introduction

Almost one fourth of the smart-phone users worldwide operates on 4G networks

for internet connection, according to a study published recently in 2014 [10]. A

cellphone tower supports a limited number of 3G/4G connections at any given time

due to the finite spectrum that can be used at one physical location. This limitation

leads to degraded service quality for customers, especially at social gathering’s. Wi-

Fi is one solution to this problem. Using Wi-Fi to serve cellular clients is known as

3G Wi-Fi Offloading. Wi-Fi supports a larger number of clients compared to cellular

network [11]. Authentication over WiFi is a challenge though. This document reviews

the EAP-SIM authentication method, which is widely used for Wi-Fi authentication

and the approach to overcome one of the many possibles attack on EAP-SIM. In order

to understand the proposed solution, we need to review the basics of EAP, including

itś architecture, functionality, and its application.

1.1 Overview of Extensible Authentication Protocol

The Extensible Authentication Protocol (EAP) [2] is a standard that provides a

foundation for network clients and authentication servers. EAP defines a framework

that allows clients to select the authentication mechanism dynamically. The EAP

mechanism to be used is determined based on the information transmitted in the

Access-Request to the Server via the Remote Authentication Dial-In User Service

(RADIUS) message. EAP [13] is an extension to Point-to-Point Protocol (PPP)

that allows for the development of plug-ins for new authentication technologies and

protocols.

1

Today, the two most used wireless standards, Wireless Protected Access (WPA)

and Wireless Protected Access 2 (WPA2) have adopted EAP methods as their au-

thentication mechanisms.

1.2 The EAP protocol family

EAP is an authentication framework that defines methods for usage and trans-

port of parameters and keying information generated by EAP methods. EAP methods

here includes a large set of methods defined in RFCs and some popular vendor specific

implementations. EAP only defines message formats with no specifics about the type

of network or the type of client supported. Protocols supporting EAP are respon-

sible of encapsulating EAP messages within their protocol messages. EAP is more

widely used compared to other wireless security protocols. For example, WPA and

WPA2, the WiFi authentication standards, have adopted one-hundred EAP types as

their official authentication mechanisms. Most popular EAP methods are EAP-MD5,

EAP-POTP, EAP-GTC, EAP-TLS, EAP-SIM, and EAP-AKA. Figure 1 describes the

basic EAP methods.

In Figure 1, we see that there are several Transport Layer Security(TLS) based

EAP protocols PEAP, EAP-TTLS and EAP-FAST. TLS is a popular protocol that

is a part of many networking standards. TLS is responsible for ensuring privacy

between communicating applications and it’s users on the network. When a client

and server communicate, TLS ensures that no third party may tamper or eavesdrop

their messages. The EAP-TLS based protocols are mainly used for Wireless LAN. The

whole WPA wireless authentication protocol family is based on EAP-TLS protocols.

EAP-SIM and EAP-AKA [5] are based on Challenge-Response approach unlike

other EAP protocols that are based on TLS. These protocols are popular among

2

Figure 1: EAP Protocol Family

mobile users today. And the special Challenge-Response design on these protocols

leads to major security flaws which we will discuss in the next chapter.

1.3 Vulnerabilities in EAP based Protocols

EAP is a protocol that is designed mainly for the authenticating wireless clients.

The wireless medium has its limitations that introduce certain security threats in

the protocols. The messages exchanged for establishing the session key for wireless

clients and wireless routers is heard by anyone and everyone on medium. This leads to

certain attacks on wireless clients. In this project, we reveal a serious vulnerability in

most wireless security and communication protocols. The attack is based on sniffing

the protocol communication and then injecting misleading messages and fake error

messages.

3

The attack exploits the error handling mechanism in EAP protocols. When

a spoofed EAP error message is injected by the attacker the client resets the key-

exchange. This way the probability of the client connecting to the wireless router

decreases. Variants of the attack can be carried out but spoofing an EAP error

messages to the server or to client at various points in the authentication process.

The EAP error based attack can be used on EAP-TLS based protocols. A similar

attack using the SIM-Client Alert message is used for EAP Challenge-Response based

protocols. This attack is easy to launch, requiring cheap everyday hardware. The

attack is efficient as it needs a small number of packets and a single wireless client.

The attack is generally applicable to a variety of wireless protocols and is stealthy as

it does not require jamming a wireless medium like other popular wireless attacks.

This project in general explores the attack on all EAP TLS based protocols in

detail. Later looks at EAP SIM and builds an attack on the same lines as the attack

for EAP-TLS. We also look at open source implementations and how the attack can

be carried out using this software. In addition, we propose enhancements in the EAP

protocol and the software implementing this protocol. These enhancements limit

the possibility of the attack. The improvement involves delaying the processing of

certain protocol error and exception messages. This allows the client and server to

give priority to the actual protocol message and ignore the spoofed error message

thus preventing the attack. The project later suggest improvements in the wireless

drivers to avoid such attacks.

4

CHAPTER 2

EAP based protocols

2.1 Wireless Connection

EAP was designed to provide a secure connection mechanism for wireless clients.

To understand how EAP protocols work we must know where they fit in a wireless

connection. Figure 2 describes the messages exchanged in a wireless connection. The

wireless connection begins when the client sends a broadcast probe request to the

access point. The access points responds to this with a probe response allowing

the client to set certain wireless LAN physical layer parameters. After the client

connects, it sends an authentication request. Following the authentication request

the access point responds with the authentication response and also sends the EAP

start message thus starting the EAP 802.1X authentication process to begin. This

is were all EAP based protocols fit in. Following the 802.1X exchange the EAP key

exchange is carried out. This is the final step in a EAP authentication.

2.2 EAP - Architecture

EAP is a extension of PPP to enable the development of various network ac-

cess authentication methods. In PPP the authentication mechanism is chosen during

the link establishment phase. While in EAP, the clients negotiate the EAP method

during the connection authentication phase. The clients negotiate the specific EAP

authentication scheme based on the client and server supported algorithms and ci-

phers when the authentication phase is reached. After the EAP method is decided

mutually, EAP allows for an open-ended exchange of messages between the authenti-

cating parties. The messages can vary based on the requirements of the network and

5

Figure 2: Wireless LAN Connection

the connection. The messages are a sequence of request and responses exchanging

keying information and certificates. The EAP method determines the length and

details of each authentication conversation.

EAP is a framework that is defined by the EAP methods that plug-in at both

the client and the server. For EAP peers and servers to support a new EAP method

the same EAP scheme library file needs to be installed at the EAP peer and the

authenticating server. This ability of EAP to allow plug-in’s enables vendors to

create their specific new authentication schemes. Therefore EAP provides the highest

flexibility as compared to other authentication schemes.

All wireless connections operate using a wireless driver specific to the physical

6

hardware. There are various drivers in the market. To maintain a standard for EAP

methods and allow cross platform operation. The EAP mechanism is coded above the

driver in userspace. All EAP clients and authentication servers send messages using

a supplicant. This component authenticates clients and sends all EAP data link layer

messages. All parties participating in a EAP scheme use RADIUS to send messages.

The EAP authenticator and the authentication server sends EAP messages using

RADIUS. Figure 3 shows EAP messages exchanged between communicating parties.

Figure 3: EAP Authentication Stack

The main components of EAP, as shown in Figure 3, are the following:

1. EAP clients - devices that support EAP authentication and trying to access the

network.

7

2. EAP authenticator - an access point (AP) or wireless router requiring EAP

authentication before granting access to the network

3. Authentication server - computer that moderates the use of a specific EAP

authentication method with an EAP client. It also validates EAP peers creden-

tials.

In Figure 3, the authentication server is a RADIUS server. EAP peer and the

EAP authenticator both sends EAP messages using a supplicant and a data link layer

transport protocol such as PPP or IEEE 802.1X infrastructure protocol. A supplicant

is a software component that uses EAP to authenticate network access but does not

handle the actual data exchange. As a result, EAP messages are actually exchanged

between the EAP components on the EAP client and the authentication server. In

other words, EAP provides high flexibility because it allows vendors to create more

secure authentication schemes that can be plugged in later on, as required.

2.3 Security Issues in EAP Protocol

EAP is a standard that gives a framework to network access clients and authen-

tication servers. EAP does not indicate the authentication system itself but rather a

framework for custom security protocols. Since EAP does not define details of mes-

sage and keys exchanged it is vulnerable to security attacks. The issues mentioned

below are probably the most widely recognized security issues related to the diverse

EAP usage:

1. Dictionary Attacks: A dictionary attack is a method for breaking a code or au-

thentication component by attempting each word from a dictionary - a rundown

of normal words - furthermore, encoding it the same way the first passphrase

8

was encoded. Dictionary attacks contrast from brute-force attacks as in a brute-

force attack all probability words are attempted. A few EAP usage are powerless

against dictionary attacks. For example, Cisco’s Lightweight EAP (LEAP) the

security depends on a shared secret, which is client’s logon password. Frame-

works lacking solid secret key arrangements are most susceptible to dictionary

attacks. To defend against this attack, Cisco created EAP-FAST to give better

assurance against dictionary attacks.

2. Plaintext Attacks: EAP executions that depend on clear-text authentication

utilizing RADIUS (even inside of a secured passage) are helpless against known-

plain content attacks. In a known plaintext attack (KPA), the attacker uses

tests of both the plaintext and its encoded rendition to uncover further mystery

data, for example, the secret encryption key. EAP-IKE2 and EAP-TTLS are

examples of EAP implementations that may utilize secret word based authen-

tication (PAP) and subsequently are vulnerable against this sort of attacks. In

PAP-based authentication, passwords are transmitted decoded.

3. Ciphertext Attacks: Hypothetically, EAP-SIM enhances the original GSM secu-

rity mode - based on a pre shared key and challenge-response mechanism. The

initial GSM standard uses A5/1 and A5/2 stream ciphers with 64 bits as the

size of key. EAP-SIM enhances the original GSM standard by expanding the

key length to 128 bits. Sadly, the way the new 128-bit key is produced has been

demonstrated to be blemished. Instead of being 128-bit long, the subsequent

keys are 64 bits long. This design issue increases the probability to decrypt

the cipher text into plain text using a key, this lowers the time complexity of

the attack; which means that less time is needed for the attacker to get the

necessary information.

9

4. Man-in-the-middle Attacks: A MitM attack is the most common attack in

wireless medium as the medium allows any device to eavesdrop on the com-

munication. The attack we discuss later is a type of MitM attack. Original

implementation of EAP was based on protocols that were vulnerable to MitM

attacks. In a MitM attack on a wireless network, a rogue device can act as both,

the client and the server. It can spoof the communication between the parties

to gain of the network. The main reasons a protocol is susceptible to MitM are

(a) Capturing client packets and spoofing those packets to the server to act as

the client. Hence gaining false access to the network.

(b) Clients cannot or do not properly authenticate the server, not withstanding

when the authentication protocol is utilized inside of a server-validated

passage.

2.4 Transport Layer Security [TLS]

Transport Layer Security (TLS) is a cryptographic convention that gives secure

correspondence on the Internet for information exchange. The convention permits

client/server applications to communicate in a manner that is intended to avert the

attacker from listening stealthily and fabricating messages. For instance, HTTPS con-

vention layers on top of TLS convention to secure system traffic. TLS is compromised

of the Record, the Alert, and the Handshake convention. The Record convention is

intended to serve the Handshake convention and Alert protocol, and offers symmetric

encryption, data authenticity, and optionally compression. In our attack we essen-

tially assault the handshake protocol by setting off the authenticating parties with

a Alert protocol. Figure 4 demonstrates the flowchart of a fruitful TLS handshake

process. For the most part, the TLS server begins the technique and the client reacts

10

with a welcome message. The server then sends its certificate and chooses a cipher

suite. Note that TLS gives a choice to verify the client by asking for the client certifi-

cate. The client returns chosen cipher, its certificate and other cryptographic data.

Note that in Figure 4 we put a few messages close together to simplify the handshake

showing only the important group of messages.

2.5 EAP-TLS Protocols

EAP-TLS, is the standard that uses the Transport Layer Security (TLS) pro-

tocol, and is supported among many vendors as a WLAN authentication protocol.

EAP-TLS is considered to be one of the most secure EAP standards available today,

although TLS provides security only if the user can understand warnings about false

credentials. EAP-TLS is implemented as client and server protocol by Apple, Cisco,

HP, Juniper, Microsoft, and other open source operating systems. It is usually sup-

ported in the latest versions of Mac OS, wpa_supplicant, Windows and Apple’s iOS

mobile operating system.

Even though the standard does not mandate the use of client-side X.509 certifi-

cates, almost all of its implementations require them to be installed. The necessity for

a client-side certificate, however disliked it might be, is the thing that gives EAP-TLS

its authentication quality and shows the exemplary comfort versus security trade off.

With a customer side authentication, a compromised password is insufficient to break

into EAP-TLS empowered frameworks in light of the fact that the intruder still needs

to have the client-side certificate; for sure, a password is not by any means required,

as it is just used to encode the client-side certificate for storage. The most astounding

security is the point at which the "private keys" of client-side certificates are housed

in smart cards. This is on the grounds that there is no real way to take a client-side

11

certificate related to a private key from a smart card without taking the card itself.

It is more probable that the physical robbery of a smart card would be seen (and the

smart card quickly repudiated) than for a typical password theft to be noticed.

Figure 4: EAP TLS Handshake

2.6 Weakness of EAP-TLS Protocols

The weakness of EAP protocols comes from the TLS protocol, which is broadly

utilized as a part of numerous security protocols, such as the HTTPS and the TLS

based EAP protocol. In this manner, all the TLS based EAP protocols e.g.(PEAP,

EAP-TLS, EAP-TTLS and EAP-FAST) will be defenseless against our attack. TLS

is a popular protocol among various security protocols. Many EAP protocols as build

around TLS. The most popular EAP-TLS protocols are PEAP, EAP-TTLS and EAP-

12

FAST. The weakness of TLS protocol makes all EAP-TLS protocol vulnerable to our

attack. On the other hand, the hardness of sniffing and deciphering application layer

information in wired and encoded wireless systems makes such attacks extremely

difficult. Henceforth, we concentrate on the EAP-TLS protocol, which is a MAC

layer authentication protocol for remote systems.

An attacker sniffs the correspondence between the wireless client and the entrance

point, reviewing the authentication methodology used during the handshake protocol

of TLS. Note prior to encrypting data with session keys, TLS sets up the keys, all

the key setting up packets are in clear-message and decoded. Activated by a few

messages, the attacker injects spoofed messages to make the TLS authentication fail.

The attacker has two primary ways to stimulate attacks on TLS:

1. Error Message Attack - mocking up ALERT messages to trick the client or the

server to halt the authentication process and restart the transaction.

2. Misleading Message Attack - spoofing the authentication messages to the client

or the server causing the parties to believe a error has occurred and restart the

transaction.

2.7 EAP-SIM protocol

Given the exponential increase in the number of Global System for Mobile

Communications(GSM) and wireless enabled mobile clients. The inter-networking

of WLANs and GSM networks is inevitable. Third Generation Partnership

Project(3GPP) has a standard HotSpot 2.0 that is based of EAP-SIM to define the

inter-networking of these two networks. The integration of the two networks expands

the service and quality of current GSM networks allowing them to support more

13

clients in a restricted area. The advantages of the GSM technology are - the roaming

capability, the authentication, the subscription management and the key agreement

procedure. Compared to cellular networks WLANs provide better bandwidth and

processing capabilities. The EAP method for GSM is EAP-SIM.

EAP-SIM is wireless protocol based on GSM/GRPS authentication. EAP-SIM

is used to authenticate mobile clients over a wireless network. EAP-SIM incorporates

a few basic improvements over GSM that eliminate known security issues of the GSM

authentication. EAP-SIM is improved as it uses a 128-bit key as compared to GSM

authentication which uses a 64 bit key. And also EAP-SIM provides mutual authen-

tication while the GSM network only authenticates the client. The authentication

procedure to EAP-SIM consist of a mobile client, a AAA server, a wireless router

and the GSM network. The mobile client first generates two keys from the master

key. One of the to keys is used as the session key and second is used to generate the

Message Authentication Code(mac) over the RAND parameters of the GSM triplets.

EAP-SIM is employed for authentication and session key distribution exploiting

the credentials stored in the SIM. GSM cellular networks use the keys stored in the

SIM card to authenticate the mobile client. Three Kc keys of the GSM authentica-

tion triplets to generate a Master Key in EAP-SIM. EAP-SIM use a SIM authentica-

tion formula between the client and an AAA server providing indirect authentication

between the client and network. In EAP-SIM the communication between the SIM

card and the Authentication Centre (AuC) replaces the necessity for a pre-established

password between the consumer and AAA server.

14

2.8 EAP-SIM Weakness

EAP-SIM is designed keeping in mind the drawbacks of GSM authentication.

But there are certain scuttle flaws in EAP-SIM protocol. EAP-SIM is designed

around validating the MAC. For an attacker to impersonate the GSM server all he

needs to do is to generate a valid keyed MAC using a K-auth key. Two of the three

Kc keys and the related RAND parameters of the GSM triplets is required to create

the valid MAC. The authentication triplets for the attack can be obtained by one of

the following ways:

1. If the attacker gets access to the physical SIM card, he can get the GSM triplets.

2. A malicious software can installed on the mobile device. This software can access

the GSM triplets and Using a virus or other malicious software, an adversary may

mount an attack on the user platform in order to obtain triplets.

3. The attacker can hack into the GSM network and get the GSM triplets.

4.The communication between the access point the AAA server on the back-end is

unauthenticated. The attacker can get access to the GSM tripets.

Using the mentioned techniques the attacker can impersonate a GSM mobile

and easily enter a WLAN network. As the attack has gained access to the RAND

parameters he can generate the three encryption keys Kc. Using these he can generate

a valid hashed MAC. The calculated MAC can be used by the attacker to authenticate

a client as legitimate network. The compromised triplets can be used by the adversary

as long as the Ki, which is used to calculate the three keys remains the same. The

key Ki can remain the same for years. This is one example of the attack. There are

two other type of attacks on EAP-SIM which we will discuss in more detail.

Apart from the above mentioned weakness of EAP-SIM, there are a lot of other

15

issues in the protocol. For example, the mobile must send his IMSI(International

Mobile Subscriber Identity) in plaintext during the authentication phase to the server.

Here the identity of the user can be compromised. In addition EAP-SIM has version

negotiation. This allows old mobile clients to downgrade to a older EAP-SIM version.

Also all authentication message are send unencrypted allowing the attacker to spoof

messages as we will see in later chapters.

16

CHAPTER 3

Implementation of Security Attack

The EAP protocol family is designed around establishing keys based of Cipher

negotiation and certificate exchange. The TLS based and Challenge-Response based

EAP methods have a similar error detection and recovery mechanism. This introduces

the possibility of attacks as the wireless medium can be sniffed and spoofed by any

wireless client.

There are two types of attacks on a EAP protocol[9]. Both the attacks are time

critical may fluctuate in different circumstances. The following sections explains the

attacks in detail.

3.1 Error Message Attack

EAP being designed for wireless networks has exception handling build into it.

The error handling mechanism in EAP allows the clients and servers to send ALERT

messages during the authentication phase to notify the opposite party that a error

has occurred. The attacker can capture the EAP Alert messages and spoof these

messages to the server. Figure 5 demonstrates how a the attacker can spoof messages

as the wireless client. There are two points during the authentication phase one

before the server receives the client HELLO message and other after the accepting the

SERVER HELLO DONE. The attacker after sniffing any of the two messages sends

a FATAL ALERT message. If the spoofed FATAL ALERT message reaches before

the CLIENT HELLO message, then all messages following the CLIENT HELLO are

dropped. This is because the server will only consider the alert messages and will

send a failure message to the client indicating an error. At that point EAP ends with

17

Figure 5: EAP Error Message Attack 1

an EAP FAILURE message.

A variant of the above mentioned attack can be carried out when the attacker

spoofs as the server. Here the attacker sends messages to the client to trigger the error

handling mechanism in the client. There are two points in the EAP authentication

phase where the attacker can trigger the client. One is after the client sends the

CLIENT HELLO and the other is after a set of client response messages (including

CLIENT CERTIFICATE, CLIENT KEY EXCHANGE, and other messages) (See

Figure 5). There are multiple attack point in the bundle of EAP packets from server

to the client.

The attacks at different points in the authentication phase are similar. We will

examine the first attack point in detail. As shown in figure 6, once the attacker sniffs

18

a CLIENT HELLO message and spoofs a FATAL ALERT message to the client. The

SERVER HELLO and future messages from the server are dropped. Once the client

accepts the FATAL ALERT message. It believes that a error has occurred and sends

a error message to the server. Both parties now terminate the transaction and restart

the EAP authentication procedure. The critical part of the attack here is to meet

the timing requirement. The spoofed packet from the attacker must reach the client

before the original packer from the server. This time gap contains :

1. The time required to deliver the message on the wired system, which includes

messages from the TLS server to the AP and from the AP to the TLS server.

2. Time taken by the server to process the request

3. The time required to deliver messages over the wireless medium from the AP

to the client.

The interval varies for different wireless networks and different types of wireless

clients. It also depends on the stage of the authentication process. The second attack

point as shown in Figure 6 requires the server to query the database for user identity

and password. This increases the time gap for the attacker to send the spoofed packet

as the response from the server will be delayed than usual. And also wireless is a

open medium the transfer speed of packets also depends on the background traffic. If

there are many clients in the network the wireless protocol drops the transmit speed

significantly to insure reliable delivery. The attackers spoofing time is divided into

two parts.

1. The time required to produce the spoofed message, which can be ignored and

2. The transmitting time in the wireless network.

19

A variant of the attack exists where the attacker can spoof the client. This

variant of the attack also has two different attack points. As shown in Figure 6, the

first attack point is right after the attackers sniffing the client HELLO REQUEST

and spoofing sending a FATAL ALERT to the server. Similarly the second attack

point is when the client receives the SERVER HELLO message.

Figure 6: EAP Error Message Attack 2

Now lets look at a variant of the first attack. Here we spoof as the client to the

server. As shown in Figure 6, the attackers FATAL ALERT message must reach the

server before the CLIENT HELLO message. All message from the client now are

dropped by the server as it believes a error has occurred. The server now ends the

transaction by sending a failure message. The second attack point is quite similar

where the attacker sends the FATAL ALERT message before the client certificate

20

reaches the server.

3.2 Misleading Message Attack

The approach to break EAP is by sending misleading messages to the client. Since

the client has no way to verify the messages in the initial phase of EAP authentication.

The attacker can easily spoof messages to the client. The attack can be carried

out using a spoofed SERVER HELLO message. This HELLO message will have

misconfigured parameters. These parameters will throw off the client forcing it to

send a failure message.

Figure 7: EAP Mislead Message Attack

As shown in the Figure 7 first the client sends a valid CLIENT HELLO message

with the list of supported cipher suites. The server selects a cipher suite from the

list sent by the client. Beside his choice the server must also send a set of important

21

keying messages to the client for the client to respond. Here the attacker can spoof a

SERVER-HELLO message to the client. Now the client receives one original SERVER

HELLO message and one spoofed message. Here the client is not able to decide which

of the two SERVER HELLO messages is the legitimate one that should be used in

the following process. Moreover the spoofed message may have selected cipher that

was not listed by the client. This will result in the client sending a failure message.

The failure message notifies the server side that an error has occurred, eventually

terminates the whole handshake procedure.

3.3 Attack on Challenge-Response EAP Methods

While working on the EAP implementation based Challenge/Response approach,

the foundation of the EAP-SIM method, we encountered a possibility of an attack.

This attack comes into existence at different scenarios and at different time instances

of the Challenge/Response handshake.

We will first look at the messages exchanged in a EAP-SIM protocol in Figure

8. The EAP-SIM client is wireless(WLAN) client with a SIM(subscriber identity

module) to allow authentication. When a Client tries to initiate a wireless connection

with a router. It first carries out the wireless Layer 2 connection. Following the

connection the Server send a EAP-Request. This requires the client to respond with

the supported ciphers suites and a response to a challenge sent in the request. Once

the EAP-Response is received the server sends a SIM-Challenge. The client using the

SIM Keys responds to the SIM-Challenge. Between the SIM-Challenge and the SIM-

Response a attacker can inject a spoofed SIM-Client Error. Seeing the client error the

server believes the client rejected the authentication and restarts the EAP exchange

when the client reconnects. The attacker when sending the authentication reject to

22

the server at the same time sends a spoofed SIM-Notification to the client. When the

client receives the notification it believes the server ended the authentication midway

and reconnects to the wireless router. Figure 8 demonstrates the attack on EAP-SIM.

Figure 8: EAP SIM Messages

3.4 Implementation framework

In this section, we discuss our attack framework. The following are a few re-

quirements to execute the attack.

Media Requirements: Our attacks are on the wireless medium. This make sniffing

and spoofing an integral part of our attack. Sniffing allows us to estimate the stage the

protocol is in and to decide when to inject the attack packets. Modern day switches

easily detect sniffing in Ethernet and it is almost impossible to sniff on enterprise

23

grade routers. In wired networks today enterprises use firewalls to block IP spoofing.

On the other hand in wireless networks the user has no control over the medium.

This allows the attack to sniff and spoof the network easily with free software and

consumer hardware. This makes TLS based protocols are so vulnerable in wireless

networks. In principal the attack can work on a wired network

Protocol requirements: Usually a few control messages are exchanged by com-

municating parties in security protocols to establish session keys. These control mes-

sages are unencrypted and can be read by the attacker. These security protocols

normally have exception handling mechanism given the unreliable nature of the wire-

less medium. This exception handling helps inform the other party when a error has

occurred. Most protocols have simple fatal or unexpected exceptions, which result

in the communicatin party ending the transaction, and restarting a new handshake

process. This unencrypted and open-ended exception handling makes the protocol

vulnerable to DoS attack.

Timing requirements: Once a protocol meets the above requirements, the at-

tacker can launch a DoS attack on the protocol. The attack will only succeed if the

spoofed packet reach the target before the original packet. This makes the attack

very time critical. The attack is feasible only if the time window is wide enough for

the attacker to spoof packets.

Once all three requirements are satisfied the attack can be carried out. The

attacker sniffs the medium to estimate when to initiate the attack. Then when the

time is right he spoofs a message to one party, making it believe that an error has

occurred. This results in that party terminating the authentication. The attack is

successful if the spoofed message reached the communicating party before the original

message. Otherwise, if the party receives the expected message first, it will process

24

that and move to a new state. The attack message now is obsolete and is discarded

silently. Hence, the attack must happen after the attacker receives the trigger message

and finish before the expected message reaches the client.

In the experiment setup we use a wireless stimulator[15] to execute the attack.

The setup consist of the following components:

1. Hardware stimulator(hwsim) driver

2. Wireless client open source software(wpa_supplicant)

3. Wireless server open source software(hostapd)

4. Script for EAP methods connections

5. Script to inject spoofed packets

Before we can carryout the attack, we need to capture an EAP FATAL ALERT

packet. This can be done be trying out a EAP authentication with a wireless router

and changing the operating channel of the client when the authentication is going on.

This will result in EAP FATAL ALERT from the server to the client. This packet

can be capture by using Wireshark. Figure 9 shows a screen shot of a capture EAP

failure packet. This packet was used to carry on the attack.

Once we have captured the EAP failure packet. We can setup our wireless

stimulation environment. This is done using a start script that inserts the hardware

stimulation driver module and does ioctl(input/output control) for creating 3 wireless

interfaces. These interfaces help us stimulate a wireless environment. The advantage

of using a stimulator is we eliminate any loss that might happen over a real wireless

25

Figure 9: EAP Failure Packet

network and the probability of the attack succeeding increases. Figure 10 shows the

3 wireless interface that we setup.

Figure 10: Hardware Stimulated Wireless Interfaces

Once the stimulation environment is setup we must execute the EAP-SIM test.

26

This test carries out an end-to-end EAP-SIM authentication over the wireless inter-

face. Sniffing packets on the wireless interface during the authentication, we can see

the message exchange involved in an EAP-SIM authentication. Now for our attack

we want to inject the EAP failure packet we captured earlier during this EAP-SIM

exchange. A tcpdump command can inject the packet on the wireless interface. This

results in a possibility of the EAP exchange failing for the client. The following inject

script will inject the EAP failure packet.

#/bin / sh

#This s c r i p t uses the tcpdump command to i n j e c t the

#packets in user s p e c i f i e d i n t e r f a c e and i n t e r v a l

t cp rep lay −−mbps=0.001 −−loop=$2 − i $1 EAP_failure_packet . pcap

The Figure 12 shows the probability for the attack to succeed based on the

number of packets injected by the attacker. By changing the number of packets

we inject we have a results showing the probability of success of the attack. When

we inject around a 1000 packets we see the attack succeeds with a probability of

15 percent while when we inject 5000 packets we see that the attack almost always

succeeds.

3.5 Optimization of the Attack

Attacks on EAP protocols can be successfully if the spoofed packets from the

attacker reaches the client before the actual packet reaches from the server. To

increase the probability of our attack we require the attackers packet to reach the

victim faster. The following optimization will allow the attacker packet to reach the

client earlier we do the following optimization.

27

Figure 11: EAP-SIM Connection Failing

The optimization relies on making changes in the collision avoidance mecha-

nism used by Wireless LAN. Wireless LAN used (Distributed Coordination Func-

tion) based on CSMA/CA (Carrier Sense Multiple Access with Collision Avoidance).

In CSMA/CA, a wireless transmitting device performs a arbitrary back-off before

transmitting a frame over wireless. Once it finds the medium idle, the station selects

a random back off period from [0, CW -1], where CW is the contention window.

The contention window CW has an initial minimum value CWMin. The contention

window value is doubled by the station, when a collision is detected in the medium.

The contention window keeps doubling up to the maximum value CWMax. The con-

tention window is reset to it’s initial value when the packet is transmitted. The value

28

Figure 12: EAP-SIM Attack success versus packets injected

of CWMin and CWMax can be configured in open source wireless software. To send

packet faster, a attacker can fix the CWMin and CWMax to the minimal number

of 1. This way the back-off period for the attacker is smaller as compared to that

of the other wireless stations. Hence there is high probability of the attacker packet

reaching the victim before the legitimate packet. In MADWifi driver [12] provides

ioctl’s to set the CWMin and CWMax.

29

CHAPTER 4

Defenses and Improvements

The main reason we have the security threats is that wireless is an uncontrolled

medium. Anyone can capture your communication and spoof/replay your messages

causing problems. It is difficult for the receiving party to determine the source of the

sender, especially during the initial key generation phase of communication. That is

the time when clients are trying to authenticate each other. Since wireless is unreliable

median we need a well-structured error handling and error recovery mechanism, for

the wireless protocol to work reliably. Achieving both strong authentication and error

recovery is a challenge in the wireless medium.

4.1 EAP Queuing Enhancement

In the Error message based attack, the attacker spoofs the error message he

captured earlier to mislead the client. A possible defense to this attack is to allow the

receiving party to distinguish between the spoofed error message and the original error

message. Given the nature of the medium this is difficult to achieve especially during

the authentication stage, since that is when we are trying to authenticate and verify

the clients. Queueing the error message in the receiving party is a possible approach.

Delaying processing of the FATAL ALERT message does affect the working EAP

protocol. The wireless client agent wpa_supplicant and server agent hostapd can be

configured to delay the processing of any FATAL ALERTmessage by 100 milliseconds.

This prevents the handshake from failing due to spoofed error messages.

30

4.2 EAP-SIM Protocol Improvement

The identified shortcomings of the EAP-SIM authentication(in section 2.8) pro-

cedure, threatens the security of end-clients and 3G-WLAN networks. To overcome

these security issues, a improved EAP-SIM authentication protocol is proposed. The

new scheme uses a IPsec-based VPN deployment over the wireless network. This

proposed improvement helps secure the initial set of unauthenticated messages by

encapsulating them in a VPN tunnel.

IP Security Protocol (IPsec) is designed for enabling mutual authentication while

maintaining a secure association between communication parties. Internet Key Ex-

change (IKEv2) [6] used to secure message is a part of IPSec. IKEv2 is used as it

supports all legacy authentication methods, which includes all EAP based protocols.

This allows us to encapsulate EAP-SIM messages in IKE payloads. Hence protecting

them during negotiation. The EAP-SIM protocol generates an MSK key, which is

later used to authenticate peers in the IKE procedure. An IPsec-SA is established

after the EAP-SIM authentication is complete. This VPN tunnel now protects all

user data.

The proposed scheme is more relevant in context to a 3G-WLAN network. A

network that enables 3G clients to connect to Wireless LAN network. A 3G-WLAN

network has a mobile user, a Network Access Server(NAS), GSM network, a Cer-

tificate Authority(CA) and an AAA server. The client is a IKE client and a EAP

client at the same time. The NAS incorporates VPN capabilities and also replies to

IKE messages from the mobile client. The client must verify the certificate from the

NAS with the CA. Also the client communicates its Radius messages to the AAA

Server via the NAS. After receiving the Radius message from the client AAA server

is responsible of communicating with the GSM server to obtain the GSM triplets.

31

Thess GSM triplets help NAS validate the SIM keys on the GSM client.

IKE is a application layer protocol while EAP-SIM is a layer two protocol. Hence

a mobile user must use EAP-SIM initial phase to obtain a temporary IP address. This

IP address is only used in the authentication process until the user is not assigned a

permanent IP address by the VPN. The permanent address is allow the user to access

the network. This IP address is exchanged as a IKE payload in a encrypted form.

Figure 13: EAP SIM Exchange with IPSec

Figure 13 describes how IKEv2 can be used to improve EAP-SIM[7]. First an

32

IKE key exchange is carried out via the Access Point. This exchange consist of 2

phases IKE_SA INIT and IKE_AUTH. Once the IKE exchange is done the EAP

SIM key exchange starts. Now the client and the RADIUS server exchange the

RADIUS Access-Request and RADIUS Access-Challenge. This leads to the SIM Start

message from client to the Radius Server. The Radius Server now in the background

communicates with the Home Location Register(HLR) in the GSM network to get the

SRES. When the mobile user responds with the XRES to the SIM Start message. The

RADIUS server now compares the XRES and SRES to verify the SIM credentials.

Once the SIM keys are verified, the two parties are mutually authenticated. Now the

IPsec tunnel can be setup.

The current NAS does store previously used RANDs. To prevent a replay attack

the NAS must maintain a list of all previous used RANDs. This does not allow the

client to reuse the RANDs. But since the client does not store the RANDs it cannot

verify the RANDs used by the server. The new EAP-SIM scheme can be further

improved by storing all previously used RANDs on the NAS Server.

33

CHAPTER 5

Conclusion

In this paper, we study the EAP based protocols and propose attacks on the

same. The attacks explore the wireless nature of the medium and the ability to spoof

exchanged messages. Stimulation experiments using open source wireless stimulator

in the project prove the success and the practicality of the attacks. In the experiments

we spoof exception message to the client and server to carry out a Denial-of-Service

attack.

We also propose an improvement in client and server software to prevent such

attacks. The improvement involves delaying the processing of protocol error messages.

As future work we could implement the discussed VPN based improvements for all

generic wireless authentication protocols based on EAP.

34

LIST OF REFERENCES

[1] C.deLaat, L.Gommans, G.Gross, J.Vollbrecht, D.Spence, "Generic AAA Ar-
chitrecture", RFC 2903, Aug 2000.

[2] B. Aboba, E. H. Lev, J. Vollbrecht, J. Carlson, and L. Blunk, Extensible Authen-
tication Protocol (EAP). RFC 3748, Jun. 2004.

[3] H. Krawczyk, M. Bellare, R. Canetti, HMAC: Keyed-Hashing for Message Au-
thentication, RFC 2104, Feb 1997.

[4] H. Haverinen, "EAP-SIM Authentication" Internet draft, draft-haverinen-pppext-
eap-sim-16, Dec 2004

[5] J. Arkko and H. Haverinen. Extensible Authentication Pro- tocol Method for 3rd
Generation Authentication and Key Agreement (EAP-AKA). RFC 4187, Jan.
2006.

[6] C.Kaufman, "Internet key exchange (IKEv2) protocol" Internet draft, draft-ietf-
ipsec-ikev2-17.txt, Sep 2004.

[7] Christoforos Ntantogian and Christos Xenakis "An Enhanced EAP-SIM Authen-
tication Scheme for Securing WLAN" , Mobile-Summit, 2006

[8] D. Harkins and D. Carrel. "The Internet key exchange (IKE)", RFC 2409, Nov
1998.

[9] Yao Zhao, Sagar Vemuri, Jiazhen Chen, Yan Chen anf Hai Zhou "Exception
Triggered DoS Attacks on Wireless Networks", Motorola Labs, 2008

[10] "Growth of mobiles on 4G Network" Retrieved 10, December 2014, from
http://vision.visaeurope.com/1-out-of-4-mobile-phone-users-is-on-a-4g-network/

[11] "Growing Wireless and GSM Clients" Retrieved on 29, November 2014, from
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.259.2157

[12] "Madwifi OpenSource Driver" Retrieved on 29, March 2015, from
http://madwifi.org/.

[13] "Extensible Authentication Protocol Overview" Retrieved on 10, December 2014,
from https://technet.microsoft.com/en-us/library/bb457039.aspx

[14] "EAP-TLS Wikipedia" Retrieved on 10, January 2015, from
https:/en.m.wikipedia.org/wiki/EAP-TLS#EAP-TLS

35

[15] "HWSIM Wireless Network Stimulator" Retrieved on 20, May 2015, from
https://wireless.wiki.kernel.org/en/users/drivers/mac80211_hwsim

[16] "Working of EAP PEAP and EAP-TTLS" Retrieved on 25, January 2015, from
http:/www.tech-faq.com/eap-leap-peap-and-eap-tls-and-eap-ttls.html

[17] "WPASupplicant" Retrieved on 10, February 2015, from
http://hostap.epitest.fi/wpa_supplicant/

36

APPENDIX

Code Changes

A.1

This code is a part of the defence to delay processing of error packets in the client

agent.

wpa_dbg(wpa_s , MSG_DEBUG, "Not␣ a s s o c i a t ed ␣−␣Delay␣ p ro c e s s i ng ␣

→˓ "

" o f ␣ r e c e i v ed ␣EAPOL␣Error ␣ frame␣ (s t a t e=%s␣ bs s i d="

→˓ MACSTR ") " ,

wpa_supplicant_state_txt (wpa_s−>wpa_state) ,

MAC2STR(wpa_s−>bss id)) ;

wpabuf_free (wpa_s−>pending_eapol_rx) ;

wpa_s−>pending_eapol_rx = wpabuf_alloc_copy (buf , l en) ;

i f (wpa_s−>pending_eapol_rx) {

os_get_relt ime(&wpa_s−>pending_eapol_rx_time) ;

os_memcpy(wpa_s−>pending_eapol_rx_src , src_addr ,

ETH_ALEN) ;

}

A.2

These are the python t e s t ca s e s for EAP−SIM . These are

→˓ s t imulated t e s t run in the mac80211 environment .

de f test_ap_wpa2_eap_sim(dev , apdev) :

"""WPA2−Ente rp r i s e ␣ connect ion ␣ us ing ␣EAP−SIM"""

37

check_hlr_auc_gw_support ()

params = hostapd . wpa2_eap_params(s s i d=" te s t−wpa2−eap")

hapd = hostapd . add_ap(apdev [0] [’ i fname ’] , params)

eap_connect (dev [0] , apdev [0] , "SIM" , "1232010000000000" ,

password="90 dca4eda45b53cf0f12d7c9c3bc6a89 :

→˓ cb9cccc4b9258e6dca4760379fb82581 ")

hwsim_utils . t e s t_connec t i v i t y (dev [0] , hapd)

eap_reauth (dev [0] , "SIM")

eap_connect (dev [1] , apdev [0] , "SIM" , "1232010000000001" ,

password="90 dca4eda45b53cf0f12d7c9c3bc6a89 :

→˓ cb9cccc4b9258e6dca4760379fb82581 ")

eap_connect (dev [2] , apdev [0] , "SIM" , "1232010000000002" ,

password="90 dca4eda45b53cf0f12d7c9c3bc6a89 :

→˓ cb9cccc4b9258e6dca4760379fb82581 " ,

expec t_ fa i l u r e=True)

l o gg e r . i n f o ("Negative ␣ t e s t ␣with␣ i n c o r r e c t ␣key")

dev [0] . r eque s t ("REMOVE_NETWORK␣ a l l ")

eap_connect (dev [0] , apdev [0] , "SIM" , "1232010000000000" ,

password=" f fdca4eda45b53c f0 f12d7c9c3bc6a89 :

→˓ cb9cccc4b9258e6dca4760379fb82581 " ,

expec t_ fa i l u r e=True)

l o gg e r . i n f o (" Inva l i d ␣GSM−Milenage ␣key")

38

dev [0] . r eque s t ("REMOVE_NETWORK␣ a l l ")

eap_connect (dev [0] , apdev [0] , "SIM" , "1232010000000000" ,

password=" f fdca4eda45b53c f0 f12d7c9c3bc6a " ,

expec t_ fa i l u r e=True)

l o gg e r . i n f o (" Inva l i d ␣GSM−Milenage ␣key (2) ")

dev [0] . r eque s t ("REMOVE_NETWORK␣ a l l ")

eap_connect (dev [0] , apdev [0] , "SIM" , "1232010000000000" ,

password=" f fdca4eda45b53c f0 f12d7c9c3bc6a8q :

→˓ cb9cccc4b9258e6dca4760379fb82581 " ,

expec t_ fa i l u r e=True)

l o gg e r . i n f o (" Inva l i d ␣GSM−Milenage ␣key (3) ")

dev [0] . r eque s t ("REMOVE_NETWORK␣ a l l ")

eap_connect (dev [0] , apdev [0] , "SIM" , "1232010000000000" ,

password=" f fdca4eda45b53c f0 f12d7c9c3bc6a89 :

→˓ cb9cccc4b9258e6dca4760379fb8258q " ,

expec t_ fa i l u r e=True)

l o gg e r . i n f o (" Inva l i d ␣GSM−Milenage ␣key (4) ")

dev [0] . r eque s t ("REMOVE_NETWORK␣ a l l ")

eap_connect (dev [0] , apdev [0] , "SIM" , "1232010000000000" ,

password="

→˓ f fdca4eda45b53cf0 f12d7c9c3bc6a89qcb9cccc4b9258e6dca4760379fb82581

→˓ " ,

39

expec t_ fa i l u r e=True)

l o gg e r . i n f o ("Miss ing ␣key␣ c on f i g u r a t i on ")

dev [0] . r eque s t ("REMOVE_NETWORK␣ a l l ")

eap_connect (dev [0] , apdev [0] , "SIM" , "1232010000000000" ,

expec t_ fa i l u r e=True)

de f test_ap_wpa2_eap_sim_sql (dev , apdev , params) :

"""WPA2−Ente rp r i s e ␣ connect ion ␣ us ing ␣EAP−SIM␣ (SQL) """

check_hlr_auc_gw_support ()

t ry :

import s q l i t e 3

except ImportError :

r a i s e HwsimSkip ("No␣ s q l i t e 3 ␣module␣ a v a i l a b l e ")

con = s q l i t e 3 . connect (os . path . j o i n (params [’ l o g d i r ’] , "

→˓ hostapd . db"))

params = hostapd . wpa2_eap_params(s s i d=" te s t−wpa2−eap")

params [’ auth_server_port ’] = "1814"

hostapd . add_ap(apdev [0] [’ i fname ’] , params)

eap_connect (dev [0] , apdev [0] , "SIM" , "1232010000000000" ,

password="90 dca4eda45b53cf0f12d7c9c3bc6a89 :

→˓ cb9cccc4b9258e6dca4760379fb82581 ")

l o gg e r . i n f o ("SIM␣ f a s t ␣ re−au then t i c a t i on ")

eap_reauth (dev [0] , "SIM")

40

l o gg e r . i n f o ("SIM␣ f u l l ␣auth␣with␣pseudonym")

with con :

cur = con . cu r so r ()

cur . execute ("DELETE␣FROM␣ reauth ␣WHERE␣permanent

→˓ = ’1232010000000000 ’ ")

eap_reauth (dev [0] , "SIM")

l o gg e r . i n f o ("SIM␣ f u l l ␣auth␣with␣permanent␣ i d e n t i t y ")

with con :

cur = con . cu r so r ()

cur . execute ("DELETE␣FROM␣ reauth ␣WHERE␣permanent

→˓ = ’1232010000000000 ’ ")

cur . execute ("DELETE␣FROM␣pseudonyms␣WHERE␣permanent

→˓ = ’1232010000000000 ’ ")

eap_reauth (dev [0] , "SIM")

l o gg e r . i n f o ("SIM␣ reauth ␣with␣mismatching␣MK")

with con :

cur = con . cu r so r ()

cur . execute ("UPDATE␣ reauth ␣SET␣mk

→˓ = ’00 ’ ␣

→˓ WHERE␣permanent= ’1232010000000000 ’ ")

eap_reauth (dev [0] , "SIM" , expec t_ fa i l u r e=True)

dev [0] . r eque s t ("REMOVE_NETWORK␣ a l l ")

41

eap_connect (dev [0] , apdev [0] , "SIM" , "1232010000000000" ,

password="90 dca4eda45b53cf0f12d7c9c3bc6a89 :

→˓ cb9cccc4b9258e6dca4760379fb82581 ")

with con :

cur = con . cu r so r ()

cur . execute ("UPDATE␣ reauth ␣SET␣ counter = ’10 ’ ␣WHERE␣

→˓ permanent= ’1232010000000000 ’ ")

eap_reauth (dev [0] , "SIM")

with con :

cur = con . cu r so r ()

cur . execute ("UPDATE␣ reauth ␣SET␣ counter = ’10 ’ ␣WHERE␣

→˓ permanent= ’1232010000000000 ’ ")

l o gg e r . i n f o ("SIM␣ reauth ␣with␣mismatching␣ counter ")

eap_reauth (dev [0] , "SIM")

dev [0] . r eque s t ("REMOVE_NETWORK␣ a l l ")

eap_connect (dev [0] , apdev [0] , "SIM" , "1232010000000000" ,

password="90 dca4eda45b53cf0f12d7c9c3bc6a89 :

→˓ cb9cccc4b9258e6dca4760379fb82581 ")

with con :

cur = con . cu r so r ()

cur . execute ("UPDATE␣ reauth ␣SET␣ counter = ’1001 ’ ␣WHERE␣

→˓ permanent= ’1232010000000000 ’ ")

l o gg e r . i n f o ("SIM␣ reauth ␣with␣max␣ reauth ␣ count␣ reached ")

42

eap_reauth (dev [0] , "SIM")

de f test_ap_wpa2_eap_sim_config (dev , apdev) :

"""EAP−SIM␣ con f i gu r a t i on ␣ opt ions """

params = hostapd . wpa2_eap_params(s s i d=" te s t−wpa2−eap")

hostapd . add_ap(apdev [0] [’ i fname ’] , params)

dev [0] . connect (" t e s t−wpa2−eap" , key_mgmt="WPA−EAP" , eap="

→˓ SIM" ,

i d e n t i t y="1232010000000000" ,

password="90 dca4eda45b53cf0f12d7c9c3bc6a89

→˓ : cb9cccc4b9258e6dca4760379fb82581 " ,

phase1="sim_min_num_chal=1" ,

wait_connect=False , scan_freq="2412")

ev = dev [0] . wait_event (["EAP: ␣ Fa i l ed ␣ to ␣ i n i t i a l i z e ␣EAP␣

→˓ method : ␣vendor␣0␣method␣18␣ (SIM) "] , t imeout=10)

i f ev i s None :

r a i s e Exception ("No␣EAP␣ e r r o r ␣message␣ seen ")

dev [0] . r eque s t ("REMOVE_NETWORK␣ a l l ")

dev [0] . connect (" t e s t−wpa2−eap" , key_mgmt="WPA−EAP" , eap="

→˓ SIM" ,

i d e n t i t y="1232010000000000" ,

password="90 dca4eda45b53cf0f12d7c9c3bc6a89

→˓ : cb9cccc4b9258e6dca4760379fb82581 " ,

phase1="sim_min_num_chal=4" ,

43

wait_connect=False , scan_freq="2412")

ev = dev [0] . wait_event (["EAP: ␣ Fa i l ed ␣ to ␣ i n i t i a l i z e ␣EAP␣

→˓ method : ␣vendor␣0␣method␣18␣ (SIM) "] , t imeout=10)

i f ev i s None :

r a i s e Exception ("No␣EAP␣ e r r o r ␣message␣ seen ␣ (2) ")

dev [0] . r eque s t ("REMOVE_NETWORK␣ a l l ")

eap_connect (dev [0] , apdev [0] , "SIM" , "1232010000000000" ,

password="90 dca4eda45b53cf0f12d7c9c3bc6a89 :

→˓ cb9cccc4b9258e6dca4760379fb82581 " ,

phase1="sim_min_num_chal=2")

eap_connect (dev [1] , apdev [0] , "SIM" , "1232010000000000" ,

password="90 dca4eda45b53cf0f12d7c9c3bc6a89 :

→˓ cb9cccc4b9258e6dca4760379fb82581 " ,

anonymous_identity="345678")

de f test_ap_wpa2_eap_sim_ext (dev , apdev) :

"""WPA2−Ente rp r i s e ␣ connect ion ␣ us ing ␣EAP−SIM␣and␣ ex t e rna l ␣

→˓ GSM␣auth"""

try :

_test_ap_wpa2_eap_sim_ext (dev , apdev)

f i n a l l y :

dev [0] . r eque s t ("SET␣ external_sim␣0")

Other support ing f unc t i on s

44

de f eap_connect (dev , ap , method , i d en t i t y , anonymous_identity

→˓ =None ,

password=None ,

phase1=None , phase2=None , ca_cert=None ,

domain_suffix_match=None , password_hex=None ,

c l i e n t_c e r t=None , private_key=None , sha256=

→˓ False ,

f ragment_size=None , expec t_ fa i l u r e=False ,

l o ca l_er ro r_repor t=False ,

ca_cert2=None , c l i e n t_ce r t 2=None ,

→˓ private_key2=None) :

hapd = hostapd . Hostapd (ap [’ i fname ’])

id = dev . connect (" t e s t−wpa2−eap" , key_mgmt="WPA−EAP␣WPA−

→˓ EAP−SHA256" ,

eap=method , i d e n t i t y=iden t i t y ,

anonymous_identity=anonymous_identity ,

password=password , phase1=phase1 ,

→˓ phase2=phase2 ,

ca_cert=ca_cert , domain_suffix_match=

→˓ domain_suffix_match ,

wait_connect=False , scan_freq="2412" ,

password_hex=password_hex ,

c l i e n t_c e r t=c l i en t_ce r t , private_key=

→˓ private_key ,

45

ieee80211w="1" , fragment_size=

→˓ fragment_size ,

ca_cert2=ca_cert2 , c l i e n t_ce r t 2=

→˓ c l i en t_ce r t2 ,

private_key2=private_key2)

eap_check_auth (dev , method , True , sha256=sha256 ,

expec t_ fa i l u r e=expec t_fa i lu re ,

l o ca l_er ro r_repor t=loca l_er ro r_repor t)

i f expec t_ fa i l u r e :

return id

ev = hapd . wait_event (["AP−STA−CONNECTED"] , t imeout=5)

i f ev i s None :

r a i s e Exception ("No␣ connect ion ␣ event ␣ r e c e i v ed ␣ from␣

→˓ hostapd")

return id

de f eap_check_auth (dev , method , i n i t i a l , r sn=True , sha256=

→˓ False ,

expec t_ fa i l u r e=False , l o ca l_er ro r_repor t=

→˓ False) :

ev = dev . wait_event (["CTRL−EVENT−EAP−STARTED"] , t imeout

→˓ =10)

i f ev i s None :

r a i s e Exception (" As soc i a t i on ␣and␣EAP␣ s t a r t ␣ timed␣out

→˓ ")

46

ev = dev . wait_event (["CTRL−EVENT−EAP−METHOD"] , t imeout

→˓ =10)

i f ev i s None :

r a i s e Exception ("EAP␣method␣ s e l e c t i o n ␣ timed␣out")

i f method not in ev :

r a i s e Exception ("Unexpected␣EAP␣method")

i f expec t_ fa i l u r e :

ev = dev . wait_event (["CTRL−EVENT−EAP−FAILURE"])

i f ev i s None :

r a i s e Exception ("EAP␣ f a i l u r e ␣ timed␣out")

ev = dev . wait_event (["CTRL−EVENT−DISCONNECTED"])

i f ev i s None :

r a i s e Exception ("Disconnect ion ␣ timed␣out")

i f not l oca l_er ro r_repor t :

i f " reason=23" not in ev :

r a i s e Exception ("Proper ␣ reason ␣code␣ f o r ␣

→˓ d i s connec t i on ␣not␣ repor ted ")

return

ev = dev . wait_event (["CTRL−EVENT−EAP−SUCCESS"] , t imeout

→˓ =10)

i f ev i s None :

r a i s e Exception ("EAP␣ suc c e s s ␣ timed␣out")

i f i n i t i a l :

47

ev = dev . wait_event (["CTRL−EVENT−CONNECTED"] ,

→˓ t imeout=10)

else :

ev = dev . wait_event (["WPA: ␣Key␣ nego t i a t i on ␣ completed

→˓ "] , t imeout=10)

i f ev i s None :

r a i s e Exception (" As soc i a t i on ␣with␣ the ␣AP␣timed␣out")

s t a tu s = dev . get_status ()

i f s t a tu s ["wpa_state"] != "COMPLETED" :

r a i s e Exception ("Connection␣not␣ completed")

i f s t a tu s [" suppPortStatus "] != "Authorized " :

r a i s e Exception ("Port␣not␣ author i zed ")

i f method not in s t a tu s [" se lectedMethod "] :

r a i s e Exception (" I n c o r r e c t ␣EAP␣method␣ s t a tu s ")

i f sha256 :

e = "WPA2−EAP−SHA256"

e l i f r sn :

e = "WPA2/IEEE␣ 802 .1X/EAP"

else :

e = "WPA/IEEE␣ 802 .1X/EAP"

i f s t a tu s ["key_mgmt"] != e :

r a i s e Exception ("Unexpected␣key_mgmt␣ s t a tu s : ␣" +

→˓ s t a tu s ["key_mgmt"])

48

de f eap_reauth (dev , method , rsn=True , sha256=False) :

dev . r eque s t ("REAUTHENTICATE")

eap_check_auth (dev , method , False , r sn=rsn , sha256=

→˓ sha256)

49

	San Jose State University
	SJSU ScholarWorks
	Fall 2015

	Extensible Authentication Protocol Vulnerabilities and Improvements
	Akshay Baheti
	Recommended Citation

	Introduction
	Overview of Extensible Authentication Protocol
	The EAP protocol family
	Vulnerabilities in EAP based Protocols

	EAP based protocols
	Wireless Connection
	EAP - Architecture
	Security Issues in EAP Protocol
	Transport Layer Security [TLS]
	EAP-TLS Protocols
	Weakness of EAP-TLS Protocols
	EAP-SIM protocol
	EAP-SIM Weakness

	Implementation of Security Attack
	Error Message Attack
	Misleading Message Attack
	Attack on Challenge-Response EAP Methods
	Implementation framework
	Optimization of the Attack

	Defenses and Improvements
	EAP Queuing Enhancement
	EAP-SIM Protocol Improvement

	Conclusion
	Code Changes
	
	

