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ABSTRACT

The effects of wave and zonal mean ozone heating on the evolution of the quasi-biennial oscillation (QBO)
are examined using a two-dimensional mechanistic model of the equatorial stratosphere. The model atmosphere
is governed by coupled equations for the zonal mean and (linear) wave fields of ozone, temperature, and wind,
and is driven by specifying the amplitudes of a Kelvin wave and a Rossby–gravity wave at the lower boundary.
Wave–mean flow interactions are accounted for in the model, but not wave–wave interactions.

A reference simulation (RS) of the QBO, in which ozone feedbacks are neglected, is carried out and the
results compared with Upper Atmosphere Research Satellite observations. The RS is then compared with three
model experiments, which examine separately and in combination the effects of wave ozone and zonal mean
ozone feedbacks. Wave–ozone feedbacks alone increase the driving by the Kelvin and Rossby–gravity waves
by up to 10%, producing stronger zonal wind shear zones and a stronger meridional circulation. Zonal mean–
ozone feedbacks (ozone QBO) alone decrease the magnitude of the temperature QBO by up to 15%, which in
turn affects the momentum deposition by the wave fields. Overall, the zonal mean–ozone feedbacks increase
the magnitude of the meridional circulation by up to 30%. The combined effects of wave–ozone and ozone
QBO feedbacks generally produce a larger response then either process alone. Moreover, these combined ozone
feedbacks produce a temperature QBO amplitude that is up to 30% larger than simulations without the feedbacks.
Correspondingly, significant changes are also observed in the zonal wind and ozone QBOs. When ozone feedbacks
are included in the model, the Kelvin and Rossby–gravity wave amplitudes can be reduced by ;10% and still
produce a QBO similar to simulations without ozone.

1. Introduction

The quasi-biennial oscillation (QBO) of the zonal
mean wind is one of the most striking circulation fea-
tures of the lower equatorial stratosphere. The QBO was
discovered independently by Reed et al. (1961) and Ver-
yard and Ebdon (1961), and shortly thereafter, Funk and
Garnham (1962) and Ramanathan (1963) identified a
QBO in total-column ozone. Because the QBO plays a
central role in the natural variability of ozone and other
stratospheric trace gases, understanding the processes
that affect its evolution is crucial for assessing the rel-
ative importance of natural versus anthropogenically in-
duced ozone variability.

Historically, numerical modeling studies of the QBO
have generally focused on the dynamical processes re-
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sponsible for the zonal mean QBO and have largely
neglected the potentially important feedbacks of ozone
heating. Such feedbacks have been neglected despite
evidence showing that the ozone heating produced by
both wave motions and the zonal mean meridional cir-
culation can affect the temperature structure of the equa-
torial lower stratosphere.

Echols and Nathan (1996) demonstrate, for example,
that wave–ozone interactions have an important effect
on the Kelvin wave induced zonal mean body force in
the lower equatorial stratosphere. They show that
ozone–dynamics interactions can significantly enhance
the Kelvin wave amplitudes, resulting in a ;30% in-
crease in the Eliassen–Palm (EP) flux divergence. Cor-
dero et al. (1998) extended Echols and Nathan’s study
by incorporating the Kelvin wave–ozone feedbacks as
well as those due to Rossby–gravity waves into a one-
dimensional (1D) model of the QBO. They show that
the ozone heating feedbacks modify the Kelvin and
Rossby–gravity waves producing a ;10% increase in
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the QBO amplitude and a ;2-month increase in its os-
cillation period. Cordero et al.’s study clearly demon-
strates the importance of wave–ozone heating on the
QBO, but the simplicity of their model precluded ex-
amining how either the meridional wave structure or
changes in the zonal mean–ozone distribution feedback
and affect the zonal mean circulation.

In addition to the wave–ozone feedbacks cited above,
zonal mean–ozone feedbacks also play an important role
in the QBO. This point was recognized by Dunkerton
(1985), who suggested that ozone advection associated
with the ozone QBO may produce enhanced local heat-
ing, resulting in a change in the zonal mean meridional
circulation. To examine the effects of zonal mean–ozone
feedbacks on the QBO, recent studies (Hasebe 1994; Li
et al. 1995; Huang 1996) have employed two-dimen-
sional (2D) models in which the QBO is driven by
means other than the momentum deposition associated
with the wave fields. For example, using a 2D model
in which the QBO is prescribed by observed equatorial
winds, Hasebe asserts that the zonal mean ozone dis-
tribution is responsible for the observed out of phase
relationship between the zonal wind and ozone QBOs
(ozone leads the zonal wind by ;¼ period). Hasebe
also asserts that the omission of the zonal mean feedback
may lead to an overestimation of the vertical velocity
and may partially explain the deficiency of easterly mo-
mentum in the QBO momentum budget (Lindzen and
Tsay 1975). Using a model in which the QBO is relaxed
toward observed equatorial winds, Li et al. (1995) pre-
sent additional evidence showing that the ozone QBO
has an important effect on the temperature and wind
structure of the equatorial stratosphere. In contrast, how-
ever, Huang (1996) uses a 2D model including pre-
scribed QBO wave driving, to show that the ozone ra-
diative feedbacks due to the ozone QBO have little ef-
fect on the meridional circulation and ozone field. Ad-
ditional studies are clearly needed to fully resolve this
issue. Finally, we stress that in Hasebe’s, Li et al.’s, and
Huang’s models the QBO is not explicitly driven by
wave motions. Thus, the effects of wave ozone feed-
backs on the zonal wind and ozone QBOs could not be
addressed in their models.

Ozone heating feedbacks clearly have a significant
influence on the zonal mean QBO. Yet, despite their
importance, no mechanistic study has thus far been car-
ried out to study and quantify the combined effects of
wave–ozone and zonal mean–ozone feedbacks on the
evolution of the QBO. Addressing this problem forms
the basis of the work presented here. In particular, our
main objective is to investigate the influence of ozone–
dynamics interactions on the zonal wind and ozone
QBOs using a 2D model of the lower equatorial strato-
sphere. Two key questions are addressed here. How do
ozone-induced wave changes affect the tropical strato-
spheric circulation? What influence do the diabatic feed-
backs of the ozone QBO have on the dynamical QBO,
and can these feedbacks account for some of the ‘‘miss-

ing’’ momentum in the simulations of the momentum
budget of the QBO? Answers to these questions will
help clarify the role ozone plays in the QBO and may
provide additional insight into why QBO-like circula-
tions are often absent in general circulation models.

The paper is organized as follows. Section 2 briefly
describes the observed characteristics and theory of the
zonal wind and ozone QBOs. Section 3 describes the
model equations, basic states, and radiative–photochem-
ical parameterizations. Section 4 presents a reference
simulation (RS) of the QBO, where ozone feedbacks
are neglected, and compares the results with Upper At-
mosphere Research Satellite (UARS) observations. Sec-
tion 5 compares the RS with the results of experiments
that examine separately and in combination the effects
of wave–ozone and zonal mean–ozone (ozone QBO)
feedbacks. The summary and conclusions are presented
in section 6.

2. Characteristics and theory of the QBO

a. Zonal wind QBO

Observations of the lower equatorial stratosphere re-
veal the unique time, height, and latitude variations of
the QBO (Wallace 1973; Dunkerton and Delisi 1985;
Naujokat 1986). The wind patterns are irregular, with
periods ranging from 22 to 34 months and a mean period
of ;28 months. The easterly winds are generally stron-
ger than the westerly winds, with maximum wind speeds
over the equator near the 26-km level. Westerly wind
regimes persist longer than easterly wind regimes at
lower levels; easterly winds remain longer than westerly
winds at upper levels. The oscillation has a meridional
extent of about 158 latitude and has little zonal variation
(Andrews et al. 1987). The QBO is nearly symmetric
about the equator, except in the middle atmosphere near
the solstices (Dunkerton and Delisi 1997).

A theoretical explanation for the QBO, which was
originally developed by Lindzen (1971) and Holton and
Lindzen (1972), is that the momentum deposition as-
sociated with damped vertically propagating equatorial
waves drives the zonal mean flow. Holton and Lindzen
used a simple 1D model to demonstrate how thermally
and mechanically damped Kelvin and Rossby–gravity
waves can produce zonal mean flow variations that re-
semble many of the observed characteristics of the zonal
wind QBO. Although later two- and three-dimensional
simulations of the QBO support the Holton and Lindzen
theory, several unresolved problems remain. For ex-
ample, observations reveal that Kelvin and Rossby–
gravity waves alone do not possess the momentum flux
necessary to drive the observed zonal mean circulation
(Lindzen and Tsay 1975; Salby et al. 1984; Takahashi
and Boville 1992). This is especially true for the Ross-
by–gravity wave, which appears only intermittently in
observations. Investigations into other momentum
sources that contribute to the driving of the QBO include
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laterally propagating Rossby waves (Dunkerton 1983)
and westward-propagating gravity waves (Takahashi
and Holton 1991). Gravity waves have been suggested
as a possible source of both easterly and westerly mo-
mentum (Dunkerton 1997), although their precise role
in the QBO has yet to be determined.

b. Ozone and temperature QBOs

Because ozone is largely controlled in the lower
stratosphere by dynamics and in the mid- to upper strato-
sphere by temperature-dependent photochemistry, its
natural variability is intimately connected to the QBO.
In fact, analysis of satellite data reveals an ozone QBO
whose spatial and temporal structure is more compli-
cated than previously thought (Bowman 1989; Hol-
landsworth et al. 1995; Tung and Yang 1994; Cordero
et al. 1997).

As first pointed out by Reed (1964), because the tem-
perature QBO is symmetric about the equator and has
a phase reversal at about 6158 latitude, thermal wind
balance in the westerly (easterly) shear zones of the
QBO requires warm (cold) anomalies at the equator.
Maintenance of this temperature anomaly against ra-
diative damping results in a secondary meridional cir-
culation that produces sinking (rising) motion in the
westerly (easterly) shear zones near the equator. Because
the vertical gradient of ozone volume mixing ratio is
positive in the lower stratosphere, the vertical motions
associated with the westerly (easterly) phase of the QBO
produce positive (negative) ozone anomalies near the
equator. A QBO is also seen in the total-column ozone
field (Hollandsworth et al. 1995).

The vertical structure of the ozone QBO has been
analyzed using ozone profiles from satellite observa-
tions. The Stratospheric Aerosol and Gas Experiment
(SAGE II) reveals significant ozone anomalies in the
equatorial region of the lower stratosphere (20–27 km)
and middle stratosphere (30–38 km), with a node near
28 km (Zawodny and McCormick 1991; Hasebe 1994;
Randel and Wu 1996). An analysis of the vertical ozone
profiles from the Halogen Occultation Experiment
(HALOE) shows a similar structure of the ozone QBO,
although the node between the lower- and middle-strato-
sphere QBO variations is located near 30 km in altitude
(Cordero et al. 1997). Significant QBO variations in
tropical nitrogen dioxide (NO2) were also noted in the
SAGE II observations. A further modeling study by
Chipperfield et al. (1994) demonstrates that the two-cell
ozone QBO structure is due to ozone advection in the
lower stratosphere and chemistry associated with re-
active nitrogen (NOy) in the middle stratosphere.

3. Model description

The dynamics of the 2D model used here is based on
Takahashi (1987). Briefly, the model atmosphere, which
accounts for wave–mean but not wave–wave interac-

tions, is represented by zonal mean and linear wave
descriptions of the primitive equations. Specifying the
geopotential height of both a Kelvin wave and a
Rossby–gravity wave at the lower boundary drives the
model circulation. Takahashi’s model captures the es-
sential characteristics of the QBO in the lower strato-
sphere and yields results that are qualitatively similar
to Takahashi and Boville’s (1992) three-dimensional
QBO simulation.

We extend Takahashi’s (1987) model to include the
diabatic effects of both wave and zonal mean–ozone
heating as follows. Perturbation (wave) and zonal mean
ozone continuity equations are coupled via the diabatic
heating to the perturbation and zonal mean temperature
equations, respectively. Therefore, the model is capable
of simulating the zonal wind, temperature, and ozone
QBOs below 30 km and can account for how changes
in the wave fields influence the zonal mean circulation.
Processes that influence the QBO above 30 km, such as
chemical feedbacks and the interaction between the
QBO and semiannual oscillation, are not captured by
our model.

a. Governing equations

The governing equations, which consist of momen-
tum in the zonal and vertical directions, mass continuity,
temperature, and ozone continuity, are represented on
an equatorial beta plane in log-pressure coordinates,
where z 5 2H ln(p/ps); H 5 7 km is the scale height
and ps is the surface pressure. All dependent variables
are partitioned into a zonal mean (denoted with over-
bars) and two wave components (denoted with primes),
a wave-1 (k 5 1) Kelvin wave and a wave-4 (k 5 4)
Rossby–gravity wave. These zonal wavenumbers are
consistent with other modeling studies (Takahashi 1987;
Takahashi and Boville 1992) and observations (Yanai
and Maruyama 1966; Wallace and Kousky 1968).

Zonal mean equations:

]u ]u ]u ]
1 y 1 w 2 byy 5 2 (u9y9)

]t ]y ]z ]y

1 ]
2 (ru9w9)

r ]z
21 ¹ u, (1)D

]y ]F
21 byu 5 2 1 ¹ y , (2)D]t ]y

]y 1 ](rw )
1 5 0,

]y r ]z
(3)
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TABLE 1. List of symbols.

x, y, z 5 2H ln(p/p0) Eastward, northward, and vertical di-
rections

p0 Sea level reference pressure
H Density scale height
r(z) 5 r0 exp(2z/H) Basic-state density
r0 Mean sea level density
b Northward gradient of the Coriolis pa-

rameter evaluated at the equator
u(z), T (z), g (z) Basic-state zonal mean wind, tempera-

ture, and ozone mixing ratio
N2(T) Brunt–Väisälä frequency squared
u9(x, y, z, t), y9(x, y, z, t) Zonal, meridional, and vertical wind

components
w9(x, y, z, t) Perturbation vertical wind component
T9(x, y, z, t) Perturbation temperature
C9(x, y, z, t) Perturbation geopotential
g9(x, y, z, t) Perturbation ozone volume mixing ra-

tio
aN(z) Newtonian cooling coefficient
aR(z) Raleigh friction
A(z; T , g ) Ozone heating coefficient
B(z; T , g ), C(z; T , g ) Radiative–photochemical coefficients

in the ozone continuity equation

]F ]F ]F ]z z z 21 y 1 w 1 N w 5 2 (y9F9 ) 2 a (F )z N z]t ]y ]z ]y
21 Ag 1 ¹ F , (4)D z

]g ]g ]g ]
1 y 1 w 5 2 (y9g9)

]t ]y ]z ]y

1 ]
2 (rw9g9)

r ]z

2 Bg 2 CF .z (5)

Wave equations:

] ] ]u ]u ]F9
1 u u9 1 y9 1 w9 2 byy9 5 2 2 a u9R1 2]t ]x ]y ]z ]x

21 ¹ u9, (6)D

] ] ]F9
1 u y9 1 byu9 5 2 2 a y9R1 2]t ]x ]y

21 ¹ y9, (7)D

]u9 ]y9 1 ](rw9)
1 1 5 0,

]x ]y r ]z
(8)

] ] ]Fz 21 u F9 2 y9 1 N w9 5 2a F9 1 Ag9z N z1 2]t ]x ]y
21 ¹ F9, (9)D z

] ] ]g ]g
1 u g9 1 y9 1 w9 5 2Bg9 2 CF9z1 2]t ]x ]y ]z

22 a g9 1 ¹ g9.R D

(10)

The geopotential F is related to the temperature by T
5 (H/R)]F/]z. The dissipation operator, , is given by2¹D

2 2 2] ] ]
2¹ 5 n 1 k 1 , (11)D 2 2 21 2]z ]x ]y

where n and k are the vertical and horizontal diffusion
coefficients, respectively; the remaining symbols ap-
pearing in (1)–(10) have their standard meteorological
meanings (see Table 1).

b. Boundary conditions

At the upper boundary (zt 5 34 km) we set w 5 u z

5 y z 5 F z 5 0. At the lower boundary (zb 5 17 km)
we set u 5 y 5 F 5 F z 5 0; w is solved for explicitly
at the lower boundary by integrating the continuity
equation (3) downward from the upper boundary. The
geopotential heights for the Kelvin and Rossby–gravity
waves at the lower boundary are

2F9 5 A exp(2by /2c ) Re[expik (x 2 c t)], (12)K K K K K

1/2 2bm b |m |yR RF9 5 A y exp 2R R 1 2 1 2N 2N

3 Re[expik (x 2 c t)], (13)R R

where the subscripts K and R refer to the Kelvin and
Rossby–gravity waves, respectively; (cK, cR) are the
phase speeds; (kK, kR) are the zonal wavenumbers;
(mK, mR) are the vertical wavenumbers; and (AK, AR)
are the specified wave amplitudes. From (12) and (13),
wave solutions at the lower boundary can be obtained
for y9, w9, T9, g9 (see appendix).

In the meridional direction the model domain extends
from the equator to 64500 km (;6408 latitude). Sym-
metry about the equator is assumed for all zonal mean
and wave fields, except the meridional motion of the
Rossby–gravity wave, which is antisymmetric about the
equator. Because the Kelvin and Rossby–gravity waves
are equatorially trapped, we assume that sufficiently far
from the equator all zonal mean and wave fields are
zero (u 5 y 5 Fz 5 g 5 0).

c. Basic states and radiative–photochemical
parameterizations

The initial temperature and ozone distributions used
in the radiative and photochemical calculations are con-
structed from profiles representative of the September
equinox. The temperature distribution shown in Fig. 1a
is derived from the dataset of Fleming et al. (1988). The
ozone volume mixing ratio distribution shown in Fig.
1b is from McPeters et al. (1984) from 17 to 27 km and
from Keating et al. (1985) above 27 km. The ozone and
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FIG. 1. Basic-state distribution of (a) zonal mean temperature, T (contour interval 5 K); and
(b) zonal mean–ozone volume mixing ratio, g (contour interval 1 ppmv).

temperature data are initialized to the model grid using
a cubic spline interpolation routine.

The temporal evolution and spatial distribution of the
ozone volume mixing ratios for the zonal mean and
wave fields are governed by Eqs. (5) and (10), respec-
tively. Because the wave transport terms in the ozone
continuity Eq. (5) have relatively little effect on the
ozone QBO (Ling and London 1986), they are hereafter
neglected. In the absence of dynamical motions, the
ozone fields relax to zero. Thus the modeled zonal mean
ozone and temperature fields represent departures from
their annual mean distributions.

Shown in Figs. 2a–c are the latitude–height distri-
butions of the radiative–photochemical coefficients, A,
B, and C, which are calculated using the reference tem-
perature and ozone distributions, and a latitude-depen-
dent solar zenith angle representative of the September
equinox. The parameterization for the ozone heating
coefficient, A, is similar to that of Hartmann and Garcia
(1979) and is explained in detail in Nathan (1989) and
Nathan and Li (1991). The photochemical relaxation
parameters, B and C, are calculated using the parame-
terization of Stolarski and Douglass (1985), which ex-
plicitly accounts for the ozone and temperature depen-
dencies of catalytic cycles involving odd nitrogen, odd
hydrogen, and chlorine species. Although the modeling
of ozone is simple, it contains the essential processes
necessary to describe the time evolution of the zonal
mean and perturbation ozone fields (Zhu and Holton
1986; Nathan et al. 1994; Echols and Nathan 1996;
Cordero et al. 1998).

d. Model parameters

The coefficients for Raleigh friction, aR(z), and New-
tonian cooling, aN(z), are chosen of the form

27 21a (z) 5 3 10 sR 5
27 211 2 1 2a (z) 7 3 10 sN

25 21 241 10 s exp[5 3 10 (z 2 z )]. (14)t

The Raleigh friction coefficient is identical to Taka-
hashi’s (1987). The Newtonian cooling coefficient is

similar to Fels’s (1982), which was calculated using
radiative transfer rates that are dependent on the wave
spatial scale. The increasing magnitudes of the Raleigh
friction and Newtonian cooling coefficients toward the
upper levels of the model are chosen to prevent spurious
wave reflections off the top boundary. To preserve nu-
merical stability, Raleigh friction is only applied to the
wave fields.

The values for the horizontal and vertical viscosity
coefficients, which are discussed in detail in Takahashi
(1987), are k 5 500 m2 s21 and n 5 0.04 m2 s21,
respectively.

The values for the wave parameters in (12) and (13)
are similar to those used in Takahashi and Boville’s
(1992) 3D model. For the Kelvin wave cK 5 30 m s21,
kK 5 1, and AK 5 300 m2 s22, and for the Rossby–
gravity wave cR 5 230 m s21, kR 5 4, and AR 5 204
m2 s22.

In the numerical simulations presented below, the me-
ridional and vertical grid resolutions are, respectively,
300 km (;2.78 latitude) and 0.5 km. The initial con-
dition is a motionless atmosphere, and all of the model
simulations are run in a perpetual equinox condition;
that is, seasonal variations are not included in the model.

4. QBO reference simulation
(ozone dynamics interactions omitted)

In this section we carry out an RS of the zonal wind,
temperature, and ozone QBOs, where ozone feedbacks
are neglected, corresponding to A 5 0 in both (4) and
(9). This RS, which is compared with UARS observa-
tions, will serve as a basis for comparison with the
model experiments incorporating ozone dynamics in-
teractions, which are described in section 5.

a. Zonal wind QBO

Figure 3a shows the time–height cross section of the
zonal wind near the equator. The maximum winds are
located between ;23- and ;26-km altitude, and vary
between ;230 and ;25 m s21, a range of 55 m s21.
The easterly winds are stronger than the westerly winds
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FIG. 2. Distribution of the (a) local ozone heating coefficient, A (contour interval 0.3 m s23);
(b) ozone damping coefficient, B (contour interval 3.0 s21 3 1027); and (c) ozone–temperature
coupling coefficient C (contour interval 0.3 s m21 3 10212).

FIG. 3. (a) Time–height cross section of the zonal wind at the equator for the RS. Contour interval
is 5 m s21, and dotted contours represent easterly winds. (b) Amplitude of the modeled zonal wind
power spectra over the equator for the reference simulation. Contour interval is 1 m s21.

and persist longer at higher levels. The westerly winds
persist longer at lower levels; between ;20 and ;30
km, the westerly winds descend more rapidly than the
easterly winds. The location and strength of the model
winds agree well with Naujokat’s (1986) observations
showing maximum easterly winds of ;30 m s21 at 26
km and maximum westerly winds of ;15 m s21 at 24
km.

To facilitate comparison of the dominant modes of
variability of the model, a power spectrum analysis of
the model output is computed for each experiment. The
power spectra are computed by calculating the ampli-
tude of the discrete complex Fourier transform of the
time series. The zonal wind power spectrum over the
equator, which is displayed in Fig. 3b, shows a primary
peak of 13 m s21 at 26 months near 25-km altitude.

Strong vertical wind shears exist at both the top and
bottom boundaries, with the QBO signature maximized
between 19- and 32-km altitude. The amplitude and
period of the modeled QBO are very similar to obser-
vations made by the UARS High Resolution Doppler
Imager (HRDI) instrument (Cordero et al. 1997). The
dominant period of variability remains constant with
latitude, whereas the amplitude rapidly diminishes (;8
m s21 at 7.58 and only ;4 m s21 at 128). At the equator,
a small-amplitude peak near 12 months, which is as-
sociated with a harmonic of the QBO frequency, is also
evident.

b. Temperature QBO
The time–height structure of the zonal mean temper-

ature QBO is displayed in Fig. 4. The temperature anom-
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FIG. 4. Time–height cross section of modeled temperature at the
equator for the RS. Contour interval is 1.0 K, and dotted contours
represent negative values. FIG. 5. Latitude–time cross section of the zonal wind at 24 km.

Contour interval is 5 m s21, and dotted contours represent easterly
winds.

FIG. 6. Time–height cross section of modeled ozone over the equa-
tor for the RS. Contour interval is 0.1 ppmv, and dotted contours
represent negative values.

aly ranges from about 23.5 to 3 K at the equator to
about 22 to 1 K at 108. The slightly larger cold tem-
perature anomaly results from the stronger easterly wind
shears and the larger northward heat flux associated with
the Rossby–gravity wave. The modeled QBO temper-
ature power spectrum is maximized at 1.2 K near 25-
km altitude. This is in good agreement with observations
from the Microwave Limb Sounder (MLS) instrument
on board UARS, which measured a QBO temperature
amplitude ranging from 1.2 to 1.6 K near 25-km altitude
(Cordero et al. 1997).

The wind and temperature QBO regions descend with
time in approximate agreement with observations. The
westerlies descend relatively quickly between 23 and
32 km of altitude, and more slowly below 23 km. The
easterlies do the opposite, descending slowly in the up-
per stratosphere and descending quickly in the lower
stratosphere. On average, descent rates are ;0.8 km
month21, in approximate agreement with satellite ob-
servations (Ortland et al. 1996).

Figure 5 shows a latitude–time cross section of the
zonal wind at 24 km. The easterlies and westerlies are
maximized near the equator, gradually diminishing with
increasing latitude. In agreement with observations
(Dunkerton and Delisi 1985), the easterlies extend far-
ther from the equator than the westerlies, reaching near
158. The ‘‘nosing down’’ of the westerlies from higher
to lower levels, as originally identified by Hamiliton
(1984), is also observed in the model simulations. The
westerlies at upper levels (;30 km) are confined equa-
torward of 58. As the westerly winds descend, they grad-
ually spread meridionally reaching nearly 158 by 22-km
altitude.

c. Ozone QBO

Figure 6 displays the time–height cross section of the
ozone QBO near the equator. The maximum ozone

anomaly is located between ;23- and ;26-km of al-
titude and ranges from 20.6 to 0.5 ppmv over the 11-
yr integration. The magnitudes of the anomalies agree
reasonably well with previous observations of the trop-
ical lower stratosphere (Hasebe 1994; Cordero et al.
1997), although the vertical structures are somewhat
different. However, we note that other processes not
captured by our model, such as tropical–midlatitude ex-
change, annual variations in solar forcing, and seasonal
variations in the residual circulation, may play a role in
the observed ozone distribution.

Figure 7 portrays a height–latitude cross section of
the QBO model simulations for day 1350 (descending
easterlies) and day 1900 (descending westerlies). For
the temperature field, cold anomalies are associated with
strong easterly shear zones, whereas warm anomalies
are associated with westerly shear zones. The vertical
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FIG. 7. Latitude–height cross section for (a)–(d) day 1350 and (e)–(h) day 1900 for (a), (e)
zonal mean wind (contour interval 5 m s21); (b), (f ) temperature (contour interval 1.0 K); (c),
(g) vertical wind (contour interval is 0.05 mm s21); and (d), (h) zonal mean ozone volume mixing
ratio (contour interval 0.1 ppmv). Dotted contours represent negative values.

motion and temperature fields are mutually consistent;
that is, downward motion is required to maintain the
warm anomalies that are damped by radiative cooling.
The dynamically driven ozone QBO is consistent with
the vertical motion field and with Plumb and Bell’s
(1982) conceptual model of how the QBO influences

the meridional circulation of the Tropics. In particular,
during descending easterlies and thus cold temperature
anomalies, the upward motion transports low ozone air
upward, producing a negative ozone anomaly near the
equator. Poleward of the equator the reverse feature is
observed, which results from the downward branch of
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FIG. 8. Latitude–time plot of total-column ozone from the RS. The
contour interval is 1 DU, and dotted contours represent negative
values.

FIG. 9. Time series of zonal wind, temperature, and ozone volume
mixing ratio over the equator at 25-km altitude for the RS. Zonal
wind is given in m s21 (solid line), temperature in K (dotted line),
and ozone mixing ratio in ppmv 3 10 (dashed line).

the QBO induced residual circulation. The larger neg-
ative ozone anomalies in the model are due to the stron-
ger easterly wind shears and thus colder temperature
anomalies that induce stronger upward motion near the
equator.

Although the meridional structure of the modeled
ozone QBO is similar to the symmetric circulation of
Plumb and Bell (1982), the meridional structure of the
observed ozone QBO shows seasonal variations (Tung
and Yang 1994; Jones et al. 1998; Kinnersley 1999).
Tung and Yang attribute these structural changes to the
annual cycle. Because the present model is run for a
perpetual equinox, the changes in the meridional struc-
ture of the QBO that may result from the annual cycle
are excluded from consideration.

A latitude–time plot of the total column ozone (TCO)
field is shown in Fig. 8. The maximum TCO ranges
from 26 to 6 DU (Dobson Units) and is within the
observed estimates of the tropical QBO signal (65–10
DU) derived by Hollandsworth et al. (1995). The largest
TCO anomalies occur near the equator. Smaller TCO
values of opposite phase are observed away from the
equator. Sufficiently far from the equator the TCO ap-
proaches zero, consistent with our lateral far-field
boundary conditions. The maximum positive TCO
anomalies occur at roughly the time when the maximum
westerlies reach 22 km, in general agreement with ob-
servations (Hasebe 1993).

The phasing among zonal wind, temperature, and
ozone in the tropical stratosphere at 25-km altitude are
displayed in Fig. 9. At this level, the westerly winds
reach slightly over ;20 m s21 while the easterlies winds
reach ;28 m s21. The temperature and ozone anomalies
are nearly ;3 K and ;0.3 ppmv, respectively. The
ozone and temperature fields are nearly in phase, and
both lead the zonal wind by over a quarter cycle (;8
months). There is little variation in the phase among

zonal wind, temperature, and ozone between 20 and 28
km over the equator. Above 30 km, ozone is primarily
controlled by (temperature dependent) photochemistry
rather than dynamics; thus the ozone and temperature
fields are out of phase.

d. UARS observations

The above model results are now compared with
UARS observations. We obtain zonal wind observations
from the HRDI instrument, temperature observations
from MLS, and ozone observations from the HALOE
instrument. The HRDI winds are projected onto a 58
grid and then zonally and monthly averaged (Ortland et
al. 1996). The MLS version-3 data (Fishbein et al. 1996)
are binned between 48S and 48N and zonally averaged.
The HALOE instrument uses a solar occultation sound-
ing technique in the infrared to obtain vertical profiles
of ozone and other constituents during daily sunrises
and sunsets (Park et al. 1996). Because of this observing
pattern, it takes nearly a month to obtain near-global
coverage; thus the time series of ozone is constructed
from monthly averages. Further details of the UARS
instrument accuracy for these observations can be found
in Cordero et al. (1997) and references therein. Although
UARS began gathering observations in late 1991, aero-
sols from the eruption of Mt. Pinatubo significantly in-
fluenced data during 1992. Therefore, we only use data
spanning the years 1993–97, which covers two full QBO
cycles.

Figure 10 shows a zonally averaged time series of
zonal winds, temperature anomalies, and ozone anom-
alies at 26 km near the equator covering the period
1993–97. The temperature and ozone anomalies were
obtained by subtracting a time mean from the obser-
vations. At 26-km altitude, the zonal wind ranges from
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FIG. 10. Time series of the equatorial observed zonal wind (from
UARS HRDI), and anomalies (observed value minus time mean) of
temperature (from UARS MLS) and ozone volume mixing ratio (from
UARS HALOE) near 26-km altitude. Zonal wind is given in m s21

(solid line), temperature in K (dotted line), and ozone mixing ratio
in ppmv 3 10 (dashed line).

;10 to ;230 m s21 with a period of slightly over two
years. The temperature QBO leads the zonal wind os-
cillation by 5–6 months, or nearly a quarter period. The
temperature anomaly is over 5 K during this period,
which is larger than previous observations. The ob-
served ozone anomaly, which is roughly in phase with
the observed temperature anomaly, reaches almost 0.3
ppmv. In contrast to the zonal wind and temperature
anomalies, the ozone anomalies are characterized by
more variability. Although this may be due in part to
instrument measurements, it is also likely that horizontal
transport of ozone from higher latitudes may be partially
responsible for some of the ozone variability.

Comparisons of the modeled time series and those
from UARS show good agreement. The magnitude of
the modeled zonal wind variations and observations are
similar, although the range of values is different. The
magnitudes of the temperature and ozone anomalies also
compare well. Modeled ozone and temperature anom-
alies are approximately in phase, in agreement with ob-
servations. Hasebe (1994) notes that the in-phase re-
lationship between the ozone and temperature QBOs can
be attributed to zonal mean–ozone feedbacks. However,
in our model, we obtain the observed phase relationship
without any explicit ozone feedbacks.

Overall, the model simulations compare well with
observations. The zonal winds and temperatures are
within the range of observed values, and the structure
of the ozone QBO in the Tropics is also fairly well
modeled. Although the model is idealized, it contains
the necessary processes to study the interactions be-
tween ozone and dynamics as outlined in the introduc-
tion. In addition, the good correspondence between the
modeled fields and observations provides additional

confidence in the use of this model for the analysis of
ozone–dynamics interactions.

5. Ozone dynamics interactions

To understand the role ozone heating plays in the
QBO, results are now presented from three model ex-
periments. Experiment 1 allows for wave–ozone feed-
backs (A ± 0 in 9) but neglects the ozone QBO feed-
backs (A 5 0 in 4). Experiment 2 neglects wave–ozone
feedbacks (A 5 0 in 9) but allows for the ozone QBO
feedbacks (A ± 0 in 4). Experiment 3 allows for both
wave–ozone and ozone–QBO feedbacks (A ± 0 in 4
and 9). The results of these experiments are compared
with the reference simulation (RS) which, recall, de-
couples the ozone heating from the dynamics (A 5 0
in 4 and 9).

a. Wave–ozone feedbacks (expt 1)

Echols and Nathan (1996) and Cordero et al. (1998)
show analytically that (linear) wave ozone feedbacks
can spatially modulate forced equatorial Kelvin and
Rossby–gravity waves, producing significant changes in
the wave fluxes and thus the driving of the zonal mean
flow.

To better understand the wave–ozone feedback pro-
cess and its effect on the QBO, this section is divided
into three parts: Part 1 briefly reviews the underlying
theory and physical mechanisms that govern how ozone
heating modulates the wave fields; part 2 presents our
2D model results, wherein the wave–ozone feedbacks
alone are considered (i.e., the ozone QBO is neglected);
and part 3 calculates the Eliassen–Palm flux and cor-
responding zonal mean body force that results from the
wave–ozone feedbacks.

1) THEORETICAL BASIS

Following Leovy’s (1966) reasoning regarding the
photochemical destabilization of mesospheric gravity
waves, the linear, vertical spatial modulation of equa-
torial waves due to wave–ozone feedbacks can be un-
derstood as follows. In regions where the background
ozone volume mixing ratio increases with altitude,
wave-induced downward (upward) displacements of
ozone rich (poor) air produce local diabatic heating
(cooling). For such wave-induced perturbations, it can
be shown that the vertical velocity and temperature
fields are in phase. Therefore, vertical velocity and tem-
perature are positively correlated, which is associated
with the transformation of wave potential energy to
wave kinetic energy and thus wave amplification.

For example, Echols and Nathan (1996) and Cordero
et al. (1998) have shown that for slowly varying back-
ground fields and weak diabatic heating, the local spatial
damping rate of the Kelvin wave can be written as
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FIG. 11. As in Fig. 3, except for expt 1.

N Agzm 5 2 a 2 . (15)i N2 2[ ]2k c NK K

Thus in the equatorial stratosphere below (above) ;35
km, where g z . 0 (,0), the vertical ozone advection
reduces the damping due to Newtonian cooling and is
thus destabilizing (stabilizing). An expression similar to
(15) can also be derived for the Rossby–gravity wave.

2) NUMERICAL RESULTS

Experiment 1 examines the effects of wave–ozone
feedbacks on the QBOs in zonal mean wind, tempera-
ture, and ozone. Generally, the feedbacks have their
greatest impact on the zonal mean temperature field,
with a lesser impact on the zonal wind and ozone fields.

A time–height cross section of the zonal wind QBO
at the equator for expt 1 is shown in Fig. 11. Although
the time–height structure of the oscillation and strength
of the zonal winds at the equator are similar to the RS
(see Fig. 3a), there are several important differences.
For example, the westerly shear zones between 22 and
26 km are more pronounced than in the RS, and the
QBO period is reduced from 26 months in the RS to
24 months. At 128 latitude between 22- and 30-km al-
titude, the westerly winds are weaker by ;2 m s21 (30%)
compared to the RS, whereas the easterly winds are
stronger by ;1 m s21 (5%).

There are also significant changes in the temperature
QBO between expt 1 and the RS. For example, near the
equator, the temperature QBO increases by ;0.5K
(;20%). The positive temperature anomaly increases
from 3.0 to 3.5 K near 23 km, whereas the negative
temperature anomaly decreases only slightly between
20 and 30 km. As distance from the equator increases,
the differences between expt 1 and the RS decrease. The
temperature changes due to the wave–ozone feedbacks
can also be seen in the ozone distribution. Compared
to the RS, the ozone QBO amplitude in expt 1 is over
10% larger between 22 and 27 km throughout the Trop-
ics.

3) ELIASSEN–PALM FLUX

The zonal mean body force per unit mass (I) pro-
duced by the divergence of EP flux provides an effective
measure of the wave driving of the zonal mean circu-
lation. Integrating over a meridional cross section, I
can be written as (Andrews et al. 1987)

]^F & ] byz^= · F& 5 5 r y9f9 2 u9y9 , (16)z21 2]z ]z N

where F is the EP flux vector, ^ & 5 L21 dy, and L`#2`

5 1200 km is the meridional scale of the QBO.
To provide greater understanding of how wave ozone

feedbacks affect the QBO, we calculate I for zonal
mean wind profiles corresponding to different phases of
the QBO. Figure 12 compares ^I& from the RS and expt
1 at day 1900, when descending westerly winds of the
QBO are observed in the middle stratosphere. During
this period, the maximum EP flux for the Kelvin wave
occurs near the maximum westerly shear zone, at ap-
proximately 25 km in altitude. The wave–ozone feed-
backs (expt 1) yield wave amplitudes that are up to 10%
larger than the RS, resulting in a stronger driving of the
zonal mean circulation. During the descending easterly
phase of the QBO (not shown), the maximum EP flux
due to the Rossby–gravity wave occurs near the strong
easterly shear zones, and again, wave–ozone feedbacks
increase the wave driving by 5%–10%. These results
are consistent with the studies of Echols and Nathan
(1996) and Cordero et al. (1998), which showed that
EP fluxes are enhanced by the heating due to wave–
ozone feedbacks.

b. Zonal mean–ozone feedbacks (expt 2)

Experiment 2, which examines the diabatic heating
effects of the ozone QBO on the zonal mean circulation
[A ± 0 in Eq. (4); A 5 0 in Eq. (9)], shows that the
diabatic effects of the ozone QBO produce significant
changes in the zonal wind, temperature, and ozone dis-
tributions. The results from expt 2 are summarized in
Fig. 13, which shows a time–height cross section of the
equatorial zonal wind and the corresponding power
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FIG. 12. (a) Zonal wind at the equator on day 1900 in m s21. (b) Vertical profile of the
latitudinally integrated density weighted EP flux divergence (m s21 day21), calculated using the
basic-state profile from day 1900. The solid lines denote calculations made from the RS, and
the dashed lines denote calculations made from expt 1.

FIG. 13. As in Fig. 3, except for expt 2.

spectrum. The ozone QBO increases the maximum am-
plitude of the zonal wind by ;1–2 m s21 and reduces
the oscillation period by ;1 month. Like expt 1, the
maximum westerly shear zones are stronger compared
to the RS. Away from the equator, the zonal winds are
;10% larger then the RS and the difference between
the easterly and westerly wind regimes is enhanced.
Similar changes in the zonal wind QBO due to the ozone
QBO have been obtained by Li et al. (1995).

The amplitude of the temperature QBO is ;20% larg-
er than the RS within 08–158 latitude. The warm anom-
alies are most affected by the ozone QBO, increasing
at the equator from ;3 K in the RS to ;4 K in expt
2. Correspondingly, zonal mean ozone anomalies also
increase in expt 2 from ;10% at the equator to ;30%
elsewhere. The larger ozone anomalies are due to a
stronger meridional circulation. For example, in expt 2,
the amplitude of the zonal mean vertical motion field
increases by over 10% near the equator and by over
25% at the poleward flanks of the Tropics. This is a
positive feedback, whereby the ozone QBO increases
the magnitude of the temperature QBO, thus producing
a larger-amplitude ozone QBO.

These results at first seem to contradict Hasebe
(1994), who suggests that the diabatic influence of the
ozone QBO will reduce the meridional circulation of
the QBO. However, because the RS and expt 2 have
different zonal wind shears and temperatures, we cannot

directly compare the meridional circulations of these
simulations. Moreover, Hasebe’s model is unable to cap-
ture how the zonal mean–ozone feedbacks affect the
zonal mean wind, temperature, and ozone distributions.

Because the wave fields are sensitive to the back-
ground distribution of temperature and zonal wind,
changes in the temperature QBO due to the diabatic
feedbacks of the ozone QBO are not independent of the
driving-wave fields. Nevertheless, to better isolate the
effects of the ozone QBO on the meridional circulation,
we compare simulated QBOs of roughly equal strength
with and without the ozone feedbacks. This is accom-
plished by running the expt 2 simulation with reduced
wave amplitudes, producing a QBO that has a similar
vertical wind shear and temperature to that of the RS.
This enables a direct comparison of the mean meridional
circulation for simulations with and without zonal
mean–ozone feedbacks. We find that by reducing the
wave-forcing amplitudes of the Kelvin and Rossby–
gravity waves by about 9% (zonal mean ozone feed-
backs are included), we can produce a QBO of roughly
equal strength as the RS. Although the vertical wind
shear and temperature are of roughly equal strength, the
QBO period for the reduced wave forcing case is almost
six months longer than the RS. However, in the context
of studying the meridional circulation, the length of the
QBO period is not important.

A comparison of the two QBO simulations indicates
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TABLE 2. Range of values for the QBO in zonal wind, temperature, and ozone volume mixing ratio at the equator and at 128 latitude for
the RS and the three experiments. The period of the QBO is calculated using the zonal wind at the equator.

Case Period

Equator

U (m s21) T (K) O3 (ppmv)

128 Latitude

U (m s21) T (K) O3 (ppmv)

Reference
Expt 1
Expt 2
Expt 3

28 months
25 months
29 months
28 months

26 → 230
24 → 230
27 → 233
27 → 234

3 → 24.8
3.6 → 24.6
3.6 → 25.3
4.6 → 25.0

0.5 → 20.7
0.54 → 20.7
0.55 → 20.75
0.58 → 20.75

4 → 215
3 → 216

3.5 → 218
4.5 → 220

1.5 → 21.1
1.5 → 21.2
1.4 → 21.1
1.6 → 21.2

0.35 → 20.2
0.37 → 20.22
0.45 → 20.25
0.47 → 20.28

that zonal mean–ozone feedbacks reduce the strength of
the mean meridional circulation. In particular, when
zonal mean–ozone feedbacks are included, the vertical
motion field is 15% weaker in amplitude compared to
the RS. A smaller reduction in the strength of the zonal
mean ozone QBO is also observed. As previously ex-
plained, the additional diabatic heating produced by the
ozone QBO partially offsets the heating required to
maintain thermal wind balance in the presence of ra-
diative cooling. Thus, in areas of westerly wind shear,
downward transport of ozone will elevate the radiative
equilibrium temperature so that less vertical motion will
be required to maintain the temperature perturbation
against radiative damping.

To summarize this section, the zonal mean ozone
changes are due to two feedback processes, one direct
and the other indirect. First, the diabatic feedbacks of
the ozone QBO reduces the QBO induced meridional
circulation, which directly changes the zonal mean
ozone field. Second, the diabatic feedbacks of the ozone
QBO results in changes in the wind and temperature
fields, which in turn alters the absorption properties of
the driving waves, which indirectly changes the zonal
mean ozone field. The net result of the indirect changes
is stronger zonal wind shears and temperature gradients,
which are maintained by an enhanced meridional cir-
culation. This wave-enhanced meridional circulation
more than offsets the changes in the meridional circu-
lation due to the diabatic heating effects of the ozone
QBO.

c. Full ozone coupling (expt 3)

Experiment 3 (expt 3) includes the diabatic heating
produced by both wave–ozone and zonal mean–ozone
feedbacks [A ± 0 in Eqs. (4) and (9)]. Generally, expt
3 is a combination of the results from expt 1 and expt
2. The results obtained at the equator for the three ex-
periments are summarized in Table 2. Briefly, the QBO
period is reduced by the wave–ozone feedbacks, in-
creased by the zonal mean–ozone feedbacks, and resides
between these results for full ozone coupling. The am-
plitude of the zonal wind, temperature, and ozone QBO
variations follows a similar pattern.

The minimum and maximum temperature and ozone
anomalies at the equator during the last five years of
integration for the RS and three experiments are dis-
played in Fig. 14. The largest differences are found

between 22- and 27-km altitude. The maximum tem-
perature anomaly increases from 3.0 to 3.5 K (20%)
when either wave ozone–feedback or zonal mean–ozone
feedbacks are included. The ozone-induced temperature
anomalies increase to over 4.5 K (;50%) when both
ozone feedbacks are included. Significant changes in
the maximum ozone distribution are also evident in Fig.
14.

The ozone feedbacks also produce significant circu-
lation changes away from the equator. For example, at
128 latitude the easterly phase of the QBO is stronger
in all three experiments (see Fig. 15), whereas the west-
erly winds are generally weaker. With full ozone cou-
pling the maximum easterlies (westerlies) reach 20 m
s21 (3.5 m s21), an increase (decrease) of over 30%
(10%) compared to the RS. The magnitude of the ozone
and temperature variations also increases at 128 latitude
(not shown): the amplitude of the ozone QBO increases
by nearly 0.1 ppmv (;25%); the amplitude of the tem-
perature QBO increases by less than ,10%. These in-
creases are evident within ;158 of the equator and in-
dicate the importance of ozone feedbacks on the cir-
culation and structure of the QBO.

The effects of the ozone feedbacks on the amplitude
of the QBO at the equator and at 128 latitude are sum-
marized in Fig. 16. At the equator, wave–ozone feed-
backs generally increase by ,10% the amplitude of the
zonal wind, temperature, ozone, and vertical-motion
QBOs. The heating due to the zonal mean–ozone (ozone
QBO) feedbacks has a larger impact (;20%) on the
QBOs in wind, temperature and ozone. The combination
of wave–ozone and zonal mean–ozone feedbacks in-
creases the magnitude of the QBOs by 10%–25% over
the RS. Similar results are found near 128, where full
ozone feedbacks increase the magnitude of the QBOs
by ;10%–40%.

6. Summary and conclusions

The effects of both wave and zonal mean ozone heat-
ing feedbacks on the quasi-biennial oscillation (QBO)
were investigated using a mechanistic model of the low-
er equatorial stratosphere. The model atmosphere, which
accounts for wave–mean but not wave–wave interac-
tions, is represented by zonal mean and linear wave
descriptions of the ozone, temperature, and wind fields.
The model circulation is driven by Kelvin and Rossby–
gravity waves at the lower boundary.
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FIG. 14. Comparison of minimum and maximum values of (a), (c) temperature; and (b), (d)
ozone during the last five years of integration at the equator. The solid lines denote the RS,
whereas the dotted, dashed, and dot–dashed lines refer to expt 1, expt 2, and expt 3, respectively.

FIG. 15. As in Fig. 14, except for the zonal wind at 128 latitude.

A reference simulation (RS) of the QBO, in which
ozone feedbacks are neglected, yields results that are in
good agreement with Upper Atmosphere Research Sat-
ellite observations. The RS is then used as a basis for
comparison with three model experiments, which ex-
amine separately and in combination the effects of
wave–ozone and zonal mean–ozone feedbacks.

Wave–ozone feedbacks alone (expt 1) increase the
wave driving of the zonal mean flow by up to 10%.
This enhanced wave driving produces stronger shear
zones in the zonal wind QBO, and an increase in the
magnitude of the temperature and ozone QBOs by
;10%–20%. These results agree with the analytical
studies of Echols and Nathan (1996) and Cordero et al.
(1998), which show that the wave–ozone feedbacks in-
crease the equatorial wave amplitudes, thus increasing
the zonal mean acceleration.

Like the wave–ozone feedbacks, the zonal mean–
ozone feedbacks also influence the dynamical QBO by
similar magnitudes, albeit via different mechanisms.
Alone, the diabatic feedbacks of the ozone QBO de-
crease the induced meridional circulation by nearly
15%. However, because wave absorption is sensitive to
the zonal mean wind and temperature distributions, dia-
batic feedbacks of the QBO alter the mean temperature
distribution and thus change the wave absorption prop-
erties of the driving waves. The zonal mean–ozone feed-
backs increase the amplitudes of the temperature and
ozone QBOs by ;10%–30%. The stronger temperature
QBO, induced by the diabatic feedbacks of the ozone
QBO, produces a more vigorous circulation.

The combined effects of wave–ozone and zonal
mean–ozone feedbacks reinforce each other, thus in-
creasing further the circulation strength of the QBO.
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FIG. 16. Comparison between the amplitudes at the equator and
128 latitude for the QBO variations in zonal wind, temperature, ozone
volume mixing ratio, and vertical motion; these fields are calculated
as a percent difference from the reference simulation. Percent dif-
ference for expt 1 calculated as 100(XExp1 2 Xref)(Xref)21.

Near the equator, the amplitudes of the zonal wind and
temperature QBOs are ;10%–20% larger than the mod-
el simulations without the ozone feedbacks. Even larger
changes are observed away from the equator (e.g., 128
latitude), where the strength of the meridional circula-
tion increases by up to 30%. The combined ozone feed-
backs have little influence on the period of the QBO.
However, it is important to note that because of the
stronger meridional circulation, smaller wave ampli-
tudes can be used to drive the QBO. Model sensitivity
experiments indicate that when ozone feedbacks are in-
cluded, wave amplitudes can be reduced by ;10% and
still maintain a QBO circulation similar to the RS.

Because the modeled QBO fields of zonal wind, tem-
perature, and ozone agree well with satellite and in situ
observations, the model is an excellent tool for carrying
out mechanistic studies of the tropical lower strato-
sphere. However, there are improvements that can be
made to the model, thus allowing a broader scope of
study. For example, extending the model’s vertical do-
main into the upper stratosphere would allow a more
detailed study of the two-cell structure of the ozone
QBO and its potential feedbacks on the zonal mean
circulation. In addition, imposing a realistic tropical as-
cent rate would allow the study of the interaction of the
QBO (and associated meridional circulation) with the

seasonally varying tropical ascent rate, and how ozone
feedbacks may alter these interactions.

A final point worth noting is that mechanistic models
of the QBO require enhanced wave amplitudes to drive
the circulation. The amplitudes of the Kelvin wave and
especially the Rossby–gravity wave are larger than ob-
served estimates (Takahashi and Boville 1992). Recent
model simulations indicate that small-scale gravity
waves are a likely source of additional momentum need-
ed to drive the dynamical QBO (Dunkerton 1997). Thus
a broadening of the wave spectrum may provide addi-
tional understanding of how the wave ozone feedbacks
impact the zonal mean circulation.
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APPENDIX

Specification of Ozone Wave Structure at the
Lower Boundary

Given the geopotential height distributions for the
Kelvin and Rossby–gravity waves at the lower boundary
[(12) and (13)], wave solutions for the horizontal and
vertical velocities, temperature, and ozone volume mix-
ing ratio can be obtained there. Briefly, the meridional
velocity and temperature at the lower boundary are ob-
tained by solving (7) and (9) and applying the result at
the lower boundary. The perturbation vertical velocity
does not need to be specified at the boundary; rather,
we calculate it directly from the continuity equation,
which we integrate downward from the upper boundary.
To calculate the perturbation ozone volume mixing ratio,
we consider the Kelvin and Rossby–gravity waves sep-
arately. For the Kelvin wave, (10) yields,

g9 5 2w9g , (A1)t z

]F9z 21 N w9 5 0, (A2)
]t

where we have neglected the radiative–photochemical
effects relative to the dynamical effects, which is an
excellent approximation in the lower stratosphere, that
is, near the lower boundary at 17 km. Also, we have
set u 5 F z 5 0 (at lower boundary) and noted that for
the Kelvin wave y9 ø 0. Combining (A1) and (A2)
yields
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g F9z zg9 5 . (A3)
2N

A similar analysis can be carried out for the Rossby–
gravity wave. In particular, noting that

y9 5 ikF9(by)21, (A4)

we obtain from (10) the ozone perturbation for the Ross-
by–gravity wave,

g F9g F9 yz zg9 5 1 . (A5)
2N c byR
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