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An ozone-modified refractive index for vertically propagating

planetary waves

Terrence R. Nathan1 and Eugene C. Cordero2

Received 31 March 2006; revised 4 August 2006; accepted 27 September 2006; published 20 January 2007.

[1] An ozone-modified refractive index (OMRI) is derived for vertically propagating
planetary waves using a mechanistic model that couples quasigeostrophic potential
vorticity and ozone volume mixing ratio. The OMRI clarifies how wave-induced heating
due to ozone photochemistry, ozone transport, and Newtonian cooling (NC) combine to
affect wave propagation, attenuation, and drag on the zonal mean flow. In the
photochemically controlled upper stratosphere, the wave-induced ozone heating (OH)
always augments the NC, whereas in the dynamically controlled lower stratosphere, the
wave-induced OH may augment or reduce the NC depending on the detailed nature of
the wave vertical structure and zonal mean ozone gradients. For a basic state
representative of Northern Hemisphere winter, the wave-induced OH can increase the
planetary wave drag by more than a factor of two in the photochemically controlled upper
stratosphere and decrease it by as much as 25% in the dynamically controlled lower
stratosphere. Because the zonal mean ozone distribution appears explicitly in the OMRI,
the OMRI can be used as a tool for understanding how changes in stratospheric ozone
due to solar variability and chemical depletion affect stratosphere-troposphere
communication.

Citation: Nathan, T. R., and E. C. Cordero (2007), An ozone-modified refractive index for vertically propagating planetary waves,

J. Geophys. Res., 112, D02105, doi:10.1029/2006JD007357.

1. Introduction

[2] Charney and Drazin’s [1961] seminal study of verti-
cally propagating planetary waves provided one of the
most oft-quoted diagnostics in dynamic meteorology: the
refractive index (RI) for extratropical planetary waves
propagating vertically in an inviscid, adiabatic atmosphere.
Subsequent studies have obtained forms of the RI that
include the effects of Newtonian cooling [e.g., Dickinson,
1969], Earth’s spherical geometry [e.g., Matsuno, 1970],
and longitudinal variations in the westerly current [e.g.,
Nishii and Nakamura, 2004]. Despite the qualitative suc-
cess of the RI as a diagnostic measure of wave propaga-
tion and attenuation, the RI as traditionally cited is
incomplete: It neglects the wave-induced heating that
arises from the interactions between stratospheric ozone
and planetary wavefields.
[3] Wave-induced ozone heating (OH) arises from cou-

pled perturbations involving the wind, temperature and
ozone fields. The local phasing between these fields, which
depends on the ratio of advective to photochemical time-
scales, determines whether there is local wave damping or
amplification. In the photochemically controlled upper
stratosphere, a positive temperature perturbation will pro-

duce a negative ozone perturbation [Craig and Ohring,
1958]. The negative correlation between the temperature
and ozone perturbations will enhance the thermal relaxation
and thus wave damping. In the dynamically controlled
lower stratosphere, the perturbation heating or cooling by
the ozone field depends on the meridional and vertical
transport of zonal mean ozone, where the transport is
intimately coupled to the wave structure and the zonal mean
ozone distribution [e.g., Nathan and Li, 1991]. In the middle
stratosphere the situation is more complicated; the net wave-
induced heating or cooling depends on both the chemistry
and transport of ozone.
[4] The importance of wave-induced OH to stratospheric

wave dynamics has been demonstrated for both the tropics
and extratropics (see Table 1). For example, Cordero and
Nathan [2005] have shown for the tropics that solar cycle-
modulated wave-induced OH can serve as a pathway for
communicating the effects of the solar cycle to the quasi-
biennial oscillation. Nathan and Li [1991] have shown for
the extratropics that the wave-induced OH can augment
(reduce) the local damping rate of Newtonian cooling (NC)
by as much as 50% for free, extratropical planetary waves in
the upper (lower) stratosphere. However, neither of these
studies nor the others cited in Table 1 have addressed the
broader and more fundamental issue of how the wave-
induced OH may affect the dynamical coupling between
the stratosphere and troposphere. This coupling hinges in
large part on the planetary waves, which are at the heart of
most dynamical theories of stratosphere-troposphere com-
munication in the extratropics.

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 112, D02105, doi:10.1029/2006JD007357, 2007

1Atmospheric Science Program, Department of Land, Air and Water
Resources, University of California, Davis, California, USA.

2Department of Meteorology, San José State University, San José,
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[5] For example, several theories have been proposed to
explain observational data suggesting the stratosphere may
play a more important role in influencing the troposphere
than previously thought [e.g., Baldwin and Dunkerton,
1999]. These theories include ‘‘downward control’’ [Haynes
et al., 1991], whereby a local, wave-induced anomaly in
stratospheric potential vorticity induces a meridional circu-
lation that affects the troposphere below, downward reflec-
tion of planetary waves originating in the troposphere
[Perlwitz and Harnik, 2003], and local, wave mean flow
interaction, which produces downward propagating, zonal
mean wind anomalies [Plumb and Semeniuk, 2003].
Although these theories appear distinct, they have a
common, unifying element: They all have as their basis,
either explicitly or implicitly, wave propagation and at-
tenuation. Yet none of these theories include the effects of
wave-induced OH on planetary wave propagation and
attenuation, an omission that could affect wave reflection
as well as the wave drag on the zonal mean flow. Thus
omitting wave-induced OH in describing planetary wave
dynamics could result in an incomplete description of
troposphere-stratosphere communication.
[6] As observational evidence continues to grow showing

changes in the amount and distribution of stratospheric
ozone [World Meteorological Organization (WMO),
2002], it has become increasingly important to understand
its interaction with the planetary waves, an interaction that
for the most part remains poorly understood. As we will
show, a fundamental measure of this interaction, one which
embodies in a single diagnostic the effects of the back-
ground flow and the wave-induced ozone heating on wave

propagation and attenuation, is an ozone-modified refractive
index (OMRI). The real part of the OMRI describes the
wave propagation and the imaginary part describes the wave
attenuation, the latter being a measure of the planetary wave
drag on the zonal mean flow. The derivation and analysis of
this OMRI will serve two primary purposes: first, it will
provide insight into the effects of OH on vertical wave
propagation and attenuation, wave properties that are inti-
mately connected to stratosphere-troposphere communica-
tion; second, it will provide a conceptual framework for
providing insight into how stratospheric ozone variations
arising from anthropogenic processes (e.g., chlorofluorocar-
bons) and natural processes (e.g., 11-year solar cycle) may
impact the wave driving of the stratosphere, thus highlight-
ing a potentially important pathway for communicating
stratospheric ozone changes to the climate system.
[7] The paper is organized as follows. Section 2 describes

the linear, mechanistic model that accounts for wave-
induced OH and NC. Section 3 describes the derivation
of the OMRI and considers several limiting cases to high-
light the physics that connects the OH to the planetary wave
dynamics. Section 4 presents the numerical results for the
OMRI, wave vertical structure, and wave drag on the zonal
mean flow. The results are discussed in light of natural and
human caused changes in stratospheric ozone in section 5,
and the concluding remarks are given in section 6.

2. Model and Governing Equations

[8] We consider a stratified atmosphere on a periodic
b-plane centered at 45�N in which the quasigeostrophic

Table 1. Selected Papers on the Effects of Wave-Induced Ozone Heating on Atmospheric Waves

Study Model Wave Type Remarks

Leovy [1966] primitive equations,
f-plane

inertio-gravity wave radiative-photochemical destabilization of
inertio-gravity waves near the mesopause

Lindzen [1966] two-layer, b-plane,
quasigeostrophic

baroclinic wave radiative-photochemical destabilization
of a baroclinic zonal
current to baroclinic waves in the mesosphere

Gruzdev [1985] quasigeostrophic,
vertically averaged,
b-plane

free Rossby wave ozone heating due to meridional ozone advection
destabilizes planetary Rossby waves

Zhu and Holton [1986] primitive equations,
f-plane

inertio-gravity wave radiative-photochemical damping of inertio-gravity
waves in the stratosphere and lower to
mid mesosphere

Nathan [1989] quasigeostrophic,
b-plane

free Rossby wave analytical study showing how wave-induced ozone
heating can alter the damping rates of free
Rossby waves

Nathan and Li [1991] quasigeostrophic,
b-plane

free Rossby wave numerical study showing how wave-induced ozone
heating can alter the damping rates of free
Rossby waves

Nathan et al.
[1994]

quasigeostrophic,
b-plane

free Rossby wave wave-induced ozone heating destabilizes traveling
waves during summer

Echols and Nathan
[1996]

equatorial b-plane Kelvin wave wave-induced ozone heating modifies the wave fluxes
that drive the semiannual oscillation

Cordero and Nathan
[2000]

equatorial b-plane Kelvin and Rossby-gravity
waves

wave-induced ozone heating modifies
the wave fluxes
that drive the quasi-biennial oscillation

Xu et al. [2001] primitive equations,
f-plane

inertio-gravity wave confirmed Leovy’s [1966] study using a more
sophisticated radiative-photochemical model

Cordero and Nathan
[2005]

equatorial b-plane Kelvin and Rossby-gravity
waves

wave-induced ozone heating provides a pathway for
communicating the effects of solar variability
to the quasi-biennial oscillation

Present study quasigeostrophic, b-plane forced, stationary Rossby
wave

derivation of a refractive index for vertically
propagating planetary waves that accounts
for wave-induced ozone heating
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flow is linearized about a steady, zonally averaged basic
state that is in radiative-photochemical equilibrium. The
basic state is assumed to vary only with height in order
to more easily isolate the physics associated with the
coupling between the stratospheric ozone and planetary
wavefields. The linear response of this model atmosphere
to ozone heating (OH) and Newtonian cooling (NC) is
described by coupled equations for the quasigeostrophic
potential vorticity and ozone volume mixing ratio. These
equations take the following form in log-pressure coor-
dinates [Nathan and Li, 1991]:

@

@t
þ u

@

@x

� �
r2 fþ 1

r
@

@z

r
s
@f
@z

� �� �
þ be

@f
@x

¼ 1

r
k
f0H

@

@z

r
s
Q

� �
;

ð1Þ

@

@t
þ u

@

@x

� �
g þ @f

@x

@g
@y

þ w
@g
@z

¼ S; ð2Þ

where

be ¼ b � 1

r
d

dz

r
s
du zð Þ
dz

� �
ð3Þ

is the basic state potential vorticity gradient. The perturbation
potential vorticity, q(x, y, z, t), diabatic heating rate per
unit mass, Q(x, y, z, t), net ozone production and destruction,
S(x, y, z, t), and vertical motion, w(x, y, z, t), are given by
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[9] The integral appearing in (5) and (6) can be written,
after repeated integration by parts, in a form that will ease
the analytical derivation of the OMRI to be presented in
section 3, i.e.,

c ¼
Z1
z

r z0ð Þ
r0

gdz0 ¼
X1
n¼0

Hnþ1 @
ng
@zn

exp �z=Hð Þ: ð8Þ

[10] In the above equations g(x, y, z, t) is the ozone
volume mixing ratio and f(x, y, z, t) is the geostrophic
stream function, where @f/@z is proportional to tempera-
ture. The remaining symbols appearing in (1)–(7) are
listed in Table 2.
[11] The radiative-photochemical parameterizations

appearing in (5) and (6) depend only on height and are
described in detail in Nathan and Li [1991]. Briefly, the
terms on the right-hand side (rhs) of (5) together represent
the net diabatic heating rate per unit mass. The first term is
the local ozone heating rate and the second term is the
heating rate arising from variations in perturbation column
ozone above a given level (termed the shielding effect).
The radiative-photochemical coefficients G1(z; g, T , #) and
G2(z; g, T , #) depend on the basic state distributions of
ozone, g(y, z) and temperature, T (y, z) as well as the solar
zenith angle, #. The last term in (5) represents longwave
radiational cooling, which we model as Newtonian cooling
(NC) based on the parameterization of Dickinson [1973].
[12] The terms on the rhs of (6), which represent the net

ozone production and destruction, are derived from the
Chapman [1930] reactions, wherein we have accounted
for the catalytic destruction of odd oxygen by hydrogen
and nitrogen chemistry by adjusting the pure oxygen
destruction rate as in the work by Hartmann [1978].
Consistent with the heating rate coefficients, the ozone
production and destruction coefficients x1(z; g, T , #),
x2(z; g, T , #) and xT(z; g, T , #) depend on the basic state
distributions of ozone and temperature and solar zenith
angle.

Table 2. List of Symbols

Symbol Definition

t, x, y, z = �Hln(p/po) time and distances in the eastward, northward, and vertical directions
p(z), po pressure, reference pressure at the ground
r = ro exp (�z/H) basic state density, r0 = surface density, H = 7 km is the density scale height
fo, b planetary vorticity and planetary vorticity gradient evaluated at q = 45� latitude
N2(z), s = N2/fo

2 Brünt Väisäla frequency, s = N2/fo
2 (nondimensional stratification parameter)

k = R/Cp R is the gas constant and Cp the specific heat at constant pressure
u(z), T (y, z), g(y, z) basic state zonal wind, temperature and ozone fields
f(x, y, z, t) perturbation geostrophic stream function
F(x, y, z, t) = f0f(x, y, z, t) geopotential height
w(x, y, z, t) perturbation vertical wind component
g(x, y, z, t) perturbation ozone volume mixing ratio
Gj(z; g, T , #) (j = 1, 2) radiative-photochemical coefficients in temperature equation
GT(z) Newtonian cooling coefficient
xj(z; g, T , #) (j = 1, 2, T) radiative-photochemical coefficients in ozone continuity equation
# solar zenith angle
h(x, y) topographic height
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[13] At the lower boundary we impose a bottom topog-
raphy h(x, y), which produces the vertical velocity w = u@h/
@x. Insertion of this expression for w into (7) yields the
lower boundary condition at z = 0. For the analytical
solutions presented in section 3, a radiation condition is
applied at the upper boundary; that is, we require that
the vertical energy flux be bounded and directed upward
as z ! 1. For the numerical calculations presented in
section 4, the upper boundary is placed at 100 km, which our
calculations show to be sufficiently high to prevent spurious
wave reflections that may contaminate the solutions.

3. Ozone-Modified Refractive Index

[14] The derivation of the local, ozone-modified refrac-
tive index (OMRI) hinges on the assumption that the basic
state fields for wind, temperature and ozone are slowly
varying in the vertical. Tacitly, the zonal mean ozone
gradients, gy and gz, are also assumed to be slowly varying.
Under the assumption that the basic state fields are slowly
varying, we approximate the shielding integral (8) as c 

Hgexp(�z/H) and introduce the ‘‘slowly varying’’ vertical
coordinate z = ez, for which @/@z ! @/@z + e@/@z, where
e� 1 is nondimensional. Because the coefficients in (5)–(7)
vary only with height, solutions for the stream function and
ozone fields are sought in the form

8 x; y; z; t; z; eð Þ; g x; y; z; t; z; eð Þ½  ¼ 8̂ z; eð Þ; ĝ z; eð Þ½ 
� exp z=2Hð Þ exp i kxþ ly� wtð Þð Þ þ c:c:; ð9Þ

where k and l are the zonal and meridional wave numbers, w
is a fixed frequency, and c.c. denotes the complex conjugate
of the preceding term. The slowly varying vertical structures
for the density weighted stream function and ozone fields
are chosen WKB in form [Bender and Orszag, 1978]:

8̂ zð Þ; ĝ zð Þ½  ¼ A zð Þ;B zð Þ½  exp i
1

e

Zz
0

m z 0ð Þdz 0
0
@

1
A

2
4

3
5: ð10Þ

[15] Insertion of (9)–(10) into (1)–(2) yields, to leading
order, the OMRI,

m zð Þ ¼ m0 zð Þ m2 zð Þ � 1þ m3 zð Þð Þ1=2

1� m1 zð Þ

 !
; ð11Þ

where m represents the local (complex) vertical wave
number. The O(e) balance yields the stream function and
ozone amplitudes:

A zð Þ ¼ c0 exp

Zz
0

a z 0ð Þdz 0
2
4

3
5; ð12aÞ

B zð Þ ¼ b zð ÞA zð Þ; ð12bÞ

where c0 is a constant; a(z) and b(z) depend on the
background distributions of wind, temperature and ozone

and are defined in Appendix A. Although the focus in this
study is on the analysis of the OMRI (11), it is important to
note that an analysis of the amplitude (12a) is needed to
address the effects of wave-induced OH heating on
planetary wave reflection. In particular, an altitude where
A(z) ! 1 corresponds to a reflecting surface. If such a
surface exists, then the solution assumed for the disturbance
field (10) would have to be modified to include both upward
and downward propagating disturbances. The ratio of the
upward to downward propagating wave amplitudes would
measure the planetary wave reflection. Although one can in
principle derive an expression for the reflection coefficient
that shows explicitly how the stratospheric wave-induced
OH can affect the planetary wave structure in the tropo-
sphere, the problem poses several technical difficulties, not
the least of which is dealing with the possibility of complex
turning surfaces [see, e.g., Boyd, 1998, section 4.3]. For
this reason, we hereafter consider background flows that
are void of reflecting surfaces and defer the reflection
problem to a future study. Our focus for the remainder of
this study will be on the wave physics described by the
OMRI (11).
[16] The terms in the OMRI (11) are defined as

m2
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where ~G1, which is proportional to the ozone heating
coefficient, and tT, which is the ratio of advective to
Newtonian cooling timescales, are defined in Appendix B.
The mj(z) (j = 1–3) arise from NC and OH and are
nondimensional. Because observations show the large-scale
stratospheric circulation to be dominated by forced
stationary waves [e.g., Randel, 1987], we hereafter set
w = 0.
[17] The real part of m controls the propagation of the

wave and the imaginary part of m controls its attenuation.
The latter also controls the wave drag on the zonal mean
flow, measured by the divergence of Eliassen-Palm (EP)
flux. In the quasigeostrophic framework the divergence of
EP flux is equivalent to the meridional flux of potential
vorticity, i.e., r�1r . F = vq, where F is the EP flux vector
[Andrews et al., 1987]. Because our background flow varies
only in the vertical, the potential vorticity flux is due solely
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to the vertical convergence of northward heat flux. Using
(10)–(12), we obtain, to leading order:

vq ¼ �2mimrk
jAj2

s
exp

z

H
� 2

Zz
0

mi

e
dz 0

0
@

1
A: ð14Þ

In accordance with the Charney and Drazin [1961]
nonacceleration theorem, in the absence of wave damping,
for which jAj =

ffiffiffiffiffiffiffiffiffiffiffi
s=mr

p
(see Appendix A) and mi = 0, the

potential vorticity flux vanishes. The extent to which the
wave-induced OH violates the nonacceleration theorem is
measured by the wave attenuation, i.e., the imaginary part of
the OMRI.
[18] Before considering the detailed properties of the

OMRI and its effect on the wave structure and zonal mean
flow, we begin with a discussion of some of its broader
properties. To provide guidance for the following analyses,
the zonal mean wind and ozone gradients are displayed in
Figures 1 and 2 based on observational data at 45�N for
January, March, July, and September, which have been
chosen to represent their respective seasons.
[19] Consider first the simplest case of adiabatic flow for

which m = mr = ±m0. This is the RI first obtained by
Charney and Drazin [1961]. To ensure that the wave energy

propagates vertically away from its assumed tropospheric
source region, causality demands that the vertical wave
energy flux be directed upward as z ! 1. This requires
that the positive solution be chosen for m0. The turning
level, defined by m0 = 0, separates wave evanescent regions
(m0

2 < 0) from wave propagation regions (m0
2 > 0). The range

of zonal mean wind for which there is vertical propagation
is given by 0 < u < uc, where the critical trapping velocity is
uc � b/[k2 + l2 + (f0

2/N2)/4H2]. Thus vertical propagation
requires westerly winds that are not too strong, with the
window for propagation closing with increasing horizontal
wave numbers. This is consistent with observations; plan-
etary waves are mostly confined to the troposphere during
summer when the stratospheric winds are easterly and
propagate into the stratosphere during the other seasons
when the stratospheric winds are westerly [e.g., Randel,
1987].
[20] The extent to which the OH and NC affect the OMRI

depends on the strength of the zonal mean wind, u.
Equations (13a)–(13d), with w = 0, show that NC and
the OH due to vertical ozone advection are both propor-
tional to u�1, whereas the OH due to meridional ozone
advection is proportional to u�2. Thus if u is relatively
weak, as it is around the time of the equinoxes, the diabatic
effects due to OH and NC are relatively strong. However, in
the vicinity of a zero wind line (u ! 0), the meridional
ozone advection is the dominant diabatic process and thus
would play an important role in the absorption and
reflection properties of the wave. Zero wind lines exist
in the lower stratosphere during the extratropical summer
(see Figure 1) and throughout the year in the subtropics.
Although the effects of zero wind lines on wave-induced
OH is beyond the scope of the present study, we note that
Nathan et al. [1994] have demonstrated that the extra-
tropical zero wind line causes the OH to more than offset
the damping due to NC, leading to the amplification of
traveling waves during summer. To what extent Nathan et
al.’s [1994] results carry over to the stationary waves or to
the subtropical zero wind line remains unclear and will be
considered in a sequel to this study.
[21] The OMRI (11) makes clear the nonlinear coupling

of the radiative-photochemical processes. This nonlinear
coupling is evidenced by the dependence of m3 on m2

2,
which contains terms such as gzG1GT, gyG1GT, gz

2G1
2 etc. We

Figure 1. Vertical variations of the basic state zonal wind
at 45�N for January (solid), March (dashed), July (dotted)
and September (dash-dotted) based on observational data
compiled by Fleming et al. [1988].

Figure 2. Vertical variations of (a) the vertical ozone gradient, gz, and (b) the meridional ozone
gradient, gy, for January (solid), March (dashed), July (dotted) and September (dash-dotted). The zonal
mean ozone mixing ratios are based on Keating and Young [1985] between about 10 and 90 km and
HALOE data [Brühl et al., 1996] between about 90 and 100 km. To obtain the ozone gradients at 45�N,
the values at 40�N and 50�N were averaged.
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have carried out several test calculations using climatolog-
ical basic states and found these nonlinear terms to be
generally small. However, these nonlinear radiative-photo-
chemical coupling terms will likely have an important effect
on the OMRI during stratospheric warming events, i.e.,
when the departures of the zonal mean ozone and temper-
ature are far from their climatological values. During the
warming event of January 1980, for example, Randel
[1993] has shown that that the zonal mean ozone changed
by as much as 15% (4%) in the extratropical upper (lower)
stratosphere, while the temperature increased by about
10–20 K over much of the extratropical stratosphere.
[22] To understand the roles of NC and OH in controlling

m, it is convenient to divide the stratosphere into three
regions based on whether the ozone is under dynamical or
photochemical control. The three regions are the dynami-
cally controlled lower stratosphere, corresponding to S 
 0
in (2), the middle stratosphere or transition region where
dynamical and photochemical processes are of comparable
importance, and the photochemically controlled upper
stratosphere, corresponding to S large in (2). We consider
below the dynamically and photochemically controlled
regions of the stratosphere, which are amenable to further
analytical analysis.
[23] In the dynamically controlled lower stratosphere

ozone is approximately conserved. Thus we set x1, x2 and
xT equal to zero in (13). In addition, we choose the positive
root in (11), which corresponds to upward energy propaga-
tion, i.e., rw8 > 0. Further, when the NC and OH are
assumed small in (13) such that GT ! eGT and ~�1 ! e~�1,
an assumption that is valid except near critical levels
(u ! 0) or turning surfaces (m0 ! 0), the real and
imaginary parts of the OMRI take the following forms:

mr zð Þ 
 m0 þ e
1

2H

1

uk
� GT|{z}

NC

þ k
f0Hs

G1

@g
@z|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

Vertical ozone
advection

0
BBBB@

1
CCCCA

þ eMr

k
2fH0

� �
G1

u2k

@g
@y|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Meridional ozone
advection

; ð15aÞ

mi zð Þ 
 �em0

Mi

uk
� GT|{z}

NC

þ k
f0Hs

G1

@g
@z|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

Vertical ozone
advection

0
BBBB@

1
CCCCA

þ e
k

2f0H2

� �
G1

m0u
2k

@g
@y|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Meridional Ozone
Advection

; ð15bÞ

where the coefficients Mr = (1–1/2Hm0) and Mi =
(2–1/(2Hm0)

2) are positive except near a turning
surface (m0 ! 0), a region where the approximations
(15a) and (15b) become invalid.
[24] In the lower stratosphere, the vertical wave propaga-

tion, measured by mr, and the vertical wave attenuation
(amplification), measured by mi > 0 (<0), are modulated by

two wave-induced OH effects: vertical ozone advection
(VOA) and meridional ozone advection (MOA). These
effects become increasingly important as the zonal mean
wind or zonal wave number decreases. To obtain qualitative
understanding of how the terms in (15) combine to affect
the vertical phasing and local wave amplitude, we assume
that m is locally constant and consider the leading order
approximation to the stream function amplitude, which from
(10) can be written as

8̂ zð Þ � exp �mi

e
z

� �
cos

mr

e
z

� �
: ð16Þ

Thus mi > 0 and mr > 0 correspond to a damped, vertically
propagating wave. If there is an ozone-induced increase in
both mi and mr, for example, the local maximum in wave
amplitude decreases and shifts downward.
[25] Equation (15a) shows that NC alone yields mr < m0

and mi / tT > 0. This case was first considered by
Dickinson [1969], who showed that the ratio of advective
to Newtonian cooling timescales, measured by tT, becomes
relatively large near the equinoxes; consequently, the plan-
etary wave amplitudes are reduced at that time, in qualita-
tive agreement with observations.
[26] The diabatic heating due to zonal mean ozone

advection by the planetary wave may augment or oppose
the NC depending on the altitude. Between about 10 km and
37 km, where gz > 0 (see Figure 2a), the diabatic heating
due to VOA opposes the NC. Between about 10 km and
29 km, where gy > 0 (see Figure 2b), the heating due to
MOA augments the NC. Thus in the lowest part of the
stratosphere the VOA and MOA are offsetting, though the
MOA will tend to dominate over the VOA when the zonal
mean winds are westerly and sufficiently weak. Between
about 29 km and 40 km the heating due to MOA and
VOA combine to oppose the NC.
[27] In the photochemically controlled upper strato-

sphere, the zonal mean ozone gradients become small
(see Figure 2), whereas the ratio of advective to photo-
chemical timescales becomes large (see Figure 3). If the NC
and OH are again assumed small in (11), then the real and
imaginary parts of the OMRI take the following forms:

mr 
 m0 � e
Mr

uk
GT|{z}
NC

þ k
R
G1

xT
x1|fflfflffl{zfflfflffl}

Photochemical
Cooling

0
BBBB@

1
CCCCA; ð17aÞ

mi 
 em0

Mi

uk
GT|{z}
NC

þ k
f0H

G1

xT
x1|fflfflfflfflffl{zfflfflfflfflffl}

Photochemical
Cooling

0
BBBB@

1
CCCCA: ð17bÞ

In the upper stratosphere, photochemically accelerated
cooling (PAC) combines with NC to always enhance the
thermal damping. The enhanced thermal damping reduces
the vertical wave propagation (mr < m0) and increases the
vertical wave attenuation (mi > 0).
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[28] The effect of PAC on the wave damping can also be
inferred from the phasing between the ozone and tempera-
ture fields. If we consider the steady form of (2) and neglect
ozone advection and shielding we obtain g � �(xT/x1)8z.
Thus in the photochemically controlled upper stratosphere
the ozone and temperature fields are 180� out of phase.
Consequently, from (5), the (local) wave-induced OH and
NC act in the same sense: Temperature perturbations always
act to bring the wave back to thermodynamic equilibrium.

4. OMRI and Wave Vertical Structure:
Numerical Results

[29] The effects of OH and NC on the OMRI and
stationary wave vertical structure have been determined
numerically for zonal waves one and two using the clima-
tological basic states shown in Figure 1. Because the
planetary waves are mostly trapped in the troposphere
during July when the stratospheric zonal winds are easterly
and strongly attenuated during September when the strato-
spheric zonal winds are westerly and weak, the results for
these months are not presented. We instead focus on the
results for January, with the results for March presented for
comparison. Unless stated otherwise, the results given
below are based on the following parameter setting: n = 1
(quantized zonal wave number), where k = n/aecosq; q = 45�
(latitude); ae = 6.36 � 106 km (Earth’s radius); H = 7 km
(scale height); l = 0 (meridional wave number).

4.1. Ozone Modified Refractive Index (OMRI)

[30] Figure 4 shows the effects of the wave-induced OH
on the vertical variation of the real and imaginary parts of
the refractive index based on (11). With or without OH mr is
positive, corresponding to both positive northward heat flux
and positive vertical energy flux [Andrews et al., 1987,
section 4.5]. The OH has essentially no effect on mr below
�40 km. Between about 40 km and 52 km, where VOA,
MOA and PAC each augment the NC, mr is reduced by
�10%. Similar results are obtained for the spring basic
state.
[31] Figure 4 shows that with or without OH mi is

positive, corresponding to wave attenuation. For the winter
basic state, in the lower part of the stratosphere (�15 km < z

< �20 km), numerical tests based on (11) show that MOA
dominates over VOA, the net effect being about a 5%
enhancement of the wave attenuation in that region.
Between �22 km and �34 km, VOA, MOA, and PAC
are offsetting; thus in this region the OH has little effect
on the wave attenuation. Above �35 km the damping due
to PAC quickly dominates the wave-induced OH, so much
so that by �40 km the wave attenuation, measured by mi,
has increased by �75%.
[32] The vertical distributions of the OMRI for winter and

spring are qualitatively similar. In the upper stratosphere the
PAC dominates the wave-induced OH and augments the
NC, whereas in the lower stratosphere the ozone advection
dominates and may augment or diminish the NC depending
on the wave vertical structure and distribution of zonal
mean ozone. Differences between the winter and spring
OMRI are due to differences in solar zenith angle and
vertical distributions of wind, temperature and ozone. Cal-
culations show, however, that the seasonal differences in the
vertical wind distribution have the most important effect on
the wave-induced OH.

4.2. Wave Vertical Structure

[33] The assumption that the background state is slowly
varying is relaxed in this section by solving (1)–(7) directly
using numerical methods. Solutions for the dependent
variables and topography are chosen of the form

f;w; gð Þ ¼ f̂ zð Þ; ŵ zð Þ; ĝ zð Þ
h i

exp z=2H þ i kxþ lyð Þ½  þ c:c:;

ð18aÞ

h x; yð Þ ¼ hk exp i kxþ lyð Þ½  þ c:c:; ð18bÞ

where f̂(z), ŵ(z), and ĝ(z) are the density weighted vertical
structures for the stream function, vertical velocity and
ozone fields. The stream function is related to the
geopotential by f(z) = f0

�1F(z). The topographic height hk
is chosen consistent with observations (see Appendix C).
Equations (18a)–(18b) are substituted into (1)–(7) and then
solved numerically using the procedure described in
Appendix C. For all of the calculations, the upper boundary

Figure 3. Vertical distribution of the ratio of advective to Newtonian cooling timescales, tT (solid line),
and the ratio of advective to photochemical timescales, tp (dashed line), for the (left) January and (right)
March zonal mean wind distributions. tT and tp are defined in Appendix B. The zonal wave number is
one (n = 1).
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Figure 4. Vertical variation of (top) mr and (bottom) mi for Newtonian cooling alone (solid line) and
Newtonian cooling and ozone heating combined (dotted line) for the January (winter) and March (spring)
basic states. The zonal wave number is one (n = 1).

Figure 5. Vertical variation of wave vertical structure for Newtonian cooling alone (solid line) and
Newtonian cooling and ozone heating combined (dotted line) for the January (winter) and March (spring)
basic states. The zonal wave number is one (n = 1). Shown are the modulus of (top) geopotential height,
jf̂(z)j, and (bottom) potential vorticity flux, vq.
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is placed at 100 km, though for clarity the figures are only
shown to 80 km.

4.3. Results

[34] Figure 5 shows, for the January and March basic
states, the modulus of the density weighted geopotential
height and the potential vorticity flux for NC alone (solid
lines) and NC and OH combined (dotted lines). For the
January basic state above 10 km, the geopotential height
is characterized by three local maxima and two local
minima. Numerical tests show that near the local minimum
at �25 km the vertical and meridional ozone advections
oppose the NC and dominate over the PAC. The net effect is
to lower the local minimum in geopotential height by
�1–2 km and increase it by �10%. In the vicinity of the
local maximum near �35 km, ozone advection continues to
oppose the NC and dominate over the PAC. The net effect is
to lower the local maximum in geopotential height by�4 km
and increase its amplitude by �1–2%. These ozone induced
changes are consistent with equation (16); that is, a reduction
in the NC due to OH will cause the peak amplitude to
increase in magnitude and shift downward. Above �55 km
the PAC becomes increasingly effective and strongly damps
the geopotential height. At �60 km the PAC reduces the
local maximum in geopotential height by �40%.
[35] The effects of the wave-induced OH on the planetary

wave drag, measured by the potential vorticity flux, are
shown in Figure 5 (bottom left) for the January basic state.
In the dynamically controlled lower stratosphere near
�25 km, the wave-induced OH reduces the wave drag by
�25%. In the region near 40 km, where ozone transitions
from dynamical to photochemical control, the wave-induced
heating reduces the wave drag by �40%. Above �40 km
where the PAC augments the NC the wave drag increases by
a factor of two. These results are in qualitative agreement
with the OMRI (see section 3 and Figure 4) and are similar
to those obtained for the March basic state (see Figure 5,
bottom right).

5. Discussion

[36] Ground-based and satellite data show that strato-
spheric ozone varies over a broad range of space and
timescales [WMO, 2002]. Over the past thirty years or so,
two ozone signals stand out. One signal is attributed to
quasi-decadal variability (QDV) in solar irradiance, termed
the 11-year solar cycle, and the other to complex interac-
tions involving changes in halogen source gasses, green-
house gas concentrations, and volcanic aerosol loading.
Although these decadal changes in ozone are relatively well
documented, the pathways by which they can affect climate
are not. The wave-induced ozone heating examined here is
one such pathway, a pathway that communicates changes in
stratospheric ozone to the zonal mean circulation via the
planetary waves. The physics underlying this pathway is
made clear by the ozone-modified refractive index (OMRI).
To illustrate how the OMRI provides a more complete
description of the connection between variations in strato-
spheric ozone and climate, consider the 11-year solar cycle.
[37] The 11-year solar cycle is among the natural pro-

cesses associated with modulating stratospheric ozone [e.g.,
Hood, 2004]. Global climate models have shown that QDV

in solar irradiance and stratospheric ozone together produce
QDV in the model circulations. This QDV variability is
linked in part to changes in the refractive index of the
planetary waves [e.g., Balachandran et al., 1999; Shindell
et al., 1999; Matthes et al., 2004]. The linkage between the
11-year solar cycle and RI cited in these studies as well as
others hinges on the following: Variations in solar spectral
irradiance at primarily ultraviolet wavelengths produce
variations in the photochemical production of ozone in the
stratosphere. In turn, these variations in ozone produce
variations in radiative heating and temperature. The
corresponding meridional changes in temperature produce,
via thermal wind balance, changes in the spatial distribution
and strength of the zonal mean winds. The solar-induced
changes in zonal mean temperature and wind produce
changes in the RI of the planetary waves, measured by m0

in this study, resulting in changes in planetary wave activity.
However, as we have shown here, this traditional way of
linking the solar cycle to the RI is incomplete: It neglects
the effects of wave-induced OH on planetary wave activity.
Moreover, because the wave-induced OH depends non-
linearly on the zonal mean wind (see (17), for example),
which itself is a function of the solar-modulated ozone
distribution, the wave-induced OH provides a nonlinear
pathway for amplifying the effects of the 11-year cycle in
solar irradiance.
[38] The OMRI highlights the direct connection between

the distribution of stratospheric ozone and the planetary
waves. This connection is evident in observations, though
not fully understood. For example, Fusco and Salby [1999]
have attributed the observed extratropical decline in column
ozone during the 1980s to two effects: a decline in the
upwelling of planetary wave activity from the troposphere
into the stratosphere and chemical depletion of ozone due to
elevated levels of halocarbons. However, their multiple
regression analysis is unable to distinguish between the
contributions of ozone photochemistry and ozone transport
to the wave-induced OH, shown here to have an important
impact on the vertical distribution of planetary wave drag.
Because the wave-induced OH is sensitive to the coupling
between the wave structure and zonal mean ozone distribu-
tion in the lower stratosphere (compare, for example, the
wave drag for January and March in Figure 5), identifying
the relative contributions of chemical depletion, strato-
spheric cooling due to increases in greenhouse gases, and
changes in upwelling of planetary waves to the observed
trend in ozone may be particularly difficult.

6. Concluding Remarks

[39] The refractive index (RI) is a fundamental measure
of wave propagation and attenuation, wave properties that
are at the heart of stratosphere-troposphere communication.
Here we have employed a mechanistic model to derive an
expression for an ozone-modified refractive index (OMRI)
that accounts for the wave-induced heating due to coupling
between the stratospheric ozone and planetary wavefields.
The OMRI provides a conceptual framework for under-
standing how changes in the distribution and abundance of
stratospheric ozone may impact planetary wave propaga-
tion, attenuation and drag on the zonal mean flow. The
OMRI shows that ozone-induced changes in these planetary
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wave properties occur in two ways: (1) via ozone-induced
changes in the zonal mean wind and temperature fields and
(2) via wave-induced OH. This latter OH effect has been
overlooked in previous studies examining the role of the
planetary waves in stratosphere-troposphere communication
and climate.
[40] The OMRI clarifies how ozone photochemistry,

wave-ozone advection and NC combine to affect planetary
wave dynamics. In the photochemically controlled upper
stratosphere, the wave-induced OH strongly augments the
thermal damping due to NC, whereas in the dynamically
controlled lower stratosphere, the wave-induced OH can
augment or oppose the NC depending on the wave vertical
structure and local mean ozone gradients. Using vertical
distributions of wind, temperature and ozone that are
consistent with Northern Hemisphere winter, we have
shown that the wave-induced OH can increase the wave
drag on the zonal mean flow by nearly a factor of two in the
photochemically controlled upper stratosphere and decrease
it by as much as 25% in the dynamically controlled lower
stratosphere. Although the wave-induced OH effects are
much smaller in the lower stratosphere than in the upper
stratosphere, it is conceivable that in a more realistic model
or for different background flows, the wave-induced OH
may become more effective in altering the wave structure in
the lower stratosphere.
[41] Owing to the importance of the wave-induced OH to

the RI of the planetary waves, it is important to revisit those
theories that rely on wave propagation and attenuation to
communicate signals between the stratosphere and tropo-
sphere. As discussed in the Introduction, such theories
include ‘‘downward control,’’ local wave mean flow inter-
action, and the downward reflection of vertically propagat-
ing planetary waves.
[42] Modeling studies that neglect the wave-induced OH

are omitting a potentially important pathway for communi-
cating stratospheric ozone changes, both natural and hu-
man-caused, to the climate system. For the coupled
chemistry-climate models that incorporate the effects of
wave-induced OH, the OMRI provides a means for under-
standing the complicated feedbacks between stratospheric
ozone and the planetary waves. The OMRI may in fact be
used as a framework for designing experiments that can
better isolate the potential impacts of changes in strato-
spheric ozone on planetary wave activity. Such experiments
would aid in predicting future ozone levels [WMO, 2002]
and understanding and predicting future climate change
[Intergovernmental Panel on Climate Change, 2001].
[43] In this mechanistic study we have restricted our

attention to vertical propagation of the planetary waves. In
reality the waves generally propagate upward and then
equatorward, eventually reaching the subtropical zero wind
line. Studies have shown that the fate of the waves, which
may manifest as reflection, absorption or a combination of
both, depends crucially on the amount of mechanical damp-
ing [e.g., Salby et al., 1990]. Radiative-photochemical
damping will likely play a similar role, one which inhibits
eddy mixing and prevents homogenization of potential
vorticity. We have shown that wave-induced OH may
locally dominate over NC as u ! 0, which means the net
radiative-photochemical damping in the vicinity of the zero
wind line may be more important to planetary wave

breaking and eddy mixing than previously thought. Thus
extending this study to propagation in the meridional height
plane is of particular interest.
[44] Other important extensions of this work include

examining the sensitivity of the planetary wave response
to OH for various background distributions of wind,
temperature and ozone, as well as determining to what
extent the changes in the distribution of stratospheric ozone
may impact the downward reflection of vertically propa-
gating planetary waves. These problems, which are cur-
rently under study, are central to providing a more complete
understanding of how anthropogenic and natural changes in
the stratosphere’s ozone distribution may impact surface
climate.

Appendix A: Stream Function and Ozone
Amplitudes

[45] The WKB analysis yields for the ozone-modified
stream function amplitude

A zð Þ ¼ c0 exp

Zz
0

a z 0ð Þdz 0
2
4

3
5; ðA1Þ

where c0 is a constant that can be obtained from the lower
boundary condition and

a zð Þ ¼ L0 þ R0
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; ðA2Þ
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[46] The ozone and stream function amplitudes are
related by B(z) = b(z)A(z), where

b zð Þ ¼ D �ik
@g
@y

þ iku

f0s
@g
@z

� f0H

R
xT � RGT

f 20 Hs
@g
@z

� �� ��

� imþ 1

2H

� ��
: ðA7Þ

[47] For the special case of adiabatic flow, for which
R0 = 0 and R1 = 0, the stream function amplitude becomes

A zð Þ ¼
ffiffiffiffi
s
m

r
exp

�
i

Zz
0

q z 0ð Þdz 0; ðA8Þ

where the phase is given by
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du
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Appendix B: Coefficients in Equations (13a)–(13d)

[48]

~G1 ¼ �i
k
f0H

G1 � HG2 exp �e�1zð Þ
uk � wð Þ2

 !
1þ iĜ

1þ Ĝ2
; ðB1aÞ

Ĝ ¼ tp þ
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f 20 Hs

� �
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; ðB1bÞ

tT zð Þ ¼ GT

uk � wð Þ ¼
NC time scale

advective time scale
; ðB2aÞ

tp zð Þ ¼ x1 � Hx2 exp �e�1zð Þð Þ
uk � wð Þ ¼ photochemical time scale

advective time scale
;

ðB2bÞ

where tT and tp are nondimensional timescales.

Appendix C: Numerical Procedure

[49] Substitution of (18) into (1)–(8), evaluating the
integral in the shielding effect using the trapezoidal rule,
and using second-order finite differences on staggered
uniform grid in which f̂(z), ŵ(z), and ĝ(z) are evaluated at
odd and even levels, respectively, results in a set of
algebraic equations that were cast in the discrete form,
AX = B, where A is the coefficient matrix and B is the
forcing vector. B only has one element corresponding to the
forcing produced by topography at the lower boundary,
which was obtained by averaging Peixoto et al.’s [1964]
topographic height data in 5� intervals between 30�N and
60�N for the first two zonal modes: h1 = 468 m and h2 =
519 m. A Gaussian elimination routine was used to solve for
the solution vector X. To ensure that the solutions were

physically relevant, i.e., void of spurious reflections from
the upper boundary, we numerically solved the forced
problem using several different values for the grid spacing,
Dz, and several different heights for the upper boundary.
We have found that Dz = 0.5 km was sufficient for
resolving the wave structures and that f̂(z) = 0 at 100 km
was sufficient for avoiding spurious reflections from the
upper boundary.
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