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ABSTRACT

An equatorial beta-plane model of the middle atmosphere is used to analytically examine the effects of radiative
cooling and ozone heating on the spatial and temporal evolution of the quasi-biennial oscillation (QBO). Under
the assumption that the diabatic heating is weak and the background fields of wind, temperature, and ozone are
slowly varying, a perturbation analysis yields expressions describing the vertical spatial modulation of Kelvin
and Rossby–gravity waves in the presence of ozone. These expressions show that wave-induced changes in the
diabatic heating arising from the advection of basic-state ozone reduce the local radiative damping rate by up
to 15% below 35 km. In a one-dimensional model of the QBO, eddy ozone heating increases the amplitude of
the zonal wind QBO by 1–2 m s21 and increases the oscillation period by about two months. The significance
of these results to the observed QBO is discussed.

1. Introduction

The quasi-biennial oscillation (QBO) in zonal wind
was first observed independently by Reed et al. (1961)
and Veryard and Ebdon (1961) and has since been stud-
ied extensively (Nastrom and Belmont 1975; Coy 1979;
Plumb 1984; Dunkerton 1985; Andrews et al. 1987).
The QBO is confined to equatorial latitudes and is char-
acterized by alternating easterly and westerly winds that
oscillate with a variable period ranging from 22 to 34
months. The zonal wind reversal initially occurs at high-
er levels in the stratosphere (above 30 km) and gradually
descends at a rate of approximately one kilometer per
month. Maintenance of thermal wind balance explains
the observed temperature QBO, which has a maximum
amplitude of approximately 3 K in the lower equatorial
stratosphere (Plumb 1984; Andrews et al. 1987). The
secondary circulation that maintains the temperature
structure of the QBO is responsible for the tropical
ozone QBO (Reed 1964; Plumb and Bell 1982; Hasebe
1984; Ling and London 1986).

* Current affiliation: Universities Space Research Association,
NASA/Goddard Space Flight Center, Greenbelt, Maryland.

Corresponding author address: Dr. Eugene C. Cordero, NASA/
GSFC, Code 916, Greenbelt, MD 20771.
E-mail: cordero@polska.gsfc.nasa.gov

The commonly accepted theory explaining the gen-
eration and maintenance of the zonal wind QBO asserts
that damped vertically propagating equatorial waves are
the source of momentum driving the zonal mean flow
(Lindzen and Holton 1968; Holton and Lindzen 1972).
Holton and Lindzen (hereafter HL) used a one-dimen-
sional (1D) model to demonstrate how thermal and me-
chanical damping of forced, vertically propagating
equatorial Kelvin and Rossby–gravity waves can pro-
duce a QBO-like circulation. Since HL’s study, more
realistic two and three-dimensional mechanistic models
have verified the importance of wave damping in driving
the QBO (Plumb and Bell 1982; Dunkerton 1985; Tak-
ahashi 1987; Takahashi and Boville 1992). However,
these models require unrealistically high wave ampli-
tudes in order to produce a QBO consistant with ob-
servations.

Studies that have investigated the existence of alter-
nate momentum sources large enough to drive the QBO
have thus far been inconclusive. For example, Takahashi
and Holton (1991) found that the inability of Rossby–
gravity waves to provide sufficient momentum to drive
the easterly phase of the QBO cannot be resolved by
either Rossby waves or a single westward propagating
gravity wave. Their conclusions, along with those of
more recent studies using general circulation models
(GCMs), are that smaller-scale gravity waves may be
important for driving the QBO (Hayashi and Golder
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1994; Takahashi 1996). However, the continuing diffi-
culties in obtaining a realistic QBO in GCMs suggest
that other mechanisms may also play an important role
in the QBO.

Central to understanding the generation and mainte-
nance of the QBO is the process of wave damping, a
mechanism by which vertically propagating waves de-
posit their momentum flux to the zonal mean flow. Mod-
els of the QBO have verified the importance of New-
tonian cooling (NC) on wave damping but have gen-
erally neglected the effects of ozone heating on the
waves.

Recent studies have indeed shown that ozone heating
can have an important effect on wave motions in the
atmosphere. For example, Zhu and Holton (1986) found
that the diabatic heating due to vertical ozone advection
and ozone photochemistry can increase the local NC
rate by as much as 50% for forced inertio–gravity waves.
Nathan (1989), Nathan and Li (1991), and Nathan et al.
(1994) showed that radiative–photochemical feedbacks
involving ozone can destabilize free Rossby waves in
midlatitudes. More recently, Echols and Nathan (1996)
demonstrated that ozone–dynamics interactions can
change the divergence of Eliassen–Palm (EP) flux for
forced equatorial Kelvin waves by as much as 25% in
the stratosphere. Because Kelvin waves are at least par-
tially responsible for the westerly phase of the QBO,
the results of Echols and Nathan indicate that ozone–
dynamics interactions may play a more important role
in influencing the circulation of the equatorial lower
stratosphere than previously thought.

Improving our understanding of the role ozone heat-
ing plays in equatorial wave dynamics may provide an-
swers to important questions surrounding the QBO. For
example, what influence do radiative–photochemical
feedbacks have on the spatial and temporal properties
of forced, equatorial Kelvin and Rossby–gravity waves?
How does the diabatic heating arising from ozone–dy-
namics interactions in the equatorial stratosphere affect
wave damping, a process vital to driving the zonal mean
flow? How important is the interaction among the eddy
fields of ozone, wind, and temperature in the production
and maintenance of the zonal wind QBO?

Motivated by these questions, we investigate two as-
pects of the QBO problem that have not been fully
addressed: First, we examine the role ozone heating
plays in affecting the spatial modulation of forced Ross-
by–gravity waves; second, we examine how the eddy
feedbacks among radiational cooling, ozone heating,
and dynamics influence the zonal wind QBO. Thus, in
contrast to recent work by Hasebe (1994), who exam-
ined how the heating due to the ozone QBO influences
the zonal wind QBO, our focus is on how the eddy ozone
heating interacts with the wave fields, which in turn
drive the zonal mean circulation via wave damping.

The paper is organized as follows: In section 2 the
model and basic states are described. Section 3 contains
the analytical development and solutions for both the

Kelvin and Rossby gravity waves. A description of our
1D model and results are presented in section 4, fol-
lowed by a discussion of the relevance of this study to
the observed QBO. The summary and conclusions are
presented in section 5.

2. Equatorial b-plane model

a. Governing equations and boundary conditions

The model atmosphere is governed by linearized
primitive equations on an equatorial b plane (Andrews
et al. 1987; Echols and Nathan 1996). These equations
describe, respectively, conservation of zonal and me-
ridional momentum, conservation of mass, hydrostatic
balance, thermodynamic energy, and ozone volume
mixing ratio, which in log-pressure coordinates can be
written as

] ] ]u ]F9
1 u u9 1 w9 2 byy9 5 2 , (1)1 2]t ]x ]z ]x

] ] ]F9
1 u y9 1 byu9 5 2 , (2)1 2]t ]x ]y

]u9 ]y9 1 ](rw9)
1 1 5 0, (3)

]x ]y r ]z

]F9 RT9
5 , (4)

]z H

] ] ]T H H
21 u T9 1 y9 1 N w9 5 2aT9 1 Ag9, (5)1 2]t ]x ]y R R

] ] ]g ]g R
1 u g9 1 y9 1 w9 5 2Bg9 2 CT9. (6)1 2]t ]x ]y ]z H

The symbols in (1)–(6) are defined in Table 1 where
zonal mean quantities are denoted by an overbar and
perturbations from the zonal mean are denoted by a
prime.

The parameterizations for the ozone heating/photo-
chemical coefficients in (5) and (6) are similar to pre-
vious studies of ozone dynamics interactions (Hartmann
and Garcia 1979; Zhu and Holton 1986; Nathan and Li
1991; Echols and Nathan 1996). Briefly, A is the ozone
heating coefficient, which is based on the diurnal av-
eraging procedure of Cogley and Borucki (1976) to cal-
culate the absorption of solar radiation and photodis-
sociation rates per ozone molecule (Nathan and Li
1991). The effects of multiple scattering and ground
reflection are parameterized as in Strobel (1978). In (6)
B and C are parameterizations of the photochemical
response of ozone to dynamically induced perturbations
in ozone and temperature, respectively. Catalytic loss
processes involving odd nitrogen, odd chlorine, and odd
hydrogen are included and are based on Stolarski and
Douglass (1985). The vertical distributions of A, B, and
C at the equator are portrayed in Fig. 1. Inclusion of
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TABLE 1. List of symbols.

x, y, z 5 2Hln(p/p0) Eastward, northward, and vertical direction
p0 Sea level reference pressure (51000 hPa)
H Scale height (56 km)
r(z) 5 r0exp(2z/H) Basic-state density
r0 Global mean sea level density (1 kg m23)
b Northward gradient of the Coriolis parameter evaluated at the equator (52.29 3 10211 m21s21)
u(z), T(y, z), g(y, z) Basic-state zonal mean wind, temperature, and ozone volume mixing ratio
N2 Brünt–Väisälä frequency squared
c Wave phase speed
k Zonal wavenumber; s 5 kae, where s 5 1, 2, 3, ··· and ae is the earth’s radius
u9(x, y, z, t), v9(x, y, z, t) Perturbation zonal and meridional wind components
w9(x, y, z, t) Perturbation vertical wind component
T9(x, y, z, t) Perturbation temperature
F9(x, y, z, t) Perturbation geopotential
g9(x, y, z, t) Perturbation ozone volume mixing ratio
a(z) Radiative cooling coefficient
A(z; T, g) Ozone heating coefficient
B(z; T, g), C(z; T, g) Radiative–photochemical coefficients in the ozone continuity equation

the shielding effect, which accounts for the influence of
perturbations in ozone above a given height, are ne-
glected because of the relatively short vertical scale of
the Kelvin and Rossby–gravity waves considered here
(Echols and Nathan 1996).

Because the equatorial waves considered here have
relatively short vertical wavelengths, the thermal relax-
ation rate a, which appears in the Newtonian cooling
term in (5), is calculated based on the scale-dependent
radiative relaxation scheme of Fels (1982) and is shown
in Fig. 2. For the Kelvin wave we have chosen a vertical
wavelength of 12 km, while for the Rossby–gravity
wave we have chosen a vertical wavelength of 8 km
(Andrews et al. 1987).

The temperature and ozone fields are directly coupled
by the diabatic heating term in the thermodynamic en-
ergy equation (5) and the ozone production/destruction
terms in the ozone continuity equation (6). Wave-in-
duced ozone perturbations, g9, alter the diabatic heating
rate per unit mass (Q9 5 HR21Ag9 2 aT9) and thus
temperature perturbations, T9, which in turn alter the
ozone production/destruction (S9 5 2Bg9 2 RH21T9)
and thus ozone perturbations.

Our numerical analysis described in section 4 uses
the following boundary conditions. At the lower bound-
ary the amplitude, period, and wavelength of both the
Kelvin and Rossby–gravity wave is specified (HL;
Dunkerton 1979). A radiation condition is applied at the
upper boundary; that is, we require that the vertical
energy flux be bounded and directed toward infinity as
z → `. In the meridional direction wave solutions are
equatorially trapped (e.g., F → 0 as y → `) and in the
zonal direction we assume the solutions are periodic.

b. Basic states

Although seasonal variations exist in the equatorial
distributions of zonal mean temperature and zonal mean
ozone, these variations are relatively small and thus have
little effect on the wave responses or their feedbacks

with the zonal mean flow. Therefore, we choose for
presentation the results obtained from a basic state rep-
resentative of the September equinox at the equator.

Figure 3 displays the zonal mean temperature distri-
bution, T(z), at the equator. This distribution is calcu-
lated from data compiled by Fleming et al. (1988), who
synthesized monthly mean temperature fields using both
ground-based and satellite data.

To facilitate our analytical analysis, we represent the
zonal mean ozone distribution in the Tropics as

2ay ˆg (y, z) 5 g (z) 1 g (0, z), (7)y2

where y is the meridional distance from the equator,
is the height-dependent meridional gradient of ba-ĝ (z)y

sic-state ozone taken at 158N, and a 5 1.67 3 1026 m21

represents the inverse of the distance from the equator
to 158 latitude. The zonal mean ozone distribution given
by (7) resembles observations in the tropical strato-
sphere while explicitly accounting for the approximate
linear relationship between y and g y in the Tropics (e.g.,

5 ). Figure 4a displays the basic-state ozoneˆg aygy y

volume mixing ratio distribution, g(z), at the equator.
This distribution is based on values from Keating and
Young (1985) above 30 mb and McPeters et al. (1984)
below 30 mb. A cubic spline algorithm is used to in-
terpolate the zonal mean ozone data into the desired
resolution; the vertical and meridional gradients in ba-
sic-state ozone, g z and g y, shown in Figs. 4b and 4c,
are computed using second-order finite differences.

In the analytical section, two basic-state zonal wind
profiles representative of the two phases of the QBO
are considered:

u(z) 5 620 tanh[(z 2 z0)/3], z0 5 27 km, (8)

where z0 corresponds to the level of maximum wind
shear. Profile 1 (1 sign) corresponds to the descending
westerly phase of the QBO and profile 2 (2 sign) cor-
responds to the descending easterly phase of the QBO.
These wind profiles are displayed in Fig. 5.
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FIG. 1. Distribution of the (a) local ozone heating coefficient A,
(b) ozone damping coefficient B, and (c) ozone-temperature coupling
coefficient C.

FIG. 2. Scale-dependent radiative cooling coefficient, a (day21).

3. Analytical analysis

In this section we derive analytical expressions for
the amplitude and phase of forced, equatorial Kelvin
and Rossby–gravity waves in the presence of radiative
cooling and ozone heating. We employ the perturbation
analysis technique described in Andrews and McIntyre
(1976). Details of the mathematical development are

provided in appendix A. Briefly, the analysis hinges on
the assumption that the background basic state is slowly
varying in the vertical and that the diabatic heating is
weak. To account for the ‘‘slow’’ vertical spatial mod-
ulation of the wave fields, we introduce a long vertical
scale, z 5 mz, where m K 1 is nondimensional, and
transform the vertical differential operator as ]/]z ⇒ ]/
]z 1 m]/]z 1. We also assume that diabatic processes
resulting from radiative cooling and ozone heating are
small; that is, Q9 ⇒ mQ9. With the above reordering of
the vertical scale and diabatic heating, the basic-state
fields of wind, temperature, and ozone are chosen of the
form u 5 u(z ), T 5 T(y, z ), g 5 g(y, z ).

All dependent variables are expanded in a perturba-
tion series of the form

z /2Hg9(x, y, z, z, t; m) 5 e Re{[ĝ (y, z) 1 mĝ (y, z)0 1

21 m ĝ (y, z) 1 · · · ]2

213 expi(kx 2 s t 1 m f(z))},
(9)

where ĝn(y, z ) is the wave structure function, k is the
zonal wavenumber, and s is the ground-based frequen-
cy. Insertion of (9) into (1)–(6) yields a sequence of
problems in powers of m; the lowest (zeroth) order sys-
tem of equations yield the classic solutions for the Kel-
vin and Rossby–gravity wave (Lindzen 1971), namely,

1 Andrews and McIntyre’s (1976) analytical study considers the
possibility of wave transience and wave dissipation, thus necessitating
the introduction of long time and space scales to account for both
the temporal and spatial modulation of the wave fields. In contrast,
we consider only the effects of wave dissipation, that is, we examine
the diabatic effects of ozone heating and radiative cooling on the
vertical spatial modulation of forced waves of fixed frequency; thus
we only need to introduce a long vertical scale.
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FIG. 3. Basic-state temperature (K) at the equator for September.

{u , y , w , T , F }0 0 0 0 0

2v HN v 2b|m |yK5 a (z) 1, 0, , 2i , exp , (10)K 5 6 1 2N R k 2N

{u , y , w , T , F }0 0 0 0 0

2i|m |vy i|m |v y |m |HvyRG RG RG5 a (z) , 1, , ,RG 25 N N R

22b|m |yRGivy exp , (11)6 1 22N

where v 5 v(z ) 5 s 2 ku(z ) and the subscripts K and
RG denote the Kelvin and Rossby–gravity waves, re-
spectively. The wave amplitudes aK(z ) and aRG(z ) are
thus far unknown and are determined at O(m).

At O(m) the diabatic effects due to NC and ozone
heating along with the slow vertical variations enter as
forcings on the linear operator. In order that the expan-
sion (9) remain valid, these forcings must be orthogonal
to the homogeneous adjoint solution. This requirement
yields the sought-after expressions for the amplitudes
of the Kelvin wave (denoted by j 5 0) and Rossby–
gravity wave (denoted by j 5 1):

const
j/4a (z) 5 [N(b 1 vk)] exp i m (z) dz ,j E j3/4 3j /4 1 2|v| |v|

(12)

where the local vertical wavenumber is defined as

mj(z ) 5 mr,j(z ) 1 imi,j(z ). (13)

The subscripts r and i denote real and imaginary com-
ponents. The real component of the vertical wavenum-
ber, mr, can be approximated by the standard dispersion
relation for Kelvin and Rossby–gravity waves (see ap-
pendix B); the imaginary component of the vertical
wavenumber, mi, is

mi,j

m 1r,j5 2 a 1
2 2[2v (B 1 v )

2 ˆAg v Aag Bvyz3 ABC 2 2 d ,j,125 6]N N(b 1 vk)
| | | | | |

z z z}} }}}} }}}}}}
I II III

(14)

where dj,1 is the Kronecker delta function, so that term
III only applies to the Rossby–gravity wave. Equation
(14) explicitly describes how ozone feedbacks modify
the amplitude of the Kelvin and Rossby–gravity waves
in the presence of both longwave radiational cooling
and ozone heating. If ozone feedbacks are neglected,
corresponding to A 5 B 5 C 5 0, (14) is equivalent

to the damping rates obtained by Holton and Lindzen
(1972).

a. Rossby–gravity wave analysis

Equation (14) reveals that the NC damping rate a is
modified by three ozone heating effects: ozone photo-
chemistry (I), vertical ozone advection (II), and merid-
ional ozone advection (III). Depending upon the sign
and relative magnitude of these terms, the (local) spatial
damping rate of the wave is either increased or de-
creased.

Term I represents ozone photochemical heating,
which in the lower stratosphere is one to two orders of
magnitude smaller than terms II and III. In sharp con-
trast II and III, which represent vertical and meridional
ozone advection, have significant magnitudes in the
lower and midstratosphere.

Next we numerically compare the relative magnitude
of the NC coefficient (a) with the ozone heating terms
(I, II, and III) for the Rossby–gravity wave (c 5 230
m s21, s 5 4). Figure 6 shows the relative contributions
of I, II, and III to the total damping rate for zonal wind
profiles 1 and 2. For descending westerlies (profile 1)
below 30 km, vertical ozone advection (II) reduces the
local damping rate due to NC alone by up to 17%.
Above 35 km, where g z , 0, the diabatic heating effects
due to ozone advection are reversed, resulting in local
damping times that are up to 20% larger. Meridional
ozone advection (III), which has a negligible influence
below 27 km, only accounts for a slight increase in the
damping times between 31 and 35 km. Above 37 km,
g y . 0, v , 0, and (b 2 vk) . 0 so that meridional
ozone advection enhances the damping rates by up to
15%. Term I, which represents ozone photochemical
processes, has little influence below 35 km; above 40
km I increases the damping rates by over 25%.

For descending easterlies (profile 2), the contributions
from terms I–III are generally similar to their contri-
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FIG. 4. Basic-state distribution of (a) ozone mixing ratio g at the
equator, (b) vertical gradient of basic-state ozone g z at the equator,
and (c) meridional gradient of basic state ozone g y at 158N for Sep-
tember.

FIG. 5. Zonal mean wind profiles typical of the descending west-
erlies of the QBO (solid line: profile 1) and the descending easterlies
of the QBO (dashed line: profile 2).

bution to the case of descending westerlies (profile 1).
However, there are some important differences. Below
30 km, the ratio of photochemical to advective time-
scales is t [ B/v ø 1022. Terms II and III are therefore
only weakly dependent on v below 30 km, so the zonal
wind profile has little effect on the damping rates. How-
ever, above 30 km, t 2 ø O(1) so that II and III are more
dependent on v. Therefore, because v is smaller for

wind profile 2 than for wind profile 1, terms II and III
make smaller contributions to the damping rate.

We explain the above results as follows. Below 30
km, where dynamical timescales (10–50 days) are much
shorter than photochemical timescales (100–1000 days)
and the vertical gradient of basic-state ozone is positive
(g z . 0), perturbative vertical motions transport ozone-
poor air upward and ozone-rich air downward, resulting
in a net cooling above a net warming. This results in a
reduction of the static stability and thus a decrease in
the damping rate. In contrast, above 35 km, where g z

, 0, vertical ozone advection has a stabilizing effect
on wave amplitudes. Meridional ozone advection can
also increase or decrease the damping rate in a similar
manner, although the magnitude of these changes below
30 km is negligible. Above 35 km ozone is dominated
by photochemical processes and thus wave-induced
temperature perturbations are anticorrelated with per-
turbations in ozone due to temperature-dependent ozone
photochemistry. A warm temperature anomaly results
in less ozone and therefore, less heating through ozone’s
absorption of solar ultraviolet radiation. This process—
termed photochemically accelerated cooling—produces
strong thermal damping (Strobel 1977) and augments
the thermal damping due to vertical ozone advection.

b. Kelvin wave analysis

The effects of ozone heating on the spatial modulation
of forced equatorial Kelvin waves (c 5 30 m s21, s 5
1) has been treated in detail by Echols and Nathan
(1996). Although their study uses a slightly different
analytical analysis, both approaches yield similar results
for the lower stratosphere. Thus, we only briefly sum-
marize the results for the Kelvin wave in order to ease
comparison with the Rossby–gravity wave results given
in section 3c.

Inspection of (14) reveals that the functional forms
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FIG. 6. Comparison of the radiative damping rate (a: solid), ra-
diative damping and vertical ozone advection (a 1 term II: dotted),
radiative damping, vertical ozone advection and ozone photochem-
istry (a 1 term I 1 term II: dashed) and radiative damping, vertical
and meridional ozone advection, and ozone photochemistry (a 1
term I 1 term II 1 term III: dot–dash) for the Rossby–gravity wave
using (a) zonal wind profile 1 and (b) zonal wind profile 2. Terms
I–III are defined in section 3.

of terms I and II are identical for the Kelvin and Rossby–
gravity waves; however, because the meridional motions
are small (y9 ø 0) for the Kelvin wave, the heating due
to meridional ozone advection (III) has negligible in-
fluence on its spatial modulation.

In the lower stratosphere (14) can be simplified by
noting that B and C are small there, yielding an ex-
pression for the local spatial damping rate identical to
that obtained in Echols and Nathan [1996; their Eq.
(25)],

m Agr,0 zm 5 2 a 2 . (15)i,0 2[ ]2v N

Equation (15) is valid below ;30 km, where photo-
chemical timescales are long compared to advective
timescales. In this region (g z . 0), vertical ozone ad-
vection leads to less wave damping. Above 35 km (g z

, 0), vertical ozone advection and ozone photochem-
istry lead to increased wave damping (equation not
shown). The influence of ozone advection is maximized
at ;28 km; that is, where g z is maximized.

4. Influences of ozone heating on the zonal mean
circulation

a. Eliassen–Palm flux

To provide further insight into the influence of ozone
feedbacks on the waves that affect the zonal mean cir-
culation, we calculate the latitudinally integrated diver-
gence of Eliassen–Palm flux, an important diagnostic
quantity for assessing the influence of waves on the
zonal mean circulation. Because the Kelvin and Rossby–
gravity waves are equatorially trapped, the meridional
component of the latitudinally integrated EP flux van-
ishes, giving to lowest order,

]^F & ] Rbyz^= ·F& 5 5 r y9T9 2 u9w9 . (16)
27 1 28]z ]z HN

The angle brackets represent a meridional integration,
that is, ^ & 5 L21 ( ) dy, where L 5 1200 km is a`∫2`

meridional scale of the waves. For adiabatic, inviscid
flow, ^Fz& is independent of height (Lindzen 1971). In
contrast, when considering both radiative damping and
ozone heating, we obtain

z1]^F &z 5 A (z )m exp 22 m dz , (17)O j 0 i,j E i,j[ ]]z j50 z0

where Aj(z0) represents the momentum flux at the lower
boundary and mi represents the local spatial damping
rate given by (14). Equation (17) therefore describes
how NC and eddy ozone heating combine to modify the
wave driving of the zonal mean flow.

To obtain quantitative results for ozone-induced
changes in ^= ·F&, (17) is evaluated by choosing Aj(17
km) 5 64 3 1023 m2 s22 (HL) for various zonal wind
profiles. We show the results using zonal wind profiles
1 and 2, which are qualitatively similar to the results
obtained using other observed or analytical zonal wind
profiles. We compare the influence of ozone feedbacks
to an atmosphere without ozone feedbacks by setting
the radiative–photochemical coefficients A, B, and C
equal to zero. Figures 7a and 7b show a comparison of
the normalized, latitudinally integrated EP flux diver-
gence calculated with ozone (dashed lines) and without
ozone (solid lines). Using zonal wind profile 1, the
ozone-modified EP flux for the Kelvin wave (c 5 30
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FIG. 7. Normalized latitudinally integrated divergence of EP flux
for the (a) s 5 1, c 5 30 m s21 Kelvin wave using profile 1 and (b)
s 5 4, c 5 230 m s21 Rossby–gravity wave using profile 2. Dashed
lines indicate calculations including ozone feedbacks; solid lines in-
dicate calculation without ozone feedbacks.

m s21, s 5 1) is larger above ;29 km, weaker below
;29 km, and has a maximum difference of 20% at 29
km. Because Kelvin waves are preferentially absorbed
in westerly shear zones (Andrews et al. 1987), ^= ·F&
for profile 1 is positive (westerly acceleration) and has
its peak coincident with the region of maximum wind
shear (;29 km). For zonal wind profile 2 (Fig 7b),
^= ·F& for the Rossby–gravity wave (c 5 230 m s21, s
5 4) also is enhanced above ;28 km, reduced below
;28 km, and has a maximum difference of 7% at 28
km. Because mr is proportional to v22 for the Rossby–
gravity wave and v21 for the Kelvin wave, the vertical

profiles of EP flux for the Rossby–gravity wave are
much sharper. Moreover, because v depends more
strongly on height for the Rossby–gravity wave, the
influence of the ozone feedbacks is reduced.

b. One-dimensional QBO model

Quantitative results demonstrating how ozone feed-
backs influence the QBO via modulation of the Kelvin
and Rossby–gravity wave fields are obtained using a 1D
model of the form (Holton and Lindzen 1972)

2]^u& 1 ]^F & ] uz5 2 1 K , (18)
2]t r ]z ]z

where ^Fz& is the latitudinally integrated vertical com-
ponent of EP flux and K is the eddy diffusion coefficient.
Using an initial condition of zero zonal mean wind, (18)
was integrated forward in time using a time step of 1
day, an eddy diffusion coefficient of 0.3 m2 s21, and
the same wave parameters as in section 3 (i.e., Kelvin
wave: c 5 30 m s21, s 5 1; Rossby–gravity wave: c 5
230 m s21, s 5 4).

Figure 8a shows a time–height cross section of the
mean zonal wind for the reference case (no ozone feed-
backs). The zonal mean wind oscillates with a period
of about 27 months, has an amplitude range from 115
m s21 to 216 m s21, and each wind regime descends
at a rate close to 1 km/mo. These results are qualitatively
consistent with other 1D models of the QBO (e.g., HL;
Dunkerton 1979). As shown in Fig. 8b, ozone–dynamics
interactions produce stronger zonal winds (1–2 m s21)
and longer QBO periods (;2 months) when compared
to the model run without ozone.

Results from the 1D model show that vertical ozone
advection is destabilizing below 35 km, resulting in en-
hanced wave driving of the zonal mean winds. In the
1D model, ozone feedbacks reduce the wave damping
in the lower stratosphere. Weaker damping rates produce
a slower decent of the shear zones (longer QBO periods)
and a larger divergence of EP flux that drives a stronger
zonal wind circulation (larger QBO amplitudes). Above
35 km, the vertical extent of the QBO is limited by
enhanced wave damping due to ozone photochemistry.
The zonal wind profile is therefore in better agreement
with observations of the equatorial stratosphere, which
show a QBO signal from 17 to 35 km (Andrews et al.
1987). This underscores the importance of including
eddy ozone feedbacks in bringing the model results in
closer agreement with observations.

The above results indicate that the diabatic heating
associated with ozone advection reduces the local spatial
damping rates of the Kelvin and Rossby–gravity waves
in the lower stratosphere. Because the ozone heating
coefficient A is still relatively small in the lower equa-
torial stratosphere, the waves remain damped with
height. Nevertheless, this feedback significantly influ-
ences the zonal mean QBO. These results suggest that
models of the QBO that include ozone–dynamics feed-
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FIG. 8. Time–height section of zonal wind (m s21) at the equator for (a) case without ozone feedbacks
and (b) case including ozone feedbacks. Dotted contours indicate easterly winds.

backs would require smaller wave amplitudes at the
lower boundary in order to obtain a QBO circulation.

5. Summary and conclusions

An equatorial beta-plane model is used to study the
effects of ozone heating on the zonal wind QBO. Under
the assumption of a slowly varying basic state and weak
diabatic heating, we use a perturbation analysis to an-

alytically demonstrate how the combined diabatic pro-
cesses of ozone heating and radiative cooling modify
the vertical (local) spatial damping rate of the Kelvin
and Rossby–gravity waves. In the lower stratosphere,
vertical ozone advection (spatially) destabilizes the
waves, resulting in smaller (15%) local damping rates
from 22 to 30 km; meridional ozone advection has a
negligible influence at these levels of the stratosphere.
Moreover, we have shown that the latitudinally inte-
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grated divergence of EP flux is altered by ozone feed-
backs, resulting in a larger zonal mean driving force for
both the Kelvin and Rossby–gravity waves.

The effects of the ozone-enhanced EP fluxes from the
Kelvin and Rossby–gravity waves on the QBO are tested
using a mechanistic 1D model of the QBO. Model in-
tegrations show that in the lower stratosphere ozone
feedbacks increase the zonal wind amplitude by 1–2 m
s21 (10%–20% change) and increase the oscillation pe-
riod by 2 months (10% change). In addition, the vertical
extent of the QBO is found to be lower and in closer
agreement with observations due to ozone photochem-
ical damping. These results suggest the potential im-
portance of eddy ozone feedbacks in simulating the
QBO.

Although our results show that wave–ozone feed-
backs affect the QBO by about 10%–20%, these feed-
backs are not sufficient to fully account for the apparent
missing momentum in the QBO system. This is es-
pecially true for the Rossby–gravity wave, which has
been observed to only have a fraction of the amplitude
required to drive the easterly phase of the QBO (Boville
and Randel 1992; Takahashi and Boville 1992). How-
ever, it is unclear how our results, which focus on eddy–
ozone interactions, combined with the results of Hasebe
(1994), which focus on zonal mean–ozone interactions,
would influence the momentum budget of the zonal
wind QBO. Clearly, both results, which explore dynam-
ical/photochemical feedbacks, are complementary, have
similar potential relevance, and should be strongly con-
sidered in future work. Further understanding of these
feedbacks requires the use of a more sophisticated model
of the equatorial stratosphere capable of incorporating
the explicit wave–mean flow interactions between the
wave and zonal mean dynamical and ozone fields. Such
work is currently under way and will be reported in a
future paper.
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APPENDIX A

Derivation of the Kelvin and Rossby–Gravity
Wave Amplitude

The perturbation analysis in section 3 hinges on two
key assumptions: 1) that the diabatic heating rate due
to ozone heating and radiative cooling is small and 2)

that the background fields of wind, temperature, and
ozone are slowly varying in the vertical. These as-
sumptions are formalized by introducing the small pa-
rameter m K 1. In particular, we rescale the diabatic
heating as Q9 ⇒ mQ9 and introduce the long vertical
scale z 5 mz, which allows the vertical differential op-
erator to be transformed as ]/]z ⇒ ]/]z 1 m]/]z (An-
drews and McIntyre 1976). The basic-state fields of
wind, temperature, and ozone are chosen of the form u
5 u(z ), T 5 T(y, z ), g 5 g(y, z). We seek normal-
mode solutions of the form

G9(x, y, z, t) 5 Re{g(y, z)ez/2H expi(kx 2 st)}. (A1)

Equations (1)–(6) can then be expressed as

2ivu 2 byy 1 ikF 5 2 mwu , (A2)z

2ivy 1 byu 1 F 5 0, (A3)y

RT
imF 2 5 2mF , (A4)zH

iku 1 y 1 imw 5 2mw , (A5)y z

H mHbyu yz22ivT 1 N w 5 2 mQ, (A6)
R R

]g ]g R
2ivg 1 y 1 w 5 2Bg 2 CT, (A7)

]y ]z H

where v, the Doppler shifted frequency, is

v 5 v(z ) 5 s 2 ku(z), (A8)

and subscripts denote partial differentiation. Because
both the Kelvin and Rossby–gravity waves are char-
acterized by relatively short vertical scales, terms in-
volving the factor, 1/(2H), have been dropped, e.g., m
k 1/(2H). Eliminating perturbation ozone from the dia-
batic heating term with the aid of (A7) gives

AH(yg 1 wg ) ACy zQ 5 1 1 a T. (A9)1 2R(B 2 iv) B 2 iv

Each disturbance variable is expanded in a perturbation
series in powers of m:

g 5 g0 1 mg1 1 m2g2 1 · · · , (A10)

where each term is assumed to have the normal mode
form

21im f(z )g (y, z) 5 Re{ĝ (y, z)e }, (A11)r r

where

m(z) 5 df/dz. (A12)

Equating the first two powers of m we can express the
equations in matrix form as

ˆMU 5 0,0 (A13)
ˆMU 5 A ,1 0

where
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v 2iby 0 0 2k 

iby v 0 0 i]/]y 
M 5 0 0 0 iN m , (A14) 

0 0 2iN v 0 
2k i]/]y m 0 0 

and

R ˆTˆ ˆU 5 û , ŷ , 2ŵ , T , F , (A15)r r r r r r5 6HN

R byu zTA 5 2i u w , 0, 2F , Q 2 y , w . (A16)0 z 0 0z 0 0 0z5 6HN N

The lowest-order equations yield the classic solutions
for the equatorial Kelvin and Rossby–gravity waves:
Kelvin wave:

{u , y , w , T , F }0 0 0 0 0

2v HN v 2b|m |yK5 a (z) 1, 0, , 2i , exp ; (A17)K 5 6 1 2N R k 2N

Rossby–gravity wave:

{u , y , w , T , F }0 0 0 0 0

2i|m |vy i|m |v y |m |HvyRG RG RG5 a (z) , 1, , , ivyRG 25 6N N R

22b|m |yRG3 exp . (A18)1 22N

The amplitudes aK(z ) and aRG(z ) are the remaining un-
knowns and are determined at O(m). Because M is self-
adjoint, a condition for the existence of higher-order
solutions, Û1, yields (Andrews and McIntrye 1976)

{A0, Û0} 5 0. (A19)

The inner product { , } is defined as
5

{a, b} 5 a b* , (A20)O n n7 8n51

where

`

5 dy, (A21)E71 28 1 2
2`

and the asterisk denotes complex conjugation. Substi-
tution of (A15)–(A18) into (A19) and integrating in y
yields an ordinary differential equation for a(z ); the
solution is

const
j /4a (z) 5 [N(b 1 vk)] exp i m (z) dz ,j E j3/4 3j /4 1 2|v| |v|

(A22)

where the local vertical wavenumber is defined as

mj(z ) 5 mr,j(z ) 1 imi,j(z ). (A23)

The subscript j denotes the wave type (j 5 0 for the
Kelvin wave; j 5 1 for the Rossby–gravity wave) and
r and i denote real and imaginary components. The real
component of the local vertical wavenumber, mr, is ap-
proximated by the standard dispersion relationship for
the Kelvin or Rossby–gravity wave (see appendix B),
the imaginary component mi is

mi,j

m 1r,j5 2 a 1
2 2[2v (B 1 v )

2Ag v aAg Bvyz3 ABC 2 2 d ,j,125 6]N N(b 1 vk)
| | | | | |

z z z}} }}}} }}}}}}
I II III

(A24)

where dj,1 is the Kronecker delta function.

APPENDIX B

Standard Dispersion Relationship for the Kelvin
and Rossby–Gravity Wave

The standard dispersion relationship for the Kelvin
and Rossby–gravity is given, respectively, as

Nk
m 5 2 , (B1)r,1 v

N
|m | 5 (b 1 vk). (B2)r,2 2v
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