
San Jose State University
SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

Spring 2014

IMPROVING THE EFFICIENCY OF
TESSERACT OCR ENGINE
Sahil Badla
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

Part of the Computer Sciences Commons

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU ScholarWorks. It has been
accepted for inclusion in Master's Projects by an authorized administrator of SJSU ScholarWorks. For more information, please contact
scholarworks@sjsu.edu.

Recommended Citation
Badla, Sahil, "IMPROVING THE EFFICIENCY OF TESSERACT OCR ENGINE" (2014). Master's Projects. 420.
DOI: https://doi.org/10.31979/etd.5avd-kf2g
https://scholarworks.sjsu.edu/etd_projects/420

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by SJSU ScholarWorks

https://core.ac.uk/display/70419822?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.sjsu.edu?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F420&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F420&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F420&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F420&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F420&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/420?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F420&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

1

IMPROVING THE EFFICIENCY OF TESSERACT OCR ENGINE

A Writing Project

Presented to

The Faculty of the Department of Computer Science

San José State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

By

Sahil Badla

May 2014

2

©2014

Sahil Badla

ALL RIGHTS RESERVED

3

SAN JOSÉ STATE UNIVERSITY

The Undersigned Project Committee Approves the Project Titled

Improving the efficiency of Tesseract OCR engine

by

Sahil Badla

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

Dr. Teng Moh Date

Department of Computer Science

Dr. Melody Moh Date

Department of Computer Science

Prof. Ronald Mak Date

Department of Computer Science

APPROVED FOR THE UNIVERSITY

Associate Dean Office of Graduate Studies and Research Date

4

ABSTRACT

IMPROVING THE EFFICIENCY OF TESSERACT OCR ENGINE

By Sahil Badla

 This project investigates the principles of optical character recognition used in the

Tesseract OCR engine and techniques to improve its efficiency and runtime. Optical character

recognition (OCR) method has been used in converting printed text into editable text in various

applications over a variety of devices such as Scanners, computers, tablets etc. But now Mobile

is taking over the computer in all the domains but OCR still remains one not so conquered field.

So programmers need to improve the efficiency of the OCR system to make it run properly on

Mobile devices. This paper focuses on improving the Tesseract OCR efficiency for Hindi

language to run on Mobile devices as there a not many applications for the same and most of

them are either not open source or not for mobile devices. Improving Hindi text extraction will

increase Tesseract's performance for Mobile phone apps and in turn will draw developers to

contribute towards Hindi OCR . This paper presents a preprocessing technique being applied to

the Tesseract Engine to improve the recognition of the characters keeping the runtime low.

Hence the system runs smoothly and efficiently on mobile devices(Android) as it does on the

bigger machines.

5

ACKNOWLEDGEMENTS

I would like to thank Dr. Teng Moh for his guidance. His insight, advice and guidance

throughout the project was invaluable. I also thank Dr. Melody Moh and Prof. Ronald Mak for

serving on my defense committee.

6

Table of Contents

List of Figures ..……………………………………………………………………......….........07

List of Tables ..………………………………………………………………………................08

Chapter 1 Introduction ...09

Chapter 2 Tesseract OCR overview…………………………………………………...............12

2.1 Introduction to Tesseract OCR.....................………………………...…………….........…12

2.2 Type ...………………………….....…............……...........12

2.3 Architecture ….....................................………………....…………..................……...........12

2.4 Working of Tesseract …………………………...........…......…….......14

Chapter 3 Previous Work………………………………………………………...............…....16

3.1 Literature Review.....................………………………………………….......……..........…16

3.2 Current technology and limitations………………………………..............…….................16

3.3 Various types of architectures …………………………...........................………..............20

3.4 Types of preprocessing steps available………………..................................……................21

3.5 Existing Applications on App Store..23

Chapter 4 Implementation. ..26

4.1 Setup...26

4.1.1 Running Tesseract.………………...26

4.2 Architecture..28

4.3 Tesseract Android tools...32

4.4 Preprocessing Step..32

4.5 DPI enhancement ...34

4.6 Combined Picture..37

Chapter 5 Result40

5.1 Experiment Result..40

5.2 Conclusion.………………...43

5.3 Examples...44

5.4 Future Work and scope.………………..46

References ...47

7

List of Figures

Fig 1: Tesseract flow..13

Fig 2: Image having text...14

Fig 3: Output of the OCR in text file...15

Fig 4: Hindi fonts..27

Fig 5: Box file...28

Fig 6: Architectural flow..28

Fig 7: Processing vs. Accuracy..29

Fig 8: Preprocessing Architecture and steps..30

Fig 9: Android application flow ..31

Fig 10: Colored Image...32

Fig 11: Output of Luminosity vs. simple gray scale..33

Fig 12: DPI enhancement ..35

Fig 13: Edge enhancement.... ..35

Fig 14: Main Activity...37

Fig 15: Choose from gallery..37

Fig 16: OCR result..38

Fig 17: App data ...38

Fig 18: Trained Data in SD Card..38

Fig 19: ATMA results..41

Fig 20: Shirorekha results........... ..42

Fig 21: result from paper. ...43

Fig 22: test image44

Fig 23: test image44

Fig 24: test image....... ..44

8

Fig 25: test image....... ..45

Fig 26: output image....... ...45

Fig 27: output image....... ...46

List of Tables

Table 1: result 1 ...40

Table 2: result 2 ...41

Table 3: result 3 ...42

Table 4: conclusion ...43

9

Chapter 1 - Introduction

Now that we have entered Web 3.0, the main players in it are mobile and more mobile devices.

Anything you could imagine is available for mobile. Similarly mobile application pool has

grown tremendously because of high availability and also the portable nature of mobile phones

and public API's. It's easier to carry them all the time instead of carrying your computer or

laptop.

Consider a scenario when you are out in some country with your family and the native language

there is not English, how would sightseeing look like? A person cannot carry a translation book

with himself to look up for signs and notice boards. That would ruin the joy of sightseeing. What

if we have a device which acts as a ready translator and has a camera so that you just point it on

the text and you get the translated text right away, wouldn't it make several lives easier.

The inspiration for this project is something similar to this scenario. People who belong to India

face a similar issue. In India, which has many regional languages, travelling to other states and

roaming around has always been a problem. One can't always hire a guide for the whole trip.

Hindi language is the focus as it is the national language of India. With more than a billion

people living and more than half a billion mobile phones, India lacks mobile phone applications

focusing on Hindi and related applications.

This led to the research for applications that people could use as ready translators in the handheld

devices and we all know that device is none other than a Smartphone. Almost everyone has a

Smartphone these days. Now the problem was to find the missing pieces and address the problem

to a solution. Next step is to research about the applications which could extract text from images

and that came out to be "Optical Character Recognition" applications also know as OCR. This is

the start to the building of a system which will then be ported over to Android platform where

the Hindi (national language of India, originated from Sanskrit) text could be extracted. This

would be "the" application for the visitors travelling to India. One more important thing is that it

would be available on the mobile devices as an open source project.

10

The inspiration for this project is based on the fact that there are not many applications for Hindi

OCR and very few of them are available for mobile phones. What makes this application stand

apart from other OCR applications apps is that it is open source, runs on mobile phones and

addresses a very common problem which more than a million people in India are facing.

This application is a starting point for a lot of similar applications that require OCR and it is

dedicated for Hindi. It has numerous use cases such as translation applications for visitors and

tourists, educational applications for students/teachers/kids, regional applications etc.

OCRs for personal computers is a fairly common thing and is being used in various domains.

Making it open source allows this potential field to be more discovered and contributed by

developers from all over the world. However the scope of this project is limited to efficient

extraction of the text only and translation would be out of scope. Let us start from the various

components involved in this system.

Optical character Recognition (OCR) is used in conversion of scanned, printed text images [1] or

handwritten text into editable text for further processing and analysis. OCR allows the machine

to recognize the text automatically. OCR has been used since early 90's in various types of

machines and is improving gradually. We could experience various problems while developing

an OCR system. First: Computer has to know what characters look like. There is little visible

difference between letters and digits. For instance it is difficult to differentiate between digit “0”

and letter “o” for the machine. Second: It is even difficult to differentiate foreground text from

background text and other content. Let's look back in the history where it all started. The first

OCR system was installed in 1955 at the reader’s digest, which used to OCR input sales report

into a computer. After that the OCR became very helpful in computerizing any manual or

physical task relating to documents [Patel 2012]. OCR is being used widely for various purposes

which includes: License plate recognition systems in various countries at toll stations, roads &

CCTV's, image text extraction from natural scene images [21], scanners and extracting text from

scanned documents, cards, printers [12], etc [21]. The proposed system is a faster OCR system

which has another step added as a pre processor which could increase the efficiency and the time

to complete the task. We can see a lot of variations of OCR systems such as check scanning

applications for Bank of America and Chase Bank which are used to add checks to your account

by just taking a picture of them. The application extracts the details and sends it over to the

11

server for transaction. Similar application for tax payments was developed by Turbo Tax to

easily pay tax via Smartphone. Various language translation applications are there on the

application store(Android, Apple & Windows) which extract and translate & then narrate the

text.

There is a whole range of OCR software available today in the markets like: Desktop OCR,

Server OCR, Web OCR, Mobile OCR etc. Accuracy of extracting text of any of these OCR tool

varies from 71% to 95% [Patel 2012]. Many OCR tools are available as paid and work really

well but only few of them are open source and free. Tesseract is basically Java code, so that

makes it platform independent. Just like any other open source package, this can be forked

easily. This is the best part about being open source. In the subsequent sections discuss more

about Tesseract and its architecture and the groundwork for this project.

12

Chapter 2 - Tesseract OCR overview

2.1 Introduction to Tesseract OCR

An Overview of the Tesseract OCR Engine describes Tesseract as: "Tesseract is an open source

optical character recognition(OCR) engine [7]. HP originally was originally started it as a project

[7]. Later it was modified, improved and taken over by Google and later released as open source

in year 2005. It is now available at [8]" (Smith, 2007) . It is very portable as compared to others

and supports various platforms. Its focus is more towards providing less rejection and improved

accuracy. Currently only command base version is available but there are many projects with UI

built on top of it which could be forked. As of now Tesseract version 3.02 is released and

available for use. Now Tesseract is developed and maintained by Google. It provides support for

around 139 languages [7].

2.2 Type

Tesseract is an example based system. This makes it efficient and flexible. By example based

systems we mean that the engine works on a set of example rules defined in the system and

results depend on this data. So in simpler words to get good results we need to define these set of

rules properly which is called "Training the engine". The reason to flexibility of Tesseract is the

fact that we could always change or modify the rules depending on the requirements.

2.3 Architecture

Tesseract OCR is an elegant engine with various layers. It works in step by step manner as

shown in the block diagram in fig. 1. The first step in the cycle is to sense the color intensities of

the image, named as adaptive thresholding [9], and converts the image into binary images.

Second step is to do the connected component analysis [7] of the image, which does the task of

extracting character outlines. This step is the main process of this cycle as it does the OCR of

image with white text and blacks rest of the image [21].

Tesseract was probably the first [7] to use these cycles to process the input image. After this the

outlines extracted from image are converted into Blobs(Binary Long Objects). It is then

13

organized as lines and regions and further analysis is for some fixed area [7]. After extraction

the extracted components are chopped into words and delimited with spaces. Recognition in text

then starts which is a two pass process. As shown in fig 1, the first part is when attempt to

recognize each word is made. Each satisfactory word is accepted and second pass is started to

gather remaining words. This brings in the role of adaptive classifier. The adaptive classifier then

will classify text in more accurate manner. The adaptive classifier needs to be trained beforehand

to work accurately. When the classifier receives some data, it has to resolve the issues and assign

the proper place of the text. More details regarding every step is available at [7][21].

Fig 1: Tesseract flow

14

2.4 Working of Tesseract

Tesseract works pretty much as a scanner. Its interface is pretty simple as it takes input o the

command lines with very basic commands. We need to input any image with text in it. The

image is shown in fig.2 [10] for example. Then it is processed by Tesseract. The command to do

that is shown in fig.3. The basic Tesseract command takes only two arguments: First is input

image that contains text and second argument is output text file which is usually text file [10].

Tesseract by default picks the extension of output file as .txt. There no need to specify the

explicitly the output file extension [21].

Fig 2: Image having text[10]

 Tesseract supports various languages. Each language comes with a trained language data file.

The language file must be kept in a location Tesseract knows. When using in the project it is

advised to keep it within the project folder. This folder is Tesseract home folder in your machine.

In this research, we are aiming to extract English and Hindi characters from the images so we

have to keep both Hindi and English data files. After processing step is completed , the output

file gets generated as shown in fig 3. In simple images with or without color (gray scale).

15

Experiments show that Tesseract is capable of achieving high accuracy such as 95% but in the

case of some complex images having multi layered backgrounds or fancy text, Tesseract

provides better accuracy in results if the pictures are in the gray scale mode as instead of color.

To prove this hypothesis, we ran Tesseract for same images in color and gray scale mode and in

both cases different result were achieved [21].

Fig 3: Output of the OCR in text file[10]

16

Chapter 3 - Previous Work

3.1 Literature review

There were three main considerations in conducting a literature review for the topic “Improving

the efficiency of Tesseract OCR engine”. The first consideration is that of current technology

and limitations. There are a number of applications which are similar to the experiment being

conducted. The second is the type of architecture being used in the current applications. The

third consideration is the various types of preprocessing steps that could be added without

affecting the throughput of the system. The literature review attempts to address these three

issues, and show reasonable feasibility in this approach, both theoretically and experimentally.

Here the main focus is to add a preprocessing which increases the accuracy and then build this

system for Smart Phone platform which, in our case, would be Android. Various publications

where gone through and ultimately gave a start to address all these issues to the extent that

further research, and possibly actual experimentation, is warranted.

3.2 Current technology and limitations

OCR is widely used in web, desktop and graphic applications. OCR based applications are most

privately owned such as World Lens, Card Scan etc. There are much fewer applications

specifically for mobile. There are a few open source frameworks for mobile OCR.

Examples of private libraries

RICOH Library:

This library was introduced in late 90's. One of the best libraries of the time, this had a lot of

applications such as Ricoh's own printer and scanner products, book scanner algorithms, online

picture to document converters. The architecture of this library was ruled based machine

translation. It had various rules and patterns defined at character level.

A shortcoming of this system is that it work with perfectly lighted media and processing also

17

takes a lot of time.

Kusachi et al (2004):

The system was developed in 2004 and incorporated hybrid translation system. By hybrid we

mean that it is a combination of statistical and example based system.

The shortcomings of this system are that it supports fewer languages. The system is not flexible

enough to add more languages. Also it works on block letters. It does not support cursive letters

at all. Again like the previous one it has slower processing.

Open Source Libraries

Tesseract (Google):

The Tesseract was ranked one of the top three engines in 1995 OCR accuracy test conducted by

University of Nevada, Las Vegas. The best thing about Tesseract is that it started back in 1995

and is ever improving. When it was taken over by Google it made a transition. It is probably one

of the most accurate open source OCR engines available and it is growing ever since

then. Tesseract works on Linux, Windows and Mac OSX. The source can also be compiled for

other platforms, including Android and iPhone. It supports around 149 languages which come

as different packages. Tesseract is an example based text detection system so whatever language

we want to work with we need to either download that package or train the engine with our own

training data.

The benefits of using this engine are that it is flexible in terms of supporting different languages

and could be compiled to run on different platforms.

GOCR:

This is also amongst the top three best rated open source OCR engines. GOCR's best feature is

that unlike Tesseract it has graphical user interface that can be used with different frontends.

This makes it very easy to work with different languages and architectures. It supports many

18

different image file formats, and its quality has improved since then.

JAVAocr :

This is yet another OCR engine targeting mobile devices. Most of the features are same as

Tesseract and GOCR but the one main feature that stands it apart is that it has very small

memory footprint. Very few external dependencies makes it suitable for mobile development. It

has a modular structure for easier development and deployment on system. It is built to run on

cross platform applications.

There are some disadvantages in this OCR engine. First, it's not fast in processing. Some of the

portions work really well but others are lousy. Second, it's not very well documented and

supported.

The paper entitled, “Optical Character Recognition by Open Source OCR Tool Tesseract: A

Case Study”[21], provided a good reference for the capabilities and applications of the Tesseract

OCR. The authors have used gray scaling as a preprocessor to the Tesseract OCR engine. The

most interesting thing about this paper was the subject matter and the test data. They presented

overview of the subject and then the experiment they took out to OCR the car license plates with

an added preprocessing. This article provided relevant, useful, and up-to-date information

regarding Tesseract OCR and its use. This paper is a very good source, giving this paper a good

comparative background and introduction to Tesseract. Then there is a comparison of the results

using the new system they built with the normal Tesseract OCR.

The applications based on these open source Frameworks are very few especially for Hindi. The

below literature review gives an idea about various research works on Hindi and English OCR

applications and various types of implementations.

Some other papers[28],[29] and [30] that provide good insight on Hindi OCR are as the initial

steps in the systems architecture. These research works for Hindi OCR apply to both desktop and

19

mobile applications. Based on these studies we will lay out the framework for our application.

They also serve as a benchmark for the result and conclusion of the effectiveness of my

experiment.

The setup for Hindi OCR within Tesseract is another important task. The way you train the

engine and input the dataset matters a lot.

Training Tesseract for Hindi includes four steps mainly and they are as follows:

Generating training images:

Tesseract official website explains these steps very well "The first step is to determine the full

character set to be used, and prepare a text or word processor file containing a set of examples"

[31]. The two important points to remember for a training file are: Firstly make sure the file

contains all the characters that we are expecting. Secondly there should be at least 5 samples.

There should be more samples of the more frequent characters - at least 20 [31]. Keeping all this

in mind let's explore how do we create box files.

Make box files:

Box file is defined as a sample to match with the characters. We need a 'box' file for each

training image. Tesseract official website defines the box file as "The box file is a text file that

lists the characters in the training image, in order, one per line, with the coordinates of the

bounding box around the image" [31]. Tesseract is not so intuitive about the sample data.

Inconsistencies may lead to wrong interpretation of data.

Run Tesseract:

In this step we run the Tesseract engines with the new training files. The purpose is to create the

trained dataset which works as a rule engine. Also it creates log files.

Compute character set:

Guidelines from Tesseract website state that "Tesseract needs to know the set of possible

characters it can output. To generate the unichar set data file, use the unicharset_extractor

program on the box files generated above" [31]:

20

extractor language . fontname. box

One more requirement in this is, Tesseract needs to have access to character properties i.e.

isalpha, isdigit, isupper, islower, ispunctuation [31].

The system described in [30],[31] have classified Hindi OCR and its setup, training very nicely.

The only limitation is that the system is for desktop. We have to build the similar system for

mobile devices.

3.3 Various types of architectures

The paper “An Automatic sign recognition and translation system” [22], provided an in-depth

look at the various types of architectures that we could use. This presented the working of

Tesseract on the Android system. The attributes analyzed in this system were the accuracy and

efficiency of Tesseract OCR on a smart phone. The scope of my research is also towards smart

phones so this is a good starting step for my experiment. The objective is to determine if

Tesseract would be feasible to be used on smaller machines.

ATMA[30]:

This application uses the original OCR engine without any enhancement. The system is built

on an Android device. Architecture is simple and is implemented in Android operating system.

OCR Engine used is Tesseract 3.01 which is the latest stable version. The device is not

mentioned but it is for sure a smart phone with Android. Other tools used are: Android NDK

r7 and Android SDK r16 for compiling and building the android project. Capture mode used is

"still camera".

Complete OCR for Hindi Text[28]:

This application also uses Tesseract OCR engine. This version is not specified though.

Application is mainly for printed Hindi text and classifies Hindi characters very nicely. The

system is built for Desktop computers. Capture mode is still camera. It uses segmentation of

characters as a technique and post processing for error detection.

Shirorekha chopping[29]:

21

This application uses Tesseract 3.01 OCR engine. The target operating system mentioned is

Ubuntu. Main feature described in this paper is chopping the image character by character. The

system trained the Hindi data in one of the new font's. The system does a comparative study

against Google's stock Hindi training data. Various pre-processing steps were applied.

TranslatAR[32]:

The device used in this system is Nokia n900. This paper demonstrates one of the newest

architectures i.e. video augmentation capture mode. That means that this system deals with

videos frames in the real time. Other features included are foreground-background color

extraction technique.

Looking at all these applications and their architecture, one thing that is realized is that when

there are a lot of preprocessing steps a lot of time is spent before even the extraction begins. So

preprocessing step needs to kept minimal to save time. On the architecture side Tesseract 3.01 is

the most stable form , so that will be the target version of OCR engine. To keep the things

simple, the system won't implement the OCR in video mode. The aim of this project is to extract

the characters efficiently in least amount of time.

3.4 Types of preprocessing steps available

The article “Transcription for the OpenPlaques project” [23], provides various types of

preprocessing methods on the images. The article gave good insight on the computer graphics

rendering and filtering. In this paper, individual methods are analyzed and their results

identified and studied. The methodologies presented will be utilized to determine the

feasibility of using this method as a pre processor in the solution. The article also presented

advanced features such that text filtering using a sliding window on the target image [23].

Steps available in Tesseract:

Binarization:

22

Binarization of the image means to convert the image of up to 256 gray levels to a black and

white image. Binarization is used mostly as a preprocessing step to image processing tools.

This works by choosing a threshold value and classify all pixels above this and below this

value. Then we just normalize the images to that threshold value. Now how to select the

correct threshold is the main question. Due to this uncertainty, adaptive image binarization is

commonly used because it adapts a threshold value depending on the image color levels.

Grayscaling:

Grayscaling means to transform the image into black and white. Usually colored images when

converted to black and white reveal a lot of information. Most of the computers can normally

represent up to 256 levels of gray color. Grayscaling is a process which converts a continuous

tone image to gray scale levels. The process is used in a lot of real time image processing tools.

Because of this most of the CCTV's and traffic light camera's are grayscale. It makes the

separation of various parts of the images easier. We need to take care of the DPI along with the

image's resolution. Different capturing devices capture images in different resolutions. This

incurs a lot of inconsistency. This problem can be tackled effectively using data

compression techniques, but still grayscaling technique is bound to use a lot of memory [24].

The need for further preprocessing

Current implementation on Tesseract works fine for desktop or laptop computers. But for

mobile devices we need something lighter and efficient. The preprocessing steps prepare the

input image to be almost ready for extraction by the Tesseract Engine. Also the preprocessing

aims to remove noise, light variations etc which impair the task of recognition. Let's look at

other algorithms available to achieve this.

More steps available are:

 Luminosity

Luminosity method is a technique which uses grayscaling as the base. For converting an

image into Luminosity we convert it into grayscale then preserve some light intensities.

http://www.webopedia.com/TERM/D/data_compression.html
http://www.webopedia.com/TERM/D/data_compression.html
http://www.webopedia.com/TERM/D/data_compression.html

23

Luminosity is a almost like the grayscaling method, but more sophisticated to take the human

perception of color into account [24]. As a matter of fact the human eye is functions bit

differently than computer graphics. It is more sensitive to green and least sensitive to blue

color intensities. So in the process we adjust these frequencies to be preserved.

OpenCV

OpenCV (Open Source Computer Vision) is a library of programming functions and algorithms

[36]. Their main focus is to provide API mainly aimed at real-time computer vision. It was

originally developed by Intel. OpenCV library is free for use for development (under the open

source BSD license) [36]. The best feature is that the library is cross-platform .

Linearization

Linearization is basically adjusting the image from blurs and fuzzy edges. Sometimes due to

motion while capturing the edges bleed into each other and gives fuzzy image. Linearization

technique handles this very nicely and takes care edge by edge.

Pixelation

Used for individual character segmentation. Pixelation is defined as displaying the individual

pixels of the digitized images. In this we display block for each pixel at a distance to each other

which is apparent to the users. This can happen unintentionally too when a low-resolution image

get stretched on large images.

3.5 Existing Applications on App Store

World Lens:

World is one of the leading applications available on the web for both Android and IOS smart

phones. It is one of its kind and uses augmented reality to translate the captured content.

Developed by Quest Visual, world lens uses built in camera of the phone to quickly scan and

identify text and foreign languages. The processing is fast and utilizes video mode. So there is

not actual saving of images in the phone memory. The words are displayed in context to the

http://en.wikipedia.org/wiki/Library_(computing)
http://en.wikipedia.org/wiki/Computer_vision
http://en.wikipedia.org/wiki/Intel_Corporation
http://en.wikipedia.org/wiki/Open_source
http://en.wikipedia.org/wiki/Open_source
http://en.wikipedia.org/wiki/Open_source
http://en.wikipedia.org/wiki/BSD_license
http://en.wikipedia.org/wiki/Cross-platform

24

original text after translation.. World lens is available as trial version as well as paid version

for the Apple's IOS as well as for a selection of Android smart phones.

This is the best rated applications available in market. This is a close source applications which

supports more than 40 languages. It extracts as well as translates the characters.

Some of the cons for this application with respect to the proposed system are that it needs

internet connection to work. The application is heavy in terms of processing because it is dealing

in the video mode. Works best with high end devices. It also needs a lot of memory.

Mobile OCR:

This is a mobile application which makes possible obtaining text and working with it from

pictures taken from a camera hardware. It has a simple and direct multilingual interface, which

lets us access its features in a fast and effective way. The customized interface allows us to adapt

the characteristics of the camera for an optimal image preprocessing that will improve the results

obtained by the OCR. Also, the advanced text post processing techniques developed by the

Smart Mobile Software increase the effectiveness until the achievement of almost perfect

results.

It is not an open source application. It is compatible with IOS and Android devices. The

application supports many languages. It works for digital as well as printed text. The application

is lighter than other competitors.

One of the cons for this application with respect to the proposed system is that the app needs to

download app data for each language. The processing of the overall system is slow.

Image to text OCR:

The ImageToText app is a free app which allows us to extract characters text from images, and

share the results over the web. The app is fairly simple to use. Working is as simple as taking a

picture, from the camera, of a document that you would like to OCR, and e-mail the image to

yourself or share it. You will receive the image as well as the text file that contains the editable

text that is extracted from the image. This currently supports English documents only. It is

http://en.wikipedia.org/wiki/Apple_Inc.
http://en.wikipedia.org/wiki/IPhone
http://en.wikipedia.org/wiki/Android_(operating_system)

25

developed by Ricoh Innovations. It is a closed source application and is compatible with IOS and

Android devices.

One of the cons for this application with respect to the proposed system are that it has no support

for languages apart from English. Also the accuracy is much lesser than the other applications.

After getting enough ideas and instructions from the above presented research work we'll start

implementing the proposed system using Tesseract OCR for Android devices. The subsequent

sections include the implementation and working of the system.

26

Chapter 4 - Implementation

4.1 Setup

To conduct this experiment there are a few things that must be configured onto the system. The

device used for this experiment is primarily Samsung Galaxy S3 running on Android 4.1 version.

To install Tesseract onto the system we have to follow certain steps on the machine being used

for development[8].

Installation steps include downloading the source from the Tesseract website(installer) [8].

Installer depends on the type of operating system being used. After that download Android SDK

r19 and Android NDK r7c(open source) to open and build the code. We need Android NDK

because of some native code in Tesseract. This code is basically the Leptonica image processing

library which is written in C. Then we need to build the project using the following commands

in the IDE:

cd <project-directory>/tess-two

ndk-build

android update project --path .

ant release

The initial setup is the most crucial part. If it is not done properly one may keep getting weird

errors during execution. Once this is done then the system could be installed on Android system.

4.1.1 Running Tesseract

Running Tesseract on Android system is one of the biggest challenges experienced in the project.

After successful installation we can verify whether the Tesseract OCR engine is working fine by

calling the below steps [25]:

Tesseract does not have any graphic user interface and works on command-line. We have to open

27

a terminal window or command prompt window in the computer. A very simple example of the

command is shown below [8] [25]:

 tesseract image_name output [-l lang] [-psm page_seg_mode] [config_file...]

So in simpler words, a basic command to do OCR on an image named 'input_image1.png' and

saving the extracted result to 'output_image1.txt' would be [25]:

tesseract input_image1.png output_image1

Or to do the same thing with some other language say Hindi [25]:

tesseract myinput.png out -l hin

Training Tesseract for Hindi

Steps to train Tesseract for a particular language were presented in Section 3.2. We would be

following the same steps to train Tesseract again for Hindi character set in 4 fonts. It is very

important for accurately extracting characters.

Examples of the font files are as follows:

Fig 4: Hindi fonts

Example of the box file is as follows:

28

Fig 5: Box file

4.2 Architecture

In the previous sections we did an extensive search on the existing application architectures. One

thing common to all these applications is that to get better accuracy preprocessing is required.

Also most of the application implement still camera capture mode to image input. Let's start

laying out the overall architectural diagram of the proposed system. By now various

pieces(Tesseract engine, preprocessing, Android migration) of the system are clear and we'll start

putting them up in order.

Overall Flow:

29

 Fig 6: Architectural flow

The above image shows the overall architecture of the system. Basically it has two main

subsystems. First is the Preprocessing and second is Tesseract API. The project's main focus area

in this report is the preprocessing step which works on the input image to make it ready for

Tesseract engine. One thing to note in this is that there is a tradeoff between processing and

accuracy. The more time you spend on preprocessing gets more accuracy but it increases the

runtime too. The figure below explains the relationship very nicely.

Fig 7 : Processing vs. Accuracy

The image explains the distribution/weight for different steps in OCR with respect to processing

and accuracy. On the processing side most of the time is spent in the extraction step. It is because

how well the characters are extracted better it is for the recognition step. Then recognition and

translation are almost equally weighted. On the accuracy part most of the accuracy is incurred in

the recognition phase. It is on the part of rule matching subsystem to recognize and match

characters efficiently.

30

Preprocessing Step:

 Fig 8: Preprocessing Architecture and steps

The above image explains the Preprocessing subsystem of the proposed application. The various

steps in the pre-processing phase are: Rotation, optimize resolution, adjust the DPI's and lastly

the Luminosity grayscaling algorithm is applied to the images. The processed image is then fed

to Tesseract as input. Rotation step rotates the image if while capturing the camera was not in

Zero degree angle. It's a relatively smaller step. Resolution optimization is also comparatively

smaller step which compresses the larger images to best resolution for Tesseract. Most of the

time is consumed in Dpi adjustment and grayscaling algorithm. They are the main steps which

makes the image ready for Tesseract.

31

Android App architecture:

 Fig 9: Android application flow

The image above explains the architecture from the Android point of view. The application flow

is as follows: The first step is to choose the input image, which could be either clicked from the

camera of selected from the image gallery. After selection the image is fed to the preprocessing

subsystem. The processed image is fed to Tesseract API which extracts the characters from the

image and the result is displayed to the screen.

32

4.3 Tesseract Android Tools

Tesseract Android tools is another project which helps in compiling the Tesseract and Leptonica

libraries so that they could be used as an API, for example, on the Android platform. So it is

structured as a service which exposes API calls to native code. The API is written in JAVA for

works fine with Android projects. This step is very important to port the system built so far onto

Android. The Tesseract library will behave as an API to the project's front end. We need to

compile the project using Android tools to make it available as an Android project.

4.4 Preprocessing step

Luminosity Technique

Luminosity theshold grayscaling is a method for converting an image into grayscale but

preserving some of the color intensities. The Luminosity technique is almost like the average

color method, but more sophisticated to take the human perception of color into account [24].

The human eye is more sensitive to certain color. For instance it is more sensitive to green and

least sensitive to blue. Below is the equation for getting the color of a pixel [24]:

Each pixel is converting using the above formula. Below is the illustration of converted images

using both methods of gray scaling.

Result images:

33

Fig 10: Colored Image

Fig 11: Output of Luminosity vs. simple gray scale

Algorithm below defines how we process image luminosity technique:

 // Get buffered image from input file;

 // iterate all the pixels in the image with width=w and height=h

 for int w=0 to w=width

 {

 For int h=0 to h=height

 {

 // call BufferedImage.getRGB() saves the color of the pixel

 // call Color(int) to grab the RGB value in pixel

 Color= new color();

 // now use red,green,black components to calc average.

 int luminosity = (int)(0.2126 * red + 0.7152 *green + 0.0722 *blue;

 // now create new values

 Color lum = new ColorLum

34

 Image.set(lum)

 // set the pixel in the new formed object

 }

 }

In this algorithm we traverse the image pixel by pixel and then store it in an array. Then the

formula for luminosity as shown below is applied.

 luminosity = (0.2126 * red portion + 0.7152 * green portion + 0.0722 * blue potion);

This is the main step where we transform each pixel to get the real details out of it. Finally we

again pack all the pixels to form the image again.

4.5 DPI Enhancement

To get the best results out of the image we need to fix the DPI too. Grayscaling alone would only

work in the case when there is no distortion, light effects in the image [26]. We won't be

experiencing such ideal images every time. Some steps we need to consider in DPI enhancement

are: fix DPI (if needed) 300 DPI is minimum acceptable for Tesseract. Better range of DPI

results in better extraction process. The reason why we need this step is we'll be using this

application on different smart phones. Each one has different camera specification and pixel

density. So it is better to normalize the picture before saving it in the gallery and make it

consistent to the Tesseract engine.

Since in our case the images are not perfectly clicked and ideal, and also we want to keep the

process light and suitable for mobile phones , we'll keep the scope limited to DPI enhancement

only. For our images we fix the DPI to 300 (needed by Tesseract) [26]. If the images are larger

than this we compress the images to the size where we can achieve 300 dots per inches.

35

The figure below describes the effect of DPI enhancement

Fig 12: DPI enhancement

The figure below shows how the algorithm works to refine the edges.

Fig 13: edge enhancement

36

Algorithm for DPI enhancement:

start edge extract (low, high){

 // define edge
 Edge edge;
 // form image matrix
 Int imgx[3][3]={
 }
 Int imgy[3][3]={
 }
 Img height;
 Img width;

 //Get diff in dpi on X edge

 // get diff in dpi on y edge

 diffx= height* width;

 diffy=r_Height*r_Width;

 img magnitude= sizeof(int)* r_Height*r_Width);

 memset(diffx, 0, sizeof(int)* r_Height*r_Width);

 memset(diffy, 0, sizeof(int)* r_Height*r_Width);

 memset(mag, 0, sizeof(int)* r_Height*r_Width);

 // this computes the angles
 // and magnitude in input img
 For (int y=0 to y=height)
 For (int x=0 to x=width)

 Result_xside +=pixel*x[dy][dx];

 Result_yside=pixel*y[dy][dx];

 // return recreated image

 result=new Image(edge, r_Height, r_Width)

 return result;

}

In a nutshell this algorithm works to normalize the pixel density. Each pixel has its size and

depth of the image is denoted by number of pixels packed in it. As already discussed , the system

can encounter image with lesser density than minimum required or a very large picture.

37

4.6 Combined picture

Following are the screenshots from the working Android application. The system on which the

project is running is Samsung Galaxy S3 and operating system is Android 4.1 jelly bean.

Figure 14 shows the main activity which is the main landing page of the application. When we

install and run the application this is the page that opens. It has two options to choose the image

for OCR. First is the camera button which opens the camera and lets us click pictures. Second

option is to choose existing image from the gallery. In this case the image could reside anywhere

in the app memory or SD card.

 Fig 14: Main Activity Fig 15: Choose from gallery

Figure 15 shows the popup that opens when we click the button "choose from gallery" and takes

us to the phone's image gallery. Figure 16 shows the output text appears in the text box after the

OCR. Figure 17 and 18 show the application data inside the app. This folder is created once the

application is installed and stores the trained data files. Tesseract uses this location to process the

38

input images and to compare the extracted characters against the trained data.

 Fig 16: OCR result Fig 17: App data

 Fig 18: Trained Data in SD Card

39

As presented in the above images the fully functional Android application that was proposed in

the beginning. In the subsequent section results of the experiment would be compared against

other research works.

40

Chapter 5 - Results

5.1 Experiment results

Following are the results from the experiment conducted based on the data set from previous

research works. Results were gathered separately on Hindi and English data.

Comparison with Hindi OCR apps:

ATMA [30]:

Android Travel Mate Application is the application which runs Tesseract in its core just like our

system and it extracts Hindi text too. So it the first research work to compare our system with.

The data provided was a set of random images , logos and text in Hindi. The system was run

several times for this data set. Following is the table showing the results of the experiment with

this data set:

Image no Image Type Accuracy Runtime

1 3 words 70 1745

2 4 words 70 2304

3 2 words 90 1845

4 2 words 100 2372

5 2 words 95 1599

6 10 words 50 2478

7 2 words 50 1597

8 3 words 30 2000

9 8 words 70 3568

10 12 words 75 3448

11 3 words 90 1709

12 15 words 90 5629

13 13 words 70 6179

14 9 words 85 4723

15 8 words 80 2966

16 3 words 90 1172

17 2 words 90 1347

Average 101 words 76.17% 46.4 sec

Table 1: result 1

41

Our experiment results(Table 1) shows that Average time taken per word is 0.459 sec. The

original paper results are as follows. Let me now compare the results of both.

 Fig 19: ATMA[30] results

The experiment clearly shows percentage decrease in runtime than the original paper i.e. the time

taken to extracts the words. The average time taken per word decreased from 681 ms to 459 ms.

For few images such as image no 6, 7 and 8 (highlighted in gray color), the system showed very

less accuracy percentage. The reasons for getting less accuracy were found out to be: special

symbols overlapping with character boundaries and light distortions.

The new system keeps the accuracy almost the same as the original paper results.

Shirorekha Chopping Integrated Tesseract OCR[29]:

The experiment was conducted against the data set from the above research paper[29]. The data

set consisted of images with large no of Hindi characters. The results from the experiment are as

follows:

Image no Image Type Accuracy Runtime

1. 21 90 1079ms

2. 29 91 1100ms

3. 20 92 1054ms

4. 24 89 1066ms

Table 2: result 2

42

The results from the experiment depict that the Average time to process each image is 1074 ms .

Average accuracy was measured to be about 90.5%.

Original Paper results are as follows:

 Fig 20: Shirorekha results[29]

The results from both the experiments are nearly the same. The results in the figure were

conducted on Desktop machine whereas the new system runs the experiment on Mobile phone

while keeping the runtime and accuracy same on lower power machine.

Comparison with English OCR

Let us know compare the results for English character recognition. The new system was ran

against data set from recent research works on English OCR as well.

The experiment was conducted against the data set of the research paper[21].

Image no Image Type Accuracy Runtime

1 5 WORDS 100 2202

2 6 97 1455

3 3 100 1127

4 3 100 1539

5 3 100 1247

6 4 98 3674

7 1 100 1165

8 7 95 1752

9 7 100 1281

43

 39 words 98.8% 15 sec

Table 3: result 3

The results from the experiment show that Average time taken per word is 0.36 sec per word and

Average accuracy is about 98.8 %. The results from the original paper are as follows:

 Fig 21: result from paper[21]

The results clearly show the increase in efficiency in the results from the new system.

5.2 Conclusion

The experiment results show a significant increase in efficiency specially in Hindi character

recognition. Keeping the efficiency same, the system is able to process the image in lesser time.

Original paper[30] has average runtime of 681 ms and the experiment results show the runtime of

459 ms keeping the accuracy almost the same. The consistency of system for English OCR is

also the same. We are able to demonstrate significant increase in efficiency and of English OCR

vs. Hindi OCR.

Original Paper Our Experiment

Ratio of Eng to Hindi runtime: 153ms: 681ms Ratio of Eng to Hindi runtime: 360ms: 459ms

Table 4: Conclusion

44

Hindi to English recognition rate in paper[30] is about 153 ms: 681 ms. The results from new

system show the decrease in this ratio. This shows that we are able to improve character

recognition for Hindi language on the whole by improving the process for recognition and that

too on mobile device.

5.3 Examples

Input Images for the experiment:

Fig 22: test image Fig 23: test image

Fig 24: test image

45

Fig 25: test image

Output Images:

Fig 26: output image

46

Fig 27: output image

5.4 Future Work and Scope

OCR is a very useful and popular application. It is being used in a lot of domains currently. The

idea of improving and improvising the OCR for Hindi text is a very different aspect. India is a

country with more than a billion people. Hindi being the national language is the used and

required everywhere. Hindi OCR and translation application for mobile phones solves a greater

piece of the problem stated in the beginning of the report. The experiment could be used to build

translation apps for Hindi language. This in turn could be used in various departments such as

educational institutions, transport, research and development.

47

References

[1] ARCHANA A. SHINDE, D. 2012.Text Pre-processing and Text Segmentation for OCR.

International Journal of Computer Science Engineering and Technology, pp. 810-812.

[2] ANAGNOSTOPOULOS,C.,ANAGNOSTOPOULOS, I., LOUMOS, V, & KAYAFAS, E.

2006. A License Plate Recognition Algorithm for Intelligent Transportation System

Applications.., IEEE Transactions on Intelligent Transportation Systems, pp. 377- 399.

[3] Y. WEN, Y. L. 2011. An Algorithm for License Plate Recognition Applied to Intelligent

Transportation System., IEEE Transactions on Intelligent Systems, pp. 1-16.

[4] XIN FAN, G. L. 2009. Graphical Models for Joint Segmentation and Recognition of

License Plate Characters. IEEE Signal Processing Letters, pp. 10-13.

[5] HUI WU, B. L. 2011. License Plate Recognition system. International Conference on

Multimedia Technology (ICMT). pp. 5425 - 5427.

[6] PAN, Y.-F., HOU, X., & LIU, C.-L. 2008.A Robust System to Detect and Localize Texts in

Natural Scene Images.The Eighth IAPR International Workshop on Document Analysis

Systems.

[7] SMITH, R. 2007. An Overview of the Tesseract OCR Engine. In proceedings of Document

analysis and Recognition.. ICDAR 2007. IEEE Ninth International Conference.

[8] GOOGLE. Google Code. google code. [Online] 2012. http://code.google.com/p/tesseract-

ocr/.

[9] F. SHAFAIT, D. K. San Jose, CA : s.n., 2008.Efficient Implementation of Local Adaptive

Thresholding Techniques Using Integral Images.. In Document Recognition and Retrieval

XV, S&T/SPIE Annual Symposium on Electronic Imaging.

48

[10] 1stwebdesigner. 1stwebdesigner. [Online] 2012. http://www.1stwebdesigner.com/wp-

content/uploads/2009/11/typography-tutorial/text1-how-to-create-typographic-

wallpaper.jpg.

[11] dsigninspire. Desing Inspire. [Online] 2012.

http://dsigninspire.com/wpcontent/uploads/2011/ 09/moon-shine.jpg.

[12] Geometric Rectification of Camera-Captured Document Images. Jian Liang; DeMenthon,

D.; Doermann, D.; April 2008. IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol.30, no.4, pp.591-605.

[13] Y. WEN, Y. L. 2011.,An Algorithm for License Plate Recognition Applied to Intelligent

Transportation System. IEEE Transactions on Intelligent Systems, pp. 1-16.

[14] Lihong Zheng, Xiangjian He, Bijan Samali, Laurence T. Yang. An algorithm for accuracy

enhancement of license plate recognition. Journal of Computer and System Sciences,

Available online 9 May 2012.

[15] Deselaers, T.; Gass, T.; Heigold, G.; Ney, H.; Latent Log-Linear Models for Handwritten

Digit Classification. June 2012. IEEE Transactions on Pattern Analysis and Machine

Intelligence, , vol.34, no.6, pp.1105-1117, doi: 10.1109/TPAMI.2011.218.

[16] Jianbin Jiao, Qixiang Ye, Qingming Huang, A configurable method for multi-style license

plate recognition. 2009. Pattern Recognition, Volume 42, Issue 3, , Pages 358-369.

[17] H. Erdinc Kocer, K. Kursat Cevik. 2011.Artificial neural networks based vehicle license

plate recognition. Procedia Computer Science, Volume 3, Pages 1033-1037.

[18] Apurva A. Desai. 2010. Gujarati handwritten numeral optical character reorganization

through neural network, Pattern Recognition, Volume 43, Issue 7 Pages 2582-2589, ISSN

0031-3203, 10.1016/j.patcog.2010.01.008.

49

[19] Roy, A.; Ghoshal, D.P. 2011. Number Plate Recognition for use in different countries using

an improved segmentation, 2nd National Conference on Emerging Trends and Applications

in Computer Science (NCETACS),vol., no., pp.1-5, 4-5. doi:

.1109/NCETACS.2011.5751407.

 [20] Fink, Gernot.2009. Markov models for offline handwriting recognition: a survey.

International Journal on Document Analysis and Recognition.Springer Berlin / Heidelberg

pp. 269-298,volume: 12,Doi: 10.1007/s10032-009-0098-4.

[21] Chirag Patel, Atul Patel and Dharmendra Patel. Article: Optical Character Recognition by

Open source OCR Tool Tesseract: A Case Study. International Journal of Computer

Applications 55(10):50-56, October 2012. Published by Foundation of Computer Science,

New York, USA.

[22] Jie Yang, Jiang Gao, Ying Zhang, Xilin Chen, and Alex Waibel. 2001. An automatic sign

recognition and translation system. In Proceedings of the 2001 workshop on Perceptive

user interfaces (PUI '01). ACM, New York, NY, USA, 1-8. DOI=10.1145/971478.971490

http://doi.acm.org/10.1145/971478.971490

[23] Jonathan.[Online].Available: http://jonathanstreet.com/blog/tag/tesseract/

[24] Sav.(2012).[Online].Available: http://www.savthecoder.com/blog/index.php?page=9

[25] GOOGLE. Google Code. google code. [Online] 2012.https://code.google.com/p/tesseract-

ocr/source/browse/wiki/ReadMe.wiki

[26] GOOGLE. Google Code. google code. [Online] 2012.https://code.google.com/p/tesseract-

 ocr/wiki/ImproveQuality

[27] Blog. http://www.fujixerox.com/eng/company/technology/image_en/

http://www.savthecoder.com/blog/index.php?page=9
https://code.google.com/p/tesseract-ocr/source/browse/wiki/ReadMe.wiki
https://code.google.com/p/tesseract-ocr/source/browse/wiki/ReadMe.wiki

50

[28] Bansal, V.; Sinha, R. M K, "A complete OCR for printed Hindi text in Devanagari

script," Document Analysis and Recognition, 2001. Proceedings. Sixth International

Conference on , vol., no., pp.800,804, 2001

[29] Nitin Mishra, C Patvardhan, Vasantha C Lakshmi and Sarika Singh. Article: Shirorekha

Chopping Integrated Tesseract OCR Engine for Enhanced Hindi Language

Recognition. International Journal of Computer Applications 39(6):19-23, February 2012.

Published by Foundation of Computer Science, New York, USA.

[30] Nitin Mishra and C Patvardhan. Article: ATMA: Android Travel Mate

Application. International Journal of Computer Applications50(16):1-8, July 2012.

Published by Foundation of Computer Science, New York, USA.

[31] GOOGLE. Google Code. google code. [Online] 2012.https://code.google.com/p/tesseract-

ocr/wiki/TrainingTesseract3

[32] Fragoso, V.; Gauglitz, S.; Zamora, S.; Kleban, J.; Turk, M., "TranslatAR: A mobile

augmented reality translator," Applications of Computer Vision (WACV), 2011 IEEE

Workshop on , vol., no., pp.497,502, 5-7 Jan. 2011

[33] TECH CRUCH. http://techcrunch.com/2012/08/11/analysis-web-3-0-the-mobile-era/

[34] IBM. www.haifa.il.ibm.com/projects/image/glt/binar.html

[35] Website .www.webopedia.com/TERM/G/gray_scaling.html

[36] Website. en.wikipedia.org/wiki/OpenCV

	San Jose State University
	SJSU ScholarWorks
	Spring 2014

	IMPROVING THE EFFICIENCY OF TESSERACT OCR ENGINE
	Sahil Badla
	Recommended Citation

	tmp.1440694382.pdf.3KyRC

