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Linked-cluster expansion for the Green’s function of the infinite-U Hubbard model
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We implement a highly efficient strong-coupling expansion for the Green’s function of the Hubbard model.
In the limit of extreme correlations, where the onsite interaction is infinite, the evaluation of diagrams simplifies
dramatically enabling us to carry out the expansion to the eighth order in powers of the hopping amplitude. We
compute the finite-temperature Green’s function analytically in the momentum and Matsubara frequency space
as a function of the electron density. Employing Padé approximations, we study the equation of state, Kelvin
thermopower, momentum distribution function, quasiparticle fraction, and quasiparticle lifetime of the system at
temperatures lower than, or of the order of, the hopping amplitude. We also discuss several different approaches
for obtaining the spectral functions through analytic continuation of the imaginary frequency Green’s function,
and show results for the system near half filling. We benchmark our results for the equation of state against those
obtained from a numerical linked-cluster expansion carried out to the eleventh order.

DOI: 10.1103/PhysRevE.89.063301 PACS number(s): 02.60.−x, 71.10.Fd, 71.27.+a

I. INTRODUCTION

In 1991, Metzner put forth an algorithm to compute the
finite-temperature Green’s function of the Fermi-Hubbard
model [Eq. (1)] through a linked-cluster strong-coupling
expansion [1]. His approach offers a relatively straightforward
implementation on a computer, which is particularly useful
today given the enormous improvements in computer power in
the past two decades. The Metzner formalism further simplifies
in the limit of extreme correlations, as the onsite repulsion U

tends to infinity. In this paper, we implement his approach to
obtain analytical expressions for the single-particle Green’s
function in that limit through eighth order in the expansion
parameter βt , where β is the inverse temperature and t is the
hopping amplitude of the electrons on the lattice.

In another recent development, the extremely correlated
Fermi liquid theory (ECFL) [2] addresses this important limit
through the use of Schwinger’s source formulation of field
theory. One of the significant physical ideas to come out of
this theory is the presence of particle-hole asymmetry in the
spectral densities of the single-particle Green’s function and
the Dyson-Mori self-energy [2–8]. This asymmetry, which
has also been observed in dynamical mean-field theory studies
of the Hubbard model [7,9,10], becomes more pronounced
as the density approaches half-filling, i.e., as n → 1. The
asymmetry has implications for understanding the magnitude
and sign of the Seebeck coefficient near the Mott insulating
limit [10–12] and for explaining the anomalous line shapes of
angle-resolved photoemission spectroscopy experiments [13]
in strongly correlated materials.

In a recent work [14], the present authors (with Hansen)
used the series expansion method to successfully benchmark
the ECFL results for the spectral function [5], in their
common regime of applicability. The currently available
[O(λ2)] self-consistent solution of the ECFL is valid for
n � 0.75. Additionally, the insight afforded by the aforemen-
tioned particle-hole asymmetry enabled us to construct a suit-
ably modified first moment of the spectral function, providing
a good estimate for the location of the quasiparticle peak. This

moment reduces the contribution from the occupied side of the
spectrum relative to the unoccupied side, leading to a sharper
location of the peaks. Therefore, using the series expansion to
calculate this moment, we were able to study the dispersion
of the quasiparticle energy and, as a result, the evolution of
the Fermi surface in the limit n → 1, i.e., beyond the density
regime currently accessible to the O(λ2) version of the ECFL.

Here, we expand upon our previous findings and perform
analytic continuation to obtain the full spectral functions.
Direct analytic continuation of finite series, however, leads to
unphysical results, e.g., negative spectral functions can arise
due to the truncation of the series. This is a well-studied
problem with known resolutions [15,16]. Therefore, and in
particular, to ensure the positivity of spectral densities, we
either take advantage of a transformation that guarantees this
positivity, or assume an approximate form for the spectral
functions, which comes out of the ECFL. We find a good
agreement between results from the two approaches, which
capture the expected features of the spectra discussed above.

Using strong-coupling expansions, there have been several
earlier studies of the thermodynamics and time-independent
correlations of the Hubbard and related models [17]. However,
strong-coupling expansions for the time-dependent correla-
tions are very rare [16,18,19]. In Ref. [16], the authors carried
out a strong-coupling expansion for the Green’s function to
fifth order in βt for the finite-U Hubbard model. Here, the
simplifications arising from the U → ∞ limit allow us to go
to eighth order in βt . This provides us with the opportunity
to employ Padé approximations and study several static and
dynamic quantities, such as the equation of state, momentum
distribution function, the quasiparticle fraction, and lifetime
at temperatures lower than the hopping amplitude, where
the direct sums in the series do not converge. We also
take advantage of the state-of-the-art numerical linked-cluster
expansions (NLCEs) [20], developed recently for the t-J
model, and set the exchange interaction J to 0, to gauge
our low-temperature equation of state obtained from the Padé
approximations.
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The organization of the paper is as follows: In Secs. II and
III, we review the Metzner formalism and detail its numerical
implementation. In Sec. IV, we provide analytical expressions
for the Green’s function and the Dyson-Mori self-energy in
momentum and Matsubara frequency space as a function of the
density. In Sec. V, we discuss the convergence of the series both
before and after the use of Padé approximations. Additionally,
using the series, we report results for the time-dependent local
Green’s function, the equation of state, Kelvin thermopower,
the quasiparticle weight at the Fermi surface, momentum
occupation number, and quasiparticle lifetime and spectral
functions at different points along the irreducible wedge of
the Brillouin zone. We summarize our results in Sec. VII.

II. THE MODEL

In the strong-coupling limit, the Hubbard Hamiltonian is
written as the sum of the unperturbed local Hamiltonian H0,
and a perturbation H1 that accounts for hopping of electrons
between the sites of the lattice,

H = H0 + H1, (1)

where

H0 = U
∑

i

ni↑ni↓ − μ
∑
iσ

niσ ,

(2)
H1 = −

∑
ijσ

tij c
†
iσ cjσ .

Here, ciσ (c†iσ ) annihilates (creates) a fermion with spin σ on
site i, niσ = c

†
iσ ciσ is the number operator, U is the onsite

repulsive Coulomb interaction, μ is the chemical potential,
and tij is the hopping matrix element between sites i and j .
As discussed in the following, we allow for nearest-neighbor
hopping only, namely, tij = t if i and j are nearest neighbors,
and tij = 0 otherwise.

III. METZNER’S APPROACH FOR COMPUTING
THE GREEN’S FUNCTION

We start by describing the Metzner formalism before
turning our focus to topics related to its computational
implementation in the limit of extreme correlations. Following
the conventions in Ref. [1], we define the finite-temperature
single-particle Green’s function as

Gσjj ′ (τ − τ ′) = −〈Tτ cjσ (τ )c†j ′σ (τ ′)〉, (3)

where 〈..〉 denotes the thermal average with respect to H , Tτ

denotes the imaginary time-ordering operator, and the creation
and annihilation operators in the Heisenberg representation are
expressed as

c
†
jσ (τ ) = eHτ c

†
jσ e−Hτ ,

(4)
cjσ (τ ) = eHτ cjσ e−Hτ ,

where 0 � τ � β is an imaginary time variable.
To derive a perturbative expansion for Gσjj ′ (τ − τ ′), we

switch to the interaction representation, where the time
evolution of the operators is governed by the unperturbed

Hamiltonian H0. The Green’s function can then be expressed
as

Gσjj ′(τ − τ ′) = −〈Tτ cjσ (τ )c†j ′σ (τ ′)S〉0/〈S〉0, (5)

where the expectation values (〈..〉0) are taken with respect to
the unperturbed Hamiltonian, and S is given by

S = Tτ exp

⎡
⎣∫ β

0
dτ

∑
ijσ

tij c
†
iσ (τ )cjσ (τ )

⎤
⎦ . (6)

Next, by expanding the exponential in Eq. (6), both the
numerator and the denominator of Eq. (5) can be written as
perturbative series expansions in t . As detailed in Ref. [1],
every term of the expansions can be written in terms of
cumulants (connected many-particle Green’s functions) of
the unperturbed system, denoted by C0

m (m indicates the
number of creation or destruction operators in the cumulant).
Due to the local nature of the unperturbed Hamiltonian,
the cumulants are site diagonal, i.e., the only nonzero ones
are those whose site variables are the same, and they can
therefore be indexed by site. Due to the translational invariance
of the Hamiltonian, an order m cumulant at site i is independent
of i and is a function of only the time and spin indices of
the m creation, and m destruction operators acting on i, i.e.,
C0

mi ≡ C0
m(τ1σ1, . . . τmσm|τ ′

1σ
′
1, . . . τ

′
mσ ′

m). As we will see in
the following, this invariance is a major advantage of the
present method. Using it, each term in the expansion can be
written as a product of a spatial part and a temporal part, which
may then be evaluated independently.

The terms in the expansion for 〈S〉0 can be evaluated
using a diagrammatic approach, where each diagram consists
of vertices, and directed lines connecting the vertices. Each
vertex represents a site on the lattice, and each line represents
a hopping process between two sites. Furthermore, the spatial
sums reduce to calculating free multiplicities of graphs when
embedded on the lattice. This computationally inexpensive
part of the algorithm can be carried out independently of the
most expensive part (taking the time integrals), for any lattice
geometry.

The expectation value in the numerator of Eq. (5) can be
calculated the same way as 〈S〉0, except that any graph in
the former contains two additional external lines, one entering
the site j ′ at time τ ′ and one exiting the site j at time τ .
Consequently, in the lattice sums, one has to “fix” the vertices
to which the external lines attach to be the sites j and j ′ on
the lattice with the desired separation between them.

Another important feature of this method is the fact that the
spatial sums are unrestricted (different vertices are allowed to
be on the same lattice site), and therefore it can be verified that
the contributions of disconnected diagrams are products of
the contributions of their connected components (the linked-
cluster theorem holds). Hence, the disconnected diagrams in
the numerator of Eq. (5) are canceled by the denominator, and
Gσjj ′ (τ,τ ′) is given as the sum of the contributions of only the
connected graphs in its numerator.

Further details of the method are given in Ref. [1] and
will not be repeated here. The rules mentioned in Ref. [1] for
generating the graphs and evaluating their contributions are
reproduced below.

063301-2
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FIG. 1. (Color online) Diagram of a sample graph in the sixth
order (with six internal and two external lines). The time and spin
indices of lines are ordered according to rule (iii). To calculate the
contribution of this graph, we need to insert C0

2 , C0
3 , C0

1 , and C0
1 for

vertices j ′, 1, 2, and j , respectively, for the time integral and the spin
sum, and (tj ′1)3(t12)2t1j for the spatial sum. The symmetry factor is
2 since exchanging lines that correspond to τ1σ1 and τ3σ3 does not
change the topology of the graph.

A. Rules for calculating the one-particle
Green’s function diagrammatically

(i) Draw all topologically distinct diagrams: vertices con-
nected by directed lines such that the number of entering and
exiting lines at each vertex is the same. The graphs consist
of the internal lines that connect two vertices as well as two
external lines that enter a vertex and exit a vertex. The order to
which each graph contributes is equal to the number of internal
lines it has.

(ii) Label each line with a time and spin index, and each
vertex by a lattice index. The vertex that has the entering
external line is labeled by j ′ and the vertex that has the exiting
external line is labeled by j .

(iii) Order the lines by defining a path that starts from the
entering external line at vertex j ′, goes through all of the
vertices, and ends with the exiting external line at j . Figure 1
shows an example of such a graph in the sixth order.

(iv) Insert a factor of (−til) for each line that connects vertex
i to vertex l.

(v) Insert C0
m(τ1σ1, . . . τmσm|τ ′

1σ
′
1, . . . τ

′
mσ ′

m) for each vertex
that has m entering lines labeled τ ′

1σ
′
1, . . . τ

′
mσ ′

m and m exiting
lines labeled τ1σ1, . . . τmσm, such that τiσi corresponds to the
next line after τ ′

i σ
′
i according to the ordering defined in (iii).

This will ensure that there are no fermion loops in the diagram.
(vi) Determine the symmetry factor of the graph, which is

the number of permutations of labeled lines and vertices that
do not change its topology.

(vii) To calculate the contribution of the graph, integrate
each internal time index between 0 and β, sum over the internal
spatial and spin indices, and divide the result by the symmetry
factor. As an example, the contribution of the graph c in Fig. 1
is

W (c) = 1

2

∑
1,2

(tj ′1)3(t12)2t1j

∫ β

0
dτ1 . . .

∫ β

0
dτ6

×
∑

σ1...σ6

C0
2 (τ1σ1,τ3σ3|τ ′σ,τ2σ2)

×C0
3 (τ2σ2,τ4σ4,τ6σ6|τ1σ1,τ3σ3,τ5σ5)

×C0
1 (τ5σ5|τ4σ4) C0

1 (τσ |τ6σ6). (7)

(viii) To obtain the lth-order contribution to the Green’s
function, add the contributions W (c), of all the graphs with l

internal lines:

G(l) =
∑

c ∈ order l

W (c). (8)

In this scheme, the only zeroth-order graph consists of a
vertex and the two external lines. In the first order, the only
possible topology has two vertices, each having an external
line, and a single internal line connecting them. In higher
orders, the number of vertices can vary from two to l + 1,
where l denotes the order, depending on the topology. The
topologically distinct graphs up to the fourth order are shown
in Fig. 4 of Ref. [1].

B. Computational implementation

We have implemented a computer program to perform all of
the steps described in Sec. III A for the infinite-U case. In this
limit, since no double occupancy is allowed, the calculation of
the cumulants simplifies drastically. This enables us to carry
out the expansion to eighth order. In this subsection, we explain
some of the details of this implementation at each step.

1. Generation of topologically distinct graphs

To generate all topologically distinct diagrams in step (i)
above, we need to have a way of uniquely identifying them in
a computer program. For this, we use the concept of adjacency
matrices. The elements of a m×m adjacency matrix, where m

is the number of vertices, represent the connections between
every two vertices. For instance, for a graph with undirected
lines between vertices, the (i,j ) element can be an integer that
simply counts the number of lines between vertices i and j .
Here, since the lines are directed, we use a generalization of
this matrix where every element is replaced by an array of size
two. The first element of this array (we call it the left element)
represents the number of incoming lines from vertex i to vertex
j while the second element (or the right element) represents
the number of outgoing lines from vertex j to vertex i.

One has to note that a topologically distinct graph cannot
be uniquely represented by such an adjacency matrix since
different labelings of the vertices, while not altering the
topology, lead to different adjacency matrices. Therefore,
one has to devise an algorithm to pick only one, out of
m! possibilities, of the labelings of a graph to be able to
establish a one-to-one correspondence between the graphs
and its adjacency matrix. This can be done, for example,
through sorting the adjacency matrix; by assigning the first
row (column) to the vertex that possesses the largest number
of lines, and so on. Alternatively, in our case, we can more
simply employ the order of vertices that results from rule (iii)
above.

After defining the mapping between the adjacency matrices
and graphs in the computer algorithm, we generate graphs with
m vertices by considering all possible numbers for the elements
of the m × 2m adjacency matrix, subject to the following two
constraints: First, the number of incoming and outgoing lines
at each vertex have to be the same, so, if we subtract the
sum of left elements and the sum of right elements at each
row (column) the result has to be zero. Second, the total

063301-3
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number of lines in the graph (or the sum of all elements of
the matrix, divided by 2) should be equal to the desired order
in the expansion. Note that, in this strong-coupling expansion,
there is no line that leaves a vertex and then enters the same
vertex, i.e., the diagonal elements of all adjacency matrices are
zero.

2. Cumulants

We obtain cumulants to any order by taking functional
derivatives of the generating functional with respect to Grass-
mann variables as described in Refs. [1,21]. As a result, a
cumulant of order l is written in terms of the local unperturbed
Green’s function (UGF) of the same order G0

l , as well as lower

order UGFs. In Appendix A, we show this expansion for the
first few cumulants. The calculation of the cumulants then
reduces to the evaluation of the UGFs, which, for order l, is the
expectation value of 2l time-ordered creation and annihilation
operators with respect to the unperturbed Hamiltonian. For
our case of the infinite-U limit, since no double occupancy
is allowed, a creation operator can only be followed by
an annihilation operator and vice versa. Hence, the Green’s
function can assume only two distinct values depending on
whether a creation or an annihilation operator is on the right
side of the time-ordered product of operators. The two values
are, respectively, (1 − ρ) and ρ

2 , where ρ = 2eβμ

1+2eβμ is the
density in the atomic limit. For example, we end up with the
following terms for the first two orders:

G0
1(τ1σ1|τ ′

1σ
′
1) = 〈Tτ c

†
jσ ′

1
(τ ′

1)cjσ1 (τ1)〉 = eμ(τ1−τ ′
1)δσ1σ

′
1

[
ρ

2
�(τ ′

1 − τ1) − (1 − ρ)�(τ1 − τ ′
1)

]
, (9)

G0
2(τ1σ1,τ2σ2|τ ′

1σ
′
1,τ

′
2σ

′
2) = 〈Tτ c

†
jσ ′

1
(τ ′

1)cjσ1 (τ1)c†
jσ ′

2
(τ ′

2)cjσ2 (τ2)〉

= eμ(τ1+τ2−τ ′
1−τ ′

2)
∑
qp

(−1)q(−1)p
[
ρ

2
δqσ2pσ ′

1
δqσ1pσ ′

2
�(pτ ′

1 − qτ1)�(qτ1 − pτ ′
2)�(pτ ′

2 − qτ2)

+ (1 − ρ)δqσ2pσ ′
2
δqσ1pσ ′

1
�(qτ1 − pτ ′

1)�(pτ ′
1 − qτ2)�(qτ2 − pτ ′

2)

]
, (10)

where the sum runs over permutations p and q of the time
and spin indices of the primed and unprimed variables,
respectively, and � is the usual step function.

3. Free multiplicities

The spatial sums are performed for a specific lattice
geometry. We have calculated them on the square lattice. In
the computer program, we define a large enough lattice where
we can fit any cluster with a number of sites at least twice as
large as the maximum number of vertices in our largest order
graphs. We then assign vertices j ′ (where an external line
enters) and j (where an external line exits) to two lattice sites
with a given displacement between them. The next part of the
algorithm involves finding the number of possibilities for as-
signing the rest of the vertices to lattice sites. This can be done
by following the path we have defined for each graph in rule
(iii) to go from vertex j ′ to j . We start from vertex j ′ and in each
step, we move to the next vertex in the list and assign a site to it.
We ensure that if we come back to a vertex in the graph, we also
come back to the corresponding site on the lattice. However,
since we are calculating free multiplicities, we can assign the
same lattice site to multiple vertices wherever the topology of
the graph allows for it. In Table I, we show the number of topo-
logically distinct graphs in each order, along with the number
of graphs that have nonzero contributions on bipartite geome-
tries, and the sum of free multiplicities for all graphs in each
order for the (0,0) and (1,0) separations, up to the 10th order.

This computationally inexpensive process can be repeated
for all possible separations (the maximum separation is set
by the largest order considered). They can then be used to
calculate the Fourier transform of the Green’s function into
the momentum space.

4. Time integrals

As seen in Sec. III B 2, the cumulants for the infinite-U
Hubbard model consist of products of only step functions and
exponentials in the internal and external imaginary times. After
multiplying several cumulants to obtain the contribution of a
graph, we typically end up with a huge number of terms, each
consisting of the product of a set of step functions of the time
variables, the exponentials associated with the external times
(the exponentials associated with the internal times cancel),
Kronecker delta functions of the spin indices, and a function

TABLE I. Total number of topologically distinct graphs (second
column), number of graphs that have nonzero multiplicity on bipartite
geometries (third column), and the sum of multiplicities of all graphs
for the smallest separations for which they have nonzero multiplicity
(fourth column) at each order. The smallest separation for graphs
with even number of lines (in even orders) is rj ′ − rj = (0,0), and
for graphs in odd orders is considered to be rj ′ − rj = (1,0).

Order Topologically distinct Used for bipartite
∑

Multiplicities

0 1 1 1
1 1 1 1
2 2 2 8
3 5 4 18
4 14 10 164
5 41 22 458
6 130 59 4240
7 431 146 13 544
8 1512 425 130 516
9 5542 1136 448 211
10 21 236 3497 4 408 216
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of ρ. As mentioned before, one of the main advantages of
our approach is that the time integrals over internal time
variables can be taken independently of the spatial sums (free
multiplicity calculations). We choose τ ′ = 0 without loss of
generality since the Green’s function is a function of τ − τ ′
and G(τ − τ ′ < 0) can be obtained from G(τ − τ ′ > 0) using
the antiperiodicity of the Green’s function in imaginary time
[22]. To see how the time integrals are evaluated, we proceed
with the following example. Suppose that one of the terms that
belongs to a graph in the third order can be written as

I(τ ) =
∫ β

0

∫ β

0

∫ β

0
dτ1dτ2dτ3�(τ1 − τ3)�(τ − τ3). (11)

Note that in the above example, we have a smaller number of
step functions in the integrand than typically expected for a
term in the third order. However, the above combination is a
perfectly valid one as the products of step functions are often
simplified given that �n(x) = �(x) for any nonzero n. The
integral over τ2 yields a factor β as there is no restriction on τ2.
The remaining integrals are nonzero if τ1 > τ3 and τ > τ3. But,
the latter condition does not uniquely determine the position of
τ1 relative to τ in the [0,β] interval. Therefore, we consider the
two possibilities, τ > τ1 and τ < τ1, and rewrite the integral
of Eq. (11) as

I(τ ) = β

∫ β

0

∫ β

0
dτ1dτ3

× [�(τ1 − τ )�(τ − τ3) + �(τ − τ1)�(τ1 − τ3)].

(12)

Note that for any value of τ1 and τ3, only one of the terms in the
integral in Eq. (12) is nonzero, justifying the equality. At this
point, we can use the known results for the types of integrals
in Eq. (12) (see Appendix B), leading to β[τ (β − τ ) + τ 2

2! ].
Computationally, the two distinct possibilities for the

ordering of times in the above example can be found by

generating all of the permutations of the time indices, and
for each permutation, examining whether every step function
in the product is nonzero. If that is the case, a multiplication
of step functions corresponding to that permutation is inserted
as the integrand.

5. Symmetry factor

Calculating the symmetry factor of each graph is straight-
forward in the framework of adjacency matrices. First, we
note that the symmetry factor is proportional to the factorials
of elements of the adjacency matrix in its upper triangle as
they correspond to the number of permutations of directed
lines that do not change the topology of the graph. Second, in
order to find the symmetry factor related to those permutations
of labeled vertices that leave the graph topology intact, we
simply generate all the m! matrices that correspond to different
orderings of vertex labels and find how many of them are the
same as the original matrix. We then multiply this number by
the factorials calculated in the first step to obtain the symmetry
factor of the graph.

IV. ANALYTICAL RESULTS

After evaluating the contribution of each diagram in a
particular order by multiplying its free multiplicity for a given
separation, time integral, and the spin sum, and dividing it
by the symmetry factor, we add all of those contributions for
that order to form the Green’s function in terms of the atomic
density ρ, the imaginary time τ , t , μ, and β. By calculating
the spatial sums for all possible separations for each graph
and performing a Fourier transformation on the space and
imaginary time, one can express the Green’s function in
terms of the momentum k, and the Matsubara frequency ωn.
Below, we show the resulting Green’s function in the first four
orders [23]:

G(0)
σ (z,k) = 1 − ρ

2

z
,

G(1)
σ (z,k) =

(
1 − ρ

2

)2
εk

z2
,

G(2)
σ (z,k) =

(
1 − ρ

2

)3
ε2
k

z3
+ (4 − ρ)ρ

(
1 − ρ

2

)
t2

z3
− 2β(ρ − 1)ρt2

z2
+ β2ρ[(3 − 2ρ)ρ − 1]t2

z
,

G(3)
σ (z,k) =

(
1 − ρ

2

)4
ε3
k

z4
− 7(ρ − 4)ρ(ρ − 2)2t2εk

16z4
+ 3β(ρ − 1)ρ(ρ − 2)t2εk

2z3
+ β2(ρ − 1)ρ[ρ(7ρ − 19) + 8]t2εk

4z2
,

G(4)
σ (z,k) =

(
1 − ρ

2

)5
ε4
k

z5
+ 5(ρ − 4)ρ(ρ − 2)3t2ε2

k

16z5
− ρ{ρ[(ρ − 8)ρ − 152] + 240}(ρ − 2)t4

8z5

− β(ρ − 1)ρ(ρ − 2)2t2ε2
k

z4
+ β(ρ − 1)ρ[ρ(4ρ + 11) − 16]t4

z4
− β2(ρ − 1)ρ[ρ(5ρ − 14) + 6](ρ − 2)t2ε2

k

4z3

+ β2(ρ − 1)ρ{ρ[2ρ(5ρ − 24) + 43] − 16}t4

2z3
− β3(ρ − 1)ρ[ρ(97ρ − 100) + 18]t4

6z2

− β4(ρ − 1)ρ{ρ[ρ(388ρ − 591) + 236] − 18}t4

24z

... , (13)
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where z = iωn + μ, and εk = −2t[cos(kx) + cos(ky)]. Note that in this format, the Green’s function is written in terms of the
atomic density ρ or equivalently the chemical potential μ, and not the true density for the many-body system, n = 1 + Gjjσ (τ −
τ ′ = 0+,μ) [25]. By definition, n, too, can be written as an expansion in the hopping (using the expansion for the local Green’s func-
tion). However, we would like to treat n as a parameter and rewrite the Green’s function in terms of it. In that case, the chemical po-
tential can no longer remain constant and we have to solve for it order by order in terms of n and t : μ = μ(0) + μ(2) + μ(4) . . . where

n − 1 = G
(0)
jjσ (0+,μ(0)) + G

(2)
jjσ (0+,μ(0)) + dG

(0)
jjσ (0+,μ)

dμ

∣∣∣∣
μ=μ(0)

μ(2) + G
(4)
jjσ (0+,μ(0)) + dG

(2)
jjσ (0+,μ)

dμ

∣∣∣∣
μ=μ(0)

μ(2)

+ 1

2

d2G
(0)
jjσ (0+,μ)

dμ2

∣∣∣∣
μ=μ(0)

(μ(2))2 + dG
(0)
jjσ (0+,μ)

dμ

∣∣∣∣
μ=μ(0)

μ(4) + · · · (14)

Inverting this equation for μ in terms of n, we obtain

μ(0) = 1

β
log

n

2(1 − n)
, μ(2) = 2(2n − 1)t2β, μ(4) = 1

12
(6 + n(n − 4)(1 + 4n))t4β3

... (15)

Finally, by inserting these back into the expansion for the momentum- and frequency-dependent Green’s function order by
order, we end up with the following terms for up to the fourth order [26]:

G(0)
σ (z,k) = 1 − n

2

z
,

G(1)
σ (z,k) =

(
1 − n

2

)2
εk

z2
,

G(2)
σ (z,k) =

(
1 − n

2

)3
ε2
k

z3
+ [2(n − 2) − n][2(n − 1) − n]nt2

2z3
− [2(n − 1) + n]t2β

z2
,

G(3)
σ (z,k) =

(
1 − n

2

)4
ε3
k

z4
− 7[2(n − 2) − n]n(2 − n)2t2εk

16z4
− [2(n − 1) − n][2(2 − 3n) + (n − 1)n]t2βεk

2z3
− (n − 1)2n2t2β2εk

4z2
,

G(4)
σ (z,k) = +

(
1 − n

2

)5
ε4
k

z5
+ 5[2(n − 2) − n][2(n − 1) − n]3nt2ε2

k

16z5
+ [2(n − 1) − n]n(−n3 + 8n2 + 152n − 240)t4

8z5

+ {4(n − 1)n − 6[2(n − 1) + n]}(2 − n)2t2βε2
k

8z4

+ n{2[−3n2 + 6(2n − 3)n + 4(n − 1)(9n − 10)] + (1 − n)n(4n + 2)}t4β

2z4

+ [4(2n3 + 6n2 − 10n + 4) − (n − 1)n2(4n2 − 12n + 2)]t4β2

4z3
+ (−6n3 + 68n2 − 20n − 24)t4β3

48z2

... , (16)

where z = iωn + μ(0). It is perhaps even more useful to extract a self-energy from this expansion. The Dyson-Mori self-energy
(denoted simply with �DM → �) can be deduced using �(z,k) = z − aG[εk + G(z,k)−1], where aG = (1 − n/2) [3].

�(0)(z,k) = 0

�(1)(z,k) = 0

�(2)(z,k) = t2β(6n − 4)

n − 2
− (n2 − 4n)t2

z

�(3)(z,k) = n2t2εkβ
2(1 + n2 − 2n)

2(n − 2)
− (n − 4)(n − 2)nt2εk

8z2
+ nt2εkβ(n − 1)

z

�(4)(z,k) = t4β3(12 + 3n3 − 34n2 + 10n)

12(n − 2)
− 3(n4 − 8n3 + 72n2 − 80n)t4

4z3

+ 2t4β(2n4 − 40n3 + 65n2 − 24n)

(n − 2)z2
+ t4β2(2n6 − 12n5 + 19n4 − 19n3 + 10n2)

(n − 2)2z

... (17)
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FIG. 2. (Color online) Local Green’s function for a constant
chemical potential μ = 0 vs imaginary time at (a) T = 3.0, (b)
T = 2.0, (c) T = 1.5, and (d) T = 1.0. t = 1 is the unit of energy
throughout the paper.

V. CONVERGENCE AND THE PADÉ APPROXIMATION

In Fig. 2, we show the local imaginary time Green’s
function for ρ = 2/3, corresponding to μ = 0, at different
temperatures. At T = 3.0 (unless specified otherwise, we take
t = 1 as the unit of energy and work in units where kB = 1
throughout the paper), the series show very good convergence
as expected in this high-temperature region. Note that odd
terms in the series are zero for this local quantity. As we lower
T to 2.0, there are some discrepancies between low orders, but
the last two orders (6 and 8) still agree very well. This is no
longer the case as we get closer to T = 1, below which the
finite series is divergent by definition. This is because in the
absence of any other energy scale in the system, an expansion
in t can be viewed as an expansion in β. In other words, βm+1

always couples to tm in the series for the Green’s function.
In Fig. 2(d), one can see large fluctuations between different
orders already at T = 1.0 and there is no clear picture from
the bare results as to what the actual shape of the Green’s
function is.

To demonstrate the trends in the convergence of the series
at other values of μ, in Fig. 3, we show the equation of state
at the same four temperatures as in Fig. 2. We also show the
equation of state in the atomic limit (ρ vs μ). We find that the
last two orders more or less agree with each other for all μ at
T � 1.5. However, for T = 1, the convergence is lost in the
vicinity of μ = 0. This shows that the poor convergence of
the local Green’s function at this value of μ, seen in Fig. 2(d),
represents the worst case scenario. An important feature of the
equation of state as observed in Fig. 3 is that even at these high
temperatures, there are significant deviations of the many-body
density from the density in the atomic limit near the extreme
limits of n = 0 and n = 1.

It is instructive now to study the temperature dependence
of the density at a given μ, and to find out how the region
of convergence can be extended in temperature by the use
of Padé approximations. In Fig. 4, we show the temperature
dependence of the density for various positive and negative
values of μ. We show the direct sums as well as results after

0.2

0.4

0.6

0.8

1

n

-10 -5 0 5 10
μ

0

0.2

0.4

0.6

0.8

1

n

2nd

4th

6th

8th

ρ

-5 0 5 10
μ

(a) (b)

(c) (d)

FIG. 3. (Color online) Density n as a function of the chemical
potential at (a) T = 3.0, (b) T = 2.0, (c) T = 1.5, and (d) T = 1.0.
Thin solid lines are the density in the atomic limit, ρ = 2eβμ

1+2eβμ .

two different Padé approximations. The results in the atomic
limit [ρ(T )] are shown for μ = 0 and ±2.0. In the atomic
limit, the system has two ground states depending on the sign
of μ. They correspond to ρ = 1 and ρ = 0 for positive and
negative μ, respectively. At exactly μ = 0, ρ is temperature
independent at 2/3. As one can see in Fig. 4, the real density for
the many-body system has a qualitatively different behavior
than ρ starting at relatively high temperatures. The temperature
where n starts deviating from ρ due to correlations is around
T ∼ 2 for μ = −2 and T ∼ 5 for μ = 2. As expected, the
density for μ = 0 falls below 2/3 for all T . To perform
Padé approximation for n vs T , we first expand ρ, i.e., the

0.1 1 10
T

0

0.2

0.4

0.6

0.8

1

n

ρ
up to 6th and 8th

Pade{5,4}
Pade{4,5}

μ=-2.0

μ=2.0

μ=0

μ=0.5

NLCE

FIG. 4. (Color online) Average density n as a function of tem-
perature for a range of μ from −2.0 to 2.0, with the increment of
0.5. The two indices of Padé in curly brackets indicate the order of
the polynomials in the numerator and the denominator. From bottom
to top, the dotted-dashed magenta lines are ρ for μ = −2, 0, and 2.
We are also showing results from the NLCE for these three values
of the chemical potential as thin dashed red lines (last two orders
of the bare sums), and thick dashed blue and thin solid violet lines
(after Wynn resummations with five and four cycles of improvement,
respectively) [20].
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zeroth-order term, in powers of β and then add the rest
of the higher order terms from the series. Therefore, in the
case of μ = 0, where ρ is temperature independent, the odd
powers of β in the series for n vanish and the two Padé
approximants yield the same function, leading to n ∼ 0.525
for the ground state. Nevertheless, we cannot verify that this
is the true value of the ground-state density of the system for
μ = 0.

The static properties of the model, such as the density, can in
principle be obtained in higher orders by avoiding the relatively
difficult calculation of the Green’s function, and calculating
only the free energy instead. However, for this purpose, we
can also take advantage of the novel NLCE method that has
been developed in recent years [20]. NLCE uses the same
basis as high-temperature expansions, but calculates properties
of finite clusters exactly, as opposed to perturbatively, using
full diagonalization techniques. As a result, the convergence
region of the NLCE is typically extended to lower temperatures
in comparison to high-temperature expansions with the same
number of terms.

In Fig. 4, we show results from the NLCE for the t-J model
with J = 0 for up to the 11th order in the site expansion,
where contributions of all clusters with up to 11 sites are
considered, for μ = 0 and ±2.0. By comparing the direct sums
in NLCE (thin dashed red lines represent the last two orders)
with those from our series, we find that while we have perfect
agreement between NLCE and the converged bare sums in the
series, the Padé approximants overestimate the value of n in
all cases at temperatures lower than one. The convergence of
the NLCE results at low temperatures can be further improved
using numerical resummations. Here, we show those obtained
from the Wynn algorithm [20] by thin solid violet and thick
dashed blue lines. Remarkably, the convergence is extended to
T ∼ 0.2 for μ = −2.0, and T ∼ 0.3 for μ = 0 and 2.0. The
results for μ = 0 show that the ground-state density is likely
less than 0.525.

In Fig. 5, we plot the chemical potential of the system as a
function of temperature for various fixed densities by inverting
functions such as those seen in Fig. 4. Here, the dotted dashed
lines represent the zeroth-order chemical potential μ(0) for a
fixed density. They all approach zero as T → 0 since they
correspond to the atomic limit. The results from the series and
the NLCE suggest a different behavior starting at relatively
high temperatures for the correlated system, except for the
density near 0.5, where the linearity of the chemical potential,
and the coincidence with the results from the atomic limit, is
extended to low temperatures. This is consistent with the μ = 0
curve in Fig. 3 approaching n ∼ 0.5 at low temperatures. On
the other hand, in the low density Fermi liquid regime, the low-
temperature chemical potential is expected to be proportional
to T 2. We find that the resumed NLCE results for n = 0.1
agree with this behavior as they provide a reasonable fit to the
function A + BT 2, as shown by a light blue (light gray) line
in Fig. 5.

Another feature seen in the plots of chemical potential at
fixed density, with potentially important implications for the
state of the system, is the change in sign of the slope of μ vs T

at low temperatures. Recent theories of thermopower of cor-
related systems identify the Kelvin formula for thermopower
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FIG. 5. (Color online) Chemical potential μ at fixed density vs
temperature for densities from n = 0.1 to n = 0.9 (from bottom to
top with the increment of �n = 0.1). The lines are the same as in
Fig. 4, except that the dotted-dashed magenta lines are the zeroth order
of the chemical potential in the atomic limit, i.e., μ(0) = T log n

2(1−n) ,
and that thin solid lines are Padé{6,3}. Here, we show the NLCE results
for n = 0.1, 0.5, and 0.9. The light blue (light gray) solid line is the fit
of the low-temperature NLCE results for n = 0.1 after resummation
to A + BT 2 with A = −3.12 and B = −1.10. The inset shows the
Kelvin thermopower, SKelvin, from NLCE as defined in Eq. (18), in
units of microvolts per degree Kelvin vs density. At each temperature,
the two lines correspond to different Wynn resummations.

[27,28] by the expression,

SKelvin = −1

qe

(
∂μ

∂T

)
N,V

= 1

qe

(
∂S

∂N

)
T ,V

, (18)

where qe = −|e| is the electron charge, S the entropy, and
a Maxwell relation is employed in the second identity. This
formula captures the considerations of Kelvin’s famous paper
on reciprocity in 1854 [29], within a contemporary setting.
As explained in Refs. [27,28], this expression represents the
“thermodynamic” contribution to the true thermopower in
addition to the dynamical contributions, that are assumed small
in many correlated systems and neglected here. We see from
this expression that a flat chemical potential in temperature
implies a maximum in entropy at the corresponding density,
and locates a density where the thermopower changes sign
(from electronlike to holelike), as often seen in correlated
systems. From Fig. 5, we observe that ∂μ

∂T
> 0 and hence

the Kelvin thermopower is positive for densities close to half
filling, whereas near the empty band things are reversed and
we get electronlike thermopower. The change in sign seems
to arise at a density n between 0.7 and 0.9, somewhat greater
than the value n = 2

3 from the naive atomic limit. A detailed
discussion of the thermopower, and the related Hall constant in
cuprates and in the two-dimensional t-J model can be found
in Refs. [28,30].

In Fig. 6, we show the analog of the quasiparticle fraction
defined in the Matsubara frequency space as

Z0(k) =
[

1 − Im �(ω0,k)

ω0

]−1

, (19)
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FIG. 6. (Color online) The quasiparticle fraction, defined in the
Matsubara frequency space, at the nodal Fermi surface of the
corresponding free Fermi gas, Eq. (19), after Padé approximation
vs temperature for different values of density. At temperatures below
one, the quasiparticle fraction initially decreases with increasing the
density before increasing again for n > 0.7. The green thick solid
lines are for n = 0.1 . . . 0.7 from top to bottom.

where ω0 = πT is the lowest Matsubara frequency, as a
function of temperature at various densities. We choose the
momentum k to be the nodal Fermi vector of a free Fermi
gas with the same density (kF ). Previous studies based on the
ECFL [2], or high-temperature expansions [31], suggest that
this model possesses a Fermi surface coinciding with that of
the free Fermi gas. The quantity in Eq. (19) will be equal to the
actual quasiparticle fraction deduced from the self-energy in
the real frequency axis, Z(k) = [1 − ∂�(ω,k)

∂ω
|ω→0]−1, in the

limit T → 0. Therefore, the lowest temperatures we have
access to may not be low enough to provide us with useful
insight as to how the ground-state value of this quantity
may vary with density. However, already at T ∼ 0.5, Padé
approximants offer an unexpected insight. We find that Z0(k)
decreases monotonically by increasing the density for n < 0.8,
then increases as n increases to 0.9. Interestingly, the onset
of this change of behavior coincides with that of the change
of sign in the thermopower discussed earlier. As n → 1,
we do expect the true ground-state value of Z(k) to vanish,
therefore this nonmonotonic dependence is presumably an
artifact resulting from the finite T definition employed.

In Fig. 7, we show the momentum occupation number,
mk =〈c†kσ ckσ 〉, versus k at T = 0.77 for different total densi-
ties. Features of this quantity at much lower temperatures were
discussed in Ref. [5] for the t-J model. However, the value of
the density in the latter study was limited to n � 0.75. Here, we
find that even at high temperatures, as the density approaches
half filling, there is a huge redistribution of occupations in
comparison to the free Fermi gas, as evidenced by the differ-
ence in mk for n = 0.9 between the two cases as seen in Fig. 7.

In a recent publication [14], the first moments of the
electronic spectral functions of this model were studied using
the same series expansion. It was shown that a modified
first moment, (the “greater” moment) can better capture the
location of the spectral peak at higher densities than the
symmetric first moment. More information about the spectral
properties of electrons in this model can be gathered from

Γ M X Γ
0

0.2

0.4

0.6

0.8

m
k

n=0.2
n=0.5
n=0.7
n=0.9

T=0.77

Γ
M

X

FIG. 7. (Color online) Momentum distribution function at T =
0.77 for n = 0.2, 0.5, 0.7, and 0.9 vs momentum, as obtained from the
average of the two Padé approximations ({4,5} and {5,4}), around the
irreducible wedge of the Brillouin zone as shown in the inset. Vertical
lines show the difference between the two Padé approximants. The
thin dashed line is the momentum occupation number of a free Fermi
gas for n = 0.9 at the same temperature.

higher order moments, also accessible through the series. In
Fig. 8, we show the width of the quasiparticle peak, or the
inverse lifetime, defined as

�−1(k) =
√

ε>
2 (k) − [ε>

1 (k)]2, (20)

where ε>
1 (k) and ε>

2 (k) are the first and second greater
moments, respectively, obtained from the series as described
in Eq. (7) of Ref. [14]. Since the spectral function is largely
skewed at higher densities [4], the width generally grows as
the density increases.

VI. SPECTRAL FUNCTIONS

We next turn to a study of the spectral functions ρG(k,ω),
denoted by A(ω,k) in standard photoemission studies. This
can be found from the usual relation ρG(ω,k) ≡ − 1

π
Im G(ω +

μ(0) + iη,k), and requires a knowledge of the Greens function

Γ M X Γ0

1

2

Γ-1
(k

)

n=0.2
n=0.5
n=0.7
n=0.9

T=1.52

Γ M

X

FIG. 8. (Color online) Inverse lifetime, defined in Eq. (20), at
T = 1.52 and for n = 0.2, 0.5, 0.7, and 0.9 vs momentum around the
irreducible wedge of the Brillouin zone shown in the inset. t = 1 sets
the unit of energy. Lines are the same as in Fig. 7.
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for complex frequencies. To extract spectral functions, we
represent our Green’s function as a continued fraction, which,
when Taylor expanded to eighth order, reproduces Eq. (16).
That is, we write G as (see Ref. [15] for the notation)

G(z,k) = aG

z + b1−
a1

z + b2−
a2

z + b3−
a3

z + b4−
a4

z
, (21)

where al > 0 and bl are real. As explained in Ref. [15]
(see also [16]), these conditions ensure that the resulting spec-
tral function obtained from analytic continuation is positive
definite. The formulas for the al and bl can be obtained by
suitably combining the “raw” moments; this procedure is
detailed in Ref. [32]. In the infinite-U Hubbard model, we
know a priori how many floors will be in the continued fraction
representation of a Green’s function series of a given order.
This is because the constants bl have units of energy (and
must therefore to leading order go like t), and the constants
al have units of energy squared (and must therefore to leading
order go like t2). Therefore, we know that Eq. (21) is the
correct, i.e., maximal continued fraction form obtainable from
our eighth-order series. This is an advantage over the case
of the finite-U Hubbard model (see Ref. [16]), where the
presence of the energy scale U means that the number of
floors necessary to represent a series of a given order must be
determined empirically.

In Ref. [3], Shastry establishes the relationship between
the continued fraction representation of the Green’s function
[Eq. (21)], and a representation in terms of an infinite
sequence of self-energies with spectral densities ρ

(n)
� (ω),

with n = 0,1, . . . . For the standard self-energy we omit the
superscript so that ρ

(0)
� (ω) ≡ ρ�(ω). This is a particularly

convenient reformulation of the well-known Mori scheme
[33] for relaxation processes, where Laplace transforms over
time-dependent correlations are used. In particular, denoting
�∞ ≡ limz→∞ �(z), and recalling that

G(z,k) = aG

iω + μ − aG εk − �∞ − ∫
dν

ρ� (ν)
iω−ν

,

b1 = − aG εk − �∞, and the standard self-energy is
expressed as∫

ρ�(ν − μ(0))

z − ν
dν = a1

z + b2−
a2

z + b3−
a3

z + b4−
a4

z
,

(22)

where ρ�(ω) ≡ − 1
π

Im �(iωn → ω + iη). Following [3], we

identify the constant a1 ≡ a� ≡ ∫
ρ�(ν)dν, b2 ≡ −�

(1)
∞ , and

∫
ρ

(1)
� (ν − μ(0))

z − ν
dν = a2

z + b3−
a3

z + b4−
a4

z
. (23)

For l > 1, one has the general formula,

al = a�(l−1) ; bl = −�(l−1)
∞ . (24)

The Green’s function of Eq. (21) will lead to a spectral
function with a small number of well-separated poles and
residues. To obtain a continuous shape for the spectral function,
there are several alternatives. We initially follow the procedure
of Tomita and Mashiyama (TM) [34], which is useful in the
spin relaxation problems, but does not seem to have features
of a fermionic self-energy function built into it. Nevertheless,

we try it out in view of its simplicity, and as it provides a
counterpoint to our preferred method presented next. In the
spirit of Ref. [34], we assume that

ρ�(ω − μ(0)) = A exp[−α2(ω − ω0)2], (25)

so that the coefficients A,α,ω0 are fixed using the moments,
and higher moments are forced to be those of the Gaussian.
Using Eq. (22), we can solve for A, α, and ω0 in terms of
a1, a2, and b2. It is also possible to obtain a continuous
spectral function whose moments correctly reproduce all of the
coefficients in Eq. (21) by making the Gaussian approximation
for the second-level self-energy:

ρ
(2)
� (ω − μ(0)) = A exp[−α2(ω − ω0)2]. (26)

Then, using the relation,
∫

ρ
(2)
� (ν − μ(0))

z − ν
dν = a3

z + b4−
a4

z + · · · , (27)

we can solve for A, α, and ω0 in terms of a3, a4, and b4.
However, as shown in Fig. 9 below, this is actually a worse
approximation as it accentuates an unphysical sharp peak in
the TM scheme spectral function.

An alternative scheme for obtaining continuous spectral
functions makes use of our knowledge of the approximate
form of the self-energy as (T ,ω) → 0 [7]:

ρ�(ω) = A(ω2 + π2T 2)

(
1 − ω

�

)
exp

[
−ω2 + π2T 2

ω2
c

]
. (28)

Here, (ω2 + π2T 2) is the standard Fermi-liquid form, 1
�

provides the aforementioned particle-hole asymmetry, and
the exponential extrapolates the low-energy answer to higher
energies in a natural way [2]. Once again, we can solve for A,
�, and ωc in terms of a1, a2, and b2 by using Eq. (22).

We obtain the spectral function ρG(ω,k) using both
Eqs. (25) and (28) at T = 1.1 for n = 0.7 and n = 0.9 and
at various points along the irreducible wedge of the Brillouin

8 4 0 4
0

0.1

0.2

0.3

Ω

Ρ G

k Π 2,0

FIG. 9. (Color online) The spectral density for the physical
Green’s function vs ω for T = 1.1 and n = 0.9. t = 1 sets the unit
of energy. The red (dashed) curve is obtained from the TM scheme
with the self-energy Eq. (25) and the black (solid) curve is obtained
from the TM scheme with the second level self-energy [Eq. (26)]. The
latter accentuates the unphysical secondary peak of the TM scheme
spectral function.
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FIG. 10. (Color online) The spectral density for the physical Green’s function vs ω for T = 1.1 and n = 0.7. The blue (solid) curve is
obtained from the Fermi-liquid-type scheme [Eq. (28)] and the red (dashed) curve is obtained from the TM scheme [Eq. (25)]. The fairly sharp
extra peaks obtained from the TM scheme, as compared to the Fermi-liquid scheme, seem to be physically unreasonable. We also note that the
spectral functions from ECFL found numerically using the O(λ2) scheme (see Fig. 3(f) of Ref. [14]) find rather broad peaks at high T.

zone. The spectral functions ρG(ω,k) are plotted in Fig. 10 for
n = 0.7 and in Fig. 11 for n = 0.9.

VII. SUMMARY

We present an implementation of the linked-cluster expan-
sion for the Green’s function of the infinite-U Hubbard model
on a computer, which is based on a formalism proposed by

Metzner [1]. Using efficient algorithms on parallel computers,
we have carried out the expansion up to the eighth order in
terms of the hopping amplitude, and obtained analytic results
for the Green’s function and the Dyson-Mori self-energy on
the square lattice as a function of momentum and Matsubara
frequency at a given fixed density. Since the lattice sums for
graphs in this approach are evaluated independently of their
time integrals and spin sums, our implementation paves the
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FIG. 11. (Color online) The spectral density for the physical Green’s function vs ω for T = 1.1 and n = 0.9. Lines are the same as in
Fig. 10.
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way for obtaining similar results for other geometries and
spatial dimensions.

To extend the region of convergence in temperature, we
employ Padé approximations and study several static and
dynamic quantities. The equation of state exhibits significant
deviations from the atomic limit starting at relatively high
temperatures and reveals interesting trends near n = 0.5,
where we find that the chemical potential changes linearly
with temperature and remains very close to the one in the
atomic limit down to the lowest temperatures accessible to
us. We also find that the change in sign of the derivative
of μ with respect to T at constant density, which is propor-
tional to the thermopower in Kelvin’s formula, takes place
at increasingly higher densities due to correlations as the
temperature is lowered. The momentum distribution function
also shows significant deviations from free fermions, and
becomes more uniform across the Brillouin zone as the
correlations build up at higher densities. We further study
dynamic quantities, such as the analog of the quasiparticle
fraction in the Matsubara frequency space vs temperature,
which shows a nonmonotonic dependence on density at
low temperatures, and the lifetime of the quasiparticles at
various densities, obtained in the series through the first
two moments of the electronic spectral functions. To make
contact with experiments and extend previous results for the
spectral functions obtained within the ECFL or the dynamical
mean-field theory, we calculate them here after transforming
the Green’s function series to continued fractions, or by
employing certain forms for the spectral functions suggested
by the ECFL theory. We present our results for densities
close to half filling at several points in the momentum space.

To benchmark our results from the Padé approximations
for the equation of state at temperatures lower than the
hopping amplitude, where the direct sums in the series do
not converge, and to shed more light on the state of the system
at those temperatures, we also present results from the NLCE
up to eleventh order for an equivalent model, i.e., the t-J
model with J = 0. We find perfect agreement between the
direct sums from the two methods when they converge, and
that at lower temperatures, the Padé approximants generally
overestimate the density for a given chemical potential.
The NLCE results after numerical resummations also help
obtain the thermopower vs density at a temperature that is
not otherwise accessible to the series even after the Padé
approximations.
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APPENDIX A: RECURSIVE EXPANSION OF CUMULANTS

In the following, we combine the time and spin variables
and denote them by their index only, i.e., C0

m(τ1σ1, . . . τmσm|
τ ′

1σ
′
1, . . . τ

′
mσ ′

m) → C0
m(1, . . . m|1′, . . . m′). Cumulants are cal-

culated by taking functional derivatives of a generating
functional with respect to Grassmann variables [1,21], and can
be expressed in terms of UGFs. We give explicit expressions
for C0

m through m = 3.

C0
1 (1|1′) = G0

1(1|1′), C0
2 (1,2|1′,2′) = G0

2(1,2|1′,2′) − G0
1(1|1′)G0

1(2|2′) + G0
1(1|2′)G0

1(2|1′), (A1)

C0
3 (1,2,3|1′,2′,3′) = G0

3(1,2,3|1′,2′,3′) − C0
2 (1,2|1′,2′)G0

1(3|3′) + C0
2 (1,2|1′,3′)G0

1(3|2′) − C0
2 (1,2|2′,3′)G0

1(3|1′)

+C0
2 (1,3|1′,2′)G0

1(2|3′) + C0
2 (1,3|2′,3′)G0

1(2|1′) − C0
2 (1,3|1′,3′)G0

1(2|2′)

−C0
2 (2,3|1′,2′)G0

1(1|3′) − C0
2 (2,3|2′,3′)G0

1(1|1′) + C0
2 (2,3|1′,3′)G0

1(1|2′)

−G0
1(1|1′)G0

1(2|2′)G0
1(3|3′) + G0

1(1|1′)G0
1(2|3′)G0

1(3|2′) + G0
1(1|2′)G0

1(2|1′)G0
1(3|3′)

−G0
1(1|2′)G0

1(2|3′)G0
1(3|1′) + G0

1(1|3′)G0
1(2|2′)G0

1(3|1′) − G0
1(1|3′)G0

1(2|1′)G0
1(3|2′). (A2)

The rule for obtaining the expansion for C0
m(1, . . . m|1′, . . . m′) − G0

m(1, . . . m|1′, . . . m′) is as follows. Partition the unprimed
integers 1 . . . m into at least two sets. Each set in the partition corresponds to a cumulant, in which the unprimed numbers in
the set are written in ascending order. The primed numbers 1′ . . . m′ are then partitioned amongst the cumulants created by the
unprimed number partitions, and are also written in ascending order. The sign of the term is (+) if the permutation to get from
primed to unprimed numbers is odd, and (−) if it is even. The sign is due to the Grassmann variables in the generating functional,
and is ultimately a consequence of the fermionic nature of the operators. C0

3 (1,2,3|1′,2′,3′) can be expressed in terms of the
UGFs by plugging Eq. (A1) into Eq. (A2). In general, C0

m(1, . . . m|1′, . . . m′) can be obtained in terms of UGFs of equal or lower
orders by this recursive procedure.

APPENDIX B: TIME INTEGRALS

In evaluating the time integrals, we use the following general result for the time integral of a product of step functions in terms
of a series of ordered internal times τi , over which the integrals are taken, and a fixed external time τ :

∫ β

0
dτn

∫ β

0
dτn−1 . . .

∫ β

0
dτ2

∫ β

0
dτ1�(τn − τn−1)�(τn−1 − τn−2) . . . �(τm+1 − τ )�(τ − τm) . . . �(τ3 − τ2)�(τ2 − τ1)

= τm(β − τ )n−m

m!(n − m)!
. (B1)
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