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We study finite-temperature properties of strongly interacting fermions in the honeycomb lattice using
numerical linked-cluster expansions and determinantal quantum Monte Carlo simulations. We analyze a number
of thermodynamic quantities, including the entropy, the specific heat, uniform and staggered spin susceptibilities,
short-range spin correlations, and the double occupancy at and away from half filling. We examine the viability
of adiabatic cooling by increasing the interaction strength for homogeneous as well as for trapped systems. For
the homogeneous case, this process is found to be more efficient at finite doping than at half filling. That, in turn,
leads to an efficient adiabatic cooling in the presence of a trap, which, starting with even relatively high entropies,
can drive the system to have a Mott insulating phase with substantial antiferromagnetic correlations.

DOI: 10.1103/PhysRevB.88.125127 PACS number(s): 71.10.Fd, 75.40.Cx, 67.85.−d, 75.40.Mg

I. INTRODUCTION

The Fermi-Hubbard model in the honeycomb lattice,
especially its ground-state phase diagram, has attracted much
interest in recent years. This is in part motivated by the
advent of graphene,1 whose semimetallic properties can be
understood within the weakly interacting regime of this
model. It is also motivated by results of large-scale quantum
Monte Carlo (QMC) calculations by Meng et al.,2 which
suggested that a spin liquid phase exists in that model at
intermediate interaction strengths, despite the absence of
frustration. Following those results, a considerable number
of studies have been done on the Hubbard model as well
as in closely related models in the honeycomb geometry.3–15

However, QMC simulations of very large systems,12 and the
use of accurate approaches to estimate the antiferromagnetic
(AF) order parameter,15 have indicated that the existence of a
spin liquid in such a model is unlikely.

A remarkable property of the Fermi-Hubbard model in the
honeycomb lattice at half filling is the existence of a quantum
phase transition to a Mott insulator at a finite interaction
strength. Insulating behavior in this case is accompanied by the
emergence of long-range AF correlations at zero temperature,
as unveiled in QMC simulations.12,16,17 This phase transition
has also been examined by means of dynamical mean-field
theory and its cluster extensions,3–5,10,14,18,19 as well as within
the coherent phase approximation.20 Other studies of this and
closely related models have explored the existence of pairing
and superconductivity away from half filling.6,13

A new front for studying the properties of the Fermi-
Hubbard model in the honeycomb lattice has been recently
opened by the (almost ideal) experimental realization of this
model by: (i) building artificial graphene and loading it with a
two-dimensional electron gas,21 (ii) trapping ultracold atoms
in highly tunable optical lattices with that geometry,22 and
(iii) creating molecular graphene in a fully tunable condensed-
matter setup.23 These experiments follow extensive research
on simulating the Hubbard model on cubic geometries using
ultracold gases,24 aimed at answering fundamental questions

surrounding Hubbard models, such as whether they support
superconductivity.

In a recent Letter,9 we utilized two state-of-the-art computa-
tional methods, a numerical linked-cluster expansion (NLCE)
and determinantal quantum Monte Carlo (DQMC), to study
thermodynamic properties and spin correlations of interacting
fermions in the honeycomb lattice, as described by the Fermi-
Hubbard model. Our emphasis was in the half-filled case for
which we found that, in comparison to the square lattice,
the honeycomb lattice exhibits a more significant region of
anomalous rise in the double occupancy at low temperature,
leading to a more efficient adiabatic cooling. We also showed
that nearest-neighbor (NN) spin correlations are stronger in
the honeycomb lattice than in the square lattice for a wide
range of interaction strengths and for an extended region of
experimentally relevant entropies. This was found to be true
even in the weakly interacting regime, where the former has
a semimetallic ground state while the latter has an AF Mott
insulating one.

In this work, we extend the analysis presented in Ref. 9 by
studying other quantities of much interest, such as the entropy,
the specific heat, uniform and staggered spin susceptibilities,
and the structure factor. We establish a connection between
the temperature at which the nearest-neighbor (NN) spin
correlations change most rapidly and the onset of exponentially
long AF correlations in the system. More importantly, we
explore in detail the behavior of some of those quantities,
and of quantities studied in Ref. 9, away from half filling. In
particular, we analyze how the double occupancy, which can be
accurately measured in ultracold gases experiments,25 evolves
as a function of temperature at different densities. Isentropic
curves for the temperature as a function of the interaction
strength away from half filling are also presented. Finally,
employing a local density approximation (LDA), we analyze
the possibility of achieving adiabatic cooling by increasing
the strength of the interaction between trapped fermions in
optical lattice experiments. We show that in the presence of a
harmonic trap, even starting with relatively high entropies, it is
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possible to create Mott insulating regions with exponentially
long antiferromagnetic correlations by using this approach.

The exposition is organized as follows. In Sec. II, we
introduce the Hubbard model and provide a brief explanation
of the two numerical methods used in this study. In Sec. III,
we report results for the thermodynamic properties of the
homogeneous system in the honeycomb lattice and, in some
cases, we compare those results with the ones obtained
in the square lattice. Properties of systems confined by a
harmonic potential, relevant to ultracold gases experiments,
are presented in Sec. IV. A summary of our results is presented
in Sec. V.

II. MODEL AND COMPUTATIONAL METHODS

A. Hamiltonian

The one-band Hubbard Hamiltonian describes electrons in
a lattice, or two component fermions in an optical lattice, and
can be written as

Ĥ = −t
∑
〈i,j〉σ

(ĉ†iσ ĉjσ + H.c.) + U
∑

i

n̂i↑n̂i↓, (1)

where ĉ
†
iσ (ĉiσ ) is a creation (annihilation) operator of a fermion

with spin (or pseudospin) σ on lattice site i, and n̂iσ = ĉ
†
iσ ĉiσ

is the site occupation operator. Here, 〈..〉 denotes nearest-
neighbor sites, t is the nearest-neighbor hopping amplitude,
and U > 0 is the on-site repulsive interaction.

The most recent DQMC studies of the phase diagram of
this model in the honeycomb geometry indicate that there
are two ground-state phases, a semimetallic one at weak
coupling and an AF Mott insulating one at strong coupling,
with a continuous phase transition between them that occurs
at Uc/t � 3.8.12,15

B. Numerical approaches

In this work, we use two fundamentally different unbiased
numerical methods, a NLCE26–28 and DQMC,29 to study
the thermodynamic properties of Hamiltonian (1) in the
honeycomb lattice.

In NLCEs, any extensive property of a lattice model per
site P (L )/N (N is the number of lattice sites), in the thermo-
dynamic limit, can be expanded in terms of contributions from
all clusters c that can be embedded in the infinite lattice:

P (L )/N =
∑

c

L(c) × WP (c), (2)

where L(c) is the lattice constant of c, defined as the number of
ways per site in which cluster c can be embedded in the lattice,
and WP (c) is the weight of that cluster. WP (c) can be computed
recursively based on the inclusion-exclusion principle:

WP (c) = P (c) −
∑
s⊂c

WP (s), (3)

where P (c) is the property calculated for the finite cluster c

using full exact diagonalization.26–28

In this work, we use the site-based NLCE,27 i.e., contri-
butions to the mth order of the expansion come solely from
clusters with up to m sites. The computational effort is reduced
by identifying all clusters that have the same Hamiltonian

TABLE I. Number of topologically distinct clusters and sum of
the lattice constants for clusters with up to 17 sites in the honeycomb
lattice.

No. of sites No. of topological clusters
∑

L(c)

1 1 1
2 1 3/2
3 1 3
4 2 7
5 2 18
6 5 47
7 7 125
8 15 675/2
9 26 919
10 59 5 053/2
11 113 7 008
12 258 39 169/2
13 542 55 097
14 1 233 311 751/2
15 2 712 443 080
16 6 208 1 264 630
17 14 004 3 622 431

(same topology), and diagonalizing only one of them.27,30 In
Table I, we report the total number of topologically distinct
clusters (second column) that are diagonalized in each order
of the NLCE (first column). The number of topological clusters
should be compared to the much larger number of added lattice
constants at each order of the expansion (third column).

NLCEs converge at a given temperature whenever correla-
tions in the system are of the order of or smaller than the largest
cluster sizes considered in the expansion. However, even if
the bare sums diverge, one can accelerate the convergence
of NLCEs at lower temperatures by using resummation
algorithms. Here, we carry out the calculations up to the
ninth order in the site expansion and employ Wynn and
Euler resummation techniques27,30 to improve the convergence
at low temperatures. Our calculations are performed in the
grand-canonical ensemble,28 and we compute all observables
for a wide range (and dense grid) of chemical potentials, μ,
and temperatures, T . Note that we can make the grid for μ and
T arbitrarily fine without much computational overhead since,
for a given U , everything needed to compute the observables
is generated in a single run of the exact diagonalization. This
allows us to accurately compute the equation of state so that all
quantities can also be studied at any desired constant density.

Within DQMC,29 the partition function is expressed as
a path integral by using the Suzuki-Trotter decomposition
of exp(−βĤ ), where β = 1/(kBT ) with kB the Boltzmann
constant, after discretizing the imaginary time. This introduces
an imaginary-time interval �τ that we set to �τ × t = 0.05.
The interaction term is decoupled through a discrete Hubbard-
Stratonovich transformation,31 which introduces an auxiliary
Ising field. One can then integrate the fermionic degrees of
freedom analytically, and the summation over the auxiliary
field (which depends both on the site and the imaginary time)
is carried out stochastically using a Monte Carlo algorithm.
Most of our results are for 96 sites for the honeycomb lattice
and 100 sites for the square lattice geometry, though in some
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cases, other system sizes (namely 24, 54, 150, and 216 sites)
were studied for the honeycomb lattice to analyze finite-size
effects. As it will become apparent in the following, from
comparisons to the NLCE, the systematic errors in DQMC are
mostly negligible for our parameters of interest.

As shown in previous studies,9,32 the two approaches
are complementary. For the half-filled system with weak
interactions (in comparison to the bandwidth), DQMC can
access lower temperatures than NLCE. This can be understood
from the fact that the computational cost of the former method
increases almost linearly with inverse temperature, whereas the
exponential growth of correlations in the model by decreasing
the temperature limits the region of convergence of NLCE. On
the other hand, for strong interactions, while DQMC runs into
statistical difficulties when sampling the auxiliary fields, the
convergence of NLCE extends to lower temperatures. This is
because in the strong-coupling regime of the half-filled system,
the relevant energy scale at low temperatures is that of the
spin degrees of freedom, namely, the exchange interaction
J ∝ 1/U , which sets the characteristic temperature for the
onset of the exponential growth of AF correlations. This scale
decreases as the interaction strength increases and NLCEs can
follow it without running into computational difficulties.

Away from half filling, DQMC is limited to higher
temperatures in comparison to half filling due to the so-called
fermion sign problem.33,34 We find that in NLCEs, despite
the lack of sign problem, the lowest temperature at which the
series converge for our observables of interest also generally
increases as the system is doped away from half filling. This
seems to be a consequence of the emergence of competing
correlations at higher temperatures.

III. RESULTS

A. Entropy

In the grand-canonical ensemble, the entropy (per site) can
be written as

S = ln Z

N
+ 〈Ĥ 〉 − μ〈N̂p〉

N T
, (4)

where N̂p is the operator for the total number of particles.
Within NLCEs, all the extensive quantities in the right-hand
side of Eq. (4) can be computed (per site) directly in the
thermodynamic limit. This is not the case within DQMC. The
calculation of the entropy in the latter approach, for finite
clusters, is done by integrating the energy35

S(T ) = S(T → ∞) + β〈Ĥ 〉
N

− 1

N

∫ β

0
〈Ĥ 〉 dβ, (5)

where S(T → ∞) is the high-temperature limit of the entropy
for a given density n; S(T → ∞) = 2 ln(2) − n ln(n) − (2 −
n) ln(2 − n). Throughout the paper, the entropy is given in
units of kB . Since we present results for two different lattice
geometries, we have chosen the unit of energy to be the
noninteracting bandwidth, w, which is 6t for the honeycomb
lattice and 8t for the square lattice.

In the main panel in Fig. 1, we show the entropy of the
honeycomb lattice as a function of temperature at half filling
and for different values of U from NLCE (lines) and DQMC
(symbols). As anticipated, we find that NLCE results converge

0.01 0.1 1
T/w

0

0.5

1

1.5

S

U/w=1/2
U/w=1
U/w=3/2
U/w=2
AFHM

0.6 0.8 1
n

0.7

0.8

S

n=1.00
T/w=0.126

FIG. 1. (Color online) NLCE (lines) and DQMC (symbols)
results for the entropy of the Hubbard model in the honeycomb
(HC) lattice as a function of T for U/w = 1/2, 1, 3/2, and 2 at
half filling. The NLCE results were obtained by applying Euler’s
resummation to the last six terms in each order of the expansion.27,30

Here we report results for the last order (thick lines) and the next
to last order (thin black lines). We also show NLCE results for
the entropy of the antiferromagnetic Heisenberg model (AFHM) for
J/w = 1/18. The site expansion for this model was carried out up
to the seventeenth order. The results in this case were obtained using
Wynn’s algorithm and we report those for the highest term after eight
(thick line) and seven (thin black line) orders of improvement.27,30

Unless otherwise specified, all NLCE results reported in the following
for the honeycomb lattice are obtained as explained above and are
presented using the same convention. Inset: NLCE results for the
entropy vs density (n) at T/w = 0.126 for the same values of U and
legends used in the main panel.

to lower temperature as U increases. For the largest value of
U shown (U/w = 2), the convergence is extended to around
T/w = 0.02. Figure 1 shows that, for the two smallest values
of U (U/w = 1/2 and 1), the results from the two methods
agree very well down to the lowest convergence temperature
in the NLCE. On the other hand, small deviations between
the results from NLCE and DQMC become apparent for
larger values of U and low temperature, e.g., DQMC slightly
underestimates the entropy for U/w = 1.5 for T/w < 0.1.

As expected, and similarly to previous results for the square
lattice,32 the entropy shows different behavior in the weak-
and strong-coupling regimes. While in the former it decreases
steadily from ln 4 to 0 when lowering the temperature, in the
latter, a plateau develops at intermediate temperatures (T/w ∼
0.1). The plateau becomes visible with increasing U . This can
be explained as follows: when U (and consequently the cost
of double occupancy) increases the charge degrees of freedom
freeze out at increasingly high temperatures. Once they are
frozen, the system at lower temperatures can be described
by an effective Heisenberg model (with J = 4t2/U ), whose
high-temperature entropy (S ∼ ln 2) agrees with the entropy at
the plateau of the Hubbard model. As U increases, J decreases
and the low-temperature regime of the effective Heisenberg
model moves to lower temperatures. This results in a larger
plateau with increasing U . To make those points apparent, in
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Fig. 1 we also show the entropy of the AF Heisenberg model
in the honeycomb lattice with J/w = 1/18, which closely
follows the results of the Hubbard model with U/w = 2 at
T/w < 0.1.

NLCE results for the entropy away from half filling are
presented in the inset in Fig. 1. Those results were obtained for
T/w = 0.126, the same four values of U depicted in the main
panel, and for a wide range of local fillings (0.5 � n � 1).
In the weakly interacting regime (e.g., U/w = 1/2), as the
density increases, the entropy increases monotonically first and
then saturates at a finite value when n > 0.8. This is because
the system behaves similarly to a noninteracting system at this
temperature: as n → 1, the number of microstates increases
and therefore the entropy increases. However, as correlations
become significant by increasing U , the entropy decreases
dramatically as the density approaches half filling due to the
formation and ordering of local moments. This is accompanied
by the appearance of a peak in the entropy at n ∼ 0.85,
which resembles the one appearing for the same model in
the square lattice.32,36,37 The high entropy around that filling
at low temperature signals the presence of many low-energy
competing states, which, upon further cooling, could result in
the emergence of exotic phases such as superconductivity.

B. Specific heat

The specific heat (per site) is defined as

Cv = 1

N

(
∂〈Ĥ 〉
∂T

)
n

(6)

= 1

N

[(
∂〈Ĥ 〉
∂T

)
μ

+
(

∂〈Ĥ 〉
∂μ

)
T

(
∂μ

∂T

)
n

]
, (7)

where the second expression is more amenable for evaluation
in the grand-canonical ensemble. However, in order to avoid
numerical derivatives and eliminate the systematic errors they
introduce, we rewrite Eq. (7) using Maxwell equations as38

Cv = 1

NT 2

[
〈�Ĥ 2〉 −

(〈Ĥ n̂〉 − 〈Ĥ 〉〈n̂〉)2

〈�n̂2〉

]
, (8)

where 〈�Ĥ 2〉 = 〈Ĥ 2〉 − 〈Ĥ 〉2 and 〈�n̂2〉 = 〈n̂2〉 − 〈n̂〉2. All
expectation values in Eq. (8) can be directly evaluated in
NLCEs.

Within DQMC, obtaining Cv from Eq. (8) requires the
calculation of expectation values of products of up to eight
fermion operators. While this is possible in principle, it would
lead to large statistical fluctuations in the results, which
are costly to reduce. Therefore, we resort to the numerical
differentiation of high-quality data for 〈Ĥ 〉 as prescribed in
Eq. (6).

The specific heat of the Hubbard model in the honeycomb
and square lattices are presented in Figs. 2(a) and 2(b),
respectively, for different values of the coupling strength. The
NLCE results in the square geometry were previously reported
in Ref. 38, while early DQMC results in the square and
honeycomb geometries (admittedly less accurate than those
reported here) can be found in Refs. 39 and 17, respectively.
The complementarity of NLCE and DQMC is once again
clear from these plots for both lattice geometries. For weak

0

0.3

0.6

C
v

U/w=1/2
U/w=1

0.01 0.1 1
T/w

0

0.3

0.6

C
v

U/w=3/2
U/w=2
AFHM

(a) Honeycomb

(b) Square

FIG. 2. (Color online) Specific heat vs T for (a) the honeycomb
lattice and (b) the square lattice.17,38,39 Results are presented for the
Hubbard model with U/w = 1/2, 1, 3/2, and 2 at half filling, and for
the Heisenberg model with J/w = 1/18 (honeycomb) and J/w =
1/32 (square). The NLCE site expansion for the Heisenberg model
in the square lattice was carried out up to the fifteenth order.30 Lines
(symbols) depict results from NLCE (DQMC).

interactions (e.g., U/w = 1/2), DQMC and NLCE results are
in good agreement with each other down to the temperatures at
which NLCE converges. However, DQMC can also access the
very low-temperature regime that is not accessible to NLCE.
Because of this, DQMC can resolve the double-peak structure
that is present in the square lattice for U > 0, which is the
result of the Mott insulating ground state with long-range AF
order that occurs for any nonzero value of U . Such a structure
is absent in the honeycomb lattice in the weakly interacting
regime, where the ground state of the system lacks long-range
AF order.17

For values of the interaction strength of the order of the
bandwidth, we do find small deviations between NLCE and
DQMC results at intermediate to low temperatures (T/w �
0.1 for both geometries), as (mainly) systematic errors due to
the discretization of imaginary time start to affect the DQMC
results. Nevertheless, the relatively good agreement between
the results from these two methods for U = w, especially for
the honeycomb geometry down to T/w ∼ 0.03, indicates that
systematic errors in DQMC are not playing an important role.
For larger values of U (U/w = 3/2 and 2 in Fig. 2), NLCE
provides more accurate results down to lower temperatures.
In particular, from the NLCE data it becomes apparent that
the position of the low-temperature peak moves to lower
temperature (proportional to 1/U ) as the interaction strength
increases. This is expected once the charge degrees of freedom
become irrelevant and the system falls in a regime that can be
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FIG. 3. (Color online) (a) Temperature and (b) Cv at the high-
temperature crossing point between the specific heat curves for
consecutive values of U (see text), as obtained from NLCE for the
honeycomb lattice.

described by the Heisenberg model. The specific heat predicted
by the corresponding spin model in the honeycomb and square
lattices are also depicted in Fig. 2. They closely follow (but are
not equal to) the results obtained within the Hubbard model
for the largest value of U shown in those figures (U/w = 2).

Similarly to what happens in the square lattice, in the
weak-coupling regime in the honeycomb lattice the curves
for specific heat vs temperature show what appears to be
a unique crossing point at a high temperature for different
interaction strengths.17 This phenomenon has been extensively
discussed for strongly correlated models and materials.40 The
high accuracy of the NLCE results at those temperatures allows
us to make definite statements as to whether this is indeed a
unique crossing point. In Figs. 3(a) and 3(b), we plot (as a
function of U ) the high-T crossing temperature (T cross.) and
the value of Cv at the crossing (Ccross.

v ) between curves of Cv

for U and U + w/6. One can see that T cross./w has a weak
dependence on U with a shallow minimum around U/w = 0.8
before rising linearly with increasing the interaction at larger
U . Ccross.

v is also U dependent. These results are qualitatively
similar to those obtained for the square lattice in Ref. 38, so
that the features seen in T cross. and Ccross.

v appear to be related
to the onset of strong correlations in the system.

C. Uniform susceptibility and NN spin correlations

Another thermodynamic property of much experimental
interest is the uniform susceptibility (per site)

χ = 〈(Ŝz)2〉 − 〈Ŝz〉2

NT
, (9)

where Ŝz is the z component of the spin operator. In
solid-state experiments, χ is usually measured using SQUID
magnetometers.

Results for the uniform susceptibility in the honeycomb
lattice are presented in Fig. 4(a) as a function of temperature
for different interaction strengths. For U/w � 1, the DQMC
results agree once again with those from NLCE down to the
lowest convergence temperature in the NLCE. For U/w >

1, an accurate DQMC calculation of this quantity at low
temperatures becomes costly and we only show results for
U/w = 1.5, which exhibit large statistical errors at the lowest
temperatures.

1 1.5 2 2.5 3
U/w

0

0.05

0.1

T
/w

T*
T’

0

0.1

0.2

0.3

χ

U/w=1/2
U/w=1
U/w=3/2
U/w=2
AFHM

0.01 0.1 1
T/w

-0.1

-0.05

0

Szz nn

(a)

(b)

FIG. 4. (Color online) (a) Uniform spin susceptibility, and (b)
NN spin correlations in the honeycomb lattice at half filling vs T

for U/w = 1/2, 1, 3/2, and 2. In (a), we also include results for
the Heisenberg model with J/w = 1/18. The inset in (b) shows
T ∗, which is the temperature at the maximum of the uniform
susceptibility, and T ′, which is the temperature at which ∂Szz

nn/∂T

is maximal, as a function of U (for U > Uc). Lines (symbols) depict
results from NLCE (DQMC).

The plots for the uniform susceptibility in Fig. 4(a) make
apparent that there exists a peak for all values of U whose
location moves to lower temperatures monotonically with
increasing U . This is unlike in the square lattice where such
a peak first moves to higher temperatures with increasing U

(in the weakly interacting regime) before moving to lower
temperatures for U � w, following the AF characteristic
temperature.32,39,41 Insight as to why the honeycomb lattice
model behaves differently can be gained from the fact that its
ground state is semimetallic in the weakly interacting regime
with no long-range AF correlations. Therefore, the peak in
the uniform susceptibility in that regime does not represent
the onset of long-range AF correlations, which we know do
not diverge in the ground state. In the strongly interacting
regime, on the other hand, the peak temperature of χ (denoted
by T ∗) does characterize the onset of exponentially long
AF correlations and decreases following the energy scale
J ∝ 1/U as U increases. In the inset in Fig. 4(b), we plot
T ∗ as a function of U .

If it would be possible to measure the uniform susceptibility
in experiments with ultracold gases, its downturn as the
temperature is decreased could be used to identify the onset of
antiferromagnetism. Since this is still not possible in current
experimental setups, measuring NN spin correlations (Szz

nn)
can be considered a first step for probing the emergence of AF
order in strongly correlated lattice models such as the Hubbard
model. This step has already been taken in experiments in the
square lattice geometry.42–44
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In our calculations, we define Szz
nn (per bond) as

Szz
nn = 1

NZ
∑
i,〈j〉i

〈
Sz

i S
z
j

〉
, (10)

where Z is the coordination number (Z = 3 for the honey-
comb lattice),

∑
i,〈j〉i means that we sum over all j ’s that are

nearest neighbors of i, and then sum over all i’s. In previous
studies, we used NLCEs and DQMC to explore NN spin
correlations at various interaction strengths in the square and
honeycomb lattice geometries.9,32 (Note that there is a factor
4 difference between the definition of Szz

nn here and in those
references.) Surprisingly, we found that for a wide range of
temperatures (entropies), accessible to current optical lattice
experiments, these correlations are greater in the honeycomb
than in the square lattice. This occurs even in regimes where
the former has a semimetallic ground state while the latter has
an AF Mott insulating one.9

Here, we are interested in identifying how to use those
short-range correlations to determine whether the system is in
a regime with exponentially long AF correlations. In Fig. 4(b),
we show Szz

nn, as a function of temperature in the honeycomb
lattice and for different values of U . They do not exhibit
any sharp feature at T ∗. For U/w = 1/2, which is below the
critical value for the formation of the Mott insulator in the
ground state of the honeycomb lattice model, |Szz

nn| increases
but eventually saturates as T decreases. Note that the minus
sign indicates opposite NN (pseudo)spins. For U > Uc, |Szz

nn|
increases to values much larger than for U < Uc with the
region of fastest increase being pushed to lower temperatures
as U is increased. We have computed the derivative of Szz

nn

with respect to temperature (∂Szz
nn/∂T ) and determined the

temperature at which it is maximal. That temperature (denoted
by T ′) is shown in the inset in Fig. 4(b). One can see there
that T ′ is close to, but falls below, T ∗. This implies that if
∂Szz

nn/∂T is determined from experimental measurements and
T ′ is identified, then one will know (from the results here)
that the system is in a regime with exponentially long AF
correlations for T � T ′.

D. Staggered susceptibility and structure factor

In Sec. III C, we discussed two indirect measurements
that help locating the onset of antiferromagnetism in the
Hubbard model in the honeycomb lattice. Here we present
results for two quantities that directly track the growth of such
correlations, namely, the staggered susceptibility and the AF
structure factor.

The staggered susceptibility (per site) is defined as the
negative second derivative of the free energy (per site) with
respect to a staggered field, h, added to the Hamiltonian:

χ stg = T

N

∂2 ln Z

∂h2
|h=0. (11)

This derivative can be evaluated numerically within NLCE
because one has full access to the partition function in the
presence or absence of a staggered field. Using a Taylor
expansion of ln Z, and considering that the magnetization at
h = 0 is zero, χ stg can be rewritten as

χ stg = 2T

N

ln Z|h=�h − ln Z|h=0

�h2
, (12)
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FIG. 5. (Color online) NLCE results for the staggered suscepti-
bility as a function of temperature in the honeycomb lattice at half
filling for U/w from 1/2 up to 2. The inset shows χ stg as a function
of U/w for T/w = 0.05.

where �h is very small. In the NLCE calculations, we have
tested several values of �h, which were orders of magnitude
apart (0.001 � �h � 0.1), to ensure that the value of χ stg

reported here is independent of the �h chosen.
In Fig. 5, we show results for the staggered susceptibility

as a function of temperature for various interaction strengths.
In all cases, one can see a fast growth of this quantity when
lowering the temperature starting from high temperatures (T ∼
w). However, when T/w � 0.1, the curves for U > Uc depart
from those for U < Uc, as the curvature of χ stg changes sign
by changing U . In fact, for temperatures lower than T ∗ for
U > Uc (see the inset in Fig. 4), χ stg appears to be growing
exponentially.

As discussed before, J in the effective Heisenberg model
decreases as U increases in the strongly interacting regime,
which results in the onset of exponentially growing corre-
lations to move to lower temperatures with increasing U

(for U � w). This has a visible effect on χ stg at the lowest
temperatures we have access to. In Fig. 5, one can already see
that after an initial increase for U � w, χ stg decreases with
increasing U for U > w. This is shown more clearly in the
inset of Fig. 5, where we plot χ stg vs U/w at T/w = 0.05.
The maximal value of χ stg at that temperature occurs in the
vicinity of U = w.

The second quantity of interest is the AF structure factor,
which is defined as

SAF = 1

N

∑
ij

ϑi,j

〈
Sz

i S
z
j

〉
, (13)

where ϑi,j = −1 if i and j belong to a different sublattice and
ϑi,j = 1 if i and j belong to the same sublattice. Note that the
lack of long-range order at any finite temperature implies that
SAF is finite in the thermodynamic limit. This means that for
the NLCE calculation an additive structure factor is computed
in finite clusters as

∑
ij ϑi,j 〈Sz

i S
z
j 〉. This is done so that the

intensive counterpart (SAF) can be evaluated within NLCE
in the thermodynamic limit. SAF can be measured in solid-
state systems using neutron scattering, and, in ultracold atomic
gases, it has been recently proposed that Bragg scattering can
be used for that purpose.45 It can also be calculated using
DQMC.
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FIG. 6. (Color online) Antiferromagnetic structure factor as a
function of temperature in the honeycomb lattice at half filling with
U/w = 1/2, 1, 3/2, and 2. Lines (symbols) correspond to NLCE
(extrapolated DQMC) results.

In Fig. 6, we plot SAF as a function of T for the honeycomb
lattice at half filling for different values of U/w. We should
note that, in contrast to the quantities discussed in previous
sections, SAF exhibits strong finite-size effects in the DQMC
simulations for the temperatures of interest here. Because of
this, the DQMC results shown in Fig. 6 are the outcome of
an extrapolation to the thermodynamic limit considering five
different system sizes (24, 54, 96, 150, and 216 sites). Closely
related to the strong finite-size effects seen in the DQMC
calculations, we note that NLCE results for SAF generally
converge up to temperatures (for a given U ) that are higher
than those for the quantities discussed in previous sections.

It is apparent in Fig. 6 that the results for SAF as a function
of temperature and interaction strength correlate with those for
χ stg in Fig. 5. For SAF, we show DQMC results that extend to
much lower temperatures than those at which NLCE converges
in the weak-coupling regime. They make evident that, for
U < Uc (U/w = 1/2 in Fig. 6) where the ground state is
a semimetal, the structure factor increases very slowly with
decreasing temperature below T/w = 0.1 before saturating
and even decreasing at the lowest temperatures accessible to
DQMC. For strong interactions, on the other hand, the growth
below T = T ∗ is exponential, which is consistent with the
presence of an AF ground state.

E. Double occupancy

A quantity that draws great interest in experiments with
ultracold gases in optical lattices is the double-occupancy
D = 〈n̂↑n̂↓〉, which can be accurately measured and has been
used to identify the presence of a Mott insulator.25 In our
recent Letter,9 we found that, in the half-filled Hubbard model
on the honeycomb geometry, D exhibits a more pronounced
low-temperature rise with decreasing temperature than in the
square lattice. This implies that, as discussed there and in what
follows in Sec. III F, adiabatic cooling is more efficient in the
honeycomb lattice.

Here we show what happens away from half filling. Figure 7
depicts the normalized double occupancy, namely, D divided
by its uncorrelated high-temperature value of n2/4, for two
different values of the interaction strength. In Fig. 7, one
can see that the region in temperature with an anomalous

0.02 0.1 1
T/w

0

0.2

0.4

0.6

0.8

1

4D
/n

2

n=1.00
n=0.90
n=0.85
n=0.75
n=0.65

0.02 0.1 1
T/w

0.6 0.7 0.8 0.9 1
n

0.1

0.15

0.2

T
/w

(b) U/w=3/2(a) U/w=1

FIG. 7. (Color online) NLCE (lines) and DQMC (symbols)
results for normalized double-occupancy 4D/n2 vs T at different den-
sities for (a) U/w = 1 and (b) U/w = 3/2 on the honeycomb lattice.
Inset of (a) shows T/w at the minimum of 4D/n2 as a function of n.

dD/dT < 0 exists not only at half filling but also away
from it. The low-T upturn away from half filling, which has
also been observed for the square lattice geometry,32,37 can
be attributed to delocalization effects due to Fermi liquid
behavior, especially in the weak to intermediate coupling
regimes. Consistently with that picture, the low-T upturn starts
at higher temperatures as n decreases from 1, as shown in
the inset in Fig. 7(a). This also explains the enhancement
in the value of |dD/dT | in the anomalous region as one dopes
the system away from, but remains close to, half filling for
U/w = 1. At half filling, this phenomenon, and the resulting
Pomeranchuk cooling mechanism, has been studied using
several techniques.35,46,47

In the strong-coupling regime, the (less pronounced) upturn
in D at half filling is attributable to the increase in virtual hop-
pings to NN sites due to the enhancement of AF correlations.48

In that case, the similar upturn in D away from half filling,
and the agreement of the normalized double occupancies for
a range of densities close to one at low temperatures [see
Fig. 7(b)], can be explained by the fact that AF correlations
and ordering of the moments likely remain significant, even at
small dopings when the interaction strength is large.32

F. Adiabatic cooling away from half filling

As mentioned before, the existence of an anomalous region
with dD/dT < 0 is of much interest as it implies that
the system can be cooled adiabatically by increasing the
interaction strength. This follows from the relation ∂S/∂U =
−∂D/∂T ,35 which indicates that the entropy S increases with
increasing U at constant T , or T decreases with increasing
U at constant S. In Ref. 9, we compared the constant-entropy
curves in the T -U plane between the honeycomb and square
lattice at half filling, and showed that the adiabatic cooling is
more efficient in the former lattice geometry.

Here, we present results for n �= 1, and explore how such
a cooling mechanism changes away from half filling relative
to the half-filled case. In Fig. 8, we show the isentropic curves
in the T -U plane at n = 0.90 (NLCE as thick solid lines
and DQMC as symbols) and compare them with the ones
at n = 1.00 (NLCE as thin dashed lines). It is worth noting
the good agreement between NLCE and DQMC results for
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FIG. 8. (Color online) Isentropic curves for T/w vs U/w in the
honeycomb lattice at density n = 1.00 (thin dashed lines) and n =
0.90 (thick solid lines) for constant entropies S = 0.50, 0.60, 0.65,
ln(2), 0.75, 0.85, and 0.90. Those results were obtained using NLCE.
For n = 0.90, we also present results from DQMC (symbols).

n = 0.90, specially for U/w < 1. For the ranges of U/w and
temperatures presented here the sign problem in the QMC
calculations was small at this filling.

Figure 8 makes apparent what one could have predicted
from the results for the double occupancy in Fig. 7 (from the
more pronounced rise in D by lowering temperature when
n = 0.9 than when n = 1), namely, that adiabatic cooling
by increasing U is generally stronger away, but close to,
half filling. For high entropies, e.g., S = 0.75 in Fig. 8, one
can see that as U increases in the strong-coupling regime
the temperature for the system with n = 0.9 decreases while
it increases for the half-filled system. Similarly, at lower
entropies, e.g., S = 0.6 in Fig. 8, the system with n = 0.9 can
be cooled down to lower temperatures than with n = 1.00. As
we show in the following section, these findings have important
implications for adiabatically cooling of systems confined in
harmonic potentials, as is the case for experiments with cold
gases in optical lattices.

IV. TRAPPED SYSTEMS

In order to emulate optical lattice experiments, we consider
fermions trapped in a harmonic potential by adding a term∑

iσ V r2
i n̂iσ to the Hamiltonian (1), where V is the potential

strength and ri is the distance of each site from the center
of the trap. Since NLCE and DQMC results discussed in the
previous sections are for homogeneous systems, we use the
LDA to estimate thermodynamic properties of the confined
system. For temperatures similar to those studied here, LDA
was found to be a good approximation, at least for the square
lattice geometry, in a DQMC study of the Hubbard model for
harmonically trapped systems.49

We are interested in understanding how adiabatic cooling
changes in the presence of a confining potential. In those sys-
tems, the density changes from its maximal value in the center
of the trap to zero. Given the results in Fig. 8, which show an
important dependence of the isentropic curves on the density,
one needs to consider a fully trapped system to determine how
the contributions from low and high densities add up in a trap
to result in cooling (or heating) as the interaction strength is

0 0.5 1 1.5 2
U/w

0

0.05

0.1

0.15

0.2

0.25

T
/w

0 0.5 1 1.5 2
U/w

0
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0.1

0.15

0.2

0.25

T
/w

s=0.5
s=0.6
s=0.7
s=0.8
s=0.9

(a) ρ∼=9.3

T*

(b) ρ∼= 4.3

T*

FIG. 9. (Color online) NLCE results for the isentropic curves
of T/w vs U/w in trapped systems in the honeycomb lattice for
constant average entropies per particle s = 0.5, 0.6, 0.7, 0.8, and 0.9;
and for (a) ρ̃ = 9.3 and (b) ρ̃ = 4.3. The shaded region emphasizes
temperatures below T ∗, for (U > Uc), in the half-filled homogeneous
system [see the inset in Fig. 4(b)].

increased. To provide general results, which apply to systems
with potentially different strengths of the confining potential
and/or number of particles, it is convenient to utilize the
characteristic density ρ̃ = Np(2V/w)d/2,50,51 where Np is the
total number of particles in the trap and d is the dimensionality.

In Fig. 9, we show isentropic curves for T/w vs U/w

in trapped systems with ρ̃ = 9.3 and 4.3. Note that here, s

gives the average entropy per particle in the trap, which is to
be compared to the entropy per site (S) of the homogeneous
system only at half filling. For U > Uc, the region with T < T ∗
in the latter system is depicted as a shaded area in Fig. 9.
Figure 9 shows that even if s is as large as 0.9, the temperature
in the trapped system decreases steadily as U increases. This is
to be contrasted with the results in Fig. 8 where such a steady
decrease of the temperature is not seen even if S at n = 1 is as
low as 0.6. Furthermore, as shown in Fig. 9(b), one can adiabat-
ically drive the trapped system into a regime with T < T ∗ start-
ing from entropies per particle that are higher than S = 0.5,
required for the n = 1 homogeneous case to achieve T < T ∗.9

What remains to be checked is whether there is a Mott (n =
1) region in the trapped system when T < T ∗. In Fig. 10, we
show density profiles corresponding to the same characteristic
densities depicted in Fig. 9, for selected values of the entropy
per particle and U/w. Figure 10(a) reports results for ρ̃ = 9.3
when s = 0.6. This average entropy leads to a temperature
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T/w=0.099, U/w=1/2
T/w=0.061, U/w=7/6

0 10 20 30 40
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T/w=0.084, U/w=1/2
T/w=0.066, U/w=7/6

(b)(a)

ρ∼=9.3 
s=0.6

ρ∼=4.3 
s=0.8

FIG. 10. (Color online) Local density for trapped fermions in the
honeycomb lattice with (a) ρ̃ = 9.3 and s = 0.6, and (b) ρ̃ = 4.3 and
s = 0.8. Results are presented for U/w from 0 to 7/6. NLCE results
are depicted as lines and DQMC results as symbols.
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FIG. 11. (Color online) (a) NLCE results for the isentropic curves
in the square lattice, similar to Fig. 9 but with ρ̃ = 3.6; (b) local
density in the square lattice with ρ̃ = 3.6 and s = 0.8. Lines and
symbols are the same as in Fig. 10.

T < T ∗ when U/w � 1, and we indeed find that a Mott
shoulder develops in the system at the desired interaction
strength (see the density profile for U/w = 7/6).

A preferable AF Mott plateau occupying the entire center
of the trap may then be obtained by reducing the characteristic
density. This can be seen in Fig. 9(b) for ρ̃ = 4.3 and s = 0.8,
where the density profile at T/w = 0.066 and U/w = 7/6
exhibits an extended plateau with n = 1 in the center of the
system. Note that, for this characteristic density and entropy
per particle, the isentropic curve for s = 0.8 exhibits a region
in U/w for which T is below T ∗ [Fig. 9(b)]. For ρ̃ < 4.3
(not shown), we find that the density profiles for the highest
values of s whose temperature falls below T ∗ have n < 1
at r = 0. This means that the highest average entropy per
particle that can support exponentially long AF correlations in
a Mott plateau in the center of the trap is roughly 0.8, and this
occurs for characteristic densities ρ̃ � 4.3 [corresponding to
the results in Fig. 9(b)].

Finally, one may wonder how those results compare to what
happens in the square lattice. In Fig. 11(a), we show isentropic
curves for a harmonically trapped system in the square lattice
with ρ̃ = 3.6. This is about the lowest characteristic density
that supports a Mott insulator with n = 1 for s ∼ 0.8. The
density profiles corresponding to s = 0.8 are presented in
Fig. 11(b). (Those results are similar to the ones presented in
Ref. 32, but are extended to lower temperature using numerical

resummations in the NLCE.) Figure 11(a) clearly shows that
s � 0.6 are required to achieve temperatures below T ∗ in this
case, so that the Mott plateau seen in Fig. 11(b) for U/w = 1
does not exhibit exponentially long correlations. This indicates
that long-range AF correlations should be easier to observe in
the honeycomb geometry than in the square one.

V. SUMMARY

In summary, we have utilized two complementary and
unbiased computational techniques, NLCE and DQMC, to
study finite-temperature thermodynamic properties of the
Hubbard model in the honeycomb lattice. We have calculated
experimentally relevant quantities, including the entropy,
specific heat, uniform and staggered spin susceptibilities, NN
spin correlations, and the double occupancy at and away from
half filling.

Among other things, we correlated the maximum in
∂Szz

nn/∂T with the temperature T ∗ at which exponentially long
correlations set in the system, so that NN spin correlations
could be used in experiments to (indirectly) probe antiferro-
magnetism. We have also shown that a low-temperature upturn
in the double occupancy also occurs away from half filling, and
that it is actually more prominent than the one at half filling. By
comparing the isentropic curves for T/w as a function of U/w

away from (but close to) half filling and those at half filling,
we have shown that adiabatic cooling is more efficient in the
former. We then have used the local density approximation
to study adiabatic cooling in the presence of a confining
harmonic potential, finding that in the trapped system such
a process is indeed more efficient than in the homogeneous
one. This means that, in the presence of a harmonic trap, one
can create Mott insulating domains with exponentially long AF
correlations at average entropies per particle of s � 0.8, while
in the homogeneous system one needs s � 0.5 to fall in such a
regime.9 These upper limits for the values of entropy are even
higher than those predicted for the square lattice geometry.
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Phys. Rev. Lett. 106, 145302 (2011).
44D. Greif, T. Uehinger, G. Jotzu, L. Tarruell, and T. Esslinger, Science

340, 1307 (2013).
45T. A. Corcovilos, S. K. Baur, J. M. Hitchcock, E. J. Mueller, and

R. G. Hulet, Phys. Rev. A 81, 013415 (2010).
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