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ABSTRACT 

RESTORING NATIVE PLANTS FOLLOWING INVASIVE MALEPHORA 
CROCEA (COPPERY ICEPLANT, AIZOACEAE) ERADICATION ON ANACAPA 

ISLAND 

by Nathan W. Hale 

 To avoid unintended complications of invasive species eradication, it is important 

to understand the potential implications of the techniques used in species eradication 

efforts.  This study aimed to compare how different methods of removing Malephora 

crocea affect the survivorship of planted seedlings of native perennial plants on Anacapa 

Island.  Employing a randomized complete block design in an M. crocea stand, three 

removal treatments were tested: 1) hand-pull; 2) spray with herbicide and leave skeletons; 

and 3) spray and then remove skeletons after 2.5 months.  In each treatment, seedlings of 

three species (Leptosyne gigantea, Frankenia salina, and Grindelia stricta) and seeds of 

two species (L. gigantea and G. stricta) were planted.  Survivorship and seed 

establishment were monitored quarterly between March 2010 and January 2011.  For 

transplanted seedlings, the spray-and-leave treatment resulted in higher survivorship, 

while no difference was observed between the pull-treatments.  Seed establishment was 

very low overall, but results of seeding of G. stricta showed that the spray-and-pull 

treatment provided for higher establishment than other treatments.  L. gigantea seed 

establishment was inconclusive.  The spray-and-leave treatment also provided the highest 

relative soil moisture.  My results suggest that the spray-and-leave treatment provided the 

most suitable conditions for survival of transplanted native perennial vegetation.   
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Introduction 

 The human-caused redistribution of the Earth’s biological organisms has resulted 

in dramatic ecosystem disruptions.  While species introductions into novel environments 

can be natural events, humans have accelerated this process by orders of magnitude 

(Vitousek et al. 1997b; Mooney & Cleland 2001).  These human-mediated species 

introductions have resulted in species – here defined as invasive species – establishing 

and flourishing in novel habitats, causing broad-scale harm to populations of the 

indigenous species of these habitats, and causing general habitat degradation.  Such 

invasive species have been implicated in perturbations to food webs (Vitousek et al. 

1996); nutrient, fire, and water cycles (D’Antonio & Vitousek 1992; Dassonville et al. 

2008; Ehrenfeld 2003; Raizada et al. 2008; Ehrenfeld 2010; Young et al. 2010a;); 

ecosystem structure (Saunders et al. 2003; Ehrenfeld 2010; Young et al. 2010b); and 

evolutionary trajectories (Mooney & Cleland 2001), the results of which have impacted 

global biodiversity and ecosystem stability (D’Antonio & Vitousek 1992; Vitousek et al. 

1996; Vitousek et al. 1997a; Mooney & Cleland 2001; Sax et al. 2007; Wright 2011).  

The occurrence of human-caused invasions has contributed to the extinction and 

extirpation of native species (Vitousek et al. 1996).  While mechanisms underlying 

invasion-related extinctions are primarily observed through impacts of predator and 

pathogen introductions (Sax et al. 2007), competitive pressure by invasive species to the 

point of inevitable extinction may be a latent effect that can take hundreds to thousands 

of years to become realized (Sax et al. 2007).  The potential of there being a debt of 

unrealized destruction from introduced species is supported in the current distribution of 
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invasive species relative to the time of introduction.  In a study of 28 European countries, 

Essl et al. (2011) found that, despite there being an increase in species introductions since 

1950 compared to introductions prior to 1950, introduced species richness was 

predominantly representative of pre-1950s introductions.  It is, therefore, possible that 

more recently introduced species have not yet had time to achieve their maximum level 

of damage. 

 Plants represent a significant category of invasive species and can cause dramatic 

changes to habitats.  The total number of non-native plant species in the United States 

was recently estimated at 25,000 (Pimentel et al. 2005).  Many of these species are 

implicated in a wide range of substantial ecosystem effects (Vitousek et al. 1997a; 

Vitousek and Walker 1989).  One example depicting the magnitude of ecosystem 

disruption possible from a plant invasion is the invasion of Bromus tectorum (cheat grass, 

Poaceae) into the Great Basin of North America.  B. tectorum was introduced in the late 

1800s, and it eventually spread throughout the Great Basin aided, in part, by grazing 

cattle (Knapp 1996).  The dense, fine-textured growth form of this annual grass generated 

an approximate 20-fold increase in the fire-return interval throughout the basin (Vitousek 

et al. 1996), which has increased the spread of B. tectorum.  The ecological effect has 

been the elimination of native vegetation in large areas, increased erosion, decreased 

habitat and forage for native animal species, and an overall biological impoverishment 

(Knapp 1996).  Meinke et al. (2009) estimated B. tectorum dominates over 28 million ha 

in the Intermountain West in Idaho, Oregon, Nevada, Utah, and Washington.  



3 
 

 The invasion and dominance of Cocos nucifera (coconut palm, Arecaceae) within 

tropical and subtropical islands demonstrates how invasive species can generate radiating 

impacts across ecosystems (Young et al. 2010a; Young et al. 2010b; McCauley et al. 

2012).  C. nucifera indirectly reduced the allochthonous bird deposits into the forests of 

Palmyra Atoll in the Pacific Ocean by providing less-suitable nesting and roosting sites 

for seabirds compared with native trees (Young et al. 2010a).  The decrease in habitat for 

birds has resulted in reduced bird-derived nutrient inputs, which has simultaneously 

lowered the propagation success of native vegetation, decreased the nutrient content of 

the remnant native vegetation, decreased diversity and abundance of insects, and 

decreased body size of native reptiles and spiders (Young et al. 2010a).  In addition, the 

surrounding waters experienced significantly reduced nutrient loads, resulting in fewer 

and smaller-sized zooplankton, which decreased animal occurrences within the aquatic 

habitats adjacent to C. nucifera-dominated forests (McCauley et al. 2012). 

 Island ecosystems are considered to be inherently susceptible to invasions 

(Vitousek et al. 1997a; Denslow 2003; Kueffer et al. 2010), as invasive species are 

predicted to establish more easily within islands (Denslow 2003), and island ecosystems 

are predicted to suffer more impacts from invaders relative to continental areas 

(D’Antonio & Dudley 1995).  This explanation of increased invasibility of islands has 

been attributed, in part, to a reduced capacity of these systems to withstand invasions as 

compared to continental systems (Denslow 2003).  In general, islands appear to support 

higher net resource availability for invading species relative to continental systems and, 

relative to invading species, island-adapted species have a reduced ability to preempt 
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those resources (Denslow 2003).  These characteristics of islands are credited with the 

lack of invasion resistance observed on islands (Pattison et al. 1998).  That islands are 

inherently more invasible is a topic of some debate (Sol 2000), but the heightened impact 

from invasions on island-adapted species is well supported (D’Antonio & Dudley 1995; 

Vitousek et al. 1996).  Native island species are generally derived from smaller pools of 

potential colonizers than are continental species, resulting in a possible vacancy of niches 

in island communities (D’Antonio & Dudley 1995).  In addition, due to their isolation, 

island species have smaller populations, fewer patches of habitat, and a reduced ability to 

disperse relative to continental species (D’Antonio & Dudley 1995; Denslow 2003).  

Reduced dispersal is considered to be an adaptation of island species to concentrate 

reproductive effort within available niches rather than losing diaspores in the surrounding 

ocean water (Eliasson 1995).  These demographic factors are likely contributors to higher 

impacts on island species from species invasions (D’Antonio & Dudley 1995).  For 

example, the threat of extinction of terrestrial species as a result of invasive species 

pressures is among the most pronounced in island species (Vitousek et al. 1996).  

 The success of species invasions is not solely attributable to relocations and 

character differences between invaders to native species.  Disturbances, such as clear-

cutting and agriculture, promote species invasions (Jenkins & Pimm 2003; Eschtruth & 

Battles 2009; Kueffer et al. 2010) and reduce a system’s invasion resistance (D’Antonio 

et al. 2001).  These effects are partly due to the increased resource availability following 

disturbance (Chakraborty & Li 2010).  Satellite image surveys of global disturbances 

have been used to predict invasive species occurrences, the results of which have been 
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supported by field observations of major species invasions (Jenkins & Pimm 2003).  

These paired anthropogenic mechanisms–the movement of species beyond their native 

range and the human-mediated increase in ecosystem disturbances–has resulted in the 

ubiquitous presence of invasive species (Vitousek et al. 1997a; Vitousek et al. 1997b). 

 In the wake of the destructive consequences to ecosystems and the economic and 

social impacts caused by invasive species (see Pimentel et al. 2001 and Pimentel et al. 

2005), the tide of invasive species is being countered with the prioritization of species 

eradication efforts by governments, conservation organizations, and corporations.  

Although the goal of these efforts is the complete eradication of the target species and the 

repopulation of native species and ecosystem functions (Myers et al. 2000; Howald et al. 

2003), in some cases the eradication itself has resulted in negative ecosystem impacts 

such as the replacement of eradicated species with secondary invasive species (Zavaleta 

et al. 2001; Allen et al. 2005; Banerjee et al. 2006; Cox & Allen 2008; Crimmins & 

McPherson 2008), the elimination of limiting factors in the system, such as removal of 

predatory pressure, and the sudden availability of resources (Levine et al. 2002; Hulme & 

Bremner 2006; Cox & Allen 2008).  The increase of secondary invasive species is 

especially characteristic of areas with historic disturbances, such as intense agriculture, 

due to long-term impairment of the native seedbank (Banerjee et al. 2006; Crimmins & 

McPherson 2008).   

 The methods used to remove invasive species have, at times, resulted in further 

damage to native species.  Damaging effects from well-intentioned introductions of 

biological control agents have been widely acknowledged (Cory & Myers 2000).  For 
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example, the reduction in both abundance of native tephritid flies and seed production of 

native thistles have resulted from the introduction of the weevil Rhinocyllus conicus for 

control of invasive thistles in North America (Louda et al. 1997).  Additionally, 

unintended effects of the use of pesticides and herbicides to control non-native species 

include the mortality of native fauna and other detrimental ecosystem outcomes (Innes & 

Barker 1999; Howald et al. 2003; Govindarajulu 2008; Eason et al. 2010; Weidenhamer 

& Ragan 2010).   

 In some cases, eradication of an invasive species falls short of removing the 

resulting disturbance.  Alteration of abiotic conditions by the target species, such as an 

increase in soil salinity associated with Mesembryanthemum crystallinum (crystalline 

iceplant, Aizoaceae), has been shown to restrict the return of native species (Vivrette & 

Muller 1977; El-Ğhareeb 1991).  A long-lasting impact has been observed with the 

invasive Myrica faya (fire tree, Myricaceae) on young volcanic soils in Hawaii (Vitousek 

& Walker 1989).  M. faya fixes soil nitrogen (N) at levels far exceeding those typical for 

the native ecosystem.  Following removal of M. faya, secondary invasive species in these 

systems seem to be promoted by the legacy of increased soil N (D’Antonio & Meyerson 

2002).  Therefore, removal alone is not sufficient to restore the impacted habitat.  

Similarly, if the functional groups and ecosystem services of the native system have been 

lost due to the presence of invasive species, invasive species can come to serve in a 

functional capacity for native species (Zavaleta et al. 2001; D’Antonio & Meyerson 

2002; Rodriguez 2006).  Under these conditions, eradication of invasive species may 
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cause a system to collapse further, even including threatening the existence of native 

species (Florens et al. 1998). 

 Due to the undesirable effects that can accompany invasive species eradication 

efforts, Zavaleta et al. (2001) argued that species eradications should be addressed within 

the context of broader ecosystem restoration goals, including focusing on ecosystem-

wide interactions and the potential functional roles of exotics, in order to reduce 

unwanted results.  Furthermore, the potential negative effects that eradication methods 

can have on native species and ecosystem processes should be considered as they relate 

to restoration goals.   

 My research addressed questions that stem from a whole-ecosystem approach to 

removal of non-native plants for restoration.  Specifically, I examined how native species 

responded when planted in areas that experienced different iceplant (Malephora crocea, 

coppery iceplant, Aizoaceae) removal methods.  This study occurred on Anacapa Island 

in California’s Channel Islands National Park (CINP).  M. crocea is a species that was 

introduced subsequent to a history of disturbances on Anacapa Island and now appears to 

be having an adverse impact on native species.  For example, cover by native plants and 

abundance of the native common side-blotched lizard (Uta stansburiana elegans) were 

both negatively correlated with the presence of M. crocea (S. Lambrecht 2012, San Jose 

State University [SJSU], CA, unpublished data).  As a result of its observed threat to the 

native community, the National Park Service (NPS) is targeting M. crocea for future 

eradication on Anacapa.  Research on how native species recover given different 
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approaches to iceplant removal is needed to facilitate and expedite restoration of the 

native plant community.    

 

Anacapa Island and its history of disturbances 

 Anacapa Island is one of the four northern Channel Islands that are collectively a 

westward extension of the Santa Monica Mountains of mainland California (Moody 

2000).  Occurring 19 km from the coast of Ventura, California, Anacapa Island, the 

second smallest island of the Channel Islands National Park, is comprised of three 

individual islets—West Anacapa, Middle Anacapa, and East Anacapa—which are 

separated from each other by low-lying areas that are inundated except at the lowest 

tides.  The islets are arranged in a thin, 8 km-long chain, and their total land-area is 

approximately 2.9 km² (Moody 2000).  While rising approximately 284 m above mean 

sea level at its highest point on West Anacapa (i.e., Summit Peak), Anacapa Island is 

characterized as being mesa-like on the eastern end, reflecting a period of being 

submerged during the Pleistocene (Johnson 1979).  In addition, the island has a gradual 

northward tilt, and all three islets are skirted by steep rugged cliffs.  This varied 

topography has led to a diverse flora.   

 Plant communities of Anacapa include coastal bluff, coastal sage scrub, annual 

grassland, island chaparral, and island woodland, the latter two of which only occur on 

West Anacapa (Junak et al. 1980; Sawyer et al. 2008).  In total, 190 native plant species 

have been identified on Anacapa Island, at least 22 of which are endemic to the Channel 

Islands (Moody 2000).  In addition, Anacapa provides important breeding and roosting 
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habitat for numerous birds including the ashy storm-petrel (Oceanodroma homochroa), 

brown pelican (Pelecanus occidentalis), and Xantus’s murrelet (Synthliboramphus 

hypoleucus) (Schoenherr et al. 1999; Whitworth et al. 2005).  Anacapa also supports the 

endemic Channel Islands slender salamander (Batrachoseps pacificus), two native 

lizards, the California alligator lizard (Elgaria multicarinata multicarinata) and western 

side-blotched lizard (Uta stansburiana elegans), and a single mammal, an endemic 

subspecies of the deer mouse, Peromyscus maniculatus anacapae (Schoenherr et al. 

1999). 

 Due to its proximity to the mainland and its occurrence along the major shipping 

lane of the Santa Barbara Channel, Anacapa Island has had a long human presence 

(Livingston 2006).  The accompanying disturbances of human activities on Anacapa 

Island include the introduction of many non-native plant species.  Junak et al. (1997) 

reported 72 non-native species on Anacapa Island, including the perennial iceplant 

species, M. crocea, which is native to South Africa (Jacobsen 1960). 

 Anthropogenic disturbances on East Anacapa both preceded and occurred 

simultaneously with the introduction of M. crocea and may have exaggerated its success 

as an invader.  Before it was actively established, sheep ranching occurred on the three 

islets of Anacapa Island between the late 1800s and the late 1930s (NPS 2005; Livingston 

2006).  This included an especially intensive period during a ranch-lease program that 

was started in 1902 by the U.S. Department of Treasury (NPS 2005).  The impact of 

ranching on the island’s vegetation was significant given that herd managers would 

periodically cull the flocks to save those remaining from starvation (Livingston 2006) and 
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resorted to introducing non-native annual grasses, including Bromus spp. and Hordeum 

spp. (brome and foxtail, Poaceae), to increase available forage (NPS 2005).  In 1912, 

following construction of a temporary light beacon on East Anacapa, the ranching lease 

was changed to restrict ranching to Middle and West Anacapa (Livingston 2006).  At that 

point, it is presumed that the grazing pressure on vegetation of East Anacapa was 

reduced, although the occurrence of some sheep was reported on the islet through the 

1960s (Livingston 2006).  In the 1930s, the Federal Lighthouse Bureau replaced the 

beacon with a permanent lighthouse complex, including various buildings, a cement rain-

collection pad, and extensive boat landing facilities (Livingston 2006).  Construction 

disturbances, including the building of trails and dirt roads on the island, have resulted in 

soil erosion and denuding of vegetation (Hochberg et al. 1979).  During the time the 

lighthouse station was initially occupied, M. crocea was introduced as a landscaping 

plant in the front yards of the residential units (Santa Barbara News Press 1951).  This 

succulent vining plant with bright flowers was newly available in California’s coastal 

nurseries around 1933 (Ferren et al. 1981) and was documented as observed on the island 

in 1951, suggesting that it was introduced within that 19-year period.  It was likely 

introduced to serve an aesthetic role around the residences and to reduce erosion and 

wind-borne dust in light of the effects of construction disturbances and Anacapa Island’s 

characteristically strong winds (Warren Jr. 1958; WRCC 2012).  In 1935, at 

approximately the same time that M. crocea was introduced to East Anacapa, a few 

domestic European rabbits (Oryctolagus cuniculus) were introduced on the islet.  They 
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quickly increased their numbers to approximately 1,000 by 1941 (SCWP 1941).  Rabbits 

were eliminated by dogs and hunting in the 1950s (Santa Barbara News Press 1951). 

 The damage by rabbits to the habitats of East Anacapa, while undocumented, is 

likely to have been comparable to damage recorded within a 14-year period in similar 

habitats on nearby Santa Barbara Island.  Sumner (1953) noted that rabbits had 

“devastated” Santa Barbara Island’s plant communities, and threatened “many of the 

island’s…plants with total destruction.”  One community type, the giant coreopsis-

dominated coastal bluff scrub, was identified as being extremely damaged by rabbits 

(Sumner 1953).  Plant cover growing beneath the canopy of the Leptosyne gigantea 

(giant coreopsis, Asteraceae; formerly Coreopsis gigantea) shrubs was reported as being 

completely denuded, and L. gigantea were fatally girdled (Sumner 1953).  This 

community also occurs on East Anacapa, suggesting that rabbits may have reduced its 

occurrence. 

 By 2010, M. crocea had spread from the few initial plantings to dense monotypic 

stands covering approximately 7.3 ha, or 11% of East Anacapa Island, and an additional 

10.5 ha, or 16% in lower density areas of the islet (S. Chaney 2011, unpublished data).  

The disturbances described above suggest that M. crocea may have easily spread within 

an especially low-competition environment.  In fact, human disturbances on islands, 

including grazing practices, have been cited as being linked to the success of invading 

plants (Vitousek et al. 1997a; Kueffer et al. 2010).  However, the occurrence of many 

other non-native plant species on Anacapa Island, including those that were there prior to 

the introduction of M. crocea (Hochberg et al. 1979; Halvorson 1992), provides evidence 
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that M. crocea possesses traits that have contributed to its particular success on East 

Anacapa in spite of competition from other invasive plants.   

 

Malephora crocea on Anacapa Island and challenges to eradication 

 A wide variety of dispersal mechanisms has contributed to the success of M. 

crocea on Anacapa Island.  Black rats (Rattus rattus) were introduced to Anacapa Island 

in approximately 1853 and were present until their eradication in 2003 (McEachern 

2004).  Both the black rat and the extant Anacapa deer mouse (Peromyscus maniculatus 

anacapae) are known seed eaters (Clark 1982; Jameson 1952).  Given its large seed 

production (Bleck 2012), M. crocea may have benefited from seed dispersal by these 

rodents.  Another perennial iceplant species, Carpobrotus edulis (freeway iceplant, 

Aizoaceae) that is also a non-native invader in coastal communities of California, is 

predominantly zoochorous with its germination enhanced following seed ingestion by 

deer, rabbits and jackrabbits (D’Antonio 1990).  This may also be the case with M. 

crocea.  Another trait conferring successful dispersal is that of the rain-operated, 

hygrochastic seed capsule of M. crocea (Bittrich & Hartmann 1988), which is found in 

98% of species in the Aizoaceae.  Triggered by heavy rain and thorough wetting, the 

hygrochastic capsule uses the kinetic energy of raindrops to jet-propel seeds from the 

capsule (Parolin 2006).  This mechanism achieves dispersal of up to approximately 2 m 

while allowing the disperser plant to maintain a low stature (Parolin 2006), which is 

important in areas with strong winds.  In addition, this mechanism allows the plant to 

exploit critical rain events in dry environments (Parolin 2006), as is the case on Anacapa, 
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with an average annual rainfall of approximately 29 cm (WRCC 2012).  M. crocea also 

employs vegetative spreading by rooting at leaf nodes (Ferren et al. 1981), enabling an 

individual that has established in even poor quality patches to spread.  M. crocea has 

been observed being dispersed by Western gulls (Larus occidentalis), which breed in the 

thousands on East Anacapa.  Gulls have been seen plucking fragments of M. crocea 

during courtship displays and utilizing M. crocea in their nests. 

 Once established, M. crocea is well adapted for surviving within the windy, 

Mediterranean, and haline conditions found on Anacapa (Johnson 1979).  Succulent 

tissue, which was found to be correlated with invasive species success in disturbed 

habitats (Lloret et al. 2005), allows M. crocea to survive periods of drought through 

water storage in leaf tissues.  In addition, M. crocea employs CAM photosynthesis to 

reduce evapotranspiration and accumulates generally high levels of sodium in its tissues, 

which may be adaptive to reduce internal water potentials so as to balance those of the 

surrounding environment during periods of water and salt stress (von Willert et al. 1977).   

The growth form of M. crocea also creates a heavy, dense mat that blankets the available 

substrate, including neighboring plants, effectively eliminating competition (Junak et al. 

1980).  

 The 1985 General Management Plan for the CINP specified goals for restoring 

Anacapa Island to the potential ecosystem conditions that would likely have been present 

prior to human disturbances or as near to such conditions as possible (NPS 2000).  Under 

that charter, the CINP resource managers have moved forward to complete species 

eradication efforts, including an island-wide eradication of introduced R. rattus, which 
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were threatening nesting seabird colonies (NPS 2000).  Resource managers have set a 

goal to eradicate M. crocea by 2016, a date that corresponds to the centennial anniversary 

of the NPS (NPS 2012).   

 Given that M. crocea has covered such large areas over long periods of time and 

that other non-native invasive species occur on Anacapa, including C. edulis, M. 

crystallinum, Mesembryanthemum nodiflorum (slender-leaved iceplant, Aizoaceae), 

Centaurea melitensis (tocalote, Asteraceae), Atriplex semibaccata (Australian saltbush, 

Chenopodiaceae), Erodium cicutarium (redstem filaree, Geraniaceae),  Avena spp. (wild 

oat, Poaceae), and Bromus spp., resource managers may need to employ additional 

measures beyond eradication of M. crocea to restore native ecosystems on East Anacapa.  

In a 4-year study on East Anacapa, researchers found that non-native grass cover 

increased following removal of iceplant species (primarily M. crocea) in contrast to 

native species that had little response (S. Lambrecht 2012, SJSU, CA, unpublished data).  

However, in other areas of East Anacapa, the native species Frankenia salina (alkali 

heath, Frankeniaceae) has been observed in abundance where iceplant has been cleared 

(S. Chaney 2010, personal communication).  In this case, F. salina was likely coexisting 

amongst the M. crocea, resulting in a perceived repopulation although the increased 

growth of the plant was more likely a result of being released from competitive 

suppression by M. crocea.  Botanists who contributed to the 1978 Natural Resource 

Study of the Channel Islands National Monument (Hochberg et al. 1979) were cautiously 

aware of the potential threat of secondary invasive species damage when they stated that 

the replacement of M. crocea on Anacapa “by M. nodiflorum or M. crystallinum would 
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be a step in the wrong direction…”  They went on to recommend that “any intentional 

modification of areas covered by Malephora [crocea] should be carefully planned and 

carried out.”  Large areas of Santa Barbara Island as well as smaller areas on Anacapa 

and San Miguel Islands are dominated by M. crystallinum (D’Antonio et al. 1992; 

Halvorson 1992), which has presented a difficult challenge in restoring native species due 

to its effect on soil salinity (D’Antonio et al. 1992).  In contrast, Allen and her colleagues 

(2005) found that native forbs responded positively to removal of non-native grasses in 

spite of colonization by secondary invasive species.  This suggests that the removal of the 

most dominant invasive plant species may allow for a high level of autogenic restoration, 

even if secondary invasive species remain in the system.  However, if the goal is to 

restore native ecological conditions, relying on the ability of native island species to 

recreate the native conditions on their own in the presence of many invasive species may 

be very risky.   

 Native species on Anacapa Island may not be capable of autogenic rehabilitation.  

For example, L. gigantea, which is a foundation species on Anacapa, appears to have 

adapted a reduced capacity to disperse within island populations.  Individuals located on 

Bird Rock near Catalina Island had significantly narrower and longer seeds and 

significantly narrower achene wings (pappus) compared to mainland populations on the 

southern California coast (Schiffman 1997).  These traits would result in the island 

population having a reduced ability to disperse.  The reduced dispersal capacity identified 

in L. gigantea populations on Bird Rock and small achene wings indicative of 

populations on San Miguel Island, which is a larger than Anacapa and within the same 
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group of islands in the CINP (Schwemm 2008), suggest that Anacapa populations of this 

species would also be less able to colonize areas where M. crocea had been eradicated 

than would invasive species.  Furthermore, other invaders may be able to exclude L. 

gigantea and other native species altogether (Schwemm 2008), as was seen in M. 

crystallinum stands on Santa Barbara Island (D’Antonio et al. 1992). 

 The ability of native species to naturally repopulate areas following M. crocea 

eradication may be a forgone conclusion in the short term on Anacapa.  Bare ground 

comprised a large component of area following M. crocea removal even 3 years after 

removal (S. Lambrecht 2012, SJSU, CA, unpublished data), indicating that iceplant 

removal was not followed with quick recovery of vegetation, let alone native vegetation.  

This may be due to several factors, including limited soil moisture, possible abiotic 

impacts to the soil from M. crocea, and depletion of the soil seedbank from long-term 

residency of M. crocea.  Invasive species have been shown to significantly affect the 

composition of soil seedbanks, including in the form of native species depletion; 

furthermore, these changes are generally greater with increased residence time (Gioria & 

Moravcova 2012).  The impact of long-term M. crocea occurrence on the seedbank of 

Anacapa has not yet been examined.  If M. crocea occurrence and eradication represent a 

severe enough disturbance, the ecosystem may never recover unaided.  Severely 

disturbed habitats have been shown to support invasive species-dominated, highly-stable 

systems that perpetually exclude native species (Stylinsky & Allen 1999). 

 Even if some native species and functions could occur as an autogenic system 

response to M. crocea eradication on Anacapa, these processes are likely to be quite 
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slow.  Active restoration of functional groups and key native species would accelerate the 

restoration process, potentially preempting secondary invasions, degradation of 

ecosystem functions, and soil erosion (Whisenant 2002).  Establishment of native 

perennial species, which can act as nurse plants, can greatly improve conditions for 

establishment of seedlings (Whisenant et al. 1995; Carrillo-Garcia et al. 1999; Whisenant 

2002; Zahawi & Augspurger 2006).  Native perennial species have also been 

demonstrated to limit competition by other invasive plants (Cione et al. 2002; Corbin & 

D’Antonio 2004), although invasion resistance is not always achieved in restored systems 

(Questad et al. 2012).  Active establishment of native vegetation has been shown to 

facilitate recruitment of native vegetation through increases in local seed availability 

from reproduction and from seed rain by volant species (Holl et al. 2000; Zahawi & 

Augspurger 2006).  These results suggest that use of active planting can be an important 

tool in triggering an autogenic restoration response.  

 A key limiting factor affecting the establishment of vegetation in restoration 

within dry habitats is inter-annual climate variation (Cione et al. 2002; Cox & Allen 

2008).  Anacapa Island is a water-limited environment; as such, vegetation growth and 

survival have been shown to be negatively affected by drought (S. Lambrecht 2012, 

SJSU, CA, unpublished data).  Restoration efforts in water-limited habitats need to 

account for this factor.  Whisenant and colleagues (1995) utilized catchment basins in a 

Larrea tridentata (creosote bush, Zygophyllaceae) shrubland in Texas to increase water 

availability during precipitation events.  They demonstrated that the treatment resulted in 

a five to ten-fold increase in biomass of planted native shrubs compared to the control.  
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Additional techniques have been shown to benefit the restoration of native plants in semi-

arid habitats.  For example, a variety of mulches may increase survivorship and 

productivity of planted native perennial species (D’Antonio et al. 1992; Zink & Allen 

1998; Holmes 2008).  Identification of a feasible method to provide for the establishment 

of native perennial species following M. crocea removal, given the potential impact of 

limited soil moisture on habitat restoration on Anacapa, may be an important 

consideration in the eradication effort. 

 Pilot efforts by the NPS have focused mostly on M. crocea eradication treatments.  

These include hand-pulling M. crocea and disposing of the remains in large piles, 

solarization or tarping, trampling M. crocea by foot, use of different herbicides, leaving 

M. crocea skeletons in place following herbicide application, pulling dead M. crocea 

skeletons following herbicide application, and using a tractor to clear swaths of M. 

crocea.  Most of these trials were not conducted in a controlled analysis; therefore, 

limited quantitative evidence of their efficacy is available.  However, researchers 

working on Anacapa found that three treatments—spraying the M. crocea with herbicide 

and leaving the dead skeletons in place, spraying and removing it by hand-pulling 

(several months after spraying), and hand-pulling untreated M. crocea—while 

significantly different in effort to accomplish (low to high, correspondingly), were 

equally effective at removal (S. Lambrecht 2012, SJSU, CA, unpublished data).  Due to 

the lack of observed differences in the occurrence of native vegetation within these 

treatments, the study provided no evidence to infer which of the methods provided habitat 
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more conducive for survival of native plantings.  It is also currently unknown what 

effects these treatments have on soil moisture. 

 The purpose of this research was to identify treatments that would help resource 

managers actively restore native plants in M. crocea removal areas.  To accomplish this, I 

compared M. crocea removal methods known to be effective (S. Lambrecht 2012, SJSU, 

CA, unpublished data) with respect to the ability of the post-removal conditions to 

support establishment of native vegetation.  I hypothesized that potential differences in 

soil moisture between treatments would be an important factor affecting native plant 

establishment and survival and that treatments with higher organic material would retain 

soil moisture better and maintain higher levels of native plant survival.  In addition, due 

to the generally short persistence of the herbicides used in this study (see Methods), I 

hypothesized that herbicide use would not impact survival of seedlings.  

 I examined the effect of three iceplant removal methods on seedlings of three 

species of native perennial plants to address the following questions:   

1) Are there differences in soil moisture between M. crocea removal treatments?  If so, is 

soil moisture an important factor on seedling survival and/or establishment between 

treatments? 

2) Are there differences between removal treatments in the survival of seedlings of native 

perennial species transplanted into the treatment areas during the initial year following 

eradication? 
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3) Are there differences between removal treatments in the establishment of seeded 

native plants transplanted into the treatment areas during the initial year following 

eradication?  

4) Given the range of sizes in transplanted seedlings (resulting from the range of time that 

seedlings were propagated for this study), does the size of the seedling at the time of 

planting have an effect on its potential to survive? 
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Methods 

Study site 

 The experimental site (lat 34 ° 00’ 49.5”N; long 119° 22’ 19.5”W; Fig. 1) was 

located within the northwest quadrant of East Anacapa, on a relatively flat mesa 

characteristic of Middle and East Anacapa, approximately 20 m north from a maintained 

hiking trail.  Elevations of the study area ranged between 57.5 and 62.0 masl (USGS 

1973).  Soils of East Anacapa are considered to be well-drained and relatively shallow 

(NRDC 2012); however, soils of the study area are among the deeper soils of the island 

(Junak et al. 1980) at 80-100 cm (NRDC 2012).  Parent materials are comprised of 

volcanic breccia, andesite, and/or basalt (NRDC 2012; Scholl 1960).  I used the soil 

texture analysis of Thien (1979) to characterize soils of the study area.  Thein’s (1979) 

method, known as the texture by feel method, entails adding water to a hand-held sample 

of soil, then manipulating the soil and examining the texture and ribbon-holding ability of 

the sample in order to classify the soil texture.  With this method, I characterized soils of 

the study area as ranging from clay to silty clay loams within the top 15 cm of the soil 

profile.  

 I characterized the vegetation of the study site prior to research-related M. crocea 

removal treatments (discussed below) as a monotypic stand of M. crocea (>95% relative 

cover) with minor occurrences of other species.  Other species that I observed included 

native perennial plants, such as Distichlis spicata (salt grass, Poaceae), Dudleya  
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caespitosa (coast dudleya, Crassulaceae), F. salina, and Grindelia stricta (coast 

gumplant, Asteraceae), annual species including unidentified grasses, Lasthenia 

californica (California goldfields, Asteraceae), Phacelia distans (common phacelia, 

Boraginaceae), and non-native perennials M. crystallinum, M. nodiflorum, and Sonchus 

oleraceus (common sow thistle, Asteraceae) (nomenclature as in Baldwin et al. 2012).  

Using the classification system of Sawyer et al. (2008), the vegetation of the study area 

was characterized as being an M. crocea-dominated iceplant semi-natural herbaceous 

stand.  A 1979 botanical survey of Anacapa Island conducted by botanists from the Santa 

Barbara Botanical Gardens characterized this habitat type on East Anacapa as stands of 

M. crocea, and they defined the area of the study site as supporting both island grassland 

and solid carpets of M. crocea (Junak et al. 1980).  They noted that the island grasslands 

occurring on East Anacapa were degraded relative to those occurring on the west and 

middle islets and that they were predominantly covered with introduced annual grasses 

(Hochberg et al. 1979; Junak et al. 1980).  They also speculated that the disturbed 

grasslands and M. crocea dominated areas were likely covered by a mosaic of native 

perennial grasses, L. gigantea, and D. caespitosa (Hochberg et al. 1979).  However, the 

vegetation community of the experimental site prior to anthropogenic impacts is not 

precisely known.  The spread of M. crocea into the study area likely occurred around 

1979, assuming that the habitat transition from mapping done by the SBBG in 1979 

(Junak et al. 1980) and the present conditions represents a direct transition of M. crocea 

encroachment into the grassland.  
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 In order to describe and compare the weather conditions of the study year relative 

to normal, I obtained climate data from the Western Regional Climate Center (WRCC) 

website (WRCC 2012).  These data were collected at an automated weather station 

located on East Anacapa, approximately 1.1 km to the east of the study site.   

 

Field study design 

 To examine effects of M. crocea removal (hereafter referenced as either M. 

crocea removal or iceplant removal) on planted native seedlings, I established 24 5  3.5-

m removal treatment plots in a randomized complete block (RCB) design, where each of 

eight replicate blocks contained three treatment plots, and each treatment plot contained 

five planting treatments (Fig. 1; Fig. 2).  Replicate blocks were established in two 

separate groupings with three adjoining blocks tending north to south in one grouping 

and five adjoining blocks tending east to west in another band approximately 25 m to the 

east of the former (Fig. 1).  This design and placement of replicates was established to 

minimize the mortality to extant pockets of native plant species, such as areas of D. 

caespitosa, throughout the study area during iceplant removal and to reduce treatment 

error and adverse researcher-related effects through simplification of layout.  

 Treatment plots contained within each replicate block were comprised of three 

iceplant removal treatments.  My three treatments were:  (1) Hand-pull: iceplant 

manually pulled on 18 and 19 February 2010, (2) Spray-and-pull: iceplant was sprayed 

with herbicide on 1 December 2009 and left to die, and then skeletons were hand-pulled 

on 18 and 19 February 2010, and (3) Spray-and-leave: iceplant was sprayed with 
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herbicide on 1 December 2009, then left within the plot.  These treatments had been 

previously tested in their efficacy of removing M. crocea on East Anacapa and were 

found to be equally effective (S. Lambrecht 2012, SJSU, CA, unpublished data).  

Treatment plots were randomly assigned to one of four quadrants of each replicate block.  

Meter-wide buffer strips were maintained between quadrants to reduce over-spray 

effects.  The remaining untreated plot area was used for onsite disposal of pulled iceplant 

material from treatments 1 and 2 (Fig. 1). 

 Within each treatment plot, five 1  1-m subplots were randomly assigned to 

different planting treatments comprised of indigenous perennial species (Fig. 2).  Species 

planted included Coreopsis gigantea, Frankenia salina, and Grindelia stricta.  These 

species were chosen based on their proximity to the study area (i.e., they occur within 50 

m of the study area) and their commonness on East Anacapa.  Also, it was presumed that 

their perennial life histories and relative structural heterogeneity may provide a range of 

facilitative effects to other native species, such as by being nurse plants.  Planting 

treatments consisted of:  (1) 20 L. gigantea seedlings, (2) 23 F. salina seedlings, (3) 27 

G. stricta seedlings, (4) 132 L. gigantea seeds, and (5) 132 G. stricta seeds.  The numbers 

of seedlings in each of the transplant treatments (1-3) reflected the number of seedlings 

that were grown at the time of planting divided by the number of treatment plots (i.e., 

24).   

 For seeding treatments, seed numbers reflected generally high germination rates 

observed in the greenhouse.  The number of seeds was determined by attempting to 

reduce potential competitive effects while also providing for the possibility of low field 
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germination.  Moderate to high seed germination rates observed in the lab were assumed 

to be only slightly higher than field germination.  A seeding template was built to 

increase the uniformity of seed placement and the number 132 was determined to be a 

reasonable number of seeds, given these criteria.  The number 132 was used as a 1  1-m 

seeding template with >8 cm spacing between holes was drilled with 11 rows of 12 

columns.  Subplots were separated from each other and the outer edge of the treatment 

plot by 0.5-m buffer strips.    

 

 The herbicide that we applied to spray treatment plots was a mixture that had been 

previously shown to be effective on perennial iceplant species on Anacapa Island (S. 

 

Figure 2. Setup for experimental treatments.  M. crocea removal treatments were 
randomized within each replicate block (general example shown).  Within each removal 
treatment plot (spray-and-leave treatment shown) five planting treatments were installed, 
consisting of three seedling installation treatments and two seeding treatments. 
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Lambrecht 2012, SJSU, CA, unpublished data).  This mixture was also actively used by 

the Channel Islands National Park Service (CINPS) for perennial iceplant control and at 

Point Dume, California State Park in Carpobrotus spp. control efforts prior to project 

planning (S. Chaney 2011, personal communication).  Its composition was approximately 

0.8% (~89 mL) Garlon 4 (Dow AgroSciences, Indianapolis, Indiana), the active 

ingredient in which is triclopyr (3,5,6-trichloro-2-pyridinyloxyacetic acid, butoxyethyl 

ester), approximately 1.5% (~133 mL) RoundUp Pro (Monsanto Company, St. Louis, 

MO) the active ingredient in which is glyphosate (N-(phosphonomethyl)glycine), 

approximately 0.2% (~22 mL) ProSpreader/Activator surfactant (Target Specialty 

Products, Inc., Fresno, CA), less than 0.1% ammonium sulfate, and approximately 0.7% 

(~74 mL) dye, with the remaining 98.2% of the mixture comprised of water.  

Approximately 53.0 L of this mixture was applied within the study area at a quantity of 

approximately 0.17 L per m² for a total area of 315 m².  Herbicide treatments were 

applied by Sarah Chaney, CINPS restoration biologist and California qualified pesticide 

applicator (QAL 104844). 

 

Seed collection and seedling production 

 Seeds for the planting treatments described below were collected throughout East 

Anacapa during the periods that the seeds were mature for each species.  Mature capitula 

for the L. gigantea were collected in late May 2009 and for G. stricta in late September 

2009.  Mature inflorescences of F. salina were collected in November 2009.  All 

collected seed were gathered by species into paper bags.  Following collection, seed 
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material was treated to protect the seed from insects and fungal infection.  L. gigantea 

and G. stricta seed stock was dried for approximately 2 h on a baking sheet in a standard 

gas-powered oven at approximately 75°C before being left to cool to field station 

temperature.  Seed material was then placed into clean paper bags and into a standard, 

unlit freezer at approximately 0°C where they remained for approximately10 h (adapted 

from Lippitt et al. 1994) prior to transport back to San Jose, California.  Then seed 

material was stored at laboratory temperature for several weeks until it was cleaned and 

sorted.  F. salina seed material was collected by Sarah Chaney in November 2009.  These 

seeds were then sent by US mail to San Jose where the seed material was similarly oven-

dried, placed into a freezer at approximately 0°C for 12 h, and then stored at room 

temperature.   

 Seeds were sorted from non-seed plant material by placing seed material on a dry 

lab surface that had been sterilized with a solution of deionized (DI) water and Physan 20 

(Maril Products, Inc., Tustin, CA), per label instructions.  Seed material was manually 

separated from the remaining plant material using sterilized forceps, micro spatulas, 

and/or dissection needles while wearing latex gloves.  Seeds that showed signs of damage 

(i.e., partial, infected by fungal invasion, damaged by insects, or deformed) were 

discarded.  The remaining seeds were stored by species in sterilized and sealed petri 

dishes at lab temperature in an unlit drawer prior to germination.  F. salina seed-bearing 

plant material was gently crushed with a sterilized kitchen rolling pin.  Loosened seeds 

were then separated by using a clean paper card to push plant material up a tilted piece of 

paper and releasing the suspended plant material, the effect of which allowed the round 
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seeds to roll out further from the rest of the material where they could be more easily 

collected.   

 In order to provide seedlings for the transplant treatment and to identify methods 

with high germination rates for these species, I conducted propagation trials for L. 

gigantea and G. stricta between October 2009 and January 2010, following seed 

collection.  Germination methods included placing seed in sterile plastic petri dishes with 

DI-saturated germination substrate comprised of either #1 filter paper (Whatman 

International, Ltd., Maidstone, England), Kimwipes Ex-L (Kimberly-Clark Corporation, 

Roswell, GA), or approximately 0.06 g/cm2  (dry weight) of Sunshine Mix #3 growing 

medium (Sun GroHortuculture Canada, LLT., Vancouver, BC, Canada).  Pre-treatments 

varied but included combinations of the following: 24 h pre-soak inundation at different 

temperature regimes (laboratory temperature (22°C - 25°C) or refrigerator temperature 

[1°C - 4°C]); pre-rinsing seed in a solution of 5% chlorine bleach, 1% surfactant (Coco-

Wet, Spray-N-Grow, Inc., Rockport, TX), and DI water for 30 seconds before repeated 

flushing with DI water; or no pre-rinse or pre-soak treatment prior to placement on the 

germination medium.  Seeds were placed in a uniform grid of 25, 80, or 100 seeds 

(depending upon petri dish size) within the germinating mediums of the petri dishes, and 

all petri dishes were sealed with Parafilm (American National Can, Greenwich, CT).  

After sealing, seed dishes were placed into either a standard refrigerator for 7, 12, or 14 d 

prior to being placed into a Conviron E7 plant growth chamber (Conviron, Pembira, ND), 

or they were placed into the Conviron directly.  Plants were grown under a regime of 

20°C light, 12°C dark, and an 11 h photoperiod.  Due to high germination rates observed 
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with G. stricta and initial trials of F. salina using no pre-soak or pre-rinse treatment and 

placing seeds on Sunshine soil mix in a sealed petri dish in a refrigerator for 12 d before 

moving into the germination chamber, 80% of F. salina seedlings were grown using this 

protocol.  Germination means of the seed trials varied across treatments and species.  

Across trials, L. gigantea had a mean germination of 51.5%; G. stricta had a mean 

germination of 86.1%, and F. salina had a mean germination of 85.8%.     

 Germinated seedlings were transplanted following hypocotyl emergence, when 

cotyledons had fully deployed or, in some cases, when the first true leaves had emerged.  

Seedlings were then placed into 16.5 cm tall (115 mL) single-cell cones in 98 cone trays 

(Ray Leach Cone-tainer Single-cell system, Stuewe & Sons, Inc., Tangent, OR).  Cones 

were filled with Sunshine Mix #3 growing medium which was tamped down and 

saturated with DI water prior to transplanting.  Sunshine Mix #3 consists of Sphagnum 

peat moss, vermiculite, gypsum, and dolomitic limestone.  This mix was approved by the 

National Park Service for use in seedling production for in-park installation.  For each 

seedling, a small hole was made in the growing medium with either sterilized forceps or a 

micro spatula, and the root was guided into the hole.  Growing medium was then 

backfilled and seedlings were watered in.  Cone-filled trays with live seedlings were 

returned to the germination chamber for 1 to 4 weeks before being transferred to an 

insect-resistant, open-air structure located on the seventh floor courtyard of the SJSU 

(SJSU) Duncan Hall building.   

 The structure, which I designed in collaboration with Sarah Chaney to reduce the 

chance of insect infestation within the seedlings, was composed of a wood frame, clear 
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plastic sheeting, and insect-proof screen material.  The screen material (No-Thrips Insect 

Screen, BioQuip, Rancho Dominguez, CA) is a polyethylene monofilament material with 

0.15 mm screen holes.  Sheeting and screen material were connected to the frame with 

epoxy and staples, and access to the interior was through a pair of 2.1 m long zippers that 

were taped over when closed.  The interior of the structure was sanitized with Physan 20 

solution prior to use. 

 Seedlings were watered with DI water as needed, and a 4 L to 5 mL solution of DI 

water and a kelp-based fertilizer (Seaweed Extract, Grow More, Gardena, CA) was 

applied to the soil of all seedlings.  Cones were haphazardly rearranged within the trays, 

and trays were haphazardly rearranged within the greenhouse on a weekly to biweekly 

basis.  Seedlings that died were replaced with germinated seedlings once cones were 

cleaned, sterilized, and filled with unused growing medium.   

 For transport from SJSU to Anacapa Island, seedlings were placed in new 227 L 

(61  61  61 cm) cardboard boxes 18 h prior to arrival at Anacapa.  Immediately after 

boxes were filled with the seedling trays that had been removed from the greenhouse 

structure, all flap seams were taped to reduce the chance of introducing non-indigenous 

insects to Anacapa Island.  On 16 February 2010, boxed seedlings were loaded into the 

bed of a campus pickup truck, covered with a new plastic tarp, and driven to Ventura, CA 

where they sat covered overnight.  On the morning of 17 February 2010, boxes were 

loaded onto a National Park Service boat (Ocean Ranger II) and transported to Anacapa.  

Once there, boxes were crane-lifted onto the island where the seedlings were watered and 

placed under bird-proof net-covered PVC frames for 7 d for hardening.  Water available 
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on Anacapa during this study came from two 189.3 kL redwood storage tanks located on 

East Anacapa.  At the time of the study, water in these tanks was most recently sourced 

from Long Beach public drinking water that was shipped to Anacapa and pumped into 

the tanks.  Tanks are refilled approximately annually. 

 

Treatment effects on soil moisture 

 To measure the effects of removal treatment on soil moisture, I attempted to 

measure volumetric water content (VWC) within the treatment areas.  VWC was 

collected with a time-domain reflectometry (TDR) probe (Field Scout TDR 200, 

Spectrum Technologies, Inc., Plainfield, IL) with 120 mm probe lengths.  When sampled, 

VWC readings for all replicates were collected between 1130 h PST and 1300 h PST on a 

single day per 2010 sampling assessment (March, June, and October 2010).  During each 

sampling event 15 VWC samples were taken within each plot (three independent samples 

collected immediately adjacent to each of the five planting treatment subplots).   

 The TDR instrument often overestimated VWC readings (e.g., 107% VWC), 

which was likely caused by attenuation of the electromagnetic wave due to high levels of 

soil salinity within the study area (Wyseure et al. 1997).  Because soils with electrical 

conductivity (EC) greater than 2 dS/m will result in inaccurate VWC readings (STI 

2010), I attempted to identify a relationship between the probe readings and actual VWC 

of sampled soil.  To do this, I collected ten soil samples with a range of probe readings 

similar to those observed within the plots from locations immediately adjacent to the 

study area (within approximately 10 m of the study area).  Soil samples were collected 
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with an 89.8 mm diameter length of round steel pipe, 90.5 mm long, the volume of which 

(574 cm³) was calculated to collect approximately the content of the TDR probed soils.  

To collect soils, the pipe was gently hammered into the soil until the top edge was flush 

with the soil surface, capturing the probe sample locations.  The pipe and sample were 

then excavated and the soil edges were leveled flush with the pipe edge using a knife to 

ensure that sample volumes were uniform.  Samples were immediately weighed, then 

oven-dried for approximately 12 h prior to transport to the lab at SJSU, where the drying 

was completed in a drying oven set at 75°C for approximately 5 d.  Actual volumetric 

water content was calculated as the volume of moisture lost divided by the sample 

volume.   

 The results of  a regression analysis showed that in spite of inaccuracy of the TDR 

probe, readings were related to actual volumetric water content samples (n = 10; R = 

0.882, p = 0.001, after log-log transformation).  Therefore, actual probe readings were 

retained to be examined for differences in soil VWC between treatments.   

 

Transplanting 

 In order to test the effects of iceplant removal treatment on survival of 

transplanted seedling, the following methods were utilized.  Seedlings of each species 

were grouped into size classes (small, medium, or large) due to the fact that, immediately 

prior to planting, seedlings ranged in age from 4 weeks to approximately 3.5 months, and 

therefore showed a broad range in sizes.  Sizes were characterized and grouped through 

visual estimation of standing biomass.  Within each seedling size class, seedlings were 
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randomly assigned to a plot (numbered 1 through 24).  This ensured that each plot 

received the same number of seedlings of each size class for each species and corrected 

for unidentified growing condition biases.   

 Seedlings were transplanted into the study plots from 25 February – 28 February 

2010.  Seedlings were planted in the following order:  F. salina, L. gigantea, and G. 

stricta.  Following installation of G. stricta seedlings on 2 March 2010, 100 mL of water 

were poured around the root zone for each G. stricta seedling due to an absence of 

precipitation since planting.  Light precipitation events during and immediately following 

planting of L. gigantea and F. salina seedlings allowed for planting without supplemental 

water.  Seedlings were placed in uniform grids with no less than 20 cm spacing between 

neighbors.  The few seedlings for all species that had died since transplanting were 

replaced with remaining unplanted seedlings of the same size class on 2 March 2010.   

 To be able to address the question of the effect of plant size on survival, 

measurements of seedling size were taken for all individuals (collected 28 February and 

1-2 March 2010, following planting).  For L. gigantea, stem diameter, measured with 

digital calipers at approximately half-way between the ground and the lowest leaves of 

individual seedlings, and above ground plant height were measured.  Leaf number and 

aboveground plant height were measured for F. salina, and leaf number and maximum 

leaf spread (a measure of the distance between the tips of the two longest leaves growing 

from opposing sides of the basal rosette that were manually spread into a horizontal 

plane) were measured for G. stricta.  No relationship was detected between size metrics 
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and survival for L. gigantean or G. stricta; therefore, these data were excluded from 

further analyses.   

 Seedling survival was sampled on four occasions over 1 year.  Sampling events 

were 28-29 March 2010, 2-3 June 2010, 20-22 October 2010, and 16-17 January 2011.  

F. salina seedling survival was recorded through the June 2010 sampling event; however, 

natural resprouting that appeared to be from extant F. salina rootstock in the study area 

made differentiating planted seedlings impossible.  During the October and January 

sampling events, dormant L. gigantea seedlings were distinguished from dead seedlings 

through differences in stems.  Stems that were smooth and turgid were recorded as live 

and those that were partially collapsed, wrinkled, and/or mushy, were noted as dead.  

Survival data were collected in a spatial diagram corresponding to the relative location of 

seedlings within the subplots.  This was to ensure that initial size data could be associated 

with the fate of each seedling.   

 

Seeding 

 To test the effectiveness of seeding as a restoration treatment and the effects of 

iceplant removal treatments on seeding establishment, the following methods were 

utilized.   Collected seed, as discussed above, were stirred gently, and sets of 132 seeds 

were drawn from chance locations within the seed containers (adapted from Stein et al. 

1986).  Samples were drawn into 24 sets per species.  Species included in seeding 

treatments were L. gigantea and G. stricta.  Seed sets were stored in coin envelopes for 
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transport to Anacapa Island, and they were haphazardly assigned to plots prior to 

planting.   

 Following completion of the iceplant removal treatments, seeds were planted in 

randomly assigned subplots within the study plots in a 1  1-m grid using a pre-fabricated 

template for uniform seed placement.  Seeding for G. stricta occurred on 18-19 February 

2010 and seeding for L. gigantea occurred on 20-21 February 2010.  The template used 

to place seeds was made of high-density polyethylene that had been drilled with 6.4-mm 

holes.  In total, the template contained 132 holes that were placed in eleven rows spaced 

8.9 cm apart and twelve columns spaced 8.3 cm apart.  The template was placed on the 

subplot and secured in place while one seed was dropped through each hole of the 

template to replicate broadcasting of seed.  In total, 3,168 seeds of each species were 

placed in the study area using this method. 

 Seedling establishment from seed treatments was recorded during the same 

sampling events as transplant survival, excluding the January 2011 sampling event.  

However, seed establishment in the spray-and-leave treatment was measured only during 

the October 2010 sampling event due to concerns that probing for seedlings within the 

dead iceplant mat would damage the seedlings; therefore, only seed treatment 

establishment of spray-and-pull and hand-pull treatments were collected during the 

March and June 2010 sampling surveys.  Seedlings of G. stricta at the cotyledon stage 

could not be confidently differentiated from cotyledons of S. oleraceus in the seed 

treatments resulting in poor sampling data for G. stricta from the late March 2010 
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sampling.  Seeding trials of L. gigantea resulted in extremely low numbers of surviving 

seedlings and, therefore, were excluded from statistical analyses. 

 Emergent, surviving seedlings of both L. gigantea and G. stricta seeded trials 

were also counted.  As these trials were installed spatially distant from each other, 

seedlings of both species were counted within both seeded subplots to provide a proxy for 

non-treatment seedling occurrences within the study area.  To account for “natural” 

seedling numbers within seeded subplots, an area mean of natural seedlings per seeded 

subplot was calculated for each replicate block and subtracted from the number of 

surviving seedlings of the seeded subplots in that replicate block.  Area means were 

calculated as the mean number of seedlings of the non-seeded species (i.e., seedlings of 

G. stricta observed within the L. gigantea seeded subplots and vice versa) per subplot for 

both the replicate block and the contiguous block(s).   

 

Potential correlates 

 Abiotic variables were collected immediately prior to planting to enable 

identification of potential relationships with seedling survival and soil moisture.  Slope 

was measured with an inclinometer per iceplant removal treatment plot.  Aspect was 

determined for each replicate using the inclinometer and a compass, and these data were 

converted to Cartesian coordinates for analysis.  VWC means (described above) were 

also analyzed as potential correlates.  During the October 2010 assessment, percent cover 

of all dominant (cover) plant species encroaching into the study plots was visually 

estimated due to observed heterogeneity of cover between treatment plots.  Species 
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measured included D. spicata, F. salina, M. crocea, and both M. crystallinum and M. 

nodiflorum (combined as Mesmbryanthemum spp.).  Of these, only F. salina cover was 

found to be important to native plant survival; the others were excluded from further 

analysis. 

 

Statistical analyses 

 To test for differences in seedling responses among iceplant treatments, I used a 

repeated measures randomized complete block (RCB) analysis of variance (ANOVA) or 

analysis of covariance (ANCOVA) when response variables were significantly correlated 

with covariates (R ≥ 0.6 and p ≤ 0.05).  These analyses were conducted using the number 

of surviving (transplant treatment) or established (seeding treatment) seedlings per 

planting treatment, per species, for the dependent variables.  Prior to conducting these 

tests, I used a partial multiple correlations analysis to identify relationships between 

dependent variables and several measured variables (slope, aspect, VWC, seedling size, 

and percent cover of naturally occurring vegetation by species as measured in October 

2010) to identify potential correlates; four variables required ANCOVA analysis (Table 

1).  Iceplant removal treatment was included as the fixed factor, and replicate block was 

included as the random factor.  Two planned comparisons were tested, one between both 

pull-treatments and the no-pull treatment and, within the pull treatments, another between 

the herbicide spray treatment and the no-spray treatment.  An exception to these planned 

comparisons was in the analysis of survival of seeded G. stricta in June 2010 because 
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survival was not assessed within the spray-and-leave treatment areas; therefore, only pull 

treatments were compared. 

 

Table 1. Analyses conducted for treatment effect on seedling, seed, and VWC. 
Dates (in parentheses) indicate data collection period(s) used in analyses.  All 
analyses account for the blocking factor due to the RCB study design. 
Measured Variable ANOVA ANCOVA 
G. stricta seedling survival (†RM: 

03/10, 06/10, 10/10, & 01/11) 
X -- 

G. stricta seedling survival (01/11) -- % F. salina (10/10) 

F. salina seedling survival (†RM: 
03/10 & 06/10) 

-- F. salina height 

G. stricta seed establishment (03/10) X -- 

G. stricta seed establishment (10/10) -- VWC (03/10) 

VWC (RM†: 03/10, 06/10, & 10/10) -- Slope 

† RM: Repeated measure analyses utilized. 
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Figure 3.  Rainfall on East Anacapa Island during the study period.  The 
historical trend line is limited to available precipitation records from the 
Western Regional Climate Center (2012). 

Results 

East Anacapa weather conditions during the study period 

 My study was conducted during a period of relatively variable weather.  

Cumulative precipitation on Anacapa during the study period (December 2009 – January 

2011) was 575 mm, which is 30% higher than the historical mean for the equivalent 

period (Fig. 3; WRCC 2012).   

Application of herbicide for the spray treatments (1 December 2009) was 

followed by a period of typical precipitation for that time of year.  Pull treatments and 

installation of planting treatments were conducted during a relatively wet February, 
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which was followed by abnormally dry weather in March 2010.  Between planting and 

the first sampling event (2 March - 28 March 2010), approximately 7.9 mm of 

precipitation was recorded (WRCC 2012), which is 18% of the historical mean for the 

equivalent period.  Average wind speed through the study period was 6.1 m/s with gusts 

reaching 42.5 m/s (WRCC 2012), all of which had originated predominantly from the 

north or north west ( = 339.5°).  Air temperature was fairly stable through the study 

period ( = 16.2° C, range 6.7 – 27.2° C). 

 Recorded precipitation on East Anacapa between September 2008 and September 

2009 was 59 mm, which is less than 20% of the historical mean for the equivalent period 

(WRCC 2012). This indicates that seed stock collected and utilized in this project was 

created during an extremely dry growing season by drought-stressed parent plants.   

 

Existing conditions of the study area 

 Measurements of the study area showed little topographical variation.  Aspects of 

the study area were generally northward-facing and ranged between 312 - 350° ( = 

329.3° ± 2.4°).  Slopes of the study plots ranged from 2.5 - 9.5° with a mean slope of 5.3° 

(± 0.4°).  However, slope was found to be significantly different between M. crocea 

removal treatment areas (F2,14= 5.56, p=0.02).  Planned comparisons showed that slope 

was steeper in the spray-and-leave treatment areas ( = 6.9 ± 0.8) compared to pull 

treatment areas ( = 4.5 ±0.39; F1,14= 10.57, p = 0.01).  Slopes of the hand pull versus 

spray and pull treatment areas did not differ (F1,14= 0.55, p = 0.47). Measured differences 
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in slopes between treatments did not appear to account for differences in plant survival or 

soil moisture (see below for soil moisture, seed treatment, and seedling treatment results). 

 Dominant plant cover of plants naturally colonizing or reoccurring within the 

treatment plots showed high variation between treatment plots.  Only those species that 

were occurring at generally high density were recorded.  Of the dominant species within 

the treatment plots in October 2010, F. salina showed a wide range of cover ( = 16%; 

±0.80; range = 0-95%).  Density averaged 2.8 ±0.80 m²/17.5 m².  M. crocea also 

reoccurred and accounted for a high amount of vegetative cover in October following 

removal ( = 21%; ±.61; range = 0-60%).  Density averaged 3.7 ±0.61 m²/17.5 m².  The 

reoccurrence of M. crocea was primarily due to seed germination and not resprouting.  

Other species were identified colonizing the iceplant removal areas; however, a 

significant effect was not identified as a result of their estimated cover.  A small number 

of natural G. stricta and L. gigantea seedlings were detected in the treatment plots; as a 

result, seed trial data were adjusted based on an estimate of natural germination (see 

Methods).  Surveys for these seedlings were completed in the seeding treatment subplots 

of the contrasting species.  A total of 19 G. stricta seedlings were noted in the L. gigantea 

seeded subplots by October 2010, and one short-lived L. gigantea seedling was noted in 

the G. stricta seeded subplots in March 2010.  

 

Soil moisture 

 As expected, soil VWC readings were significantly higher in the spray-and-leave 

treatment compared with the pull treatments (Table 2).  No difference was identified 



43 
 

between the pull treatments.  Across treatments, VWC decreased between March and 

June 2010.  However, between June and October 2010, VWC decreased the most in 

spray-and-leave, decreased to a lesser amount in spray-and-pull, and did not change in 

hand-pull.   

Table 2.  Repeated-measures RCB ANCOVA and planned contrasts for VWC 
(volumetric water content) collected in iceplant removal treatments† on 29 
March, 3 June, and 22 October 2010 on East Anacapa.  Significant results are 
in bold. 

Source df F P  

Between-subjects effects     
Block 7 0.99 0.48  
Treatment 2 17.55 <0.001  

   Error   

Treatment Contrasts   
Pull vs. Leave 1 35.05 <0.001  

Spray-and-pull vs. hand-pull 1 0.05 0.84  
Error 14   

Within-subjects effects   

Time 2 241.33 <0.001  

Time × Block 14 2.92 <0.001  

Time × Treatment 4 1.10 0.02  

  Error(Time) 13   
† Treatments: Hand-pull, spray-and-leave, or spray-and-pull of M. crocea (iceplant). 

 
This pattern may be a result of some maximal drying capacity of the soils of East 

Anacapa that was already approached in the hand-pull treatment by June 2010 but not in 

the spray treatments.  Across time, a significant time  block interaction was observed.  

VWC decreased in all blocks between March 2010 and June 2010 sampling events, but 

between June 2010 and October 2010, two blocks showed a slight increase in VWC 

compared with the other six blocks that showed a slight decrease in VWC.  This 
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difference in block response over time was not enough to have an effect on treatment 

differences in VWC or on seedling survival except in seeding trials of G. stricta.    

 

Seed treatment 

 Few of the planted seeds established during the period of study.  Three L. 

gigantea and 50 G. stricta seedlings were found within all treatment areas in October 

2010.  A total of 10 L. gigantea seedlings had established within the pull treatment plots 

by March 2010, but all of these died by June 2010.  All three seedlings observed in 

October were located in the spray-and-leave treatment in a single plot.  Due to low 

numbers, L. gigantea seed data were excluded from analyses. 

 Iceplant treatments affected establishment of seeded G. stricta.  Differences 

observed between the G. stricta seed establishment in the pull treatment plots, prior to 

adjusting the data for estimated natural seedling establishment (see Methods), were 

marginally insignificant in June 2010 (F1,7 = 4.17, p = 0.08); however, by October 2010, 

differences were more pronounced (Table 3, Fig. 4). October 2010 data allowed for 

analysis of differences between pull treatments and the spray-and-leave treatment (Table 

3).  After subtracting naturally-occurring G. stricta seedlings from the October dataset, 

the difference between pull treatments remained significant; however, the difference 

between spray-and-leave and spray-and-pull became marginally non-significant.   
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Table 3. RCB ANOVAs and unplanned contrasts for G. stricta seed establishment  
measured in iceplant removal treatments† on 22 October 2010 on East Anacapa.  This 
analysis was duplicated with an adjusted data set which included subtraction of an 
estimate of seedlings from naturally-occurring seed.  Treatment contrasts reported are 
with alpha set at 0.017 after Dunn-Sidak correction.  Significant results are in bold. 
  G. stricta 

establishment 
 G. stricta 

establishment adjusted 
 

Source df F P  F P  

Between-subjects effects      
Block 7 3.73 0.02  2.29 0.09  
Treatment 2 5.19 0.02  4.65 0.03  
   Error 14       

Treatment Contrasts        
Hand-pull vs. spray-and-leave 1 0.02 0.90  0.06 0.81  
Hand-pull vs. spray-and-pull 1 8.13 0.013  7.61 0.015  
Spray-and-leave vs. spray-and-
pull 

1 7.41 0.017  6.29 0.03  

   Error 14       
† Treatments: Hand-pull, spray-and-leave, or spray-and-pull of M. crocea.  
 

 

Figure 4. Differences in mean seedling establishment (n = 24 with n = 8 per treatment) 
in G. stricta seeded treatments between iceplant removal treatment areas.  No data were 
collected in the spray-and-leave treatment area in June 2010. Error bars =  1 SE. 
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Also, a significant block effect was identified before the adjustment due to the fact that 

the three eastern-most replicate blocks accounted for 78% of G. stricta seed 

establishment.  This block effect was not retained following the adjustment, indicating 

that there were differences in natural seeding across the study area. 

 

Seedling treatments 

 For all species of planted seedlings, iceplant removal treatment was an important 

factor for survival through the study period.  The spray-and-leave treatment strongly 

increased survival of seedlings compared with planting within areas where M. crocea 

material (alive or dead from prior herbicide treatment) had been pulled.  The following 

sections present the details for each planted species. 

 

Leptosyne gigantea seedlings 

 The spray-and-leave treatment was the only treatment to support L. gigantea 

survival beyond the March 2010 survey, and the survival in this treatment decreased then 

stabilized.  Of the 160 L. gigantea seedlings planted, only 2 L. gigantea seedlings 

survived within the two pull treatments (1 seedling in each) on 28 March.  By 3 June 

2010, no L. gigantea seedlings were alive in the pull treatment areas.  In striking contrast, 

88 individuals were alive within the spray-and-leave treatment areas in March 2010 ( = 

11.0 ± 0.9), and 64 individuals were alive in June 2010 ( = 8.0 ±1.1).  Within the spray-

and-leave treatment, L. gigantea survival decreased through the first three surveys (Fig. 
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4); however, survival leveled-off, remaining relatively stable between October 2010 ( = 

3.4±1.1) and January 2011 ( = 3.3 ±1.0).   

Grindelia stricta seedlings 

 The spray-and-leave treatment increased survival of G. stricta seedlings in 

comparison with the two pull treatments (Table 4; Fig. 6).  Planned comparisons revealed 

that the spray-and-leave treatment resulted in significantly higher survival than either of 

the pull treatments.  Between the pull treatments, the herbicide treatment and hand-pull 

treatment had similar effects on survival.  The repeated measures RCB ANCOVA 

showed that these results were stable throughout the year.    

 Partial multiple correlation analyses indicated that G. stricta survival in January 

2011 was negatively correlated with cover of naturally occurring F. salina that had 

 

Figure 5. Survival of planted L. gigantea seedlings (n = 8) in the spray-and-leave 
treatment over time.  Twenty seedlings were planted per subplot in February 2010.  
Error bars =  1 SE. 
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resprouted or colonized in the treatment plots (R = 0.62, p = 0.001).  However, this  

correlation was mostly attributed to a single outlier.  In one replicate plot, F. salina cover 

reached 95% as measured in October 2010.  In this plot, only 2 out of 27 G. stricta 

seedlings were alive in January 2011.  In the other seven plots, mean survival was 25.9 ± 

0.4 seedlings, and mean F. salina cover was less than 13%.  When this outlier was 

removed, the correlation between naturally occurring F. salina and survival of 

transplanted G. stricta was not significant (R = 0.39, p = 0.08, n = 7). 

 

Table 4.  Repeated measures RCB ANOVA and planned contrasts for G. stricta 
seedling treatment measured in iceplant removal treatments† on 28 March, 2 June, 
and 21 October 2010 and 16 January 2011 on East Anacapa.  Significant results 
are in bold. 

Source df F P 

Between-subjects effects    
Block 7 1. 24 0.34 
Treatment 2 169.50 <0.001 
     Error 14  

Treatment Contrasts  
Pull vs. Leave 1 338.63 <0.001 
Hand-pull vs. spray-and-pull 1 0.38 0.55 
     Error 14  

Within-subjects effects  
Time 3 5.82 0.002 
Time × Block 21 1.33 0.21 
Time × Treatment 6 0.57 0.75 
     Error(Time) 42  
† Treatments: Hand-pull, spray-and- leave, or spray-and-pull of M. crocea (iceplant). 
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Frankenia salina seedlings 

 F. salina seedling survival within the spray-and-leave treatment was significantly 

higher than within the pull treatments, and there were no differences between the pull 

treatments (Table 5; Fig. 7).  The tests of assumptions for the repeated measures RCB 

ANCOVA indicated that the size of the F. salina plants at the time of planting, measured 

as the above ground height at the time seedlings were planted, had differing effects on F. 

salina seedling survival among the treatments (Fig. 8).  In the spray-and-leave treatment 

and in the hand-pull treatment, there was a positive relationship with height.  No 

significant relationship was identified between height and survival in the spray-and-pull 

treatment areas (R = 0.53, p = 0.18, n = 8).  The time × treatment × height interaction 

 

Figure 6. Differences in mean seedling survival of G. stricta seedling transplants 
between iceplant removal treatments (n = 24 with n = 8 per treatment).  Twenty-
seven G. stricta seedlings were planted per subplot in February 2010.  Error bars = 
 1 SE. 
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identified that the relationship between seedling survival and height was more 

pronounced in the spray-and-leave treatment in June compared with March 2010, while 

the relationship between height and treatment had not changed in the hand-pull treatment 

between time periods.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Decreases in F. salina survival between the two time periods were greater for plants that 

were shorter during planting than those that were taller during planting in the spray-and-

leave treatment.  Height and leaf number of F. salina at the time of planting were 

strongly correlated (R = 0.72, p < 0.001, n = 24), so only height was analyzed. 

Table 5.  Repeated measures RCB ANCOVA and planned comparisons for F. 
salina seedling treatment measured in iceplant removal treatment areas† on 28 
March and 2 June 2010 on East Anacapa.  Mean F. salina seedling height at the 
time of planting was included as a covariate.  Significant results are in bold. 

Source df F P 

Between-subjects effects    
Block 7 1.61 0.21 
Treatment 2 28.20 <0.001 
     Error 14  
Treatment × height 3 34.82 <0.001 
     Error 13  

Treatment Contrasts  
Pull vs. Leave 1 56.35 <0.001 

Hand-pull vs. spray-and-pull 1 0.06 0.81 
     Error 14  

Within-subjects effects  
Time 1 0.08 0.78 
Time × block 7 0.61 0.76 
Time × treatment × height 3 4.90 0.02 

     Error(Time) 42  
† Treatments: Hand-pull, spray-and-leave, or spray-and-pull of M. crocea (iceplant). 
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Figure 8. Relationship between F. salina seedling height at planting (25-26 Feb. 
2010) and survival on 2 June 2010.  Survival is per treatment subplot out of 23 
planted seedlings (n = 24 with n = 8 per treatment). Significant results are in bold. 

 

Figure 7. Differences in mean seedling survival of F. salina seedling transplant 
treatments between iceplant removal treatments (n = 24 with n = 8 per treatment).  

Twenty-three F. salina seedlings were planted per subplot in February 2010.  Error 
bars =  1 SE. 
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Discussion 

 The search for successful techniques to restore habitat following invasive species 

eradication is a common challenge for resource managers.  Ideally, eradication and 

habitat restoration can be achieved with a minimum of effort and resources.  This means 

that if there are several techniques available for eradication, each should be assessed for 

the potential benefits and disadvantages to habitat restoration.   

 This research was built on the following ideas: 1) several eradication methods 

(hand-pull, spray-and-leave, and spray-and-pull) have been shown to be useful in 

removal of the invasive iceplant, M. crocea on Anacapa Island (S. Lambrecht 2012, 

SJSU, CA, unpublished data); 2) autogenic restoration on Anacapa Island is expected to 

be slow, at best, if not entirely impeded by secondary invasive species (D’Antonio et al. 

1992; Stylinsky & Allen 1999; Yelenik & Levine 2010); and 3) following application of 

these eradication methods, resultant site conditions may differ in the suitability for habitat 

restoration.  Specifically, I hypothesized that the spray-and-leave eradication method 

would lead to higher survival of native seedlings due in part to the conservation of soil 

moisture.  In addition, I hypothesized that there would be no impact on seedling survival 

of using herbicides to treat M. crocea compared with not using herbicide due to the 

limited residency of the herbicides used in this study.   

 While the results of this study addressed only a few questions arising from the 

effects of different M. crocea removal treatments, and there is more information that 

should be obtained before adopting a large-scale program for iceplant eradication (see 
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below), the study’s findings provide some practical direction for eradication and habitat 

restoration on Anacapa Island. 

 

Soil moisture 

 Iceplant removal treatments in this study affected soil moisture differently, 

specifically the spray-and-leave treatment was associated with higher soil moisture levels 

than the pull treatments.  The fact that treatment differences in VWC meter readings were 

maintained across time further indicated that the relationships were generally valid.  

However, the VWC meter readings showed only a relative relationship between 

treatments since the probe readings were overestimated.  The results did not confirm the 

importance of soil moisture to seedling survival.  This result was in spite of the fact that 

VWC and transplanted seedling survival were both significantly higher in spray-and-

leave than in the pull treatment areas.  This inconsistency may be an outcome of high 

variation in readings as a result of equipment inaccuracy or sampling error.  

 Despite the absence of data to support a relationship between soil moisture and 

seedling dynamics, several additional indicators suggest that moisture was critical to 

seedling survival.  Seedling mortality in the first month following transplanting indicated 

that soil moisture was probably a critical factor for seedling survival.  By the first 

sampling event, 66% of all transplanted seedlings died, the majority of which were 

planted in the pull treatment plots.  The month between planting and sampling was 

marked by unusually dry conditions for that time of year on Anacapa, which points to the 

possibility that limited moisture played a part in the high mortality.  In addition, dead 
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seedlings were most often dessicated and attached to the substrate where they had been 

growing as opposed to showing signs of herbivory or obvious symptoms of infection. 

 It is well established that soil moisture can be a critical factor in survival for 

plants in similar habitats, including coastal sage scrub communities (Cione et al. 2002; 

Cox & Allen 2008) and island communities (Donlan et al. 2003; Yelenik & Levine 

2010).  Research on San Miguel Island identified low rainfall as a factor in L. gigantea 

seedling mortality (Schwemm 2008).  The use of a moisture meter suited to the soil 

conditions (Sevostianova & Leinauer 2008) and a more robust sampling design for soil 

moisture may have resulted in evidence supporting a correlation between soil moisture 

and seedling survival.  However, the differences in soil moisture may not have been 

sufficient to affect seedling survival between treatments, and the observed differences in 

survival may have been associated with other factors.  Further research is warranted to 

investigate the importance of precipitation on establishment of Anacapa’s native flora, as 

this can be a critical factor for native vegetation within the islands of California (Levin et 

al. 2008; Yelenik & Levine 2010) and an important consideration to include in restoration 

planning (Schwemm 2008; Yelenik & Levine 2010).   

 

Effect of eradication treatment on seed establishment 

 My results identified that removal treatments appear to have affected seedling 

establishment in seeded treatments in spite of low observed germination numbers.  This 

conclusion was drawn from analyses of G. stricta seeding treatment, as only 3 L. 

gigantea seedlings persisted through the monitoring period.  It should be noted, however, 
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that seeded L. gigantea seedlings survived only within the spray-and-leave treatment and 

only in one treatment subplot.  L. gigantea germination and establishment may be 

facilitated by the presence of debris or cover, and other unidentified conditions important 

for this species may be unevenly distributed within the study area.  This result is 

consistent with results of a study of L. gigantea seed establishment on San Miguel Island.  

Catherin Schwemm (2008) found that L. gigantea seed establshiment was positively 

correlated with the presence of ground cover in the form of native annual plants, low-

growing perennial plants, and litter, while establishment was negatively related to non-

native grass cover.  Her results show that cover is important for L. gigantea establishment 

but that the type of cover matters.  Regardless, my results provide scant evidence from 

which to draw a conclusion regarding any effect that removal treatments had on seeding 

of L. gigantea.  Alternatively, seed establishment results for G. stricta demonstrated that 

iceplant removal treaments affected conditions differently in ways that were important to 

seed establishment. 

 In contrast with my hypothesis, the spray-and-pull treatment provided for the 

highest G. stricta establishment over hand-pull and spray-and-leave.  The lower seedling 

establishment identified in the spray-and-leave treatment, which was only significant 

prior to adjustment of the data set for natural seeding, may have been due to factors 

associated with the thick skeletal mat of herbicide-treated iceplant.  Treatment seeds were 

dropped into the subplots through a grid placed on top of the dead vegetation.  Along 

with natural seed rain, these seeds may have been caught in the vegetation rather than 

traveling to the soil below.  Seeds would have either not germinated or experienced 
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arrested development due to the unsuitability of conditions within the suspended mat.  

Seeds that did find suitable substrate and moisture to germinate may have died in part due 

to low levels of sunlight.  I assume that most G. stricta seeds that made it to the soil 

surface and found suitable conditions, aside from sunlight, did germinate because light 

exposure did not appear to affect germination in laboratory trials, and laboratory 

germination rates for G. stricta showed very high viability (i.e., 86% across all trials).  

Another possibility is that the cover of iceplant skeletons provided more suitable habitat 

for mice (Orrock et al. 2004), which may have led to higher seed predation in the spray-

and-leave treatment.  This conclusion seems unlikely as island deer mice have been 

shown to concentrate their foraging on L. gigantea inflorescences and mature seed 

capitatum where the foraging effort is most highly rewarded (Schwemm 2008).  The 

probability that seed numbers per treatment subplot would be much more sparse in 

comparison to intact L. gigantea areas suggests that these seeds may not have attracted 

these preditors.  Conversely, mouse populations were reported as being high during the 

study (J. Savage 2010, personal communication), which may have resulted in some 

pressure on treatment seeds. 

 Differences in seed germination between hand-pull and spray-and-pull, both 

before and after adjusting the data-set for natural seeding, suggest that the herbicide 

treatment unexpectedly provided some benefit to G. stricta seed establishment.  One 

possibility for this result is that this treatment, by treating the M. crocea with herbicide 

and removing the vegetation 2.5 months later, allowed the skeletal mat to partially 

decompose.  When the mat was subsequently pulled, small bits of partially decomposed 
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M. crocea may have remained on the soil surface, increasing the micro-site suitability for 

G. stricta germination.  Hand-pulling better enabled complete removal of M. crocea plant 

material.  Further investigation into the effects of a spray-and-pull treatment on seed 

establishment could be useful 1) to understand the mechanism that supports higher 

germination, 2) to determine if certain species benefit more or less from this treatment, 

and 3) to understand if this effect is maintained despite the type of herbicide used (e.g., 

Aquamaster compared with Roundup Pro and Garlon 4).  

 

Efficacy of seeding for restoration 

 Two species of perennial plants that are common and conspicuous on Anacapa 

were used to investigate the efficacy of seeding as a method to restore native vegetation 

following iceplant eradication.  Of the two, 3 L. gigantea individuals and 50 G. stricta 

individuals established by the final survey.  After adjusting these data to estimate 

seedling numbers from treatment seeds, L. gigantea establishment remained unchanged, 

and 32 of the 50 G. stricta seedlings were estimated to have been established from 

treatment seeds.  These numbers do not clearly indicate whether seeding was an effective 

restoration method.  If seeding is used, broadcasting L. gigantea seed following pull 

treatments is not advised, and broadcasting G. stricta seed following spray-and-pull 

treatments is likely to yield higher densities of established vegetation compared with the 

hand-pull and spray-and-leave treatments. 

 While the establishment numbers look quite low, especially considering high 

coverage of other native vegetation within many of the plots and, thus, the potential for 
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future competitive exclusion (Banerjee et al. 2006), it is important to consider the context 

of seed numbers planted, timing, and weather conditions.  The effort invested in seed 

collection and broadcasting was generally low and would be much lower with traditional 

broadcasting methods.  As such, increased seeding per unit area may dramatically 

increase germination.  Research conducted on San Miguel Island by Schwemm (2008) 

found that L. gigantea seedbank abundance was an important factor in population growth 

dynamics, indicating that broadcasting high seed numbers would increase establishment.  

Schwemm’s (2008) research also found that under a natural seeding scenario, L. gigantea 

seedlings were cued to germinate with initial fall precipitation and that high L. gigantea 

seedling mortality was linked with low winter precipitation.  By the time seeds were 

planted for my study (20-21 Feb. 2012) winter was two-thirds finished for the year and 

most of the winter precipitation had already fallen (WRCC 2012).  Therefore, L. gigantea 

seedlings may have been planted at an unsuitable time to achieve high germination and 

survival.  This may also be the case for G. stricta since seeds used in this study were 

mature by September 2009 and needed no pretreatments other than water to germinate.  

Further investigations should include an assessment of optimal timing for seeding. 

 Several additional considerations of seeding may be useful to managers planning 

future island restoration efforts.  As exemplified between the two species included in 

seeding, some species appear to be better suited to broadcasting than others, and different 

species may respond to different conditions.  Therefore, further investigations should 

focus on a range of species to gain a better understanding of which may be more 

effectively used in broadcasting and under what conditions.  For example, some species 
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may require specific pretreatments for effective germination and establishment (see 

Emery 1988).  Also, in areas where M. crocea removal is followed by recolonization of 

non-native grasses (S. Lambrecht 2012, SJSU, CA, unpublished data), seeding may be of 

limited benefit (Schwemm 2008; Yelenik & Levine 2010).  

 

Effect of eradication treatment on transplanted seedlings 

 The differences in the effect of iceplant removal treatments on transplanted 

seedling survival were dramatic.  The spray-and-leave treatment of M. crocea removal, 

while predicted to confer an advantage to planted seedlings, provided significantly higher 

quality habitat for first-year seedlings across all planted species than did either pull 

treatment.  This result was particularly noteworthy as the effect was apparent by the first 

survey on 28 March 2010 after a month with low precipitation and with wind gusts 

reaching 32.2 m/s.  While this method may provide for a range of benefits to seedlings, 

the foremost drivers of this response may be the retention of soil moisture by the dead 

iceplant mulch (Nyamai et al. 2011) and the protection to seedlings that was likely 

provided by the surrounding dead iceplant structure from the high winds.  This effect 

may be naturally provided when seedlings grow at some optimal distance near each other 

(Bhattacharjee et al. 2010) or in the presence of mature conspecific vegetation 

(Schwemm 2008; Yelenik & Levine 2010). 

 While it is unknown if the herbicides used in the spray-and-leave treatment 

supported seed establishment directly through some form of growth stimulation 

(Weidenhamer & Callaway 2010), it is suspected that the benefit to seedlings was a result 
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of the organic matter of the dead M. crocea and not a direct effect of either the triclopyr 

or glyphosate.  The absence of any difference observed in transplanted seedling survival 

between the spray-and-pull and hand-pull treatments suggests that the herbicides did not 

provide a direct benefit.  While heribicide residues may have accumulated differently 

between the spray-and-pull and spray-and-leave treatments, any direct effects were 

unlikely given that neither the herbicide nor its metabolites were likely to have persisted 

at meaningful levels after the 79 d-period between spraying and seeding (Norris et al. 

1987; Stephenson et al. 1990; Petty et al. 2003; Perez et al. 2007).  Therefore, the high 

survival of seedlings in the spray-and-leave treatment was primarily attributed to the 

presence of dead plant material. 

 An important difference between the spray-and-leave treatment and the pull 

treatments that is useful for resource managers is the difference in the need to dispose of 

the remnant vegetation.  Prior to this study, NPS efforts to remove M. crocea were 

largely focused on pulling live M. crocea and either leaving large piles to decompose or 

transporting the remains to an area of East Anacapa known as Trash Cove (NPS 2005).  

Allowing the dead vegetion to remain in place dismisses the problem of disposal and 

possibly reduces other adverse consequences of the eradication effort, such as wind-borne 

erosion, trampling of desirable vegetation, impacts to soil microbial communities, and/or 

loss of nutrients stored within the vegetation.  

 A possible drawback of the spray-and-leave treatment is the limitation the dead 

iceplant mats may impose on future colonization by native species.  Conser and Conner 

(2009) found that the perennial iceplant C. edulis had a strong negative impact on the 



61 
 

success of a native annual dune species, Gilia millefoliata (dark-eyed gilia, 

Polemoniaceae).  Specifically, soils that had been occupied by C. edulis reduced the 

germination, survival, growth, and reproduction of G. millefoliata compared with soils 

previously occupied by native plants.  C. edulis-affected soils were found to be lower in 

pH and higher in recalcitrant organic content.  While it is unknown whether M. crocea 

causes similar effects, it may utilize similar mechanisms of soil alteration to confer 

dominance once established, thus preventing native species from colonizing.  The effects 

of M. crocea on soil conditions are virtually unstudied and need more work before 

specific recommendations can be made.  

 While the results of this study indicate that the pull treatments were equal with 

regard to seedling survival, there may be further implications to ecosystems from the use 

of herbicide in M. crocea eradication.  Herbicides, including those used in this study, can 

impact plants and ecosystems at the community level.  For instance, herbicides that were 

used in this study have previously been shown to increase soil fungal and actinomycete 

populations, decrease the functional diversity of soil bacteria, and reduce rhizobium 

nodulation and mycorrhizal formation (Weidenhamer & Callaway 2010), though these 

effects appear to be limited, especially when herbicides are applied at the recommended 

concentrations.  The potential effects of herbicides on other desirable species, including 

amphibians (see Govindarajulu 2008) such as the native slender salamander, should be 

carefully considered before any large scale herbicide program is adopted.  During 

iceplant pulling for this study, several individual salamanders were observed.  Also, large 

salamander congregations have been reported within live M. crocea mats on Anacapa 
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Island (H. Fitting 2012, personal communication).  Further research should be conducted 

to understand more broadly the potential risks of herbicide use on the ecosystems of 

Anacapa.  This research should include analysis of the effect of alternative herbicides on 

restoration of native plants. 

 All three species responded to the removal treatments similarly in that they all 

showed higher survival in the spray-and-leave treatment compared with the pull 

treatments; however, overall, each species had differing levels of survivorship.  As 

indicated above, G. stricta survival was especially high in the spray-and-leave treatment 

and very low in the pull treatments.  In contrast, L. gigantea was especially low overall, 

though all surviving individuals were in the spray-and-leave treatment area from the 

second through final surveys.  The inter-specific differences suggest that the 

characteristics of the study site and the conditions of the year are more suited to some 

species than to others and that some species respond better to transplanting.  Since the 

beginning of this project, the NPS has established a shadehouse for seedling production 

on Anacapa.  Future planting efforts could be conducted in a controlled manner to enable 

effective monitoring and evaluation of these treatments with regard to establishment of 

other species and species assemblages.  These efforts could also investigate the 

importance of abiotic conditions, weather, and annual timing of planting. 

 While the spray-and-leave treatment is significantly less labor-intensive than the 

pull treatments (S. Lambrecht 2012, SJSU, CA, unpublished data), the use of herbicides 

may be generally undesireable.  Public opinion of herbicide use in natural lands is 

generally low (Shindler et al. 2011; Toman et al. 2011), which can elicit public conflict, 
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especially given the function of the National Park System and the perception of the 

pristine wildlands that are embodied therein.  For example, during field work conducted 

for this study, I descibed the purpose of the effort to a woman who was visiting Anacapa.  

Subsequently, she submitted a letter to the CINP superintendent expressing disaproval of 

the use of herbicides on Anacapa Island.  In addition, having grade-school students 

participate as volunteers in M. crocea eradication and native plant restoration by the 

CINP may present additional public saftey concerns about the use of herbicides to treat 

vegetation in the presence of school children.  In public lands, addressing or avoiding 

additional public concerns may be required elements of any restoration program.  Under 

these conditions, utilization of an alternative method that mitigates public concern may 

be advantageous. 

 Comparisons of alternative methods to eradicate M. crocea that retain the dead 

vegetation without the use of herbicides is an important area for future study.  During the 

time of this study, as a pilot investigation, I pulled a 17.5 m² patch of M. crocea by hand, 

inverted it, and left it in place.  This treatment was conducted in October 2010, and by 

January 2011, approximately 90% of the M. crocea had died, and much of the remaining 

10% appeared to be stressed, indicating that this method might serve as an effective 

alternative to the spray-and-leave treatement.  Another effective alternative method could 

include solarization, which has been shown to effectively eliminate invasive species in 

coastal climates (Lambrecht & D’Amore 2010). 

  

Transplanted seedling size 
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 Seedling size was important to seedling survival for one of the three transplanted 

species.  The taller F. salina individuals showed higher survival than shorter individuals.  

Differences in size were likely related to difference in age due to the span of time that 

seedlings were reared; however, seedling age was not recorded, so this potential 

correlation was not examined.  That this size effect was not observed in the other species 

may indicate that the size differences were not sufficiently distinctive to make a 

difference on survival or that benefits experienced by being larger were offset in some 

way (e.g., through increased wind-related stress).   

 For F. salina, the effect of size (i.e., height) was significant in two of the 

treatments, hand-pull and spray-and-leave.  In the spray-and-leave treatment the effect 

was particularly well-pronounced.  This result suggests that the plants needed to be taller 

to succeed in the presence of the mat of dead M. crocea, which may have partly shaded 

the plants.  Also, there may have been increased survival of F. salina from more 

developed roots, assuming that the taller plants also had larger roots.  The effect of height 

in the hand-pull treatment may have been similar except that there would not have been 

an issue with being overshadowed.  It is not clear why this effect was not identified in the 

spray-and-pull. 

 In general, this study provides some evidence that planting larger plants may 

provide for greater survival.  This effect was secondary to the differences found between 

iceplant removal treatments, but the increased benefit to being larger for F. salina in the 

spray-and-leave treatment compared with being larger in the other treatments identifies a 
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synergistic effect that translates directly into management recommendations:  For 

increased survival, plant taller plants, and plant them in spray-and-leave areas. 

 

Conclusion 

 This study shows that the effects of eradication treatments can be critical to 

subsequent planting efforts.  The success of both seeding and transplanting methods for 

restoring native perennial plants are affected by the resultant conditions of different 

eradication treatments, but the highest benefit per planting method was from different 

eradication treatments.  Seeding of G. stricta experienced the highest establishment in the 

spray-and-pull treatment compared to the other treatments, while only a few plants 

established from seeding of L. gigantea and only in the spray-and-leave treatment.  In 

contrast, spray-and-leave treated areas supported transplanted seedling survival far better 

than either pull treatment.  The hand-pull treatment was the least effective for plant 

survival and establishment.  This is particularly noteworthy, as hand pulling was a 

commonly-used method for M. crocea eradication on Anacapa Island prior to this study. 

 Given the results, the use of a spray-and-leave treatment may be the best method 

for iceplant eradication and survival of native plantings on Anacapa.  This is particularly 

true if there will continue to be widespread use of transplanting.  If seeding is the only 

method that can be employed due to resource constraints, an understanding of the 

germination and establishment requirements for individual species would be important 

for management to ensure that species can be seeded according to site conditions 

following removal treatment(s).  An herbicide treatment could be used both with and 
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without removal of the dead iceplant so that seeding of a broader mix of species may be 

supported.  As indicated above, herbicide use can negatively impact other elements of an 

ecosystem and can elicit public controversy.  Therefore, a thorough impact analysis of 

risks and benefits needs to be conducted before broad-scale use of herbicide is adopted.  

 Finally, existing site conditions are important to both the survival of planted 

seedlings, as was seen in the mortality of G. stricta as a result of the presence of densely 

occurring F. salina, and the establishment of seeded species, as was seen in the spatial 

concentrations of established seedlings of both L. gigantea and G. stricta.  This indicates 

that the methods used to remove invasive species are by no means the only important 

factors to consider for restoration of native species. 

 Further research that would be helpful to support restoration of Anacapa Island 

should focus on establishment limitations of native species, identification of the abiotic 

and biotic makeup of potential reference sites for restoring M. crocea stands, and 

methods to reduce the colonization of other non-native species, including non-native 

grasses and iceplant species, into M. crocea removal areas.  In addition, a careful 

examination should be undertaken to evaluate the potential functional roles and 

ecosystem processes that M. crocea may provide on Anacapa to insure that unintended 

consequences to native species are not promoted as a result of the eradication.   
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Implications for practice 

 Treating the invasive iceplant, Malephora crocea, with herbicide (a 
glyphosate and triclopyr mix) and leaving the skeletal mat prior to planting 
native perennial seedlings resulted in remarkable seedling survival 
compared with planting in areas where live or herbicide-treated iceplant 
had been removed.  

 Herbicide-treated iceplant left in place provided for higher soil moisture 
compared with removed iceplant areas.  

 Existing conditions were important to native perennial plant restoration. 
The presence of numerous extent Frankenia salina stems resulted in high 
cover of F. salina and low survivorship of planted Grindelia stricta 
seedlings.   

 Seeding native perennial species showed mixed success in iceplant removal 
treatments, highlighting the importance of understanding species-specific 
requirements for germination and establishment before adopting a 
restoration method. 

 Seedling size can be an important factor in restoration success.  In this 
study, taller F. salina seedlings survived better than shorter seedlings, and 
this effect was greater in spray-and-leave treatment areas compared with 
pull areas.  This effect was not seen in the other species.  
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