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ABSTRACT

CHARACTERIZATION OF PROTEIN RESIDUE SURFACE ACCESSIBILITY

USING SEQUENCE HOMOLOGY

by Radhika Pallavi Mishra

Residues present on the surface of the proteins are involved in a number of

functions, especially in ligand-protein interactions, that are important for drug design.

The residues present in the core of the protein provide stability to the protein and help

in maintaining protein structure. Hence, there is a need for a binary characterization

of protein residues based on their surface accessibility (surface accessible or buried).

Such a classification can aid in the directed study of either residue type.

A number of methods for the prediction of surface accessible protein residues have

been proposed in the past. However, most of these methods are computationally

complex and time consuming. In this thesis, we propose a simple method based on

protein sequence homology parameters for the binary classification of protein residues

as surface accessible or “buried”. To aid in the classification of protein residues, we

chose three highly conservative homology-based parameter filter thresholds. The filter

thresholds predicted and evaluated are: residue sequence entropy ≥ 0.15, fraction

of strongly hydrophobic residues < 0.5 and fraction of small residues < 0.15. The

application of these filter thresholds to the residues, is expected to predict the “buried

residues” with a better percentage accuracy than that of the surface accessible residues.

These filter thresholds were selected from the frequency distributions and the

aggregate correlation plots of the various homology-based parameters. An analysis

of the plots suggests the presence of a strongly hydrophobic core between packing

density 14− 22 where the presence of strongly hydrophobic residues is maximum and

the presence of small and non-strongly hydrophobic residues is minimum. However,

the densest portion of the protein (density 26 − 35) is indicated to be occupied by a

combination of small and non-strongly hydrophobic residues with a negligible presence

of strongly hydrophobic residues.
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Chapter 1

Introduction

The proper functioning of life is a gift of the dominant role played by proteins in our

body. Therefore, one of the most important tasks is to understand these polymerized

combinations of amino acids that form the essence of life - the proteins. The function

of proteins is governed by their structure, which in turn is a direct consequence of

amino acid sequence. In most of the cases, protein function has been more easily

and widely studied than its detailed structure. A proper understanding of both protein

structure and function can help us in drug design. New and improved biomaterials

like enzymes, protein computers and biochemical machines can be synthesized with

this knowledge.1 Also, a proper understanding of inter-atomic interactions of proteins

is very important in the prediction of protein structure and also in the design of novel

macromolecules.2 For the development of high throughput screening techniques, it is

important to decipher protein structure in the simplest possible way.

Broadly speaking, proteins have two types of residues - core residues and surface

accessible residues. The residues that form the core of the protein are engaged

in maintaining the structure and stability of the protein and the residues that are

accessible to the solvent are responsible for the various activities of the proteins like,

ligand binding and catalytic activities. In order to select a protein sequence as a drug

target, the identification of its corresponding amino acids as buried or surface accessible

becomes relevant.3 Moreover, surface accessibility predictions in conjunction with

secondary structure information can be exploited to devise computational methods for

the prediction of protein tertiary structure. Hence, to develop a software that quickly

and effectively predicts protein residue surface accessibility and also the tertiary

structure of the protein, this thesis presents the first step forward- the characterization

of surface accessible residues and related effects.

1



1.1 Existing Approaches

Two fundamental approaches, experimental and computational, can be employed

for the identification and characterization of the accessible surface area and hence

the residues associated with them. The experimental methods are very accurate and

reliable in the sense that these methods are associated with close to zero false positives

and a very tight confidence interval. But, they are time and labor consuming, relatively

few protein structures can be determined with these methods within a given time

frame. Also, the total cost of structure determination or evaluation for annotation by

these traditional methods is more compared to the computational methods. Hence, the

computational methods are well suited for any high throughput screening methods as

they are time, labor and cost effective.

Although the computational methods are time efficient and cost effective, and

are capable of predicting the structure of huge data-sets, they are not reliable

and high resolution enough to provide a realistic replacement of the experimental

methods. However, they are still useful in proteomics to get incomplete or low-

resolution structure information for structural comparisons4 and evaluation of protein-

protein and ligand-protein interactions when screening large number of sequences.

1.1.1 Experimental Methods

The experimental methods used for protein structure determination include X-ray

diffraction studies, electron diffraction methods, electron microscopy and nuclear

magnetic resonance (NMR) technique.5 High resolution three-dimensional protein

structures can be obtained from X-ray diffraction studies, but this method has an

inherent limitation due to the difficulties in obtaining protein crystals.6 With methods

like electron diffraction and electron microscopy, medium to low resolution outputs can

be obtained respectively.5 Here resolution proves a problem and restricts such protein

structures to some specific applications only. Although peak resolution is sometimes

2



problematic for protein structure determination, NMR technique is the best available

method as it has the potential to determine protein structure with high resolution in its

native environment.7

1.1.2 Protein Structure Modeling Approaches

The interdependence of protein sequence structure and function suggests that in

order to do functional annotations, calculation of three dimensional model of a protein

becomes inevitable or necessary.8 The accuracy of functional annotations relies on the

modeling approach taken for its predictions. The computational approaches for protein

structure modeling include comparative modeling, threading and ab initio or de novo

methods.

1.1.2.1 Comparative Modeling

Comparative model building includes either sequential or simultaneous modeling of

the core of the protein, loops and side chains.5,9 The comparative modeling approach

taps into the sequence-structure relationship for its predictions. A small change in

protein sequence manifests itself in a small change in 3D structure. Hence, in order to

predict a useful model, detectable sequence similarity and presence of correct alignment

between template and target protein is a must. Structures modeled by this method are

comparable in resolution to either low-resolution X-ray structures or medium resolution

NMR solution structures.5 Comparative modeling does not typically allow for detailed

structures regarding protein function or related drug design. The challenges faced

by this method are posed by the limited accuracy of sequence-structure alignment and

difficulty in loops and side chain modeling. An absence of techniques for accurate

modeling of rigid body shifts and distortions, absence of scoring functions for the

measurement of model quality and local error detection also limit the scope of this

method.

3



1.1.2.2 Threading

In this method, sequences are threaded onto all known folds and evaluated on the

basis of goodness of fit.10–12 The scores are calculated by assignment and alignment of

the threaded sequence to each of the structures in a library of all known folds. Although

threading methods are more sensitive than sequence comparison methods,10 there are

certain inherent limitations to this approach.13 It is difficult to get the exact fold match

for some structural analogues and remote homologues.11,12 Predictions using these

techniques give a low confidence interval with the chance of an incorrect output. Also,

after a correct fold recognition, the accuracy of threading alignment is not very high

(60− 90%) for proteins with < 30% sequence identity.14 Only a limited percentage of

protein families can be predicted successfully using this approach.13 Also, a need for

new and improved threading energy functions, algorithms, evaluation and refinement

techniques has become more evident.

1.1.2.3 Ab Initio or de Novo

de Novo methods predict the structure directly from protein sequence without

relying on any similarity between the protein sequence under question and any of

the known protein structures.5 Ab initio4,15 assumes that the native structure of a

protein is the global free energy minimum and predicts the protein structure by

solving a minimization problem of a unified physical energy function.9 Hence, the

dependence of these models on the laws of physics poses a limitation, because either

the physical models or the level of computational efficiency is not adequate for the

prediction requirements.13 It is computationally intensive, limited to smaller proteins

(< 100− 150 residues) and less accurate than the template based methods. Also, it is

useful in cases when either the template does not exist or is marked by an alignment

problem. It is also useful in determination of non-homologous loop regions.16

4



1.1.3 Sequence Homology Methods

Sequence homology method is a computational method for modeling the structure

of a protein based on its sequence similarity to one or more other proteins of known

structure. This approach is involved in partial protein structure evaluation and deals

with structural annotations. Although the sensitivity of homology methods is limited,

the relative ease and simplicity makes this method a versatile tool for partial structure

predictions. This method is based on protein homology and makes predictions

exclusively from sequence, which are expected to be more detailed and reliable. On

account of being most detailed and accurate, homology-based or comparative modeling

approaches are the methods of choice for protein structure modeling. Also, many

biological processes can only be understood if explained at the amino-sequence

level.17 The presence of at least one known protein structure, that is “recognizably

related” to the sequence that is being modeled is a must in case of comparative

modeling. However, for sequence homology-based models, no such pre-requisites are

needed.

Due to the interdependent relationship between protein sequence, structure and

function, structural annotations can be made by comparing statistical parameters in an

aligned set or subset of protein residues.18 For studying a larger database of homologues

that are functionally related, this is the method of choice. A direct relation between

the evolutionary changes and the distribution of any particular residue type at any given

aligned residue position can be attributed to the constraints imposed by the function

of that residue. Statistically significant signals are expected in case of co-evolution

of residues and hence can be related easily with the functional signals. Basic Local

Alignment Search Tool (BLAST) and Fast Alignment (FASTA) are the two basic tools

for sequence homology methods.19

The goal of this work was to provide some structural annotations, that is, classify

residues as buried or surface accessible, as well as provide some insight into the protein

5



folding ‘problem’ in the easiest, time efficient manner. Hence, the sequence homolgy

based method that takes care of the “long range communications”, that are “crucial for

biological functions”, between distant protein homologues, was selected as the method

for this project.18 The merit of this method lies in its fast and easy calculations that can

be used to screen thousands of proteins and loops and also in its potential to incorporate

experimental data.

1.2 Important Terms

1.2.1 Packing Density

Starting from the efforts of Richards20 in the calculation of protein packing density

with the help of Voronoi polyhedra, a number of other approaches like, the Delaunay

tesselation,21 the coarse grained scale22 and the mass size exponent23 were among the

many methods proposed for the same purpose. In this thesis, the relative packing of

protein residues, calculated from the crystallographic coordinate data, has been termed

packing density. Packing density is calculated by taking into account all the residues

that fall within an appropriate radius from the amino acid in question. It is defined as

the number of Cα atoms falling in the radius of 9Å, around the residue of interest. The

packing density at any residue position K is given by equation 1.1.

DKR = NK(persphereofradiusR) (1.1)

where, DKR is the number N of Cα carbons found within a radius of R from the Cα

position of residue K.

The distance between any two residues is calculated by equation 1.2.

dist(i, j) =

√
(x(i)− x(j))2 + (y(i)− y(j))2 + (z(i)− z(j))2 (1.2)

where, x, y and z are the Cα coordinates at that position.

6



It provides an estimate of how well an amino acid is surrounded by the neighboring

residues. It gives a crude estimate of the distance of the residues from the core

of the protein. Also, it provides an estimate of flexibility at a protein sequence

position. Stability of the protein relies on the packing of the core of the protein.2 High

packing density corresponds to the stability of the overall protein fold and does not

necessarily translate to an essentially closed or compact global protein structure.24

Flexibility is an inverse measure of packing density.25 It indicates the amount of

motion allowed at that residue position. Flexibility allows a protein to bind to more

than one type of substrate. The greater the flexibility at a particular residue position,

the more mutable are the corresponding residues.

1.2.2 Sequence Entropy

Entropy is a measure of total randomness in a system. Sequence entropy, in case

of proteins, provides a measure of partitioning of a particular type of residue at any

aligned residue position. At any sequence position k, it is defined by the equation 1.3

Sk = −
∑

j=1,20

Pjk ∗ log2 Pjk (1.3)

where, the probability Pjk at any sequence position k is obtained from the frequency of

an amino acid type j at sequence position k for all the aligned residues.26

Sequence entropy calculations is based on information theory and hence it is

sometimes referred to as Shannon entropy. Sequence entropy can be correlated to

configurational entropy.27 Also, a correlation between sequence entropy and inverse

packing density26 indicates the presence of two major regions that can serve as a basis

for surface accessibility predictions.

7



1.2.3 Surface Accessibility

The identification of protein residues of the monoclonal bodies as surface accessible

or buried can help in antibody development.3,28 Also, once the surface accessiblity of a

residue is understood, protein tertiary contacts, boundary between structural domains,

intramolecular rearrangements and protein hydration sites can be predicted with much

ease.29

A number of methods, involving residue substitution matrices, Bayesian statistics,

neuronal networks and the residue level characterization of the surface exposed

residues, have been proposed. These methods either characterize the residues

according to the binary classification (solvent exposed or buried, associated with 70 −
75% prediction success), ternary classification (buried, partially or completely surface

exposed, associated with 55% prediction success), or more complex classification

(associated with 20 − 25% prediction success) that categorizes the residues into

approximately 10 groups.29 Machine learning approaches, like the support vector

machine and the related algorithms are known to provide better percentage accuracy

(80− 90%) in such predictions.30

NACCESS is one of the many tools available for protein surface accessibility

predictions that deal with the protein surface area at the atomic level.31 It calculates

the accessible surface for each atom and also provides an average surface accessibility

value per protein residue by rolling a probe of given size around a protein surface. In

this work, relative surface accessibility values provided by the NACCESS program

have been utilized for the estimation of surface accessibility of the individual protein

residues. Since the binary classification predicts surface accessibility more accurately

than any other currently used methods and also, since the calculations based on aligned

homologous sequences are known to further increase the prediction accuracy,29 for this

work sequence homology-based methods have been utilized for the binary prediction

of a set of 268 proteins.
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1.3 Definitions

• Bit score - Bit score represents the statistical significance of alignments. Higher

the bit score, the more similar are the aligned sequences.

• BLASTP- Basic Local Alignment Search Tool for Proteins is a tool that utilizes

heuristic method for aligning all the query residues to the subject residues. It

identifies first the local regions of similarity followed by an identification of

global alignment. It compares protein sequence with a protein database.

• E-value - Expectation value or the E-value provides the likelihood of chance

similarity between the query and the subject sequence. The lower the E-value,

the more similar the sequences are within a more tight confidence interval.

• Fraction gaps - Fraction of gaps is defined as the total number of gaps divided

by the total number of aligned residues at that aligned residue position. In the

‘gaps-excluded’ cases it is essentially a ratio between the total number of gaps

and the total number of residues at any aligned residue position.

Fraction gapsi =
Numbergapsi

Total Number of Residuesi

(1.4)

Where, NumberGapsi
is the number of Gaps (-) at sequence position i.

• Fraction non-strongly hydrophobic - Fraction of non-strongly hydrophobic

residues is defined as the total number of residues that are not strongly

hydrophobic divided by the total number of aligned residues at that aligned

residue position.

Fraction non−strongly hydrophobici = 1−Fraction strongly hydrophobici

(1.5)
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• Fraction small residues - Fraction of small residues is defined as the total number

of residues that are small divided by the total number of aligned residues at that

aligned residue position.

Fraction small residuesi =
NumberSRi

Total Number of Residuesi

(1.6)

Where, NumberSRi
is the number of small residues (A and G) at sequence

position i.

• Fraction strongly hydrophobic - Fraction of strongly hydrophobic residues is

defined as the total number of residues that are strongly hydrophobic divided

by the total number of aligned residues at that aligned residue position.

Fraction strongly hydrophobici =
NumberSHPi

Total Number of Residuesi

(1.7)

Where, NumberSHPi
is the number of strongly hydrophobic residues (VILFYMW)32

at sequence position i.

• Heterodimers - Proteins that consist of two non-identical pair of polypeptides and

share sequence identity < 90− 95%.33

• Homodimers - Proteins which have two chains of identically sequenced

polypeptides that share at least 90− 95% sequence identity.34

• Homology- A similarity between protein sequences attributed to common

ancestral origin.19

• Monomers - Proteins with only one polypeptide chain.

• Packing density - Packing density is defined as the total number of residues that

surround the residue of interest and is calculated by counting the total number of

residues that fall inside a radius of 9Å from the residue of interest.35
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• Percentage sequence identity - It is defined as the number of identical residues

divided by the number of matched residues, where gaps are not taken into

account.

• RSA - Relative Surface Accessibility can be defined as the relative solvent

accessibility of the protein residues.

• Sequence entropy - Sequence entropy is a measure of variability of the query

protein sequence that is calculated by summing the total variability at each

aligned residue position.

1.4 Overview

In this thesis, I have summarized the work on the selection of a set of homology-

based thresholds that would be apt for the surface accessibility prediction of protein

residues according to the binary classification as buried or surface accessible. Sequence

homology-based approach was utilized for this analysis. First of all a diverse

set of proteins that satisfy some basic standards, as discussed in Chapter 2, was

compiled. All the protein sequences were aligned to similar protein sequences

with the help of BLASTP. From the aligned residues, entropy and all the fractional

parameters were calculated. For each of the residues, packing density was calculated

and aligned with the homology based parameters for the aggregate learning set list

of protein residues. The aggregate correlation plots of homology-based parameters

as a function of inverse density were then analyzed. The aggregate trends of

monomeric,36 homodimeric34 and heterodimeric33 proteins were compared to each

other and also to the learning set list of proteins (discussed in Chapter 3). Then

the frequency distribution plots of the various homology-based parameters and the

aggregate correlation plots of the learning set list of proteins, were evaluated in light

of filter threshold selection for the binary classification of residues as buried or surface
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accessible. Conservative filter thresholds were selected for three homology-based

parameters- entropy, fraction small residues and fraction strongly hydrophobic. They

are designed to be applied to the aggregate aligned protein set (learning set). The

two resulting frequency distributions and cumulative frequency distributions were then

analyzed for their surface accessibility prediction accuracy.

1.5 Organization of the Thesis

This thesis is organized into six chapters - Introduction, Methods, Results,

Discussion, Conclusion and Future Studies. In the first chapter (Introduction), the

importance and goal of this work has been discussed. The prevalent approaches to

accomplish the objective and the advantage of using sequence homology methods

over all the other methods have been explained to a certain extent. Here, all the

important terms have been defined and the key phrases have been discussed in some

detail. The second chapter (Methods), focuses on the details of the various techniques

applied to this work in order to produce a fruitful outcome, the prediction of residues

as surface accessible or buried with a good level of accuracy. This chapter deals

with the compilation of the various protein lists, generation of an aggregate aligned

set of protein residues with calculations of entropy, density and fractional parameters,

generation of various aggregate correlation plots and generation of various frequency

distribution plots. All the tables and figures are embedded in the text of the third

chapter - Results. Here, all the observations and inferences related to the various plots

and frequency distributions have been discussed. Chapter 4 (Discussion) explains

all the results obtained from the various analyses and their relevance in light of the

objective of this work. Here other observations that provide some insight into the

physical aspect of the protein have also been discussed briefly. Other approaches

to surface accessibility prediction have also been compared here with the approach

undertaken for this work. The limitations of this approach has also been acknowledged
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here. The fifth chapter (Conclusion) concludes all the methods and results and provides

reasonable homology-based filter thresholds for the prediction of surface accessible

residues. The suggested future work has been enumerated in Chapter 6, Future

Studies.
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Chapter 2

Methods

In order to characterize structural features of proteins, sequence homology-based

parameters and their relation with Cα packing density were explored. A structurally

diverse set of protein lists was prepared followed by calculation of density and

homology-based parameters at each protein residue position. Then from the resulting

data, various correlation plots and frequency distribution plots were generated for

further interpretation and analysis. This chapter explains these methods in detail.

2.1 Protein Set Preparation

A subset of 281 proteins that were specifically studied by Guharoy and Chakrabarti37

was obtained by culling the 281 list with PISCES38 according to a set of parameters. The

relationships between the various entries were evaluated on the basis of PSI-BLAST

and CE structural alignments. The 281 protein set was culled for PDB chain identifiers

that share sequence percentage identity of ≤ 25%, have a structural resolution of

0.0 − 2.5Å, R-factor ≤ 0.3 and sequence length 40 − 10, 000. Protein chains with

Cα only entries were eliminated. Proteins whose structure was determined by X-ray

crystallography methods were only selected. This set of user defined culling criteria

was standardized for culling all the other lists used in this work. A set of 215 proteins

so obtained was named Chack05 list.

For the preparation of learning set list, the set of 281 proteins mentioned earlier,

was combined with a structurally diverse set of well characterized 130 query proteins26

with known X-ray 3D structures. The resulting composite set of 408 proteins were

then culled according to the standard criteria mentioned above with the help of the

culling server, PISCES.38 The set of 268 protein chain list specified with their PDB

14



chain identifiers was named the learning set list of 268 proteins. The learning

set list consists of three types of proteins: monomeric proteins,36 homodimeric

proteins34 and heterodimeric proteins.33 In order to develop a better understanding of

their respective contributions to the aggregate behavior of the learning set list of 268

proteins, monomers, homodimers and heterodimers were evaluated independently. The

protein lists of 75 monomers, 106 homodimers and 50 heterodimers were prepared

by culling the lists of 103 monomeric proteins,36 122 homodimeric proteins34 and 70

heterodimeric proteins33 respectively, in PISCES, according to the standard criteria

determined as above.

2.2 Residue Packing Density

Residue packing density is the packing density of a protein residue in its native

state. It is a measure of protein compactness. It is obtained by a coarse grained

approach that takes into account the X-ray determined Cα coordinates of the query

protein for its computation.

For the calculation of protein residue packing density, mmcif files for all the protein

lists obtained as above were downloaded from RCSB Protein Database (PDB).39 The

perl ftp script ftp-script-1.pl (see Appendix A) was used for obtaining all the mmCIF

files. The atom co-ordinate information of the proteins that is obtained from X-ray

crystallographic studies are compiled in the mmCIF files.40 All the .Z files obtained as

above were gunzipped on the Cluster (Unix environment) provided by the Meteorology

Department of San Jose State University. The resulting .CIF files, written in mmCIF

file format, served as the source of the residue coordinate information. With the help

of a perl program - Cif2Den.pl (see Appendix A), that was adapted from Yeh,35 the Cα

packing density of the protein was calculated at each residue position. First of all, the

Cα co-ordinates were extracted at each residue position. The distance between any two

residues was then calculated by equation 2.1.
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dist(i, j) =

√
(x(i)− x(j))2 + (y(i)− y(j))2 + (z(i)− z(j))2 (2.1)

where, x, y and z are the Cα coordinates at that position. The number of Cα atoms

falling in the radius of 9Å, around the residue of interest was counted. The packing

density at that residue position was then calculated by using the equation 2.2.

DKR = NK(persphereofradiusR) (2.2)

where, DKR is the number N of Cα carbons found within a radius of R from the Cα

position of residue K.

The program Chainselectivecif2den.pl (see Appendix A) was used for the packing

density calculations of all the protein lists. Packing density equal to 0 was assigned

to the unknown residues like ’X’ and a density value equal to ‘NA’ was assigned to the

residues whose coordinate information was not available in the mmCIF files.

2.3 Sequence Variability

The importance of a protein residue is depicted in its evolutionary conservation. Changes

at specific position of protein that preserves physico-chemical properties of the

original residue is called sequence conservation. Sequence variability, an inverse

measure of sequence conservation, provides an estimate of the role played by the

residue in maintaining the structure and function of the protein through the years of

evolution. Although a number of other conservation scoring strategies are present,

in this work, the sequence entropy at any protein residue position has been calculated

either by calculating the Shannon entropy (information entropy or sequence entropy)

from the alignments generated from BLASTP or from multiple sequence alignments

provided by the HSSP database.
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2.3.1 Calculation of Sequence Entropy

Sequence entropy or Shannon entropy is the metric of sequence variability. It is a

measure of disorder or randomness in a system35 and at any sequence position k, it is

defined by the equation 2.3.

Sk = −
∑

j=1,20

Pjk ∗ log2 Pjk (2.3)

where, the probability Pjk at any sequence position k is obtained from the frequency of

an amino acid type j at sequence position k for all the aligned residues.26

Shannon entropy correlates to thermodynamic entropy.27 Entropy is expected

to play a significant role in deciphering the relation between protein stability and

function.26 For the calculation of sequence entropy, the query protein is aligned to

other subject protein sequences present in the database. The resulting alignments are

then parsed and entropy values are calculated at each residue position of the query

protein.

The sequence alignments for all the protein lists were generated by Basic Local

Alignment Search Tool (BLASTP 2.2.18+), that is provided by the National Center

for Biotechnology Information (NCBI). BLASTP used for this work searches all the

non-redundant protein databases like, Genbank, CDS translations, PDB, SwissProt,

PIR and PRF but excludes all the environmental samples from WGS project. It

uses BLOSUM62 matrix and default gap penalties for each mutational insertion or

deletion. The FASTA formatted query sequences were submitted for the BLASTP

alignments at NCBI. For each protein sequence, a maximum of 10, 000 aligned

sequences were generated for this work. An existence of 11 and extension of 1 was

set as the cost to create and extend a gap in an alignment. In order to compensate

for the amino acid composition of a sequence, conditional compositional score matrix

adjustment method was used.19 All the alignments were generated between June
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1st and September 1st 2008, when the total number of sequences in database was

approximately 6, 923, 879. The aligned residues were extracted from the BLASTP

results by using a code written in perl- bst2entMOD2.pl (see Appendix A). A total of

75891, 20075, 29427 and 9229 alignments were generated for the learning set list, the

monomeric list, the homodimeric list and the heterodimeric list, respectively.

For the calculation of sequence entropy, the BLASTP alignments with bit scores

equal to 40% of the highest bit score obtained in a set of alignments, were only

considered for entropy calculations. The resulting 40% sequence entropy at any protein

residue position is Shannon entropy calculated from the BLASTP alignment results at

that position. Sequence entropy was calculated by a perl code bst2entMOD2.pl (see

Appendix A) that uses equation 2.3 for its entropy calculations.

The 40% sequence entropy so obtained is based on the bit score that qualifies the

sequence for the goodness of an alignment. The advantage of using bit score cutoffs is,

that it is normalized and can be compared against results derived from other substitution

matrices.35 Among the other bit score cutoffs, 40% cutoff has been reported to provide

the most relevant set of alignments25,35 because it balances between homology and the

diversity of sequence variability. A number of other cutoffs like, an expect cutoff of

0.001 (see Appendix Figure B.1) and an identity cutoff of 25% (see Appendix Figure

B.1) were also tested for obtaining quality alignments. Introduction of gaps as the

21st term in the entropy calculations was also tested (see Appendix Figure B.2, B.3 and

B.4). The minimum value of non-deleted homologs for entropy calculations was set to

1, so that a “divided by zero” error could be prevented. Entropy for all the sequence

positions with less than this minimum value were assigned a ‘−1’ entropy value.

2.3.2 6-point Entropy

The 6-point entropy41 at any query residue position was calculated from the

alignments generated for 40% entropy calculations. In this case, the 20 amino
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acids were categorized into six clusters according to their classification as aliphatic

(AVLIMC), aromatic (FWYH), polar (STNQ), positive (KR), negative (DE)and special

(GP). The 6-point entropy was calculated by the equation 2.4.

Sl = −
6∑

i=1

pi ∗ log2 pi (2.4)

where, pi represents the frequency of each of the six i classes at any given query residue

position. A low value of 6-point entropy, translates to evolutionary conservation at that

point. For the calculation of 6-point entropy, a perl code- Radhika-6pointentropy.pl

was used (see Appendix A).

2.3.3 Calculation of HSSP Entropy

HSSP entropy are the entropy values obtained directly from the HSSP files provided

by Homology derived structures of proteins (HSSP) database.42–44 Here, the query

sequence of known structure is aligned to other homologous sequences. The homology

between sequences is determined on the basis of a homology threshold curve that is

plotted after a detailed investigation of sequence similarity, structure similarity and

the protein alignment length. The HSSP files contains structure based multiple

sequence alignments, sequence variability at each position and sequence profile. The

likelihood of the aligned sequences to share the same three-dimensional structure

is very high. Hence, information embedded in these files can be used to explain

the role of conserved residues in protein structure as well as in deriving patterns for

structure prediction. The residue conservation scores compiled in the HSSP files,44

are expressed as Shannon entropy given by equation 2.5.

Vschneider = −
j∑
i

pi ∗ ln pi (2.5)
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where, j = 20 that represents 20 amino acids and pi is the fractional frequency of amino

acid of type i. Entropy calculated in this fashion lies between 0 ≤ Vschneider ≤ 1.

The 254 HSSP files belonging to the learning set list of 268 proteins were

downloaded from the HSSP database in February 2008 with the help of the perl code-

ftp-scriptHSSP.pl (see Appendix A). Some 26 protein chains belonging to 12 proteins

(11 of which belong to the Chack05 list and one belongs to the 130 list of proteins)

have multiple entries in the learning set list of proteins. Hence, fewer number of files

(254) than 268 were downloaded as only one HSSP file per protein can be obtained

from the HSSP database. The total number of multiple sequence alignments for the

254 HSSP protein list was 235810. The enlisted entropy values at each residue position

was extracted programmatically.

2.4 Fractional Calculations

In addition to sequence entropy, other sequence-homology based parameters like

fraction of residues that are strongly hydrophobic, fraction of residues that are small,

fraction of residues that are non-strongly hydrophobic and fraction of residues that are

gaps were also calculated. The aligned residues, obtained as in section 2.3.1, were

used for these calculations. For the calculation of strongly hydrophobic fraction at

any position i, all the aligned residues that were strongly hydrophobic at position i

were counted and then divided by the total alignment length at that i position (equation

2.6). All the other fractional parameters were similarly calculated (equation 2.7, 2.8

and 2.9).

Fraction strongly hydrophobici =
NumberSHPi

Total Number of Residuesi

(2.6)

Where, NumberSHPi
is the number of strongly hydrophobic residues (VILFYMW)32

at sequence position i.
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Fraction non strongly hydrophobici = 1−Fraction strongly hydrophobici (2.7)

Fraction small residuesi =
NumberSRi

Total Number of Residuesi

(2.8)

Where, NumberSRi
is the number of small residues (AG) at sequence position i.

Fraction gapsi =
Numbergapsi

Total Number of Residuesi

(2.9)

Where, NumberGapsi
is the number of Gaps (-) at sequence position i.

The fraction gaps is not a fraction but a ratio between the total number of

mutational insertions and deletions and the total number of residues present at that

query position. All the fractional values were calculated and aligned with the entropy

values with the help of a perl code, extract fractanalysis entropy aggr.pl (see Appendix

A). The resulting .FRAC files were then further processed.

2.5 PDB-FASTA Reconciliation

The residue position numbers mentioned in the .PDB files obtained from Protein

Data Bank do not necessarily match with the residue position numbers of the

same protein obtained from FASTA format numberings.45 Hence, for the proper

alignment of entropy, fractional parameters and density, the position numbers of

the density (.DEN) files were matched programmatically with that of the position

numbers of the entropy (.ENT) and fraction (.FRACT) files. The perl code,

extract individualfractentropy density aggr.pl was used for this work (see Appendix

A).

In case of a few proteins the first few residues were found to be eliminated in the

alignments generated by BLASTP. In those cases, the alignments were found to shift
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one or two places to the left thereby assigning false residue numbers to the residues, for

example, a residue number of 1 was assigned to residue 2 and so on. These disparities

were checked manually, and the .FRACT files were modified accordingly for the proper

FASTA-PDB alignment.

2.6 Aggregate Analysis

For the aggregate analysis of protein lists, all the individually aligned protein

files obtained as above were further processed. The average value of homology

based parameters at each density position was obtained by the method of single

averaging. All the parameter values at a particular density position were averaged

to obtain the single average value of that homology based parameter at that packing

density. The perl code, calculate aggr per protein.pl, was used for this calculation

(see Appendix A). Then all the single aggregate values belonging to the complete

protein list were compiled into one single file with the help of the perl code,

double aggr forPlot.pl (see Appendix A). The file so obtained was then processed

in Microsoft Excel 2007. Double average value of the parameters were obtained

by averaging all the single average values compiled as above, at a particular density

position for the complete protein list.

2.6.1 Correlation Plots

The aggregate file obtained from the code double aggr forPlot.pl (see section 2.6)

was then processed in MS Excel. The aggregate value of all the parameters at each

density position was calculated. For the computation of double average value, all

the homology-based parameters at any particular density was averaged. The resulting

value was the double average value at that density position. Different correlation plots

were obtained by plotting various homology-based parameters against inverse density.
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2.7 Frequency Distributions

The entropy-fractional parameter alignment files, that is, the .FRACT files (see

subsection 2.4) for the complete list were aligned to the respective density values at

each residue position and compiled into one single file. This work was made possible

by the perl code, extract fractentropy density aggr.pl (see Appendix A). The file so

obtained was processed by Microsoft Excel 2007. First of all, the density position

was sorted from smallest to largest value and from A to Z with the ‘expand selection’

option. All the rows that contained density values equal to 0, or density values equal

to ‘NA’ were eliminated from the file. Density equal to 0 represents the density value

of an unknown protein residue denoted by ‘X’. Density equal to ‘NA’ represents

the sequence position for which the co-ordinate information is not available. All

the residue positions, flagged by an entropy value of −1 were also removed before

obtaining the frequency distributions. The resulting .XLS file was then used to obtain

the various frequency distributions.

2.8 Characterization of Protein Lists

Each of the protein lists was characterized by generating frequency distribution

graphs for a set of parameters. The frequency of query proteins with respect to

packing density was obtained from the final .XLS file as obtained in subsection

2.7. The frequency of query proteins versus number of alignments histogram was

obtained with the help of the perl code listNoAlignments.pl (see Appendix A) and MS

Excel 2007. The frequency of query proteins to length of query proteins histogram

was obtained with the help of the perl code No of res count.pl (see Appendix A) and

MS excel 2007. The frequency of subject proteins at BLAST bit score was obtained

with the help of the perl code Bitscorelistno ofsubject.pl (see Appendix A).
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Chapter 3

Results

In this chapter, the results obtained by the analysis of the four protein lists (see

Chapter 2), namely, learning set list (268 protein chains), monomeric list (75 proteins),

homodimeric list (106 proteins) and heterodimeric list (50 protein chains) have

been summarized. The protein lists have been characterized by various frequency

distributions. The aggregate behavior of the lists are presented by means of correlation

plots of the various homology-based parameters. Aggregate trends presented by each

of the homology-based parameters has been studied both separately and in conjunction

with each other. In order to aid a detailed analysis, frequency distribution plots

based on density and the value of homology-based parameters have been reported

here separately. The homology-based filter thresholds for the prediction of surface

accessibility have also been evaluated here.

3.1 Characterization of Protein Lists

In this section, all the four protein lists have been characterized on the basis of

their mode of structure determination, resolution, R-factor, Free R value, protein length

and their alignment length. The frequency distribution plots of the query proteins

with respect to different parameters has also been summarized here for the four protein

lists.

3.1.1 Characterization of Learning Set List

Table 3.1 summarizes the learning set list of 268 proteins and the PISCES

culling parameters like protein chain name, the experimental method of structure

determination, resolution, R-factor and free R value of the constituent proteins (see

Chapter 2).
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Table 3.1: Learning set list of 268 proteins. A composite list
of 130 proteins and chack05 list of proteins were culled by
PISCES according to individual protein chains of each PDB
ID. Each protein chain with sequence percentage identity >
25% was rejected. All these protein chains have a resolution
of 0.0 − 2.5Å, R-factor ≤ 0.3 and sequence length between
40− 10000.

PDB ID Chain Exptl. Resolution R-factor FreeRvalue
12AS A XRAY 2.2 0.16 0.29
13PK A XRAY 2.5 0.22 0.29
1A1I A XRAY 1.6 0.19 0.22
1A2K A XRAY 2.5 0.21 0.27
1A32 A XRAY 2.1 0.21 0.32
1A48 A XRAY 1.9 0.15 1
1A4I A XRAY 1.5 0.2 0.23
1A4U A XRAY 1.92 0.2 0.24
1A6Q A XRAY 2 0.21 1
1AA7 A XRAY 2.08 0.21 0.28
1ADD A XRAY 2.4 0.18 1
1ADE A XRAY 2 0.2 1
1AF3 A XRAY 2.5 0.23 0.27
1AFW A XRAY 1.8 0.19 0.24
1AG9 A XRAY 1.8 0.2 0.25
1AH7 A XRAY 1.5 0.2 0.23
1AJS A XRAY 1.6 0.17 1
1AK0 A XRAY 1.8 0.21 0.23
1AK4 C XRAY 2.36 0.24 0.31
1AKO A XRAY 1.7 0.17 0.2
1AL8 A XRAY 2.2 0.19 0.25

1AMK A XRAY 1.83 0.11 1
1AMP A XRAY 1.8 0.16 1
1AMU A XRAY 1.9 0.21 0.25
1AN9 A XRAY 2.5 0.2 0.26
1AOB A XRAY 2.1 0.19 0.24
1AOR A XRAY 2.3 0.15 1
1AQ0 A XRAY 2 0.17 0.21
1AQ6 A XRAY 1.95 0.19 0.25
1ATL A XRAY 1.8 0.16 1
1AUO A XRAY 1.8 0.21 0.27
1AVW B XRAY 1.75 0.19 0.21
1AW5 A XRAY 2.3 0.2 0.27
1AW7 A XRAY 1.95 0.18 1
1AW9 A XRAY 2.2 0.2 1
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PDB ID Chain Exptl. Resolution R-factor FreeRvalue
1AYL A XRAY 1.8 0.2 0.23
1AYX A XRAY 1.7 0.15 0.18
1AZI A XRAY 2 0.17 1
1B3A A XRAY 1.6 0.17 0.24
1B5E A XRAY 1.6 0.19 0.21
1B67 A XRAY 1.48 0.19 0.27
1B8A A XRAY 1.9 0.17 0.2
1B8J A XRAY 1.9 0.18 0.2
1BA3 A XRAY 2.2 0.2 0.24
1BAM A XRAY 1.95 0.19 1
1BBH A XRAY 1.8 0.18 1
1BD0 A XRAY 1.6 0.24 0.27
1BEA A XRAY 1.95 0.2 0.29
1BF2 A XRAY 2 0.16 0.21
1BFD A XRAY 1.6 0.15 0.19
1BG0 A XRAY 1.86 0.2 0.22
1BIA A XRAY 2.3 0.19 1
1BIN A XRAY 2.2 0.2 0.3
1BIQ A XRAY 2.05 0.19 0.26
1BIS A XRAY 1.95 0.2 0.26
1BJW A XRAY 1.8 0.21 0.27
1BLZ A XRAY 1.45 0.2 0.22
1BMD A XRAY 1.9 0.15 1
1BN6 A XRAY 1.5 0.17 0.17
1BO6 A XRAY 2.1 0.21 0.25
1BRS A XRAY 2 0.17 1
1BRS D XRAY 2 0.17 1
1BRW A XRAY 2.1 0.23 0.28
1BSL A XRAY 1.95 0.19 1
1BT3 A XRAY 2.5 0.17 0.25
1BUL A XRAY 1.89 0.21 0.26
1BUO A XRAY 1.9 0.21 0.25
1BXG A XRAY 2.3 0.17 1
1BXK A XRAY 1.9 0.2 1
1BXQ A XRAY 1.41 0.14 0.18
1BYO A XRAY 2 0.19 0.23
1C02 A XRAY 1.8 0.2 0.25
1CB0 A XRAY 1.7 0.18 0.2
1CDC A XRAY 2 0.19 1
1CEX A XRAY 1 0.09 0.12
1CG2 A XRAY 2.5 0.2 0.22
1CHM A XRAY 1.9 0.18 1
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PDB ID Chain Exptl. Resolution R-factor FreeRvalue
1CJX A XRAY 2.4 0.22 0.28
1CKI A XRAY 2.3 0.19 0.28

1CMB A XRAY 1.8 0.19 1
1CNZ A XRAY 1.76 0.2 0.26
1COZ A XRAY 2 0.2 0.26
1CQX A XRAY 1.75 0.18 0.21
1CRC A XRAY 2.08 0.18 1
1CRM A XRAY 2 0.18 1
1CRZ A XRAY 1.95 0.19 0.24
1CSE E XRAY 1.2 0.18 1
1CSE I XRAY 1.2 0.18 1
1CSH A XRAY 1.65 0.16 1
1CTT A XRAY 2.2 0.19 1
1CZJ A XRAY 2.16 0.2 0.26
1DAA A XRAY 1.94 0.18 1
1DAN L XRAY 2 0.19 0.22
1DAN T XRAY 2 0.19 0.22
1DAN U XRAY 2 0.19 0.22
1DCS A XRAY 1.3 0.13 0.15
1DFJ I XRAY 2.5 0.19 1
1DHK A XRAY 1.85 0.18 0.22
1DHK B XRAY 1.85 0.18 0.22
1DHS A XRAY 2.2 0.15 0.24
1DHT A XRAY 2.24 0.19 0.28
1DIN A XRAY 1.8 0.15 1

1DMR A XRAY 1.82 0.15 0.18
1DOR A XRAY 2 0.17 0.21
1DPG A XRAY 2 0.21 0.26
1DQS A XRAY 1.8 0.17 0.22
1DYS A XRAY 1.6 0.18 0.24
1E1K A XRAY 1.95 0.18 0.23
1E5M A XRAY 1.54 0.17 0.2
1E98 A XRAY 1.9 0.19 0.24
1EBH A XRAY 1.9 0.19 1
1EEH A XRAY 1.9 0.23 0.27
1EFN B XRAY 2.5 0.21 0.28
1EFU A XRAY 2.5 0.17 0.28
1EFU B XRAY 2.5 0.17 0.28
1EHY A XRAY 2.1 0.19 0.23
1EWF A XRAY 1.7 0.2 0.25
1F13 A XRAY 2.1 0.18 0.24
1FEH A XRAY 1.8 0.18 0.23
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PDB ID Chain Exptl. Resolution R-factor FreeRvalue
1FGK A XRAY 2 0.21 0.26
1FIN B XRAY 2.3 0.21 1
1FIP A XRAY 1.9 0.2 1
1FJM A XRAY 2.1 0.18 1
1FKD A XRAY 1.72 0.18 1
1FLE I XRAY 1.9 0.2 1
1FMT A XRAY 2 0.21 0.26
1FRO A XRAY 2.2 0.21 0.23
1G2A A XRAY 1.75 0.19 0.25
1GAR A XRAY 1.96 0.17 0.29
1GJM A XRAY 2.2 0.18 0.22
1GOT A XRAY 2 0.21 0.29
1GOT G XRAY 2 0.21 0.29
1GOT B XRAY 2 0.21 0.29
1GUA B XRAY 2 0.22 1
1GVP A XRAY 1.6 0.21 0.29
1HF8 A XRAY 2 0.19 0.22
1HIA I XRAY 2.4 0.2 0.31
1HJR A XRAY 2.5 0.16 1

1HWG A XRAY 2.5 0.2 0.29
1HWG B XRAY 2.5 0.2 0.29
1HXP A XRAY 1.8 0.19 1
1ICW A XRAY 2.01 0.19 0.27
1ILR 1 XRAY 2.1 0.2 1
1IMB A XRAY 2.2 0.17 1
1ISA A XRAY 1.8 0.19 1
1IVY A XRAY 2.2 0.21 0.27
1JHG A XRAY 1.3 0.13 0.17
1JSG A XRAY 2.5 0.19 0.26
1KBA A XRAY 2.3 0.2 1
1KPF A XRAY 1.5 0.21 0.24
1KPT A XRAY 1.75 0.17 0.22
1KWA A XRAY 1.93 0.25 0.3
1M6P A XRAY 1.8 0.22 0.28
1MCT A XRAY 1.6 0.17 1
1MKB A XRAY 2 0.18 0.24
1MOR A XRAY 1.9 0.19 1
1MPG A XRAY 1.8 0.19 0.25
1NAW A XRAY 2 0.2 0.27
1NMB N XRAY 2.2 0.21 1
1NO3 A XRAY 2.15 0.19 0.23
1NOX A XRAY 1.59 0.19 0.2
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PDB ID Chain Exptl. Resolution R-factor FreeRvalue
1NP4 A XRAY 1.5 0.2 0.26
1NSE A XRAY 1.9 0.21 0.28
1NSY A XRAY 2 0.17 0.23
1OAC A XRAY 2 0.16 1
1OPY A XRAY 1.9 0.2 0.27
1OSP O XRAY 1.95 0.23 0.29
1PBG A XRAY 2.3 0.16 0.24
1PDA A XRAY 1.76 0.19 1
1PGT A XRAY 1.8 0.18 1
1QAZ A XRAY 1.78 0.18 0.23
1QCI A XRAY 2 0.23 1
1QFH A XRAY 2.2 0.22 0.27
1QHA A XRAY 2.25 0.21 0.28
1QHI A XRAY 1.9 0.23 0.29
1QJP A XRAY 1.65 0.15 0.2

1QME A XRAY 2.4 0.2 0.23
1QPA A XRAY 1.8 0.16 1
1QR2 A XRAY 2.1 0.22 0.28
1QTQ A XRAY 2.25 0.24 0.25
1RBP A XRAY 2 0.18 1
1REG X XRAY 1.9 0.18 0.21
1RHS A XRAY 1.36 0.17 0.23
1RNE A XRAY 2.4 0.18 1
1RPO A XRAY 1.4 0.19 1
1SES A XRAY 2.5 0.18 1
1SHK A XRAY 1.9 0.17 0.22
1SLT A XRAY 1.9 0.17 1
1SMN A XRAY 2.04 0.17 1
1SMT A XRAY 2.2 0.22 0.25
1SOX A XRAY 1.9 0.17 0.22
1STF I XRAY 2.37 0.19 1
1TC1 A XRAY 1.41 0.19 0.23
1THT A XRAY 2.1 0.23 1
1TOA A XRAY 1.8 0.18 0.2
1TOX A XRAY 2.3 0.23 0.31
1TRK A XRAY 2 0.16 1
1TX4 A XRAY 1.65 0.17 0.21
1TX4 B XRAY 1.65 0.17 0.21
1UBY A XRAY 2.4 0.2 1
1URP A XRAY 2.3 0.23 0.27
1UTG A XRAY 1.34 0.23 1
1VBT A XRAY 2.3 0.2 0.25
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PDB ID Chain Exptl. Resolution R-factor FreeRvalue
1VLB A XRAY 1.28 0.15 0.19
1VOK A XRAY 2.1 0.2 1
1XGS A XRAY 1.75 0.19 0.23
1XSO A XRAY 1.49 0.1 0.17
1YCS A XRAY 2.2 0.2 0.29
1YCS B XRAY 2.2 0.2 0.29
1YDR E XRAY 2.2 0.19 1
1YQV L XRAY 1.7 0.2 0.23
1YQV H XRAY 1.7 0.2 0.23
256B A XRAY 1.4 0.16 1
256L A XRAY 1.8 0.16 1
2ACY A XRAY 1.8 0.17 0.23
2ARC A XRAY 1.5 0.18 0.23
2ATJ A XRAY 2 0.18 0.2
2BC2 A XRAY 1.7 0.2 0.25
2BLS A XRAY 2 0.22 1
2G3P A XRAY 1.9 0.26 0.3
2HDH A XRAY 2.2 0.2 0.25
2IHL A XRAY 1.4 0.17 1
2ILK A XRAY 1.6 0.16 1
2JEL P XRAY 2.5 0.21 0.28
2LIG A XRAY 2 0.18 1
2LIV A XRAY 2.4 0.18 1

2MBR A XRAY 1.8 0.2 0.26
2NAC A XRAY 1.8 0.15 1
2OHX A XRAY 1.8 0.17 1
2PCC A XRAY 2.3 0.17 1
2RN2 A XRAY 1.48 0.2 1
2SCP A XRAY 2 0.18 1
2SHP A XRAY 2 0.2 0.27
2SIC I XRAY 1.8 0.18 1
2SPC A XRAY 1.8 0.2 1
2SQC A XRAY 2 0.15 0.19
2TCT A XRAY 2.1 0.18 1
2TGI A XRAY 1.8 0.17 1
2TPS A XRAY 1.25 0.18 0.22
2TRC P XRAY 2.4 0.19 0.28
2UGI A XRAY 2.2 0.23 0.28
3CLA A XRAY 1.75 0.16 1
3DAP A XRAY 2.2 0.17 0.23
3GBP A XRAY 2.4 0.16 1
3GRS A XRAY 1.54 0.19 1
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PDB ID Chain Exptl. Resolution R-factor FreeRvalue
3PFK A XRAY 2.4 0.17 1
3PMG A XRAY 2.4 0.16 0.19
3RN3 A XRAY 1.45 0.22 1
3SDH A XRAY 1.4 0.16 1
3SGB E XRAY 1.8 0.12 1
3SGB I XRAY 1.8 0.12 1
4DFR A XRAY 1.7 0.15 1
4HTC I XRAY 2.3 0.17 1
5ACN A XRAY 2.1 0.21 1
5CPA A XRAY 1.54 0.19 1
5CPV A XRAY 1.6 0.19 1
5CSM A XRAY 2 0.19 0.24
5RUB A XRAY 1.7 0.18 1
6LDH A XRAY 2 0.2 1
6XIA A XRAY 1.65 0.14 1
7CAT A XRAY 2.5 0.21 1
830C A XRAY 1.6 0.21 0.27
8ATC A XRAY 2.5 0.17 1
8ATC B XRAY 2.5 0.17 1
8PRK A XRAY 1.85 0.19 0.23
8PTI A XRAY 1.8 0.16 1
9PAP A XRAY 1.65 0.16 1

9WGA A XRAY 1.8 0.17 1

There are 12 proteins with a total of 26 chains that have multiple chain entries in

the 268 list. These 12 proteins were specifically characterized by Chakrabarti and

Janin as heterodimers (1BRSA, 1BRSD, 1CSEE, 1CSEI, 1DANL, 1DANT, 1DANU,

1DHKA, 1DHKB, 1EFUA, 1EFUB, 1GOTA, 1GOTB, 1GOTG, 1HWGA, 1HWGB,

1TX4A, 1TX4B, 1YCSA, 1YCSB, 1YQVL, 1YQVH and 3SGBE, 3SGBI).33 One

heterodimeric chain 1YQVB does not meet the sequence identity requirement

for PISCES applied to the original 70 heterodimeric protein set. An additional

nonredundant heterodimeric protein 8ATC(A,B) is included from the 130 protein list.26

Table 3.2 provides the protein length and the number of alignments for each of the 268

learning set list of proteins.
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Table 3.2: Query length and number of alignments of
individual proteins for the learning set list of 268 proteins.

PDB
ID +
Chain

No. of
Query
Residues

No.
of
Align.

PDB
ID +
Chain

No. of
Query
Residues

No.
of
Align.

PDB
ID +
Chain

No. of
Query
Residues

No.
of
Align.

12ASA 330 227 1CZJA 111 85 1RBPA 182 289
13PKA 415 1012 1DAAA 282 1000 1REGX 122 28
1A1IA 90 4981 1DANL 152 5215 1RHSA 296 1008
1A2KA 127 401 1DANT 80 109 1RNEA 340 1069
1A32A 88 982 1DANU 121 83 1RPOA 65 48
1A48A 306 1001 1DCSA 311 636 1SESA 421 1000
1A4IA 301 1001 1DFJI 457 4418 1SHKA 173 1000
1A4UA 254 1003 1DHKA 496 1021 1SLTA 134 733
1A6QA 382 1064 1DHKB 223 769 1SMNA 245 413
1AA7A 158 1000 1DHSA 361 420 1SMTA 122 1000
1ADDA 349 880 1DHTA 327 1001 1SOXA 466 1119
1ADEA 431 1000 1DINA 236 986 1STFI 98 132
1AF3A 196 513 1DMRA 823 1004 1TC1A 220 1000
1AFWA 393 1001 1DORA 311 1000 1THTA 305 85
1AG9A 175 747 1DPGA 485 1000 1TOAA 313 1020
1AH7A 245 271 1DQSA 393 1001 1TOXA 535 37
1AJSA 412 1000 1DYSA 348 205 1TRKA 680 1001
1AK0A 270 213 1E1KA 460 1008 1TX4A 198 1003
1AK4C 145 1000 1E5MA 416 1000 1TX4B 177 1001
1AKOA 268 1000 1E98A 215 1000 1UBYA 367 1001
1AL8A 359 1008 1EBHA 436 1000 1URPA 271 1000
1AMKA 251 1000 1EEHA 437 1008 1UTGA 70 55
1AMPA 291 1001 1EFNB 152 1000 1VBTA 165 1000
1AMUA 563 2309 1EFUA 385 1000 1VLBA 907 1188
1AN9A 340 485 1EFUB 282 1159 1VOKA 200 573
1AOBA 265 1007 1EHYA 294 1005 1XGSA 295 1000
1AORA 605 319 1EWFA 456 335 1XSOA 150 1003
1AQ0A 306 866 1F13A 731 419 1YCSA 199 418
1AQ6A 253 1000 1FEHA 574 1015 1YCSB 239 10257
1ATLA 202 1005 1FGKA 310 1003 1YDRE 350 1009
1AUOA 218 915 1FINB 260 1001 1YQVH 215 1092
1AVWB 177 342 1FIPA 98 1000 1YQVL 211 1003
1AW5A 340 1000 1FJMA 330 1002 256BA 106 58
1AW7A 194 86 1FKDA 107 1121 256LA 164 526
1AW9A 216 1000 1FLEI 57 272 2ACYA 98 796
1AYLA 541 626 1FMTA 314 1000 2ARCA 164 130
1AYXA 492 161 1FROA 183 1026 2ATJA 308 1002
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PDB
ID +
Chain

No. of
Query
Residues

No.
of
Align.

PDB
ID +
Chain

No. of
Query
Residues

No.
of
Align.

PDB
ID +
Chain

No. of
Query
Residues

No.
of
Align.

1AZIA 153 1004 1G2AA 168 1000 2BC2A 227 1000
1B3AA 67 607 1GARA 212 1000 2BLSA 358 1000
1B5EA 246 563 1GJMA 414 1000 2G3PA 225 219
1B67A 68 312 1GOTA 350 1020 2HDHA 293 1195
1B8AA 438 1122 1GOTB 340 3674 2IHLA 129 916
1B8JA 449 896 1GOTG 73 222 2ILKA 160 240
1BA3A 550 1004 1GUAB 81 169 2JELP 85 1017
1BAMA 213 15 1GVPA 87 45 2LIGA 164 222
1BBHA 131 162 1HF8A 289 381 2LIVA 344 1004
1BD0A 388 1000 1HIAI 48 13 2MBRA 340 970
1BEAA 127 340 1HJRA 158 692 2NACA 393 1001
1BF2A 750 1029 1HWGA 191 1006 2OHXA 374 1005
1BFDA 528 1000 1HWGB 237 515 2PCCA 296 1515
1BG0A 356 1027 1HXPA 348 467 2RN2A 155 1000
1BIAA 321 1000 1ICWA 72 344 2SCPA 174 447
1BINA 143 415 1ILR1 152 247 2SHPA 525 1577
1BIQA 375 1001 1IMBA 277 1001 2SICI 107 55
1BISA 166 1000 1ISAA 192 1000 2SPCA 107 2661
1BJWA 382 1000 1IVYA 452 1099 2SQCA 631 970
1BLZA 331 1009 1JHGA 101 123 2TCTA 207 1002
1BMDA 327 1002 1JSGA 114 72 2TGIA 112 1000
1BN6A 294 1002 1KBAA 66 256 2TPSA 227 1002
1BO6A 297 990 1KPFA 126 1001 2TRCP 217 538
1BRSA 110 106 1KPTA 105 18 2UGIA 84 3
1BRSD 89 118 1KWAA 88 1340 3CLAA 213 303
1BRWA 433 849 1M6PA 152 112 3DAPA 320 137
1BSLA 324 1001 1MCTA 223 1030 3GBPA 307 1000
1BT3A 345 1046 1MKBA 171 951 3GRSA 478 1001
1BULA 265 1000 1MORA 368 1000 3PFKA 319 1222
1BUOA 121 1000 1MPGA 282 795 3PMGA 561 1004
1BXGA 356 1000 1NAWA 419 1005 3RN3A 124 626
1BXKA 355 1000 1NMBN 470 1000 3SDHA 146 633
1BXQA 323 1004 1NO3A 857 673 3SGBE 185 349
1BYOA 99 369 1NOXA 205 1000 3SGBI 56 572
1C02A 166 134 1NP4A 184 52 4DFRA 159 1000
1CB0A 283 989 1NSEA 444 371 4HTCI 65 35
1CDCA 99 186 1NSYA 271 1000 5ACNA 754 1009
1CEXA 214 272 1OACA 727 481 5CPAA 307 1075
1CG2A 393 1000 1OPYA 131 183 5CPVA 109 1232
1CHMA 401 1000 1OSPO 257 390 5CSMA 256 87
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PDB
ID +
Chain

No. of
Query
Residues

No.
of
Align.

PDB
ID +
Chain

No. of
Query
Residues

No.
of
Align.

PDB
ID +
Chain

No. of
Query
Residues

No.
of
Align.

1CJXA 357 615 1PBGA 468 1002 5RUBA 490 1034
1CKIA 317 1004 1PDAA 313 1005 6LDHA 330 1001
1CMBA 104 82 1PGTA 210 1003 6XIAA 387 410
1CNZA 363 1000 1QAZA 351 60 7CATA 506 1002
1COZA 129 1096 1QCIA 262 436 830CA 168 1099
1CQXA 403 1003 1QFHA 212 3209 8ATCA 310 1000
1CRCA 105 1012 1QHAA 917 1408 8ATCB 153 226
1CRMA 260 1009 1QHIA 366 225 8PRKA 287 1001
1CRZA 403 2027 1QJPA 171 455 8PTIA 58 1543
1CSEE 274 1049 1QMEA 702 1001 9PAPA 212 1001
1CSEI 71 186 1QPAA 345 463 9WGAA 171 1556
1CSHA 435 1002 1QR2A 230 1000
1CTTA 294 893 1QTQA 553 1003

The frequency distribution plots for the characterization of the learning set list is

shown in Figure 3.1. Here, 75891 query residues from 268 query protein chains were

aligned to 235138 subject proteins for the generation of four histograms. Due to the

absence of information related to entropy and density calculations, 2159 residues were

eliminated before obtaining these graphs.

The frequency distribution plot of the query proteins to the protein length (Figure

3.1A) is a left-truncated normal distribution. The mean, median and mode of this

distribution was found to be 283.18, 266.5 and 340, respectively. The two maxima

correspond to the lengths 200 and 350 at which the frequency of proteins is 38 and

39 respectively. The length of query proteins range from 50 to 950 but, 95.90% of

the proteins have length between 100 and 650. This means that the proteins of the

268 protein list are of average length, neither too short nor too long. The frequency

distribution plot of 73732 query residues with respect to packing density (Figure

3.1B) can essentially be described as a normal distribution. The mean, median and

mode of this distribution was found to be 14.43, 14 and 15, respectively. Packing

density positions below 4 and above 25 have negligible residues, 0.054% and 0.26%
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Figure 3.1: Frequency distributions for the characterization of learning set list of
proteins. A total of 268 protein chains with 75891 query residues and a total of 235138
aligned subject protein sequences were used for these calculations. A. Frequency of
query residues (ordinate) with respect to the length of each protein (abscissa) of the
268 learning set list. B. Frequency of 73732 query residues (ordinate) with respect to
each packing density (abscissa). C. Frequency of query proteins (ordinate) is plotted
against number of alignments (abscissa) obtained from NCBI BLASTP outputs for the
learning set list. D. Frequency of 235138 aligned subject sequences (ordinate) with
respect to BLAST bit scores (abscissa).
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respectively, associated with them. Majority of the residues (58.75%) fall between

packing density 11 and 17. The curve attains its maxima at packing density 15 where

a total of 6602 residues show their presence. The number of alignments associated

with the query proteins of the learning set list (Figure 3.1C) ranges from 3 for 2UGIA

to 10, 257 for 1YCSB. Most of the residues (57.46%) have alignment lengths between

1000− 1200 and clustering at the extremes is not seen here. A right skewed histogram

is obtained when the frequency of subject proteins is plotted against BLASTP bitscores

for the learningset list (Figure 3.1D). A right skewed distribution is consistent with

that for the randomized set of bitscores.46 Bitscores range from 50 − 1400 and have a

total of 71372 subject proteins (27.46%) falling between bitscore value 50− 100.

3.1.2 Characterization of Monomeric List

The monomeric list has been characterized on the basis of the chain length of

the respective proteins, their experimental determination method, resolution, R-factor,

free R value, query length and number of alignments generated at each query residue

position. The various frequency distribution plots of the query residues have also been

noted here. Table 3.3 enlists the 75 monomeric proteins and the parameters that were

used to cull the list in PISCES.

Table 3.3: Monomeric List of 75 proteins. PISCES culled
list of 75 monomeric proteins. Each PDB ID obtained
from chack 05 monomeric list of proteins, was culled by
considering individual protein chains. The percentage
sequence identity cutoff of ≤ 25%, a resolution of 0.0 −
2.5Å, R-factor ≤ 0.3 and sequence length 40 − 10000 was
used for culling.

PDB ID Chain Exptl. Resolution R-factor FreeRvalue
13PK A XRAY 2.5 0.22 0.29
1A7V A XRAY 2.3 0.19 0.24
1AFK A XRAY 1.7 0.21 0.27
1AG9 A XRAY 1.8 0.2 0.25
1AH7 A XRAY 1.5 0.2 0.23
1AKO A XRAY 1.7 0.17 0.2
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PDB ID Chain Exptl. Resolution R-factor FreeRvalue
1AMU A XRAY 1.9 0.21 0.25
1ATL A XRAY 1.8 0.16 1
1AW7 A XRAY 1.95 0.18 1
1AYL A XRAY 1.8 0.2 0.23
1BEA A XRAY 1.95 0.2 0.29
1BIN A XRAY 2.2 0.2 0.3
1BKZ A XRAY 1.9 0.19 0.26
1BYO A XRAY 2 0.19 0.23
1C02 A XRAY 1.8 0.2 0.25
1CKI A XRAY 2.3 0.19 0.28
1CLU A XRAY 1.7 0.2 0.26
1CQX A XRAY 1.75 0.18 0.21
1DYS A XRAY 1.6 0.18 0.24
1E0S A XRAY 2.28 0.17 0.23
1EHY A XRAY 2.1 0.19 0.23
1EPA A XRAY 2.1 0.2 1
1EWF A XRAY 1.7 0.2 0.25
1FEH A XRAY 1.8 0.18 0.23
1FGK A XRAY 2 0.21 0.26
1FJM A XRAY 2.1 0.18 1
1FKD A XRAY 1.72 0.18 1
1FMT A XRAY 2 0.21 0.26
1G2A A XRAY 1.75 0.19 0.25
1GAR A XRAY 1.96 0.17 0.29
1GJM A XRAY 2.2 0.18 0.22
1HF8 A XRAY 2 0.19 0.22
1ILR 1 XRAY 2.1 0.2 1
1KPT A XRAY 1.75 0.17 0.22
1KWA A XRAY 1.93 0.25 0.3
1MPG A XRAY 1.8 0.19 0.25
1MSS A XRAY 2.4 0.2 1
1NAW A XRAY 2 0.2 0.27
1NP4 A XRAY 1.5 0.2 0.26
1PBG A XRAY 2.3 0.16 0.24
1PDA A XRAY 1.76 0.19 1
1PPO A XRAY 1.8 0.15 1
1QAZ A XRAY 1.78 0.18 0.23
1QCI A XRAY 2 0.23 1

1QDM A XRAY 2.3 0.22 1
1QHA A XRAY 2.25 0.21 0.28
1QJP A XRAY 1.65 0.15 0.2

1QME A XRAY 2.4 0.2 0.23
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PDB ID Chain Exptl. Resolution R-factor FreeRvalue
1QPA A XRAY 1.8 0.16 1
1QTQ A XRAY 2.25 0.24 0.25
1RB3 A XRAY 2.3 0.16 1
1RHS A XRAY 1.36 0.17 0.23
1SHK A XRAY 1.9 0.17 0.22
1THT A XRAY 2.1 0.23 1
1TOA A XRAY 1.8 0.18 0.2
1TON A XRAY 1.8 0.2 1
1URP A XRAY 2.3 0.23 0.27
1VBT A XRAY 2.3 0.2 0.25
1XGS A XRAY 1.75 0.19 0.23
256B A XRAY 1.4 0.16 1
256L A XRAY 1.8 0.16 1
2ACY A XRAY 1.8 0.17 0.23
2ATJ A XRAY 2 0.18 0.2
2BC2 A XRAY 1.7 0.2 0.25
2BLS A XRAY 2 0.22 1
2G3P A XRAY 1.9 0.26 0.3
2IHL A XRAY 1.4 0.17 1

2MBR A XRAY 1.8 0.2 0.26
2SCP A XRAY 2 0.18 1
2SHP A XRAY 2 0.2 0.27
2TPS A XRAY 1.25 0.18 0.22
2UGI A XRAY 2.2 0.23 0.28
3PMG A XRAY 2.4 0.16 0.19
830C A XRAY 1.6 0.21 0.27
8PTI A XRAY 1.8 0.16 1

Note that only 65 monomeric protein chains (see Appendix Table C.1) are just the

subset of the 268 protein list. The monomeric list of 75 protein chains were obtained

as a result of applying PISCES to the original set of 103 homodimeric proteins.34 The

protein length and the number of alignments have been compiled in Table 3.4 for the

monomeric list of 75 proteins.
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Table 3.4: Query length and number of alignments of
individual proteins for the list of 75 monomeric proteins.

PDB
ID +
Chain

No. of
Query
Residues

No.
of
Align.

PDB
ID +
Chain

No. of
Query
Residues

No.
of
Align.

PDB
ID +
Chain

No. of
Query
Residues

No.
of
Align.

13PKA 415 1012 1FJMA 330 1002 1RB3A 159 1000
1A7VA 125 197 1FKDA 107 1121 1RHSA 296 1008
1AFKA 124 615 1FMTA 314 1000 1SHKA 173 1000
1AG9A 175 747 1G2AA 168 1000 1THTA 305 85
1AH7A 245 271 1GARA 212 1000 1TOAA 313 1020
1AKOA 268 1000 1GJMA 414 1000 1TONA 235 1012
1AMUA 563 2309 1HF8A 289 381 1URPA 271 1000
1ATLA 202 1005 1ILR1 152 247 1VBTA 165 1000
1AW7A 194 86 1KPTA 105 18 1XGSA 295 1000
1AYLA 541 619 1KWAA 88 1340 256BA 106 58
1BEAA 127 340 1MPGA 282 795 256LA 164 526
1BINA 143 415 1MSSA 243 1000 2ACYA 98 796
1BKZA 135 920 1NAWA 419 1005 2ATJA 308 1002
1BYOA 99 369 1NP4A 184 52 2BC2A 227 1000
1C02A 166 134 1PBGA 468 1002 2BLSA 358 1000
1CKIA 317 1004 1PDAA 313 1005 2G3PA 225 219
1CLUA 166 1001 1PPOA 216 1001 2IHLA 129 916
1CQXA 403 1003 1QAZA 351 60 2MBRA 340 970
1DYSA 348 205 1QCIA 262 436 2SCPA 174 447
1E0SA 174 1001 1QDMA 478 1763 2SHPA 525 1577
1EHYA 294 1005 1QHAA 917 1408 2TPSA 227 1002
1EPAA 164 295 1QJPA 171 455 2UGIA 84 3
1EWFA 456 335 1QMEA 702 1001 3PMGA 561 1004
1FEHA 574 1015 1QPAA 345 463 830CA 168 1099
1FGKA 310 1003 1QTQA 553 1003 8PTIA 58 1543

The frequency distribution plots of the monomeric list for various parameters are

shown in Figure 3.2. The frequency distributions have been obtained from a total

of 20076 query residues belonging to 75 monomeric proteins. The total number of

alignments generated for this set was 59751.

The residue frequency and protein length plot of query proteins show a mixed

character (Figure 3.2A). The length of proteins range from 100 − 950. Only a few

proteins (2.67%) have length greater than 600 residues and approximately 21.33%
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Figure 3.2: Frequency distribution plots for the characterisation of monomeric
list of proteins. A total of 75 monomeric proteins with 20076 query residues
and a total of 59751 aligned subject protein sequences were used for these
calculations. A. Frequency of query protein (ordinate) have been plotted against their
length (abscissa). B. Number of query residues (ordinate) at each packing density
position (abscissa) has been plotted here. C. Frequency of query proteins (ordinate)
versus the number of BLASTP alignments (abscissa) and D. Frequency of subject
proteins (ordinate) with respect to BLAST bit scores (abscissa).
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of query proteins have the maximum frequency at protein length 200. The density

distribution plot of the monomeric query residues (Figure 3.2B) show a normal

distribution that ranges from density 3 − 28. The curve attains its maxima at density

14 and 15 at which 18.08% residues are found. The histogram for the number

of alignments of the monomeric list proteins has been shown in (Figure 3.2C). It

ranges from 100 − 2400 alignments with maximum frequency of 52% between

1000 − 1200. The histogram plotted for the frequency of subject proteins versus

BLAST bit score is a right skewed normal distribution (Figure 3.2D). It ranges from

50− 1900 and attains its maxima at bit score value equal to 100 where its frequency is

14382 (24.07% of the total residues).

3.1.3 Characterization of Homodimeric List

The homodimeric list consists of 106 proteins that were aligned to a total of 83048

subject proteins. From a total of 29427 query residues, a total of 28734 residues were

processed because the remaining 693 residues were eliminated due to non-availability

of information from either the mmCIF files or the BLASTP output files. The

homodimeric list of 106 proteins was obtained as a result of applying PISCES to

the original set of 122 homodimeric proteins that were specifically characterized by

Bahadur et al., 2003.34 Here, the complete list is characterized according to the standard

set of parameters (discussed in Chapter 2), the length of the constituent proteins and

their number of alignments. The frequency distribution plots for various parameters

have also been presented here.

Table 3.5 summarizes the homodimeric list, their protein database (RCSB)

identifiers, chain identifiers, mode of structure determination, resolution, R-factor and

free R value.
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Table 3.5: Homodimeric list of 106 proteins. Chain culled
list of 106 homodimeric proteins. Each protein chain shares
a percentage sequence identity of ≤ 25%, has a resolution
between 0.0 − 2.5Å, R-factor ≤ 0.3, and sequence length
between 40− 10000.

PDB ID Chain Exptl. Resolution R-factor FreeRvalue
12AS A XRAY 2.2 0.16 0.29
1A4I A XRAY 1.5 0.2 0.23
1A4U A XRAY 1.92 0.2 0.24
1AA7 A XRAY 2.08 0.21 0.28
1ADE A XRAY 2 0.2 1
1AFW A XRAY 1.8 0.19 0.24
1AJS A XRAY 1.6 0.17 1

1AMK A XRAY 1.83 0.11 1
1AOR A XRAY 2.3 0.15 1
1AQ6 A XRAY 1.95 0.19 0.25
1AUO A XRAY 1.8 0.21 0.27
1B3A A XRAY 1.6 0.17 0.24
1B5E A XRAY 1.6 0.19 0.21
1B67 A XRAY 1.48 0.19 0.27
1B8A A XRAY 1.9 0.17 0.2
1B8J A XRAY 1.9 0.18 0.2

1BAM A XRAY 1.95 0.19 1
1BBH A XRAY 1.8 0.18 1
1BD0 A XRAY 1.6 0.24 0.27
1BIF A XRAY 2 0.18 0.25
1BIQ A XRAY 2.05 0.19 0.26
1BIS A XRAY 1.95 0.2 0.26
1BJW A XRAY 1.8 0.21 0.27
1BMD A XRAY 1.9 0.15 1
1BRW A XRAY 2.1 0.23 0.28
1BSL A XRAY 1.95 0.19 1
1BSR A XRAY 1.9 0.18 1
1BUO A XRAY 1.9 0.21 0.25
1BXG A XRAY 2.3 0.17 1
1BXK A XRAY 1.9 0.2 1
1CDC A XRAY 2 0.19 1
1CG2 A XRAY 2.5 0.2 0.22
1CHM A XRAY 1.9 0.18 1
1CMB A XRAY 1.8 0.19 1
1CNZ A XRAY 1.76 0.2 0.26
1COZ A XRAY 2 0.2 0.26
1CSH A XRAY 1.65 0.16 1
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PDB ID Chain Exptl. Resolution R-factor FreeRvalue
1CTT A XRAY 2.2 0.19 1
1CVU A XRAY 2.4 0.2 0.23
1CZJ A XRAY 2.16 0.2 0.26
1DAA A XRAY 1.94 0.18 1
1DOR A XRAY 2 0.17 0.21
1DPG A XRAY 2 0.21 0.26
1DQS A XRAY 1.8 0.17 0.22
1E98 A XRAY 1.9 0.19 0.24
1EBH A XRAY 1.9 0.19 1
1F13 A XRAY 2.1 0.18 0.24
1FIP A XRAY 1.9 0.2 1
1FRO A XRAY 2.2 0.21 0.23
1GVP A XRAY 1.6 0.21 0.29
1HJR A XRAY 2.5 0.16 1
1HSS A XRAY 2.06 0.19 0.22
1HXP A XRAY 1.8 0.19 1
1ICW A XRAY 2.01 0.19 0.27
1IMB A XRAY 2.2 0.17 1
1ISA A XRAY 1.8 0.19 1
1IVY A XRAY 2.2 0.21 0.27
1JHG A XRAY 1.3 0.13 0.17
1JSG A XRAY 2.5 0.19 0.26
1KBA A XRAY 2.3 0.2 1
1KPF A XRAY 1.5 0.21 0.24
1M6P A XRAY 1.8 0.22 0.28
1MKB A XRAY 2 0.18 0.24
1MOR A XRAY 1.9 0.19 1
1NOX A XRAY 1.59 0.19 0.2
1NSE A XRAY 1.9 0.21 0.28
1NSY A XRAY 2 0.17 0.23
1OAC A XRAY 2 0.16 1
1OPY A XRAY 1.9 0.2 0.27
1PGT A XRAY 1.8 0.18 1
1QFH A XRAY 2.2 0.22 0.27
1QHI A XRAY 1.9 0.23 0.29
1QR2 A XRAY 2.1 0.22 0.28
1REG X XRAY 1.9 0.18 0.21
1RPO A XRAY 1.4 0.19 1
1SES A XRAY 2.5 0.18 1
1SLT A XRAY 1.9 0.17 1
1SMN A XRAY 2.04 0.17 1
1SMT A XRAY 2.2 0.22 0.25
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PDB ID Chain Exptl. Resolution R-factor FreeRvalue
1SOX A XRAY 1.9 0.17 0.22
1TC1 A XRAY 1.41 0.19 0.23
1TOX A XRAY 2.3 0.23 0.31
1TRK A XRAY 2 0.16 1
1UBY A XRAY 2.4 0.2 1
1UTG A XRAY 1.34 0.23 1
1VOK A XRAY 2.1 0.2 1
1WTL A XRAY 1.9 0.16 1
1XSO A XRAY 1.49 0.1 0.17
2ARC A XRAY 1.5 0.18 0.23
2HDH A XRAY 2.2 0.2 0.25
2ILK A XRAY 1.6 0.16 1
2LIG A XRAY 2 0.18 1
2NAC A XRAY 1.8 0.15 1
2OHX A XRAY 1.8 0.17 1
2SPC A XRAY 1.8 0.2 1
2SQC A XRAY 2 0.15 0.19
2TCT A XRAY 2.1 0.18 1
2TGI A XRAY 1.8 0.17 1
3DAP A XRAY 2.2 0.17 0.23
3GRS A XRAY 1.54 0.19 1
3SDH A XRAY 1.4 0.16 1
3SSI A XRAY 2.3 0.18 1

5CSM A XRAY 2 0.19 0.24
5RUB A XRAY 1.7 0.18 1
8PRK A XRAY 1.85 0.19 0.23
9WGA A XRAY 1.8 0.17 1

Note that only 99 homodimeric protein chains (see Appendix Table C.2) are just the

subset of the 268 protein list. The homodimeric list of 106 protein chains were obtained

as a result of applying PISCES to the original set of 122 homodimeric proteins.34 Table

3.6 enlists the protein length and their number of alignments along with their combined

protein database (RCSB) identifier and chain identifiers for the homodimeric list of

proteins.
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Table 3.6: Query length and number of alignments of
individual proteins for the list of 106 homodimeric proteins

PDB
ID +
Chain

No. of
Query
Residues

No.
of
Align.

PDB
ID +
Chain

No. of
Query
Residues

No.
of
Align.

PDB
ID +
Chain

No. of
Query
Residues

No.
of
Align.

12ASA 330 227 1COZA 129 1096 1QFHA 212 3209
1A4IA 301 1001 1CSHA 435 1002 1QHIA 366 225
1A4UA 254 1003 1CTTA 294 893 1QR2A 230 1000
1AA7A 158 1000 1CVUA 552 1731 1REGX 122 28
1ADEA 431 1000 1CZJA 111 85 1RPOA 65 48
1AFWA 393 1001 1DAAA 282 1000 1SESA 421 1000
1AJSA 412 1000 1DORA 311 1000 1SLTA 134 733
1AMKA 251 1000 1DPGA 485 1000 1SMNA 245 413
1AORA 605 319 1DQSA 393 1001 1SMTA 122 1000
1AQ6A 253 1000 1E98A 215 1000 1SOXA 466 1119
1AUOA 218 915 1EBHA 436 1000 1TC1A 220 1000
1B3AA 67 607 1F13A 731 419 1TOXA 535 37
1B5EA 246 563 1FIPA 98 1000 1TRKA 680 1001
1B67A 68 312 1FROA 183 1026 1UBYA 367 1001
1B8AA 438 1122 1GVPA 87 45 1UTGA 70 55
1B8JA 449 896 1HJRA 158 692 1VOKA 200 573
1BAMA 213 15 1HSSA 124 248 1WTLA 108 1014
1BBHA 131 162 1HXPA 348 467 1XSOA 150 1003
1BD0A 388 1000 1ICWA 72 344 2ARCA 164 130
1BIFA 469 1069 1IMBA 277 1001 2HDHA 293 1195
1BIQA 375 1001 1ISAA 192 1000 2ILKA 160 240
1BISA 166 1000 1IVYA 452 1099 2LIGA 164 222
1BJWA 382 1000 1JHGA 101 123 2NACA 393 1001
1BMDA 327 1002 1JSGA 114 72 2OHXA 374 1005
1BRWA 433 849 1KBAA 66 256 2SPCA 107 2661
1BSLA 324 1001 1KPFA 126 1001 2SQCA 631 970
1BSRA 124 623 1M6PA 152 112 2TCTA 207 1002
1BUOA 121 1000 1MKBA 171 951 2TGIA 112 1000
1BXGA 356 1000 1MORA 368 1000 3DAPA 320 137
1BXKA 355 1000 1NOXA 205 1000 3GRSA 478 1001
1CDCA 99 186 1NSEA 444 371 3SDHA 146 633
1CG2A 393 1000 1NSYA 271 1000 3SSIA 113 66
1CHMA 401 1000 1OACA 727 481 5CSMA 256 87
1CMBA 104 82 1OPYA 131 183 5RUBA 490 1034
1CNZA 363 1000 1PGTA 210 1003 8PRKA 287 1001
9WGAA 171 1546
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The frequency distribution plots for the homodimeric list of proteins has been

shown in Figure 3.3. The four histograms shown here were obtained from the

information provided by 28734 aligned query residues belonging to 106 proteins. The

total number of alignments generated for this set was 83048.
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Figure 3.3: Frequency distribution plots for the characterization of homodimeric
list of proteins. A total of 106 homodimeric proteins with 28734 aligned query
residues and a total of 83048 aligned subject protein sequences were used for these
plots. A. Frequency of query proteins (ordinate) have been plotted against their length
(abscissa). B. Number of query residues (ordinate) at each packing density (abscissa)
position has been plotted here. C. Frequency of query proteins (ordinate) versus
the number of BLASTP alignments (abscissa) and D. Frequency of subject proteins
(ordinate) with respect to BLAST bit scores (abscissa).

The histogram (Figure 3.3A) shows the number of query proteins as a function of

their length. The plot is not a normal distribution and the length of the proteins of the

homodimeric list range from 100 − 750. The maximum number of proteins (18.87%)
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have a length between 100−150. Only a few proteins (6.604%) have residues more than

500. The packing density frequency distribution curve shown in Figure 3.3B is normal

in character. It ranges from density 3− 30. Most of the residues (87.40%) lie between

density 9−20. The occupancy of residues beyond density 27 is minimal (0.05%). The

frequency of query proteins versus number of alignments has been plotted in Figure

3.5C. The curve does not represent a normal distribution and the number of alignments

range from 100− 3300. The maximum number of proteins (53.77%) have alignments

lying between 1000 − 1100. Only 4 proteins (3.77%) have number of alignments

larger than 1200. The frequency of subject proteins versus BLAST bit score histogram

is essentially a right skewed normal distribution shown in Figure 3.3D. It ranges from

bit scores 50 − 1550 and attains maxima between bit score value 50 − 100. 26.92%

of the subject proteins have their bit score values in that range. The bit score values

beyond 950 are associated with minimal residues (0.17%). A right skewed distribution

of blast bit scores was obtained which is consistent with the randomized set of bit score

distribution.

3.1.4 Characterization of Heterodimeric List

In this section, the heterodimeric list obtained as discussed in Chapter 2 has

been characterized on the basis of various parameters like protein database and chain

identifiers, resolution, R-factor, free R value, number of alignments, protein length and

frequency distribution plots for a set of parameters. The 50 protein chains belonging

to this list along with their PISCES culling parameters have been enlisted in Table 3.7.

Table 3.7: Heterodimeric list of 50 protein chains. A list
of 50 chain culled heterodimeric protein chains. All the
proteins in the list have a resolution of 0.0 − 2.5Å and a
sequence length of 40 − 10000. They share a sequence
percentage identity of ≤ 25% and have R-factor ≤ 0.3.

PDB ID Chain Exptl. Resolution R-factor FreeRvalue
1A2K A XRAY 2.5 0.21 0.27
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PDB ID Chain Exptl. Resolution R-factor FreeRvalue
1AK4 A XRAY 2.36 0.24 0.31
1AK4 C XRAY 2.36 0.24 0.31
1AVW B XRAY 1.75 0.19 0.21
1BRS A XRAY 2 0.17 1
1BRS D XRAY 2 0.17 1
1CSE E XRAY 1.2 0.18 1
1CSE I XRAY 1.2 0.18 1
1DAN U XRAY 2 0.19 0.22
1DAN T XRAY 2 0.19 0.22
1DAN L XRAY 2 0.19 0.22
1DFJ E XRAY 2.5 0.19 1
1DFJ I XRAY 2.5 0.19 1
1DHK B XRAY 1.85 0.18 0.22
1DHK A XRAY 1.85 0.18 0.22
1EFN B XRAY 2.5 0.21 0.28
1EFU B XRAY 2.5 0.17 0.28
1EFU A XRAY 2.5 0.17 0.28
1FIN B XRAY 2.3 0.21 1
1FLE I XRAY 1.9 0.2 1
1GOT G XRAY 2 0.21 0.29
1GOT B XRAY 2 0.21 0.29
1GOT A XRAY 2 0.21 0.29
1GUA B XRAY 2 0.22 1
1HIA I XRAY 2.4 0.2 0.31

1HWG B XRAY 2.5 0.2 0.29
1HWG A XRAY 2.5 0.2 0.29
1KB5 B XRAY 2.5 0.22 1
1MCT A XRAY 1.6 0.17 1
1NCA L XRAY 2.5 0.19 1
1NMB N XRAY 2.2 0.21 1
1OSP O XRAY 1.95 0.23 0.29
1STF I XRAY 2.37 0.19 1
1STF E XRAY 2.37 0.19 1
1TX4 A XRAY 1.65 0.17 0.21
1TX4 B XRAY 1.65 0.17 0.21
1VFB B XRAY 1.8 0.18 1
1VFB C XRAY 1.8 0.18 1
1YCS A XRAY 2.2 0.2 0.29
1YCS B XRAY 2.2 0.2 0.29
1YDR E XRAY 2.2 0.19 1
2PCC A XRAY 2.3 0.17 1
2PCC B XRAY 2.3 0.17 1
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PDB ID Chain Exptl. Resolution R-factor FreeRvalue
2PTC I XRAY 1.9 0.19 1
2SIC I XRAY 1.8 0.18 1
2TRC P XRAY 2.4 0.19 0.28
3SGB E XRAY 1.8 0.12 1
3SGB I XRAY 1.8 0.12 1
4CPA A XRAY 2.5 0.2 1
4HTC I XRAY 2.3 0.17 1

Note that only 40 heterodimeric protein chains (see Appendix Table C.3) are just the

subset of the 268 protein list. The heterodimeric list of 50 protein chains were obtained

as a result of applying PISCES to the original set of 70 heterodimeric proteins.33 The

query protein length and the number of alignments have been enlisted in Table 3.8 for

each protein identifier belonging to the 50 protein chains of the heterodimeric list.

Table 3.8: Query length and number of alignments of
individual proteins for the list of 50 heterodimeric protein
chains.

PDB
ID +
Chain

No. of
Query
Residues

No.
of
Align.

PDB
ID +
Chain

No. of
Query
Residues

No.
of
Align.

PDB
ID +
Chain

No. of
Query
Residues

No.
of
Align.

1A2KA 127 401 1EFUB 282 1159 1TX4A 198 1003
1AK4A 165 1000 1FINB 260 1001 1TX4B 177 1001
1AK4C 145 1000 1FLEI 57 272 1VFBB 116 1001
1AVWB 177 342 1GOTA 350 1020 1VFBC 129 1071
1BRSA 110 106 1GOTB 340 3674 1YCSA 199 418
1BRSD 89 118 1GOTG 73 222 1YCSB 239 10257
1CSEE 274 1049 1GUAB 81 169 1YDRE 350 1009
1CSEI 71 186 1HIAI 48 13 2PCCA 296 1515
1DANL 152 5215 1HWGA 191 1006 2PCCB 108 1010
1DANT 80 109 1HWGB 237 515 2PTCI 58 1718
1DANU 121 83 1KB5B 117 1012 2SICI 107 55
1DFJE 124 628 1MCTA 223 1030 2TRCP 217 538
1DFJI 457 4418 1NCAL 214 1002 3SGBE 185 349
1DHKA 496 1021 1NMBN 470 1000 3SGBI 56 572
1DHKB 223 769 1OSPO 257 390 4CPAA 307 1068
1EFNB 152 1000 1STFE 212 1001 4HTCI 65 35
1EFUA 385 1000 1STFI 98 132
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The frequency distribution plots for the heterodimeric list of protein chains have

been plotted in Figure 3.4. A total of 9665 residues belonging to the 50 heterodimeric

protein chains that were aligned to a total of 55683 subject proteins have been processed

for plotting these histograms. But only a total of 9230 aligned residues were used for

obtaining these histograms. Due to the unavailability of coordinate information from

the mmCIF files or the absence of residue positions in the BLASTP output files, or the

presence of flagged residue positions in the entropy files, a total of 435 residues were

eliminated.

The histogram obtained by plotting the number of proteins at each protein

length increment, shown in Figure 3.4A, ranges from 50 − 500. The graph is a

right skewed normal distribution. Most of the proteins (40%) have length between

50−150. The density distribution plot (Figure 3.4B) for the heterodimers is essentially

a normal distribution that ranges from packing density increment 3 − 31. Maximal

occupancy of 9.48% and 8.99% are associated with packing density increments

14− 16. Residue occupancy below packing density 3 and above packing density 26 is

nominal (0.15%). The frequency distribution representing number of query proteins

as a function of the number of alignments is shown in Figure 3.4C. The number of

alignments range from 500 − 10500. Most of the proteins (92%) have number of

aligned subject proteins below 2000. Two maxima, obtained at 0 − 500 alignments

and 1000 − 1500 have a protein occupancy of 34% each. Only 8% of the proteins

are aligned to more than 2000 subject proteins. The number of subject proteins at

each BLAST bit score increment has been presented in Figure 3.4D. The graph looks

like a left truncated normal distribution. It attains its maxima between BLAST bit

scores 50 and 100 which is characterized by an occupancy of 16671 subject proteins

(29.94%). The BLAST bit score values range from 50 − 1050 and have a nominal

occupancy of 0.49% above BLAST score value 700.
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Figure 3.4: Frequency distribution plots for the characterization of heterodimeric
list of protein chains. A total of 50 heterodimeric protein chains with 9665 query
residues and a total of 55683 aligned subject protein sequences were used for these
calculations. A. Frequency of query proteins (ordinate) have been plotted against their
length (abscissa). B. Number of query residues (ordinate) at each packing density
position (abscissa) has been plotted here. C. Frequency of query proteins (ordinate)
versus the number of BLASTP alignments (abscissa) and D. Frequency of subject
proteins (ordinate) with respect to BLAST bit scores (abscissa).
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3.2 Aggregate Correlation Plots

In this section, various aggregate correlation plots have been summarized for

the four protein lists. Overlay plot for the comparison of entropy values obtained

from different methods, packing density versus relative surface accessibility plots

and correlation plots for the various homology-based parameters have been evaluated

here. Comparisons of homology based parameters of the proteins have been performed

at two levels. In the first level, the homology-based parameters of proteins in the mixed

aggregate plot (consisting of proteins in monomeric, homodimeric and heterodimeric

proteins) have been compared. In the second level, comparisons of different protein

trends in each of these lists are carried out individually. Residue loss after the

processing of aggregate set of aligned residues, was found to be 2164 for the learning

set list (see subsection 3.1.1), 700 for the monomeric list (see subsection 3.1.2), 690

for the homodimeric list (see subsection 3.1.3) and 435 for the heterodimeric list (see

subsection 3.1.4). Hence, for the double average correlation plots and the frequency

distribution plots, a total of 73727 residues of the learning set list, 20075 residues of

the monomeric list, 28733 residues of the homodimeric list and 9230 residues of the

heterodimeric list were processed.

3.2.1 Validation of Packing Density Calculation

The packing density calculation was verified by two independent methods. First

by comparison of inverse packing density trend with residue hydrophobicity and

residue hydrophilicity trends. Second, by comparing the aggregate density of the four

protein lists with their aggregate relative surface accessibility values obtained from

NACCESS31 for the specified protein chains.

For investigating the density-hydrophobicity correlation, hydrophobicity scale

was selected. Figure 3.5A represents the aggregate hydrophobicity trends of 268

protein list for various hydrophobicity scales, like, Hopp Woods,47 Engelman Steitz48 ,
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Sharp Honig49 and Miyazawa Jernigan,50 as a function of inverse packing density. Two

sharp peaks that compare closely were obtained from Sharp Honig and Miyazawa Jernigan

scales. Due to its widespread use in the prediction of retention time in hydrophobic

interaction chromatography, Miyazawa Jernigan hydrophobicity scale was chosen for

this work.

Figure 3.5B represents an overlay plot of some homology-based parameters like

entropy, fraction hydrophilic, fraction hydrophobic, fraction non-hydrophobic and

fraction gaps. The trends of fraction hydrophobic and fraction non-hydrophobic

were found to be the inverse of each other. The overall aggregate trend of entropy

and fraction hydrophilic were found to be comparable in terms of their relation

with inverse packing density. The aggregate curve obtained from the fraction gaps

analysis shows a linear increase with increase in inverse packing density and hence

appears to be less helpful in providing any insights towards justifying packing density

calculations. Hence, fraction hydrophobic and fraction hydrophilic were chosen for

this study.

Figure 3.6A represents an aggregate overlay plot of entropy (plotted on primary

axis) and fraction hydrophilic (plotted on secondary axis) for the four protein lists, 268

list, monomeric, homodimeric and heterodimeric lists. The hydrophilic fraction is

expected to be low in the core of the protein where the packing density is high and the

hydrophilic fraction is expected to be higher as we proceed towards the surface (where

the packing density is low) from the protein’s core. As is expected, the hydrophilic

fraction increases with increase in inverse packing density. Figure 3.6B represents the

aggregate overlay plot of entropy (primary axis) and fraction hydrophobic (secondary

axis) for the learning set list (268 protein chains), monomeric list, homodimeric list

and heterodimeric list of protein chains. The hydrophobic fraction is expected to have

higher value towards the core of the protein (as indicated by the notion of Hydrophobic

Collapse51) than towards the protein surface, where its value should be minimum. As
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Figure 3.5: Choice of hydrophobicity scale and parameters. Aggregate correlation
plots of homology-based parameters averaged over 75891 query residues belonging
to 268 learning set list of proteins (ordinate) has been plotted against inverse
packing density (abscissa). A total of 235138 alignments were generated for these
calculations. A. An overlay plot of aggregate hydrophobicity values obtained
from different hydrophobicity scales (ordinate) like, hopp woods, engelman steitz,
sharp honig and miyazawa jernigan, has been plotted against inverse packing density
(abscissa). B. An overlay plot of aggregate entropy (ordinate, primary)and other
homology based parameters (ordinate, secondary) like, fraction hydrophobic, fraction
hydrophilic, fraction non-hydrophobic and fraction gaps versus inverse packing density
(abscissa).
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expected, the aggregate trend of fraction hydrophobic attains a maxima at lower inverse

packing density (higher packing density) and decreases as we move towards higher

inverse packing density value (lower packing density) from that maxima. Hence, from

the study of the two homology-based parameters, fraction hydrophilic and fraction

hydrophobic, it was observed that although a coarse grained approach, the packing

density calculation method used in this work, provides a rough representation of surface

accessibility. Hence, higher packing density refers to the core of the protein and lower

packing density refers to the protein surface.

Again, for the confirmation of this notion, a previously recognized surface

accessibility determination method from all atom 3D coordinates, NACCESS,31 was

used to compare the packing density values with the relative surface accessibility

values. Figure 3.7, represents individual plots of relative surface accessibility as a

function of packing density for the four protein lists.

The aggregate plots of relative surface accessibility (RSA) versus packing density

shows two major regions, one in which the RSA value decreases linearly with increase

in packing density and the other in which the RSA value stays almost constant

with increase in packing density. For all the four protein lists, the relative surface

accessibility values (RSA) was found to be high at lower packing density values

and almost zero at high packing density positions. This suggests that the residues

associated with lower packing density have higher relative surface accessibility and

hence are expected to lie on the surface of the protein. And, as expected, the residues

that are associated with high packing density have almost zero surface accessibility,

which means that they form the core of the protein. Hence, it means that the coarse

grain approach of calculating packing density used in this work coincides with the

NACCESS surface accessibility predictions. Although this is the general trend for

most of the protein residues, a few residues associated with lower packing density

positions have RSA value equal to zero. Deviations from the aggregate trend shown by
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Figure 3.6: Hydrophobic hydrophilic fraction comparison. An aggregate correlation
plot of homology based parameters (ordinate) for 268 protein chains from the learning
set list, 75 monomeric proteins, 106 homodimeric proteins and 50 heterodimeric protein
chains versus inverse packing density (abscissa). A. An aggregate overlay plot of 40%
entropy (ordinate, left) of the learning set list and fraction hydrophilic (ordinate, right)
for all the four protein lists versus inverse packing density (abscissa). B. An aggregate
overlay plot of 40% entropy (ordinate, left) of the learning set list proteins and fraction
hydrophobic (ordinate, secondary) for all the four protein lists versus inverse packing
density (abscissa).
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Figure 3.7: Density-relative surface accessibility comparison. Aggregate correlation
plot of relative surface accessibility (ordinate) (¥, obtained from NACCESS) and
packing density (abscissa) for A. 75 specially characterized monomeric proteins. Here
the aggregate RSA values were obtained by double averaging a total of 20076 query
residues at each packing density position. B. 106 homodimeric proteins. Here, the
RSA values of a total of 28734 query residues were double averaged to obtain the
aggregate RSA values. C. 50 heterodimeric list. Here, the aggregate RSA values
were obtained by averaging RSA values from a total of 9665 query residues and D.
268 learning set list of proteins. The RSA values were obtained by double averaging
relative surface accessibility values for a total of 75891 residues at each packing density
position.
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the learning set list of proteins (Figure 3.7D) is more pronounced for the heterodimeric

aggregate list (Figure 3.7C). While the monomeric list shows minimal deviations from

the two region trend, aggregate analysis with the homodimeric list (Figure 3.7B) shows

an intermediate behavior.

3.2.2 Validation of Entropy Calculations

Various entropy values calculated from different methods suggested in the literature

have been evaluated here. The entropy values were calculated by taking into account

only the residues but not the gaps. Three types of entropy values, 40% entropy, 6-point

entropy and HSSP derived entropy values (as discussed in Chapter 2) were calculated

and compared against each other. An overlay plot of the three entropy values for the

268 protein list is shown in Figure 3.8.

From the entropy- inverse density plot shown in Figure 3.8, the nature of the curve

is found to be similar in shape for all the three entropy values. This proves that the

method of entropy calculation used in this study gives comparable outcomes as any

other prevalent entropy calculation methods. From this aggregate plot, two regions

have been specified, Region I that increases linearly with inverse density and Region II

that stays more or less the same with increase in inverse density.

3.2.3 Entropy Inverse-Density Correlation Plots

The aggregate trend of the entropy-inverse density plot for the learning set list,

monomeric list, homodimeric list and heterodimeric list is shown in Figure 3.9. The

aggregate entropy-inverse density correlation plots of the four lists show similar

trends. Two major regions were consistently noted in all these graphs. Major Region

I, associated with packing density 11−25, corresponds to the portion of the curve where

average sequence entropy increases linearly with increase in packing density. Major

Region II, associated with the packing density 4−10, corresponds to the portion where

58



0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

E
n

tr
o

p
y

1/Density

Figure 3.8: Various entropy comparison. A comparison plot of average sequence
entropies for the learning set list of 268 proteins: Gaps-excluded standard entropy (¨),
6− term gaps-excluded entropy (¤), HSSP-derived entropy (N). The various average
sequence entropy values (ordinate-left) corresponding to 75891 query residues of the
learning set list of 268 proteins, are calculated by double averaging the entropy values
at each inverse packing density position (abscissa).
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sequence entropy remains almost the same with increase in packing density. From

Z-score analysis, (see Appendix Figure B.5 and Table C.4) the residues with packing

density less than 4 and packing density greater than 25 has been characterized as falling

in the anomalous region (consisting of approximately 0.31% of the total residues) of

the entropy-inverse density plot. The corresponding population for sequence entropy

involves a small fraction of some 0.25% of query residues at the corresponding packing

densities greater than 25. However, the fraction of query residues with Cα packing

region greater than twenty was found to be 6.64%. The fraction of query residues with

packing densities less than four is 0.05%.

All the three plots obtained from the monomeric, homodimeric and heterodimeric

lists were compared to the aggregate learning set list plot as this plot is a mixture of all

the aforementioned other three list types (see Appendix Table C.3, C.1 and C.2). The

average ratio of the average entropy values of the learning set list with the average

entropy values for the monomeric, homodimeric and heterodimeric list at each packing

density position was found to be 0.996, 1.05 and 1.21. The deviation of these ratios

from ratio equal to 1 (measure of absolute similarity), for the monomeric, homodimeric

and heterodimeric list was found to be 0.004, 0.054 and 0.211 respectively. Hence, it

can be concluded that the trends obtained from the monomeric list and the homodimeric

list were found to be closer to the aggregate correlation plot than that obtained from the

heterodimeric list.

The correlation of fraction strongly hydrophobic (ordinate, right) with inverse

packing density has been depicted in Figure 3.10 in conjunction with aggregate

sequence entropy trend (ordinate, left). The curves obtained from the learning set list

(Figure 3.10A), monomeric list (Figure 3.10B), homodimeric list (Figure 3.10C) and

heterodimeric (Figure 3.10D) list are similar in character. As we move from left to

right, the fraction of strongly hydrophobic residues first increases and then attains a

maxima at inverse packing density 0.05 after which it starts to decrease with increase
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Figure 3.9: Aggregate entropy-inverse density trend comparison for the four protein
lists. Combined aggregate correlation plots of 40% sequence entropy (ordinate)
calculated with gaps excluded versus inverse packing density (abscissa) for A. learning
set list proteins. Average standard sequence entropy (¨, left ordinate) has been
calculated by averaging the entropy values of 75891 query residues aligned to a total
of 235138 subject sequences, at each inverse packing density value (abscissa). B.
Monomeric list proteins. Average standard sequence entropy (¨, left ordinate) has
been calculated by averaging the entropy values of 20076 query residues aligned to a
total of 59751 subject sequences, at each inverse packing density value (abscissa). C.
Homodimeric list proteins. Average standard sequence entropy (¨, left ordinate) has
been calculated by averaging the entropy values of 28734 query residues aligned to a
total of 83048 subject sequences, at each inverse packing density value (abscissa). and
D. Heterodimeric list. Average standard sequence entropy (¨, left ordinate) has been
calculated by averaging the entropy values of 9665 query residues aligned to a total of
55683 subject sequences, at each inverse packing density value (abscissa).
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in inverse packing density.

Two types of residues are present in major Region I, the first type of residues

have exclusively strongly hydrophobic residues in their alignments and the second type

of residues have the presence of some other type of residues, like small residues or

non-strongly hydrophobic residues, in addition to the strongly hydrophobic residues

in their aligned residues. The aggregate plot of fraction strongly hydrophobic versus

inverse density, for both type of residues show similar trends (Appendix Figure B.6), a

noticeable peak between inverse packing density 0.04− 0.06.

The combined aggregate correlation plots of the fraction of residues that are

strongly hydrophobic (Figure 3.10 at each aligned residue position of a protein), show

a sharp peak at packing density 18 (Full Width at Half Maximum is 0.228). It means

that the highest value of fraction strongly hydrophobic (FSHP = 0.45) is at inverse

packing density 0.056. Hence, at least 45% of the proteins (a sum of both both query

(268 protein chains) and subject proteins (235138 proteins)) have strongly hydrophobic

residues at that inverse packing density position. Since this peak is very sharp, most

of the strongly hydrophobic residues, belonging to a total of 268 protein chains aligned

to 235138 subject proteins with a total of 7.12E7 residues, are expected to have their

densities centered around packing density 18. Hence, it can be inferred that the

formation of a strongly hydrophobic core51 might occur at or around this packing

density. Hence, substitution with strongly hydrophobic residues should be clustered

around this packing density point.

Now, approximately, 24.70% of the aligned residues that are strongly hydrophobic

are associated with query sequence positions at which an exclusive presence of strongly

hydrophobic residues (FSHP = 1) has been noticed. From this percentage, 68.20% of

the aligned residues (with FSHP = 1) are present between packing densities 14 − 22

(shown in Appendix Figure B.6). The mean of the residues with FSHP = 1,

lies between packing density 14 − 19. Hence, it provides additional support to the
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conjecture that the strongly hydrophobic core forms at a critical distance from the

densest portion of the protein (somewhere between packing densities 14 − 22), and is

centered around packing density 18. From all this, the presence of a critical percentage

(around 70%) of aligned strongly hydrophobic residues, involved in the hydrophobic

collapse is indicated. From the aggregate plots and the frequency distributions for

FSHP at various density positions, a total absence of strongly hydrophobic residues

beyond the volume of strongly hydrophobic core is not observed.

The aggregate learning set list plot of fraction strongly hydrophobic as a function of

inverse packing density, was compared with the trends of fraction strongly hydrophobic

versus packing density for the monomeric (Figure 3.10B), homodimeric (Figure

3.10C) and heterodimeric (Figure 3.10D) lists. The average ratio of fraction strongly

hydrophobic (FSHP), from the individual ratios of FSHP from learning set list and each

of the monomeric list, homodimeric list and heterodimeric list, at each density position

was found to be 1.065, 0.963 and 1.109, respectively. The deviation of these ratio

from 1 (measure of absolute similarity) was found to be 0.065, 0.037 and 0.109 for the

monomeric, homodimeric and heterodimeric lists, respectively. Hence, it is observed

that the aggregate fraction strongly hydrophobic curve obtained from the heterodimers

have the largest deviations from the aggregate learning set list plots. Although,

the deviations of monomeric and homodimeric protein lists are of the same order

of magnitude, homodimers have lesser deviations from the learning set list than the

monomers.

Figure 3.11 represents the overlay plot of entropy density (ordinate, left) and

fraction small residues (ordinate, right) as a function of inverse packing density for the

learning set list proteins (Figure 3.11A), the monomeric protein list (Figure 3.11B),

the homodimeric protein list (Figure 3.11C) and the heterodimeric protein list (Figure

3.11D). As we move from left to right, the fraction of small residues decreases with

increase in inverse packing density and attains a minima at inverse packing density
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Figure 3.10: Aggregate fraction strongly hydrophobic-inverse density trend
comparison for the four protein lists. Aggregate overlay correlation plots of
entropy (¨, ordinate left) and fraction strongly hydrophobic (N, ordinate right) as a
function of inverse packing density (abscissa) for A. 268 learning set list of proteins,
B. 75 monomeric proteins, C. 106 homodimeric proteins and D. 50 heterodimeric
list. Average standard sequence entropy and average fraction strongly hydrophobic
have been calculated by double averaging their values from 75891 query residues
aligned to 235138 subject sequences for the learning set list proteins, 20076 query
residues aligned to 59751 subject sequences for monomeric proteins, 28734 query
residues aligned to 83048 subject sequences for homodimeric proteins and 9665 query
residues aligned to 55683 subject sequences for the heterodimeric list at each inverse
packing density value (abscissa).
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0.06 after which the fraction of small residues increases slightly and stays more or less

the same with increase in inverse packing density.

The aggregate plot of fraction small residues versus inverse density, for the

learning set list, shown in Figure 3.11, exhibits a transient inflexion between packing

density 14 − 22. Approximately 40.32% of aligned small residues are present

between this packing density. At packing density 14, 12.8% of aligned small residues

are present. As we move left from this point this percentage of aligned small

residues increases first gradually and then sharply with decrease in inverse packing

density. And, from this point the percentage of aligned small residues first increases

and then stays more or less constant with increase in inverse packing density. All

this suggests that the region of strongly hydrophobic core is marked with a minimum

presence of small residues. Since, all these packing densities discussed above lie in

the major Region I, the residues falling in this region should be buried and the residues

falling in the major Region II should be marked as surface accessible.

The plot of fraction of small residues (FSR) versus inverse packing density for the

learning set list of proteins has been compared to that of the monomeric, homodimeric

and heterodimeric lists. The average value of the ratios of aggregate fraction small

residue versus inverse packing density plot of learning set list to monomeric list,

homodimeric list and heterodimeric list, calculated at each inverse packing density

position was found to be 1.053, 0.988 and 1.463, respectively. This suggests that the

deviations of the FSR-inverse density plot obtained from monomeric list, homodimeric

list and heterodimeric list are 0.053, 0.012 and 0.463, respectively. As is evident from

these values, the plots obtained from the heterodimeric protein list show the largest

deviations from the mixed aggregate plot of learning set list of proteins.

The overlay of entropy and fraction of non-strongly hydrophobic (FNSHP) residue

trends as a function of inverse packing density has been plotted in Figure 3.12 for

the learning set list (Figure 3.12A), monomeric list (Figure 3.12B), homodimeric list
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Figure 3.11: Aggregate fraction small residues-inverse density trend comparison for
the four protein lists. Aggregate overlay correlation plots of entropy (¨, ordinate
left) and fraction small residues (¥, ordinate right) as a function of inverse packing
density for the list of A. 268 learning set list of proteins, B. 75 monomeric proteins,
C. 106 homodimeric proteins and D. 50 heterodimeric protein list. Average standard
sequence entropy and average fraction small residues have been calculated by double
averaging their values from 75891 query residues for the learning set list proteins, 20076
query residues for the monomeric proteins, 28734 query residues for the homodimeric
proteins and 9665 query residues for the heterodimeric list at each inverse packing
density value (abscissa).
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(Figure 3.12C) and the heterodimeric list (Figure 3.12D) of proteins. The aggregate

trend of FNSHP suggests a decrease in the value of FNSHP with increase in inverse

packing density until the point of minima (0.05 inverse packing density) that is observed

in major Region I. After this minima, FNSHP increases with increase in inverse

packing density (till packing density 0.10) forming a parabola type of shape, after which

the value of FNSHP remains more or less constant with further increase in packing

density.

The aggregate plot of fraction non-strongly hydrophobic versus inverse packing

density, for the learning set list, shown in Figure 3.12, attains a minima between packing

density 14 − 22 that is centered at packing density 18. The minima suggests the fact

that at least 54.28% of the non-strongly hydrophobic residues are present at packing

density 18. Approximately 42.95% non-strongly hydrophobic residues are present

between this packing density. This means that compared to any other density positions,

around packing density 18 (that is between densities 14− 22), the presence of FNSHP

residues is the least. Hence, the density range 14− 22, is dominated by the presence of

strongly hydrophobic residues whose relative composition with fraction non-strongly

hydrophobic changes as we move away from the center of the strongly hydrophobic

core.

The FNSHP plots from learning set list was compared to those obtained from

monomeric, homodimeric and heterodimeric lists. The average value of the ratios

obtained from the aggregate plot of FNSHP versus inverse packing density of learning

set list and monomeric, homodimeric and heterodimeric lists were found to be 1.008,

0.999, and 1.024, respectively. The deviation of these values from ratio equal

to 1.0 (measure of absolute similarity) was found to be 0.008, 0.001 and 0.024,

respectively. The deviation of FNSHP versus inverse packing density curve for

heterodimers was found to have maximum deviation and hence maximum dissimilarity

from the mixed aggregate plot of learning set list for the same parameter than the other
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two lists.
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Figure 3.12: Aggregate fraction non-strongly hydrophobic vs inverse packing density
trend comparison for the four protein lists. Aggregate overlay correlation plots of
entropy (¨, ordinate left) and fraction non-strongly hydrophobic (♦, secondary axis) as
a function of inverse packing density (abscissa) for A. 268 Learning set list of proteins,
B. 75 monomeric proteins, C. 106 homodimeric proteins and D. 50 heterodimeric
protein list. Average standard sequence entropy and average fraction non-strongly
hydrophobic residues have been calculated by double averaging their values from 75891
query residues for the learning set list proteins, 20076 query residues for the monomeric
proteins, 28734 query residues for the homodimeric proteins and 9665 query residues
for the heterodimeric list at each inverse packing density value (abscissa).

The aggregate overlay plot of entropy (ordinate, left) and fraction of gaps (ordinate,

right) versus inverse packing density has been plotted in Figure 3.13, for the learning

set list (Figure 3.13A), the monomeric list (Figure 3.13B), the homodimeric list (Figure

3.13C) and the heterodimeric list (Figure 3.13D). The average value of the fraction

of gaps has been found to increase steadily with increase in packing density. A
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total of 43.16% residues lying between packing density 14 − 22 have gaps in their

alignments. A comparison of this aggregate curve has been carried out for all the

four lists. The average value of the ratios obtained by dividing fractional values

of learning set list from the fractional values of the monomeric, homodimeric and

heterodimeric lists at each packing density position were found to be 1.03, 1.91 and 4.18

respectively. The deviations of these average ratios from 1.00 (measure of absolute

similarity), were found to be 0.03, 0.91 and 3.18 for the monomeric, homodimeric

and heterodimeric lists respectively. Here also, the aggregate plot obtained from the

heterodimeric protein list was found to be the most dissimilar to the mixed aggregate

plot obtained from the learning set list.

Figure 3.14 represents the aggregate overlay plot of the various homology-

based parameters for the four protein lists, namely, learning set list (Figure 3.14A),

monomeric list (Figure 3.14B), homodimeric list (Figure 3.14C) and heterodimeric

list (Figure 3.14D) from the entropy-inverse density plot, two major regions, namely

Region I and Region II, have been indicated. The average value of fraction strongly

hydrophobic attains maxima (corresponding to inverse packing density 0.05− 0.06) in

major Region I and has an overall shape of a parabola. The aggregate curve of fraction

non-strongly hydrophobic attains a minima (corresponding to inverse packing density

0.05 − 0.06) in the major Region I and looks like mirror image of the curve obtained

from fraction strongly hydrophobic versus inverse packing density. The inflexion

point of the aggregate average plot of fraction of small residues as a function of inverse

packing density was found to be in major Region I (associated with an inverse packing

density value of 0.06). The aggregate trend of fraction gaps increases uniformly

from lower inverse packing density value region to higher inverse packing density

value regions. The aggregate trend of small residues (AG) resembles the non-strongly

hydrophobic trend more than the strongly hydrophobic trend. Also, despite being

non-polar in character, small residues could not be classified as strongly hydrophobic
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Figure 3.13: Aggregate fraction gaps-inverse density trend comparison for the four
protein lists. Aggregate overlay correlation plots of entropy (¨, ordinate left)
and fraction gaps (fraction gaps (¤, ordinate right) as a function of inverse density
(abscissa) for A. 268 Learning set list of proteins, B. 75 monomeric proteins, C. 106
homodimeric proteins and D. 50 heterodimeric protein list. Average standard sequence
entropy and average fraction gaps have been calculated by double averaging their values
from 75891 query residues for the learning set list proteins, 20076 query residues for
monomeric proteins,28734 query residues for homodimeric proteins and 9665 query
residues for the heterodimeric list at each inverse packing density value (abscissa).
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residues.32,52

From a subjective comparison of the various homology-based parameter plots

for the monomeric, homodimeric and heterodimeric lists, the plots obtained for the

heterodimeric list proteins appear to have the most deviations from the aggregate trends

of the learning set.
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Figure 3.14: Aggregate correlation plots of various homology-based parameters and
inverse packing density. An aggregate overlay plot of entropy(¨, ordinate left),
Fraction non-strongly hydrophobic (♦, ordinate left) Fraction gaps (¤, ordinate right),
Fraction small residues (¥, ordinate right), and Fraction strongly hydrophobic (N,
ordinate right) as a function of inverse packing density (abscissa) for A. Learning
set proteins, B. monomeric proteins, C. homodimeric proteins and D. heterodimeric
protein list. The aggregate values of all the homology-based parameters have been
calculated by double averaging a total of 75891 query residues for the learning set
proteins, 20076 query residues for the monomeric protein list, 28734 query residues for
the homodimeric protein list and 9665 query residues for the heterodimeric protein list.
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3.3 Frequency Distributions

In this section, the frequency of residues associated with density and various

homology-based parameters have been evaluated. A total of 75891 aligned residues

belonging to 268 protein chains of the learning set list, have been processed for these

plots. Due to the non-availability of either the coordinate information from the

mmCIF files, or the BLASTP alignment results for any particular residue position,

2121 aligned residues were discarded. Also, a total of 43 residue positions, flagged

due to the presence of only gaps, were also eliminated leaving a total of 73727 residues

to be used for frequency distribution plots. Two type of distributions, first based on

the density of the homology-based parameters and second on the basis of the value of

the homology-based parameters, have been analyzed in this section.

3.3.1 Density Distribution

In Figure 3.15, the frequency of strongly hydrophobic residues (Figure 3.15A),

frequency of small residues (Figure 3.15B), frequency of non-strongly hydrophobic

residues (Figure 3.15C) and frequency of fraction gaps (Figure 3.15D), for the

learning set list, has been distributed over appropriate packing density ranges. The

distribution of residues that are strongly hydrophobic over each density bin looks like

a normal distribution that is slightly left skewed at the top. The distribution attains

a maxima at a packing density of 15 − 16 (that is 0.067 − 0.063 inverse packing

density). Approximately 4.01% of strongly hydrophobic residues are present in the

packing density range at which the aggregate curve of fraction strongly hydrophobic

vs. inverse packing density attains a maxima at 0.45. The small residue distribution

over the density bins represent left skewed normal distribution. The frequency of

small residues is maximum between density positions 11 and 12 where approximately

18.36% residues are concentrated. Only 3.81% small residues are present at the

packing density range where the inflexion point of the aggregate plot of fraction of
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small residues plotted as a function of inverse packing density, is observed. The

density distribution of the non-strongly hydrophobic residues represents a distribution

that is slightly flattened at the top. A nominal right skewedness of the graph is also

observed. Approximately, 43.45% of the non-strongly hydrophobic residues are

present at the top of the distribution. The inflexion point observed in the aggregate

plot of the fraction non-strongly hydrophobic plotted as a function of inverse packing

density corresponds to packing density 19 − 20 at which position, approximately

20.46% non-strongly hydrophobic residues are present. The distribution obtained for

fraction of gaps looks like a normal distribution with a little dip at the top of the curve

between 12 − 13 packing density. The maximum value attained by the histogram

corresponds to packing density 15 (inverse packing density 0.06) and 11 (inverse

packing density 0.09).

An overlay plot of packing density (Figure 3.16A) and inverse packing density

(Figure 3.16B) distributions for the homology-based parameters of the learning set list

of proteins, has been shown in Figure 3.16. Although the total number of strongly

hydrophobic residues is more than small residues, the nature of the histogram for small

residues and strongly hydrophobic residues appear to be complementary in nature. The

number of residues that are non-strongly hydrophobic is the largest followed by the

strongly hydrophobic residues. The total number of residues that are small have the

smallest occupancies when compared to the other distributions.

3.3.2 Bin Distribution

Here, the frequency of residues, with respect to the values of the homology-based

parameters has been shown for the learning set list (Figure 3.17). The ratio of total

number of residues present in major Region I to major Region II is approximately

4.58, which means major Region I is highly populated. The distribution of residues

with respect to entropy values (Figure 3.17A), shows a maxima, for both major Region
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Figure 3.15: Density distribution plots for the fractional parameters. Frequency
distribution plots for A. Fraction strongly hydrophobic, B. Fraction small residues, C.
Fraction non-strongly hydrophobic and D. Fraction Gaps. Here, frequency of 73727
query residues (ordinate) belonging to a total of 268 protein chains have been calculated
at each density position (abscissa).
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Figure 3.16: Overlay plot of density distributions for various fractional
parameters. Frequency distributions (ordinate) are calculated for a total of 73727 query
residues at each density position (abscissa). A. An overlay frequency distribution
plot of 268 protein chains for a set of homology based parameters (ordinate) at each
density bin (abscissa). B. An overlay frequency distribution plot of homology based
parameters (ordinate) for a set of 268 protein chains plotted against inverse packing
density bin (abscissa).
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I and major Region II at entropy value 0. Hence, 19.79% of residues belonging

to major Region I and 13.01% of residues belonging to major Region II are highly

conserved. For major Region I, the frequency of residues first decreases, then stays

almost flat for a while, then again attains a maxima and then decreases linearly as

density increases. An increase in entropy means an increase in partitioning between

the amino acids. The minima in the curve is observed at entropy bin 0.6 − 0.8. This

corresponds approximately to packing density 16 − 21. And this is the density

position at which the fraction strongly hydrophobic attains a maxima in the inverse

density plot. This indicates that there is a certain fraction of residues (7.61%) and

a particular partitioning (entropy 0.6 − 0.8) associated with the packing density at

which the fraction of strongly hydrophobic residues is maximum. Major Region II

trends remains almost flat after the first entropy equal to 0 peak. Hence, the effect of

partitioning is meaningless in this case. For both major Region I and major Region

II, equi-partitioning of residues at any sequence position is a highly unlikely event

because at higher entropy values relatively fewer residues are observed. The ratio

of occupancy of the two regions (plotted in the insert), exhibit a linear decrease with

increase in the entropy value. Hence, as we move from left to right in Figure 3.17, this

linear decrease in ratio ( R= 0.953, slope= −1.497), suggests an associated increase in

the predominance of surface accessible Region II. Since the strongly hydrophobic core

is expected to occur in major Region I (buried region of the protein), the inflexion point

of homology-based parameters can serve as filtering thresholds for surface accessibility

prediction.

The frequency distribution of fraction strongly hydrophobic (FSHP), for the

learning set list of proteins, plotted in Figure 3.17B, shows a bimodal character for

the two regions. Residues having 0 fractional values indicate an absence of strongly

hydrophobic residues which is seen in 22100 aligned residues for major Region I and

6072 aligned residues for major Region II. After eliminating the data points associated
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with a fractional value of 0, the ratio of major Region I and major Region II residue

frequency was found to be 5.37. The filter threshold for fraction strongly hydrophobic

lies at the inflexion point of the aggregate fraction strongly hydrophobic-inverse

density plot and also lies at the middle point of the bimodal distribution bifurcating

the two distributions. This conservatively chosen filter demarcates the presence of

50336 residues (68.27% of aligned residues) as surface exposed (FSHP < 0.5) and

23391 residues (31.73% of aligned residues) as buried residues. The ratio of the

residues present in the two halves, FSHP < 0.5 and FSHP ≥ 0.5, was found to be

2.15. In Figure 3.17B, it was observed that the ratio of major Region I to major Region

II increases linearly (R= 0.849, slope= 7.902) as a function of FSHP. This further

reinforces the notion that residues with FSHP value ≥ 0.5 should be associated with a

higher probability of being characterized as buried, since major Region I predominates

here at each value higher than 0.5.

The frequency distribution of fraction of small residues, for the learning set list of

proteins, has been shown in Figure 3.17C. Fraction of small residues (7.4% of the total

processed residues) has considerable number of residues (7.85% in Region I and 5.37%

of Region II) with value 1. This means that the proteins have some portions/regions

where there is absolute presence of small residues. And this portion/region is present

in case of both region I and region II. This means that small residues are found in the

core as well as on the surface of the proteins.

In Figure 3.17C, the frequency of residues present at fraction 0 means an absence

of small residues in 31099 aligned residues belonging to Region I and 4780 aligned

residues of Region II. After eliminating this fraction, a bimodal frequency distribution

curve is observed. The ratio of frequency of aligned small residues present in Region I

and Region II was found to be 3.48. The filter threshold for fraction small residues

lies at the point of inflexion observed in the fractional parameters-inverse packing

density curve. This conservatively chosen point of fraction small residues, < 0.15,
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is associated with significant population on both side of it. A total of 56, 538 residues

(76.69% of the total residues) and 17, 189 residues(23.31% of the total residues) are

present with FSR value of < 0.15 and ≥ 0.15 respectively. The ratio of residues of

these two parts, 3.28, is comparable to the ratio of major Region I to major Region

II. Also, in Figure 3.17C, a slight linear increase (R = 0.184, slope = 0.902) in the ratio

of Region I to Region II is observed as a function of FSR. This predominant presence

of Region I associated with fraction small residue value ≥ 0.15 supports the conviction

that probability of residues being buried should be greater for residues falling in this

half than in the other half (FSR < 0.15).

The frequency distribution of fraction gaps over packing density, for the learning

set list of proteins, has been shown in Figure 3.17D. An absence of absolute mutational

regions is seen here. The curve is not bimodal and has only one distribution. The

frequency distribution of fraction gaps appears more like a left-truncated normal

distribution that has little information associated with it in terms of surface accessibility

prediction.

Frequency distribution of query residues as a function of entropy values has been

shown in Figure 3.18A. An overlay plot of the residue frequencies for a few homology-

based parameters like fraction strongly hydrophobic, fraction of residues that are small,

and fraction of gaps as a function of packing density, for the learning set list, has been

shown in Figure 3.18B. Figure 3.18A is characterized by two maxima and can be

thought as a plot of two coupled distributions. In Figure 3.18B, as we move from left to

right, at any fractional value, the number of small residues is more than the number of

strongly hydrophobic residues until fractional value 0.50, at which point the frequency

of small residues and strongly hydrophobic residues is exactly the same. After this

point, the ratio of the number of small residues to strongly hydrophobic residues

decreases as we further move from 0.50 to 1.00. Hence from this comparison it is

observed that the relative ratio of the small residues and strongly hydrophobic residues
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Figure 3.17: Bin frequency distributions of various fractional parameters for the
learning set list. Frequency distribution plots of 73727 query residues from the set of
268 protein chains for A. Entropy B. Fraction strongly hydrophobic C. Fraction small
residues D. Fraction gaps. Each distribution has been divided into its component major
Region I and major Region II. All the inserts represent the ratio of major Region I to
major Region II for the corresponding distributions.
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change pattern at fractional value 0.50. Hence, 0.50 was taken as a threshold of the

strongly hydrophobic fraction for the prediction of surface accessibility. Also, the

relative ratio of the frequency of gaps and small residues change trend after fractional

value 0.15, at which the ratio of the two is 1.00. Therefore, a conservative threshold

of the small residue fraction was chosen as the fractional value 0.15 for the prediction

of buried and surface accessible residues. The frequency of gaps becomes negligible

above the fractional value of 0.50.
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Figure 3.18: Overlay frequency distributions of learning set list for various fractional
parameters. A. Frequency distribution of homology-based parameters for a set of
268 query protein chains. Frequency of a total of 73, 731 query residues, calculated
over a total of 235, 138 alignments, with respect to each sequence entropy value. B.
Frequency of query residues for fraction strongly hydrophobic (grey bars), fraction of
residues that are small (black bars) and fraction of gaps (white bars) with respect to
their corresponding values. All the fractional parameters are calculated over 235, 138
alignments corresponding to the 268 protein list.
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3.3.3 Filter Parameter Based Analysis

The frequency distribution analysis of the various filter parameters, as chosen in

subsection 3.3.2, have been evaluated here.

The frequency distributions of the two halves of the learning set list, that are

bifurcated by the entropy filter threshold (≥ 0.15) have been shown in Figure

3.19. The density distributions of the residues clearly show a closer to normal

frequency distribution for entropy ≥ 0.15 (Figure 3.19A) than for entropy < 0.15

(Figure 3.19B). A larger fraction of residues that satisfy the filter criteria, seem to

fall in the lower packing density regions. The mean of the distribution lies between

packing density 11 − 16. The frequency distribution of the residues that do not

satisfy the filter threshold condition, shown in Figure 3.19B, is a left skewed normal

distribution. Here, the majority of residues appear to be concentrated towards higher

packing densities. An overlay plot of the two distributions mentioned above is

shown in Figure 3.19C. The cumulative frequency distribution, shown in Figure

3.19D, provides additional support for the filters. 28.80% of the aligned residues

satisfy the filter criteria (Entropy ≥ 0.15) and 17.54% of the aligned residues do not

satisfy the filter criteria (Entropy < 0.15) have density values less than 11 (surface

accessible). Hence, an excess of 11.26% of the aligned residues is present on the

surface in the lot that satisfy the filter criteria than the complementary lot (that fail the

filter criteria). Hence, the entropy filter threshold of ≥ 0.15 should provide a more

conservative first degree of filtering to the surface accessible residues.

The frequency distributions of small residues satisfying the filter threshold (FSR

< 0.15) and its complementary lot (that satisfy the condition FSR ≥ 0.15), have

been shown in Figure 3.20. The frequency distribution of residues satisfying the filter

criteria, fraction small residues < 0.15, shown in Figure 3.20A, is a normal distribution

with slight left skewedness. Its mean value seems to lie between packing density

15 − 16. The frequency distribution of residues that are complementary to the filter
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Figure 3.19: Threshold frequency distributions for entropy. Frequency distribution
plots for the evaluation of entropy filter threshold. A. Frequency distribution plot of
residues satisfying the condition- Entropy ≥ 0.15 (ordinate) at each packing density
position (abscissa), B. Frequency distribution plot of residues satisfying the condition-
Entropy < 0.15 (ordinate) at each packing density position (abscissa) C. An overlay
plot of distributions plotted in Figure A and B (ordinate) at each density position
(abscissa) and D. their cumulative frequency distribution (ordinate) at each packing
density bin.
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threshold (FSR ≥ 0.15), shown in Figure 3.20B, is a normal distribution that is slightly

flattened at the top that ranges from packing density 10 − 18. An overlay of these

two plots is shown in Figure 3.20C. An overlay cumulative frequency distribution plot

for the residues that satisfy the threshold criteria for fraction small residue filter and

its complementary residue set (that fail the filter criteria) has been shown in Figure

3.20D. 32.88% of the aligned residues that satisfy the filter threshold criteria (FSR

< 0.15), and 29.76% of residues that do not satisfy the filter threshold criteria (FSR

≥ 0.15) have packing densities lower than 11. Hence, the residues satisfying the filter

threshold criteria have 3.12% more surface accessible residues than the complementary

set.

The frequency distributions of strongly hydrophobic residues bifurcated by the

threshold parameters have been presented in Figure 3.21. From the density distribution

plot of residues satisfying the filter threshold criteria (Figure 3.21A), a right skewed

normal distribution with majority of residues falling in low packing density regions

(more surface accessible) is observed. The maxima of the curve is attained at packing

density 11. The density distribution of residues with fraction strongly hydrophobic

value ≥ 0.5 (Figure 3.21B) is a left skewed normal distribution. Here, the majority of

the residues seem to be concentrated at higher packing densities. The maxima of this

plot is observed at the packing density value of 16. An overlay plot of the above two

mentioned distributions is shown in Figure 3.21C. An overlay cumulative frequency

distribution plot has been shown in Figure 3.21D. The cumulative frequency curve that

satisfies the filter criteria (FSHP < 0.5), indicates a presence of approximately 34.58%

residues in likely surface accessible major Region II (packing density ≤ 11). The

cumulative frequency distribution curve of residues that fail the filter criteria (FSHP

≥ 0.5), indicates a presence of approximately 12.53% residues in major Region

II. Hence, the curve satisfying the filter threshold (FSHP < 0.5), has 22.05% more

surface accessible residues than the complementary cumulative frequency distribution
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Figure 3.20: Threshold frequency distributions for Fraction Small Residues
(FSR). Frequency distribution plots for the evaluation of fraction small residues (FSR)
filter threshold. A. Frequency distribution plot of residues satisfying the condition-
FSR < 0.15 (ordinate) at each packing density position (abscissa), B. Frequency
distribution plot of residues satisfying the condition- FSR ≥ 0.15 (ordinate) at each
packing density position (abscissa) C. An overlay plot of distributions plotted in Figure
A and B (ordinate) at each density position (abscissa) and D. their cumulative frequency
distribution (ordinate) at each packing density bin (abscissa).
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curve (≥ 0.5). This suggests that on the application of this filter threshold, the

probability of a residue falling in major Region II (surface accessible) increases by at

least two fold.

A comparison of the above mentioned cumulative frequency distribution plots,

for the evaluation of three homology-based filter thresholds, shows filtering based

on fraction strongly hydrophobic is expected to have highest contribution towards

prediction accuracy. This is because the partitioning ratio between the distribution

of residues that satisfy the filter criteria and that do not is maximum for fraction

of strongly hydrophobic residues at packing density 11. Also, since all these filter

thresholds have been selected conservatively and are biased towards the core of the

protein, they are expected to have better prediction accuracy for the buried residues

than for the surface accessible ones.
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Figure 3.21: Threshold frequency distributions for Fraction Strongly Hydrophobic
(FSHP). Frequency distribution plots for the evaluation of fraction strongly
hydrophobic (FSHP) filter threshold. A. Frequency distribution plot of residues
satisfying the condition- FSHP < 0.5 (ordinate) at each packing density position
(abscissa), B. Frequency distribution plot of residues satisfying the condition- FSHP
≥ 0.5 (ordinate) at each packing density position (abscissa) C. An overlay plot of
distributions plotted in Figure A and B (ordinate) at each density position (abscissa)
and D. their cumulative frequency distribution (ordinate) at each packing density bin
(abscissa).
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Chapter 4

Discussion

In this chapter the results obtained from the aggregate plots and from the various

frequency distributions have been evaluated in light of filter threshold selection for

residue surface accessibility predictions. Additionally, an attempt to relate the

aggregate trends of the various homology-based parameters with their physiological

significance has also been presented here.

The structurally and sequencially diverse list of 268 protein chains, used in all the

analysis in this work, is a representative subset of the entire collection of proteins. This

is indicated by the nature of frequency distribution of residues at individual density

positions. The histograms for the entire learning set of 268 proteins as well as

the individual histograms for each of the three subsets of this list (monomeric,

homodimeric and heterodimeric protein lists) have been found to have a Gaussian

distribution. Inferring from the Central Limit Theorem, since,“the sum of a large

number of independent random variables is distributed approximately normally,”53 all

the four protein learning sets used in this work are considered good representative of

the proteins compiled in the databases. The filtering parameters implemented and

evaluated, have been shown to be very effective in predicting core residues.54

4.1 Packing Density: A Measure of Compactness in a Protein

Although a coarse grain approach for the assessment of residue compactness in the

native state of a protein, residue packing density used in this work provides a very

good estimate of residue compactness. Better accuracy in the prediction of secondary

structure by using three-dimensional coordinates of consecutive Cα atoms has been

demonstrated.55 Therefore, the use of Cα atoms in the calculation of packing density
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proves to be reasonable method. The increase in hydrophilicity value accompanied

by a decrease in hydrophobicity value with increase in packing density suggests that

residues with high packing density should be a part of the core and the residues with

low packing density ought to be found at the surface of the protein56,57 and possesses

greater potential for mutability, flexibility58 and ligand interactions. The aggregate

trends of relative surface accessibility, derived from NACCESS,31 further supports the

notion that residue packing density provides an appropriate measure of relative surface

accessibility.

As against the complex all atom simulation models that are time and computation

intensive, coarse-grain approach provides more realistic and less complicated solutions

where atom-depth resolution is not necessity.59,60 However, in parsing relatively

complex protein domains, this approach might prove to be more challenging.59 Since

the relevance of each single atom in the attainment of protein’s native fold is limited,

coarse-grain approaches like the one used in this work for the calculation of residue

packing density can provide simple, but promising alternative for the theoretical

expansion of knowledge of the complex bio-molecular system.60 Our method does not

treat voids and pockets explicitly and is not a measure of physical density. Although we

assume that packing density takes into account both long and short range interactions,

the contribution of local sequence information on surface accessibility prediction is

noted to be insignificant.57

4.2 Aggregate Trend Analysis

4.2.1 Sequence Entropy: A Measure of Flexibility or Mutability

Sequence entropy is a measure of evolutionary mutability. Therefore, a correlation

between sequence entropy and packing density26 may be evident and also should be

associated with the relative surface accessibility as discussed in section 4.1. The

validity of aggregate entropy-inverse density trend of 40% sequence entropy used
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in this work was demonstrated by comparable aggregate trends of 6-point entropy

with similar cutoffs and the HSSP derived entropy values. An inflexion point

associated with the aggregate sequence entropy-inverse density trend indicates a

point of demarcation between two major regions of the proteins associated with low

and high packing densities. As discussed in section 4.1, these two regions- major

Region I and major Region II, could possibly be characterized as buried (forming

the core of the proteins) and surface accessible (forming the surface of the proteins)

regions. Deviation in the aggregate trends from the learning set list was found to be

maximum for the heterodimeric list. This can be attributed to the presence of a wide

range of quaternary contacts in heterodimeric proteins which is absent in the other

two types- monomeric and homodimeric proteins. Also, for heteropolymers, there

are particular inconsistencies related to their lack of correlation involving short and

long range interactions.61 As there is a lack of consensus about the increase in RSA

prediction accuracy by inclusion of evolutionary information from PSI-Blast,62 the

choice of Blastp appears to be a better alternative.

4.2.2 Fractional Parameters

From the overall aggregate trend analysis and frequency distributions of all the

homology-based parameters for the learning set list of proteins, it is indicated that the

core of the protein is packed with a combination of non-strongly hydrophobic residues

and small residues. As we move out from this core towards the surface of the protein,

within a particular density range (22−14), where the presence of strongly hydrophobic

core (marked by a maxima in the aggregate trend of fraction of residues that are strongly

hydrophobic) is expected, the frequency of aligned hydrophobic residues is maximum

and the frequencies of aligned small residues and aligned non-strongly hydrophobic

residues is minimum. Contrary to the finding that the association of nonpolar amino

acids leads to the formation of protein’s core that has dimensions similar to that of
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the randomly packed spheres at the percolation threshold,21,63,64 the indications of

strongly hydrophobic core has been observed here to occur at a critical distance from

the most densely packed region of the protein. This region of strongly hydrophobic

core formation is also found to involve a minimum occupancy or involvement of small

and non-strongly hydrophobic residues. These results contradict the finding that the

residues present at the topohydrophobic (that is strongly hydrophobic) positions are

“very significantly more buried” than the residues that are non-topohydrophobic.32

The association of highest packing density values with a higher ratio of non-

strongly hydrophobic (mostly polar) and small residues (glycine and alanine- nonpolar

residues with smaller side chain) indicates that the core of the protein is a combination

of polar residues whose hydrogen-bonding requirements are satisfied50,58 and small

non-polar residues whose relative fraction is constant65 with a negligible involvement

of the non-polar residues with large side groups (R). This notion is in agreement with

the fact that in many cases, the protein core, that is the densely packed portion of

the protein, comprises mostly of α - helix and β - sheets.58 We must acknowledge

here that packing and conformation are not tightly linked.66 However, when present

in the interior of the protein, the cooperative contribution of salt-bridges and regular

hydrogen-bonding interactions, like those involving ionizable residues and polar

residues, are known to have significant contributions to the protein stability.67 Since

“the efficient filling of space” has been suggested as an important factor in protein’s

unique structure determination,68 and the fact that the protein’s core more closely

resembles a solid21,63,64 with face-centered cubic (fcc) packing,58 it is intuitive enough

for the densest portion of the protein to be occupied by small residues.

Although still densely packed with high packing densities, the fraction of strongly

hydrophobic residues form a cluster69 at a distance from the densest packed core. This

clustering involves negligible or minimal presence of small and polar residues. Since

these residues are bigger in size, extremely efficient packing is not expected. This
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might be a reason that the packing in the protein’s core is supposed to be two-thirds

face centered cubic packing (fcc) and one third occupying random positions.22

If propensity of nonpolar residues alone is the driving force for protein folding, then

it cannot be the principle factor in the determination of the protein’s native fold.66 This

further raises the question whether protein’s native fold was determined by residues

that are not nonpolar, that is, more polar in character. A combined propensity of polar

and non-polar residues is shown to provide a more logical protein folding initiation

mechanism.70 Better evolutionary conservation of residues involved in the formation

of protein folding nucleus than all the buried residues65 also indicates a possibility that

the nucleation might involve a higher fraction of non-hydrophobic and small residues

than strongly hydrophobic residues. Also, a correlation between packing efficiency,

number of buried polar groups and protein stability has been noted.71

These results are consistent with the notion that the internal driving force of protein

folding is a well balanced combination of two main factors- a) Propensity of the non-

polar residues in the formation of the core70,72 and b) Packing considerations associated

with excluded volume.

The definition of the protein’s core can be misleading if defined exclusively on

the basis of sequence conservation,73 but the residues with high packing density

accompanied by high evolutionary conservation indicate involvement in either the

protein folding nucleus or the stable core.37 Core structure has also been identified by

measures of hydrophobicity.73

The aggregate trend of the fraction of gaps, for the learning set list proteins, shows

a steady increase with increase in inverse packing density, suggesting that the regions

on the surface are more mutable than those lying in the protein core.
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4.3 Filter Threshold Selection And Surface Accessibility Prediction

The various approaches to the residue solvent accessibility prediction include

information theory, support vector machines, neural networks, nearest-neighbor

methods, energy optimization and statistical analysis of amino acid composition.56,57,74

Some of the drawbacks of these methods are not taking into account protein’s structural

information, using small datasets and unreliable sequence profile (by applying position

specific scoring matrices (PSSM) in case of distant homologs).74 These drawbacks

can be easily overcome by the simple approach proposed in this thesis as it is

a well balanced combination of homology-based parameters and packing density

(structure-based concept). Optimization of parameters might pose some constraints

on the prediction accuracy for example, in case of surface accessibility predictions by

SABLE method62,75 that use too many parameters.76 It is due to this reason that such

complicated prediction models might not prove to be better alternatives to the simpler

ones. The predominant tendency of nonpolar residues to remain buried in the interior

of the protein and the polar residues to exist on the surface57 indicates the possibility

of two state classification of protein residues in light of surface accessibility without

proper consideration of protein secondary structure or their packing.76

A direct comparison of the various methods of surface accessibility prediction

becomes challenging due to the difference in datasets, structure definition, threshold

selection, number of categories and normalization schemes.29,57,62 The support vector

machine (SVM) approach is based on the neighboring residues as well as the

physicochemical properties of amino acids in question.77 For two-state prediction

with a threshold of surface accessibility cutoff of 20%, the SVM and Neural Network

(NN) methods had approximately 79% prediction accuracy while the performance of

other methods like, the Baeysian Statistics (BS), Multiple linear regression (MLR) and

Data tree (DT) achieved prediction accuracy of 71.2%, 71.6%, 71.5% respectively.57

The homology-based modeling approaches are still on the cutting edge54 with at least
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82% prediction accuracy from sequence alignment methods and structural alignment

methods.57,78

A common basis of the secondary structure prediction and classification of buried

or surface accessible residue,79 puts an upper limit (70 − 80% accuracy) on any

such predictions made directly from the protein sequence.62,75,80 The problem of

buried/surface residue classification has some common basis with the classification

of secondary structure elements.79 Surface residue prediction, involves having to deal

with the coupled nature of surface residue accessibility with quaternary structure.81

The coupling of local secondary and higher orders of three dimensional structure

poses intrinsic limitations on the prediction of residue surface accessibility. This is

analogous to the difficulties of secondary structure prediction because of the coupling

of secondary and tertiary structure in proteins.54,81,82

The characterization of two major regions (Region I and Region II), on the basis of

packing density, as surface accessible and buried, suffers from noise and at the same

time provides an inaccurate measure of surface accessibility predictions. Since the

intrinsic propensity of each type of residue guides the attainment of local conformations

to some extent,76 the homology-based fractional parameters should serve as additional

filters for surface accessibility predictions. Hence, a set of homology-based filters,

based on entropy, fraction strongly hydrophobic, fraction small residues and fraction

gaps could be employed for the surface accessibility.83 Also, given the importance

of residue hydrophobicity in the packing26,84 of the core of the protein, it makes

sense to include it as one of the key filters for homology modeling as a method to

predict surface accessible residues. We assume that packing density, applied as

a base parameter for predictive purposes, takes into account both the long and the

short range interactions.61,76 The inflection point (inverse density equal to 0.09) of the

aggregate trend of sequence entropy versus inverse packing density plot was taken as a

demarcation point between major Region I (packing density ≥ 11) and major Region
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II (packing density > 11). A conservative approach was taken for the selection of best

homology based filter thresholds.

The three homology-based filters - Entropy ≥ 0.15, FSR < 0.15 and FSHP <

0.5, predict 11.26%, 3.12% and 22.05% more residues in the surface accessible major

Region II than their counterpart. This further increases the binary prediction accuracy

of surface accessible residues already characterized as present in the surface accessible

major Region II. Filter based on fraction strongly hydrophobic is expected to remove

most of the false positives because, highly skewed residue distribution obtained from

the filtering parameters are known to increase the accuracy of prediction methods.29

It is supported by the fact that in the two-state prediction of surface accessibility,

hydrophobic residues are known to play key role.85 The entropy based filters should

provide a very conservative threshold for the surface accessibility predictions. The

filter threshold chosen for fraction small residues is not expected to help much in

improving the accuracy of the predictions but in combination with FSHP threshold,

the FSR threshold can assist in refining the predictions and hence accuracy to some

degree. Also, since larger fraction of residues are associated with major Region I,

the prediction of buried residues is expected to give a better percentage of prediction

accuracy. Since, two of the homology-based parameter filters are associated with

nearly the same packing density region (major Region I), surface accessibility can

directly be predicted from packing density. Also, it has been indicated that the residue

solvent accessibility can directly be predicted from the three-dimensional coordinates

of main and side chain atoms.29

The prediction accuracy of hydrophobic residues that are buried and polar residues

that are surface accessible, is expected to be better than the rest of binary classified

residues.56 Although weak but positive influence of smaller protein chains on better

prediction accuracies (smaller volume to surface area ratio associated with smaller

protein chains), suggests optimization of this parameter in large learning datasets.57
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Prediction accuracy also depends on the residue position, residue type and data size.86

Therefore, to achieve better accuracy these parameters should also be scrutinized more

carefully.

Where there are suggestions of preferences for certain higher order interactions in

both the core and surface of proteins,67 analysis of packing should then include more

than pair-wise interactions.87,88 Here we see the limits of averaging various homology-

based values like sequence entropy and fraction of aligned non-strongly hydrophobic

residues because, in part, they often do not fully account for the local environment of a

particular residue.89
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Chapter 5

Conclusions

Two major regions (major Region I and major Region II) have been consistently

observed in the entropy-inverse density correlation plots for the structurally diverse

set of 268 proteins, considered in this work. The major Region I, associated with

high packing density (≥ 11) forms the core of the protein and hence all the residues

associated with major Region I should be buried in the core of the protein. The major

Region II, associated with low packing density values (< 11) are more exposed to

the solvent and hence residues falling in Region II should be surface accessible. The

regions with packing densities less than 4 and greater than 25 have been categorized as

anomalous regions.

Attainment of maxima, by FSHP at the same packing density at which FSR and

FNSHP attain a minima in the aggregate correlation plots, suggests that this general

packing density region is associated with the formation of strongly hydrophobic

core. The aggregate correlation plots also demonstrate that the highest packed region

of protein is marked by the presence of small and non-strongly hydrophobic residues

with a negligible presence of strongly hydrophobic residues. This implies that possibly

the strongly hydrophobic core is not necessarily associated with the densest portion

of the protein (where the fraction of small residues and non-strongly hydrophobic

residues is minimum and the fraction of strongly hydrophobic residues is maximum).

The combined use of the three filter thresholds obtained from the homology-based

parameters, namely, entropy (≥ 0.15), fraction small residues (< 0.15) and fraction

strongly hydrophobic (< 0.5), should provide a conservative means of characterizing

protein residues, as buried or surface accessible. Since the total number of residues in

major Region I is more than the total number of residues in major Region II and also

since these filter thresholds are chosen conservatively (biased towards major Region I),
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the prediction accuracy based on these filter thresholds is expected to be higher for the

prediction of buried residues than for surface accessible ones.
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Chapter 6

Future Studies

Based on the current work explained in this thesis, the issues that should be

addressed in future studies have been summarized as below:

• The data set should be increased in such a way that it contains representative

proteins with all the most likely fold types (800) present in the databases.90

• Inclusion of the loop residues in the prediction should also be checked for an

increase in the quality of prediction.

• All the protein chains belonging to any given protein should be evaluated in a

combined fashion.

• Sequence homology and other surface accessibility information for the prediction

of quaternary contacts or vice versa should be explored (see Appendix Figure

B.7).

• The effect of various thresholds on surface accessibility prediction accuracy

should be evaluated.

• The tertiary and quarternary contacts should be evaluated for their dominant

presence in the two major regions. All this information should be utilized for

the development and understanding of residues found at the docking site of the

proteins.

• The physical relevance of maxima obtained by the fraction of strongly

hydrophobic residues in the inverse density plot should be explored in

detail. Especially, the hypothesis that the nucleation of small and non-

98



strongly hydrophobic residues triggers the hydrophobic collapse or not should

be evaluated in detail.

• Also, it should be checked if there exists any minimum number of small and non-

strongly hydrophobic residues associated with the formation of a hydrophobic

core.

• A characterization of protein types that are in agreement to the aggregate trends

observed in this thesis and also that deviate from the aggregate behavior should

be studied.

• These trend analyses should then be correlated to the type of protein secondary

structures.
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Appendix A

Program Listings

#------------------------------------------------------------------------------------------------------

# Author: Radhika Pallavi Mishra

# Date: August 14, 2008.

# Purpose: Downloads mmCIF files from RCSB Protein Database

# File: ftp-script-1.pl

#------------------------------------------------------------------------------------------------------

#!/usr/bin/perl -w

use Net::FTP;

sub doFTP

{

my ($line1) = @_ ;

print "arg recieved, $line1 \n";

chomp($line1);

$line1 = lc($line1);

$subdir = substr($line1,1,2);

$destDir = "/pub/pdb/data/structures/divided/mmCIF/".$subdir;

print "$destDir\n";

$ftp->cwd($destDir);

$ftp->binary();

$filetoftp = $line1."\.cif\.Z";

print "$filetoftp\n";

$ftp->get($filetoftp,$filetoftp);}

open(FHNDL,"SeqIDlearningset286.txt");

$line = <FHNDL>;

$ftp = Net::FTP->new("ftp.rcsb.org");

$ftp->login("anonymous",’-anonymous@’);

while(!eof(FHNDL)){

doFTP($line);

$line = <FHNDL>; }

doFTP($line);

$ftp->quit;

close(FHNDL);

end;

#---------------------------------------------------------------------------------------------------

#---------------------------------------------------------------------------------------------------

#---------------------------------------------------------------------------------------------------
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# Author: Radhika Pallavi Mishra

# Date: August 20, 2008

# Purpose: Takes mmcif file in ASCII text format and calculates density. Also identifies missing

# residues in ATOM section of the PDB files.

# Adapted from: pdb2denMOD-2 written by William Yeh

# File: cif2den.pl

#---------------------------------------------------------------------------------------------------

# User Specified Variables to Control Analysis and Output

@TabValues = (6, 7, 8, 9, 10, 11, 12); # For each Value, calc’s #dist <= Value

# Must be increasing in value.

@TabPrint = (0, 1, 2, 3, 4, 5, 6); # Defines which @TabValues printed

# Initialize Amino Acid 3-letter to 1-letter associative list

%AADictionary = (

’GLY’ => ’G’, ’ALA’ => ’A’, ’VAL’ => ’V’, ’LEU’ => ’L’,

’ILE’ => ’I’, ’MET’ => ’M’, ’PRO’ => ’P’, ’PHE’ => ’F’,

’TRP’ => ’W’, ’SER’ => ’S’, ’THR’ => ’T’, ’ASN’ => ’N’,

’GLN’ => ’Q’, ’TYR’ => ’Y’, ’CYS’ => ’C’, ’LYS’ => ’K’,

’ARG’ => ’R’, ’HIS’ => ’H’, ’ASP’ => ’D’, ’GLU’ => ’E’ );

if($#ARGV < 1){

print "USAGE : perl cif2den.pl <Chain Name i.e. A,B etc..> <Name of .cif file> \n";

exit;}

$p_directory = "CIF_files";

# Initialize all variables

$Name = ""; # PDB name (extracted from HEADER line), in lower case

$Line = "";

@AtomLine = (); # Temp var for current ATOM line as list

@AASeqRes = (); # 3-letter form from SEQRES, for checking

@AA = (); # 3-letter form from ATOM statements

@AA1 = (); # 1-letter form (translated)

@Tag = (); # Unused for now

@Distance = (); # Calc’d distances

$AAref = ’’;

#$AArefI = ’A’;

$Indexref = 0;

$Tagref = ’’;

$AACount = 0; # Number of aa’s

$Xref = 0;

$Yref = 0;

$Zref = 0;

$i = 0;

$j = 0;

$k = 0;
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@X = ();

@Y = ();

@Z = ();

@XVect = ();

@YVect = ();

@ZVect = (); # Temp var for storing vector of aa being compared

@TabCount = (); # TabCount tracks no. < each @TabValues

@TabDensity= (); # Calc density from TabCount & TabValues

@PrintLine = (); # Temp var holds line for printing

$Count = 0;

open ( IN ,"$p_directory/$ARGV[1]") or die "Cannot open input files for read"."\n";

$i = 0; # Indices for AA’s

while( <IN> ) {

$Line = $_ ; chomp($Line); # Save current line

# ===== Extract Amino Acid seq from SEQRES statements =====

if ($Line =˜ /_pdbx_poly_seq_scheme\.pdb_ins_code/) {

while((!eof(IN))&&($Line !˜ /loop_/)) {

$Line = <IN> ;

chomp($Line);

@LineArray = split(/ +/,$Line);

if($LineArray[9] eq $ARGV[0]) {

push(@AASeqRes, $AADictionary{$LineArray[3]});

push(@FASTAPOS, $LineArray[4]);

push(@PDBPOSSEQRES, $LineArray[6]);}}}

# ===== Extract alpha-C (x,y,z) from ATOM statements =====

if ($Line =˜ /_atom_site\.pdbx_PDB_model_num/){

while((!eof(IN))&&($Line !˜ /\#/)) {

$Line = <IN> ;

chomp($Line);

if($Line =˜ /ˆATOM +[\d]+ +[A-Z]+ +CA +/ ) { # Find alpha-Carbon ATOM lines

@AtomLine = split(/ +/, $Line);

($AAref, $Xref, $Yref, $Zref) = @AtomLine[5,10,11,12];

$NextLine = <IN>;

@NextLineArray = split(/ +/,$NextLine);

@NewAtomline = (@AtomLine,@NextLineArray); # Radhika 09/10/08

$AAREFI = @NewAtomline[22]; # Radhika 09/10/08

$pdbpos = $NewAtomline[20];

if ( $AADictionary{$AAref} ne ’’ && ($AAREFI eq $ARGV[0])){ # ONLY EXTRACT A PARTICULAR CHAIN

push( @AA , $AAref);

push( @AA1, $AADictionary{$AAref});

push( @X , $Xref);

push( @Y , $Yref);

push( @Z , $Zref);
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push( @PDBPosArray, $pdbpos);

print " AAREF is $AAref, AAREFI is $AAREFI, pdbpos is $pdbpos and x,y,z are $Xref, $Yref and $Zref \n";}}}}

# ===== Extract PDB name from HEADER line

if ($Line =˜ /ˆdata_/) {

chomp($Line);

@AtomLine = split( /_/, $Line);

$Name = $AtomLine[1];

$Name = lc($Name);

print "Name is $Name \n";};};

$AACount = 1 + $#AA;

@TabValues = sort { $a <=> $b } @TabValues; # Make sure it’s ascending

# Output Filename...

open ( OUT ,’>’."$Name".$ARGV[0].".den") or die "Cannot open out_pdbden.txt for write.\n";

# ===== Calculate distances and tabulate =====

# Note that $i is the aa location, and $j is used to scan to build vects.

for ($i = 0; $i < $AACount; $i++) {

for ($j = 0; $j < $AACount; $j++) {

@Distance[$j] = sqrt( (($X[$j] - $X[$i])**2)

+(($Y[$j] - $Y[$i])**2)

+(($Z[$j] - $Z[$i])**2) ); };

# ===== Sort and tabulate according to distance

for ($j = 0; $j <= $#TabValues; $j++) {

$Count = 0;

for ($k = 0; $k <= $#Distance; $k++) {

if ($Distance[$k] <= $TabValues[$j]) {

$Count++ };}

$TabCount[$j] = $Count;

$TabDensity[$j] = 1000 * $Count / ((4.0/3.0)*3.14159

* ($TabValues[$j]**3)); # Compute density

}

# ===== Store density values in a hash corresponding to their PDB Position =====

$valueForHash = "";

foreach $i (@TabPrint) { # Output count C()

$valueForHash = $valueForHash."_".$TabCount[$i];};

$posDenHash{$PDBPosArray[$i]} = $valueForHash ;};

$numSeqResEntries = $#AASeqRes + 1;

print "Number of residues in Sequence = $numSeqResEntries \n" ;

print OUT "Number of residues in Sequence = $numSeqResEntries \n" ;

for($k=0; $k < $numSeqResEntries; $k++){

if($PDBPOSSEQRES[$k] eq "\?"){

$PrintLine = "D "

.$Name

."_".sprintf("%03d", $FASTAPOS[$k])
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."_".sprintf("%1s " , $AASeqRes[$k]);

foreach $l (@TabPrint) { # Output count C() = NA

$PrintLine = $PrintLine

."C(". $TabValues[$l] .")= "

."NA" ." " ;};

printf OUT $PrintLine ." \?\n";}

else{

$PrintLine = "D "

.$Name

."_".sprintf("%03d", $FASTAPOS[$k])

."_".sprintf("%1s " , $AASeqRes[$k]);

$density = $posDenHash{$PDBPOSSEQRES[$k]};

print "density is $density \n";

@densityArray = split(/_/, $density);

$m = 1;

foreach $n (@TabPrint) { # Output count C()

$PrintLine = $PrintLine

."C(". $TabValues[$n] .")= "

.sprintf("% 3d", $densityArray[$m]) ." " ;

$m++;};

printf OUT $PrintLine ." $PDBPOSSEQRES[$k]\n";}}

close(IN);

printf OUT "\n\n";

close(OUT);

-------------------------------------------------------------------------------------------------

-------------------------------------------------------------------------------------------------

-------------------------------------------------------------------------------------------------

#Author: Radhika Pallavi Mishra

# Date: August 30, 2008

# Purpose: Calculates packing density for protein list with specified chains

# File: Chainselectivecif2den.pl

-------------------------------------------------------------------------------------------------

#!/usr/bin/perl -w

open(FHNDL,"SeqIDlearningset268.txt") or die "Cannot open filename " ;

$lines = <FHNDL>;

while(!eof(FHNDL)){

chomp($lines);

$identifier = substr($lines,4,1);

$filename = substr($lines,0,4);

$filename= $filename."\.cif";

#print " filename is $filename\n";

#print "identifier is $identifier and line is $lines\n";
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system("perl cif2den.pl $identifier $filename" );

$lines = <FHNDL>;}

close(FHNDL);

end;

------------------------------------------------------------------------------------------------

------------------------------------------------------------------------------------------------

------------------------------------------------------------------------------------------------

#File: bst2entMOD2.pl

#! /usr/perl

# File: bst2ent v4 9/12/2002 D.Chiang

# "Blast to Entropy Calculation"

#

# Usage: ’perl bst2ent.pl <PDB-name> <infile> <outfile> (<logfile>)’

# Eg ’perl bst2ent.pl 1agm 1agmibst.txt 1agmoent.txt 1agmobst2entlog.txt’

# generates ’1agmoent’ from processing ’1agmibst.txt’.

# The PDB name is used to tag all residues, which is then used to match the

# PDB post-processing done by Perl script ’pdb2den.pl’. Therefore, the

# protein-name MUST BE IDENTICAL to that in the corresponding PDB file.

# Also generates logfile (default ’bst2entlog.txt’) = a superset

# of outfile for data verification purposes.

# BLAST output file <infile> must be saved in Text format.

#

# Action: Takes BLAST output file in ASCII test format

#

# 1. Extracts all Query and Subject sequence pairs

# 2. Compacts the Query/Subject sequences back to length(Query)

# by omitting all insertions in the Subject sequence.

# (Deletions in the Subject seq are kept.)

# 3. Puts the Query and all Subject seqs in output matrix.

# 4. Calculates entropy values for "qualified" database sequences (ie such

# as those with Identity% scores higher than $IdenPercentMin) and

# "qualified" positions (ie there are a sufficient number of homologs

# with non-deletions in that position, as specified in $HomologsMin)

# 5. Qualified sequences are specified in upper case residue codes, while

# unqualified sequences use lower case codes.

# Unqualified positions are flagged with entropy value output of "-1".

#

# Detail Notes:

# 1. Relies on first line chars being " Score =" to flag beginning

# section of Query and Subject sequences. ScoreBits, Expect, IdenPercent,

# and PositivePercent values are extracted. These are used to flag

# whether sequence is counted in entropy calculations.
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# 2. Concatenates seq sections until 2 blank lines encountered.

# 3. Format of *.out file:

# 1st line is original Query (extracted from 1st match pair)

# Subsequent lines are Subject sequences modified by deleting

# insertions and filling out both prefix and suffix to have

# same length as original Query.

# 4. Note that BLAST can substitute ’X’ (proteins) or ’N’ (nucleotides) into

# the Query sequence to filter out "low complexity" regions. These

# residues are kept as X or N in the entropy calculation. However, they

# can be post-processed when correlated with the PDB information using

# the residue position number. They are converted to lower case

# in the output (trick to help merging with pdb2den.pl output,

# since lowercase sorts after all upper case).

#

# Revision History

# v1.0 6/27/02 Initial version.

# v1.1 6/28/02 Minor addition of ’;’ to output file.

# v2.0 6/28/02 Change output format to transposed form.

# v3 7/18/02 Change name to bst2ent.pl (from bl2seq.pl).

# - Use " Score =" (not "Query") to flag sequence sections.

# - Add entropy calculations.

# - Clean up misc code

# v4 9/12/02 Extracted all ’-’ from Query sequence reported from 1st

# match in BLAST, to take care of case when the 1st match

# includes insertions (ie the query itself is not found).

# Also reduced Identity% and #HomologMin parameters

#

#08/05/08 Modified by Radhika Pallavi Mishra to include the chain name

#and bitcutoff set to 0.

#

# Specify User Parameters

$IdenPercentMin = 0.10; # Min value of Identity% score for qualified seq

# (IdenPercentMin is another approach of BLAST results cut-off. Not used for this study)

$HomologMin = 1; # Min value of non-deleted homologs for entropy calc

# (HomologMin is needed for entropy calc, so an error won’t occur when dividing by 0)

$ScoreMin = 100; # Min value of match score

$BitCutOff = 0;

$p_directory = "nblast_all";

opendir (DIRECTORY, $p_directory);

while (defined($p_filename = readdir(DIRECTORY))) {

if ($p_filename != "." || $p_filename != "..") {

# Initialize all variables

$PDBName = ""; # Passed param; used to tag residues in output only
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$Line = "";

@LineSplit = ();

$ScoreBits = 0;

$Expect = 0;

$IdenPercent = 0;

$PositivePercent= 0;

$QuerySeq = ""; # Original Query Seq (from 1st pair)

$QuerySeqTemp = ""; # Query Seq in pair for manipulation

$SubjectSeqTemp = ""; # Subject Seq in pair for manipulation

$QueryOffset = 0; # Initial seq offset (always 1 for 1st seq)

$LengthDiff = 0; # Temp vars ...

$QueryOffDummy = 0;

$Dummy = "";

$Dummy2 = "";

@SeqList = ();

$LineOut = "";

%EntropyCount = ();

$EntropyCountTot= 0;

$Prob = 0;

$Entropy = 0;

# Setup files for writing and reading

open ( IN ,"$p_directory/$p_filename") or die "Cannot open input files for read"."\n";

$PDBName = substr($p_filename,0,5); # Get PDB protein name as 1st parameter

open ( OUT ,’>’.$PDBName."_".$BitCutOff.".ent") or die "Cannot open output file for write.\n";

open ( OUTD ,’>’.$PDBName."_".$BitCutOff.".dbg") or die "Cannot open debug file for write.\n";

while( <IN> ) {

$Line = $_ ; chomp($Line); # Save current line

# ----------Extracting BitScore, Expected Value, Identity, Positives----------

while ( $Line =˜ /ˆ Score =/ ) { # Find next set of Query/Sbjct

$QueryOffset = 0 ; # Reset values

$QuerySeqTemp = "";

$SubjectSeqTemp = "";

@LineSplit = split(/ +/, $Line);

$ScoreBits = $LineSplit[3];

$Expect = $LineSplit[8]; # Extract Expect value

if ($Expect =˜ /ˆe/) { $Expect = "1".$Expect }; # If format "e-xxx" add ’1’ prefix

$Line = <IN>; chomp($Line); # Save next line

@LineSplit = split(/ +/, $Line);

$IdenPercent = $LineSplit[4]; # Extract Identity%, stripping

$IdenPercent =˜ s/[(),%]//g; # strip out of "(xxx%)," format

$IdenPercent = $IdenPercent / 100.0;

$PositPercent= $LineSplit[8]; # Same with Positive%

$PositPercent =˜ s/[(),%]//g;
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$PositPercent = $PositPercent / 100.0;

$Line = <IN>; # Skip next line (should be blank)

$Line = <IN>;

# ----------Extracting Query Sequences, Subject Sequences, Query Offsets----------

while ( $Line =˜ /ˆQuery / ) { # Find 1st Query line in set

($Dummy, $QueryOffDummy, $Line, $Dummy2) = split(/ +/, $Line); # Separate into fields

if ($QueryOffset == 0) { # Keep 1st $QueryOffset

$QueryOffset = $QueryOffDummy };

$QuerySeqTemp = $QuerySeqTemp.$Line; # Combine running seq

$Line = <IN>; # Throw away 2nd line

$Line = <IN>; chomp($Line); # Save 3rd = Sbjct line

$Line =˜ s/ˆSbjct \d+ +//; # Strip seq prefix

$Line =˜ s/ *\d+.*$//; # Strip suffix

$SubjectSeqTemp = $SubjectSeqTemp.$Line; # Combine running seq

$Line = <IN>; # Throw away 2nd line

$Line = <IN>; chomp($Line); # Next line (another Query?)

};

if ( $QuerySeq eq "") { # Very 1st Query is saved

$QuerySeq = $QuerySeqTemp;

$QuerySeq =˜ s/X/x/g; # However, convert special X,N chars to lower case

# $QuerySeq =˜ s/N/n/g; # (Should be removed, N is used for nucleotides only)

$QuerySeq =˜ s/-//g; # Also, extract insertations (’-’)

$ScoreMin = $ScoreBits*$BitCutOff/100;

printf OUTD "# === Original Sequence (from 1st match)\n";

printf OUTD $QuerySeq . "\n\n";

printf OUTD "MaxScore = ";

printf OUTD $ScoreBits;

printf OUTD ", MinScore = ";

printf OUTD $ScoreMin . "\n\n";

push(@SeqList, $QuerySeq."\n"); # Storing Sequences for Entropy calculations

};

# ===== WRITE DEBUG FILE =====

printf OUTD "# === NEW MATCH PAIR Offset = " . $QueryOffset . "\n";

printf OUTD $QuerySeqTemp . "\n"; # Write out complete seq

printf OUTD $SubjectSeqTemp . "\n\n";

# ===== PROCESS SEQUENCES =====

# Fill out prefix offset

$QuerySeqTemp = substr($QuerySeq, 0, -1+$QueryOffset) . $QuerySeqTemp;

$SubjectSeqTemp = ("-" x (-1+$QueryOffset)) . $SubjectSeqTemp;

printf OUTD "# === Matched pair with prefix & suffix filled\n";

printf OUTD $QuerySeqTemp . "\n"; # Write out complete seq

printf OUTD $SubjectSeqTemp . "\n\n";

# Find & delete insertions
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for ($i = -1+length($QuerySeqTemp); $i >= 0; $i += -1) {

if ( substr($QuerySeqTemp, $i, 1) eq "-" ) {

substr($QuerySeqTemp, $i, 1) = "";

substr($SubjectSeqTemp, $i, 1) = "";};};

# Fill out suffix if necessary

$LengthDiff = length($QuerySeq) - length($SubjectSeqTemp);

if ( $LengthDiff > 0 ) {

$QuerySeqTemp = $QuerySeqTemp . substr($QuerySeq, - $Length);

$SubjectSeqTemp = $SubjectSeqTemp . ("-" x $LengthDiff);};

# ===== QUALIFY THIS SEQUENCE =====

# if ($IdenPercent < $IdenPercentMin) { # If not-qualified, flag as lower case

if ($ScoreBits < $ScoreMin) { # If not-qualified, flag as lower case

$SubjectSeqTemp = lc($SubjectSeqTemp);};

# ===== WRITE OUT SEQUENCE =====

printf OUTD "# === Matched pair with insertions omitted\n";

printf OUTD $QuerySeqTemp . "\n"; # Write out complete seq

printf OUTD $SubjectSeqTemp . "\n\n";

# ===== REMOVE UNQUALIFIED SEQS FROM THE FINAL ENTROPY FILE OUTPUT =====

if ($ScoreBits >= $ScoreMin) {

push(@SeqList, $SubjectSeqTemp."\n");};};};

close(IN);

for ($i = 0; $i <= -2+length( @SeqList[0] ); $i += 1) { # Why is the -2 value there?

$LineOut = "";

for ($j = 1; $j <= $#SeqList; $j += 1) {

$LineOut = $LineOut . substr( @SeqList[$j], $i, 1); # Cycling thru seq j, at pos i

};

# ===== COMPUTE ENTROPY =====

$Line = $LineOut;

$Line =˜ s/[ˆA-Z]//g; # Delete anything not capital (IMPORTANT!!!!)

@LineSplit = split("", $Line);

%EntropyCount = ();

$EntropyCountTot = 0;

foreach $i (@LineSplit) {

$EntropyCount{$i}++ ;

$EntropyCountTot++ ; };

@AllEntValues = sort(values(%EntropyCount));

if ($EntropyCountTot >= $HomologMin) {

$Entropy = 0;

for ($j = 0; $j <= $#AllEntValues; $j++) {

$Prob = $AllEntValues[$j] / $EntropyCountTot ;

$Entropy = $Entropy - ($Prob * ( log($Prob)/log(2) ));}

# Debug Code

printf OUTD "@"
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." Entropy= " .$Entropy

." EntropyCount= " .join(" ",%EntropyCount)

." EntropyCountTot= ".$EntropyCountTot

." AllEntValues= " .join(" ",@AllEntValues)

."\n";}

else {

$Entropy = -1; # Flag as error -- too few homologs

};

$LineOut = "E= ".sprintf("% .3f",$Entropy)

." A= ".$LineOut;

# ===== CREATE OUTPUT LINE PREFIX =====

$LineHeader = "D " # Start line format eg "D 1agm_001_A"

.$PDBName."_"

.sprintf("%03d",1+$i)

."_". substr(@SeqList[0], $i, 1);

printf OUT $LineHeader ." ". $LineOut . "\n";};

close(OUTD);

close(OUT);};};

-----------------------------------------------------------------------------------------------

-----------------------------------------------------------------------------------------------

-----------------------------------------------------------------------------------------------

#File: Radhika-6pointentropy.pl

#Date : June 17, 2008

#! /usr/perl

# File: bst2ent.pl v4 9/12/2002 D.Chiang

# "Blast to Entropy Calculation"

# Usage: ’perl bst2ent.pl <PDB-name> <infile> <outfile> (<logfile>)’

# Eg ’perl bst2ent.pl 1agm 1agmibst.txt 1agmoent.txt 1agmobst2entlog.txt’

# generates ’1agmoent’ from processing ’1agmibst.txt’.

# The PDB name is used to tag all residues, which is then used to match the

# PDB post-processing done by Perl script ’pdb2den.pl’. Therefore, the

# protein-name MUST BE IDENTICAL to that in the corresponding PDB file.

# Also generates logfile (default ’bst2entlog.txt’) = a superset

# of outfile for data verification purposes.

# BLAST output file <infile> must be saved in Text format.

#

# Action: Takes BLAST output file in ASCII test format

#

# 1. Extracts all Query and Subject sequence pairs

# 2. Compacts the Query/Subject sequences back to length(Query)

# by omitting all insertions in the Subject sequence.

# (Deletions in the Subject seq are kept.)

# 3. Puts the Query and all Subject seqs in output matrix.
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# 4. Calculates entropy values for "qualified" database sequences (ie such

# as those with Identity% scores higher than $IdenPercentMin) and

# "qualified" positions (ie there are a sufficient number of homologs

# with non-deletions in that position, as specified in $HomologsMin)

# 5. Qualified sequences are specified in upper case residue codes, while

# unqualified sequences use lower case codes.

# Unqualified positions are flagged with entropy value output of "-1".

#

# Detail Notes:

# 1. Relies on first line chars being " Score =" to flag beginning

# section of Query and Subject sequences. ScoreBits, Expect, IdenPercent,

# and PositivePercent values are extracted. These are used to flag

# whether sequence is counted in entropy calculations.

# 2. Concatenates seq sections until 2 blank lines encountered.

# 3. Format of *.out file:

# 1st line is original Query (extracted from 1st match pair)

# Subsequent lines are Subject sequences modified by deleting

# insertions and filling out both prefix and suffix to have

# same length as original Query.

# 4. Note that BLAST can substitute ’X’ (proteins) or ’N’ (nucleotides) into

# the Query sequence to filter out "low complexity" regions. These

# residues are kept as X or N in the entropy calculation. However, they

# can be post-processed when correlated with the PDB information using

# the residue position number. They are converted to lower case

# in the output (trick to help merging with pdb2den.pl output,

# since lowercase sorts after all upper case).

#

# Revision History

# v1.0 6/27/02 Initial version.

# v1.1 6/28/02 Minor addition of ’;’ to output file.

# v2.0 6/28/02 Change output format to transposed form.

# v3 7/18/02 Change name to bst2ent.pl (from bl2seq.pl).

# - Use " Score =" (not "Query") to flag sequence sections.

# - Add entropy calculations.

# - Clean up misc code

# v4 9/12/02 Extracted all ’-’ from Query sequence reported from 1st

# match in BLAST, to take care of case when the 1st match

# includes insertions (ie the query itself is not found).

# Also reduced Identity% and #HomologMin parameters

#

# Specify User Parameters

$IdenPercentMin = 0.10; # Min value of Identity% score for qualified seq

# (IdenPercentMin is another approach of BLAST results cut-off. Not used for this study)
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$HomologMin = 1; # Min value of non-deleted homologs for entropy calc

# (HomologMin is needed for entropy calc, so an error won’t occur when dividing by 0)

$ScoreMin = 100; # Min value of match score

$BitCutOff = 40;

$p_directory = "nblast_all";

opendir (DIRECTORY, $p_directory);

while (defined($p_filename = readdir(DIRECTORY))) {

if ($p_filename != "." || $p_filename != "..") {

# Initialize all variables

$PDBName = ""; # Passed param; used to tag residues in output only

$Line = "";

@LineSplit = ();

$ScoreBits = 0;

$Expect = 0;

$IdenPercent = 0;

$PositivePercent= 0;

$QuerySeq = ""; # Original Query Seq (from 1st pair)

$QuerySeqTemp = ""; # Query Seq in pair for manipulation

$SubjectSeqTemp = ""; # Subject Seq in pair for manipulation

$QueryOffset = 0; # Initial seq offset (always 1 for 1st seq)

$LengthDiff = 0; # Temp vars ...

$QueryOffDummy = 0;

$Dummy = "";

$Dummy2 = "";

@SeqList = ();

$LineOut = "";

%EntropyCount = ();

$EntropyCountTot= 0;

$Prob = 0;

$Entropy = 0;

# Setup files for writing and reading

open ( IN ,"$p_directory/$p_filename") or die "Cannot open input files for read"."\n";

$PDBName = substr($p_filename,0,4); # Get PDB protein name as 1st parameter

open ( OUT ,’>’.$PDBName."_".$BitCutOff.".ent") or die "Cannot open output file for write.\n";

open ( OUTD ,’>’.$PDBName."_".$BitCutOff.".dbg") or die "Cannot open debug file for write.\n";

while( <IN> ) {

$Line = $_ ; chomp($Line); # Save current line

# ----------Extracting BitScore, Expected Value, Identity, Positives----------

while ( $Line =˜ /ˆ Score =/ ) { # Find next set of Query/Sbjct

$QueryOffset = 0 ; # Reset values

$QuerySeqTemp = "";

$SubjectSeqTemp = "";

@LineSplit = split(/ +/, $Line);
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$ScoreBits = $LineSplit[3];

$Expect = $LineSplit[8]; # Extract Expect value

if ($Expect =˜ /ˆe/) { $Expect = "1".$Expect }; # If format "e-xxx" add ’1’ prefix

$Line = <IN>; chomp($Line); # Save next line

@LineSplit = split(/ +/, $Line);

$IdenPercent = $LineSplit[4]; # Extract Identity%, stripping

$IdenPercent =˜ s/[(),%]//g; # strip out of "(xxx%)," format

$IdenPercent = $IdenPercent / 100.0;

$PositPercent= $LineSplit[8]; # Same with Positive%

$PositPercent =˜ s/[(),%]//g;

$PositPercent = $PositPercent / 100.0;

$Line = <IN>; # Skip next line (should be blank)

$Line = <IN>;

# ----------Extracting Query Sequences, Subject Sequences, Query Offsets----------

while ( $Line =˜ /ˆQuery / ) { # Find 1st Query line in set

($Dummy, $QueryOffDummy, $Line, $Dummy2) = split(/ +/, $Line); # Separate into fields

if ($QueryOffset == 0) { # Keep 1st $QueryOffset

$QueryOffset = $QueryOffDummy };

$QuerySeqTemp = $QuerySeqTemp.$Line; # Combine running seq

$Line = <IN>; # Throw away 2nd line

$Line = <IN>; chomp($Line); # Save 3rd = Sbjct line

$Line =˜ s/ˆSbjct \d+ +//; # Strip seq prefix

$Line =˜ s/ *\d+.*$//; # Strip suffix

$SubjectSeqTemp = $SubjectSeqTemp.$Line; # Combine running seq

$Line = <IN>; # Throw away 2nd line

$Line = <IN>; chomp($Line); # Next line (another Query?)

};

if ( $QuerySeq eq "") { # Very 1st Query is saved

$QuerySeq = $QuerySeqTemp;

$QuerySeq =˜ s/X/x/g; # However, convert special X,N chars to lower case

# $QuerySeq =˜ s/N/n/g; # (Should be removed, N is used for nucleotides only)

$QuerySeq =˜ s/-//g; # Also, extract insertations (’-’)

$ScoreMin = $ScoreBits*$BitCutOff/100;

printf OUTD "# === Original Sequence (from 1st match)\n";

printf OUTD $QuerySeq . "\n\n";

printf OUTD "MaxScore = ";

printf OUTD $ScoreBits;

printf OUTD ", MinScore = ";

printf OUTD $ScoreMin . "\n\n";

push(@SeqList, $QuerySeq."\n"); # Storing Sequences for Entropy calculations

};

# ===== WRITE DEBUG FILE =====

printf OUTD "# === NEW MATCH PAIR Offset = " . $QueryOffset . "\n";
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printf OUTD $QuerySeqTemp . "\n"; # Write out complete seq

printf OUTD $SubjectSeqTemp . "\n\n";

# ===== PROCESS SEQUENCES =====

# Fill out prefix offset

$QuerySeqTemp = substr($QuerySeq, 0, -1+$QueryOffset) . $QuerySeqTemp;

$SubjectSeqTemp = ("-" x (-1+$QueryOffset)) . $SubjectSeqTemp;

printf OUTD "# === Matched pair with prefix & suffix filled\n";

printf OUTD $QuerySeqTemp . "\n"; # Write out complete seq

printf OUTD $SubjectSeqTemp . "\n\n";

# Find & delete insertions

for ($i = -1+length($QuerySeqTemp); $i >= 0; $i += -1) {

if ( substr($QuerySeqTemp, $i, 1) eq "-" ) {

substr($QuerySeqTemp, $i, 1) = "";

substr($SubjectSeqTemp, $i, 1) = "";};};

# Fill out suffix if necessary

$LengthDiff = length($QuerySeq) - length($SubjectSeqTemp);

if ( $LengthDiff > 0 ) {

$QuerySeqTemp = $QuerySeqTemp . substr($QuerySeq, - $Length);

$SubjectSeqTemp = $SubjectSeqTemp . ("-" x $LengthDiff);};

# ===== QUALIFY THIS SEQUENCE =====

# if ($IdenPercent < $IdenPercentMin) { # If not-qualified, flag as lower case

if ($ScoreBits < $ScoreMin) { # If not-qualified, flag as lower case

$SubjectSeqTemp = lc($SubjectSeqTemp);};

# ===== WRITE OUT SEQUENCE =====

printf OUTD "# === Matched pair with insertions omitted\n";

printf OUTD $QuerySeqTemp . "\n"; # Write out complete seq

printf OUTD $SubjectSeqTemp . "\n\n";

# ===== REMOVE UNQUALIFIED SEQS FROM THE FINAL ENTROPY FILE OUTPUT =====

if ($ScoreBits >= $ScoreMin) {

push(@SeqList, $SubjectSeqTemp."\n");};}; };

close(IN);

for ($i = 0; $i <= -2+length( @SeqList[0] ); $i += 1) { # Why is the -2 value there?

$LineOut = "";

for ($j = 1; $j <= $#SeqList; $j += 1) {

$LineOut = $LineOut . substr( @SeqList[$j], $i, 1); # Cycling thru seq j, at pos i

};

# ===== COMPUTE ENTROPY =====

$Line = $LineOut;

$Line =˜ s/[ˆA-Z]//g; # Delete anything not capital (IMPORTANT!!!!)

@LineSplit = split("", $Line);

%EntropyCount = ();

$EntropyCountTot = 0;

foreach $i (@LineSplit) {
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if(($i eq "A") || ($i eq "V") || ($i eq "L") || ($i eq "I") || ($i eq "M") ||($i eq "C")){

$category = "aliphatic";

$EntropyCount{$category}++ ;

#print "i is $i and count in aliphatic is $EntropyCount{$category} \n";}

elsif( ($i eq "F") || ($i eq "W") || ($i eq "Y") ||($i eq "H")){

$category = "aromatic";

$EntropyCount{$category} = $EntropyCount{$category} + 1 ;}

elsif( ($i eq "S") || ($i eq "T") || ($i eq "N") ||($i eq "Q")){

$category = "polar";

$EntropyCount{$category} = $EntropyCount{$category} + 1 ;}

elsif( ($i eq "K") || ($i eq "R") ){

$category = "positive";

$EntropyCount{$category} = $EntropyCount{$category} + 1 ;}

elsif( ($i eq "D") || ($i eq "E") ){

$category = "negative";

$EntropyCount{$category} = $EntropyCount{$category} + 1 ;}

elsif( ($i eq "G") || ($i eq "P") ){

$category = "special";

$EntropyCount{$category} = $EntropyCount{$category} + 1 ;}

$EntropyCountTot++ ;}

@AllEntValues = sort(values(%EntropyCount));

if ($EntropyCountTot >= $HomologMin) {

$Entropy = 0;

for ($j = 0; $j <= $#AllEntValues; $j++) {

# print "entropy value is $AllEntValues[$j] \n";

# print "Total count is $EntropyCountTot \n";

$Prob = $AllEntValues[$j] / $EntropyCountTot ;

$Entropy = $Entropy - ($Prob * ( log($Prob)/log(2) ));}

# Debug Code

printf OUTD "@"

." Entropy= " .$Entropy

." EntropyCount= " .join(" ",%EntropyCount)

." EntropyCountTot= ".$EntropyCountTot

." AllEntValues= " .join(" ",@AllEntValues)

."\n";}

else {

$Entropy = -1; # Flag as error -- too few homologs

};

$LineOut = "E= ".sprintf("% .3f",$Entropy)

." A= ".$LineOut;

# ===== CREATE OUTPUT LINE PREFIX =====

$LineHeader = "D " # Start line format eg "D 1agm_001_A"

.$PDBName."_"
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.sprintf("%03d",1+$i)

."_". substr(@SeqList[0], $i, 1);

printf OUT $LineHeader ." ". $LineOut . "\n";};

close(OUTD);

close(OUT);};};

----------------------------------------------------------------------------------------------------

----------------------------------------------------------------------------------------------------

---------------------------------------------------------------------------------------------------

#Author: Radhika Pallavi Mishra

#Date: June 6, 2008

#Purpose: Download ’.HSSP’ files from

#"ftp.embl-heidelberg.de/pub/databases/protein_extras/hssp" according to a protein list.

#File: ftp-scriptHSSP.pl

------------------------------------------------------------------------------------------------------

#!/usr/bin/perl -w

use Net::FTP;

open(FHNDL,"SeqIDlearningset268.txt");

$line = <FHNDL>;

print "filename is $line\n";

$ftp = Net::FTP->new("ftp.embl-heidelberg.de");

$ftp->login("anonymous",’-anonymous@’);

$ftp->cwd("/pub/databases/protein_extras/hssp");

while(!eof(FHNDL)){

$line = lc($line);

chomp($line);

$filetoftp = $line."\.hssp";

$ftp->get($filetoftp,$filetoftp);

$line = <FHNDL>;

print "$line\n";

}

$ftp->quit;

close(FHNDL);

-------------------------------------------------------------------------------------------------------

-------------------------------------------------------------------------------------------------------

-------------------------------------------------------------------------------------------------------

# Author: Radhika Pallavi Mishra

# Date : September 21, 2008

# Purpose: Program to extract entropy values from entropy "ENT Files" and compute

#fractional analysis print in one file for aggregate plot

# File: extract_fractanalysis_entropy_aggr.pl

-------------------------------------------------------------------------------------------------------

if($#ARGV < 0) {
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print "Usage : perl extract_fractanalysis_entropy_aggr.pl <directory with .ent files>\n";

exit;}

# Open a directory and read a file

$p_directory = $ARGV[0] ;

opendir (DIRECTORY, $p_directory) or die "cannot open";

while (defined($p_filename = readdir(DIRECTORY))) {

if ($p_filename =˜ /\.ent/) {

$filetoopen = $p_directory."/".$p_filename;

print "file to open is $filetoopen\n";

open(FHNDL, $filetoopen) or die "Cannot open file $p_filename";

$output_filename = substr($p_filename,0,5)."\.fract";

open(OUTFHNDL, ">$output_filename");

$i=0;

#print "$lines";

do {

$lines = <FHNDL>;

@filearray = split(/ +/,$lines); # @LIST = split(/PATTERN/, STRING);

$entropy_val = $filearray[3];

chomp($entropy_val);

#split the alignments

$alignment= $filearray[5];

chomp($alignment);

@align= split(//,$alignment);

$totalLength = $#align + 1;

# calculate gapfraction -

$numgaps = 0;

$gapfraction = 0;

# calculate fraction small residues (Alanines A and Glycines G)

$small_residues = 0;

$small_residues_fraction = 0;

# calculate fraction strongly hydrophobic (V, I, L, F, Y, M, W)

$strongly_hydrophobic = 0;

$strongly_hydrophobic_fraction = 0;

# calculate fraction strongly hydrophobic with gaps= fraction str. hydrophobic- fractiongaps

#fraction of small residues with gaps =

# Sequence entropy with gaps = average sequence entropy- fraction gaps

foreach $amino_acid (@align) {

if($amino_acid eq "-"){

$numgaps = $numgaps +1 ;}

if(($amino_acid eq "A") || ($amino_acid eq "G")){

$small_residues = $small_residues +1 ;}

if(($amino_acid eq "V") || ($amino_acid eq "I")|| ($amino_acid eq "L")

||($amino_acid eq "F")|| ($amino_acid eq "Y") || ($amino_acid eq "M")|| ($amino_acid eq "W") ){
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$strongly_hydrophobic = $strongly_hydrophobic +1 ;}}

$num_non_gap_amino_acids = $totalLength - $numgaps;

if ($num_non_gap_amino_acids > 0){

$gapfraction = $numgaps/$num_non_gap_amino_acids ;

$small_residues_fraction = $small_residues/$num_non_gap_amino_acids;

$strongly_hydrophobic_fraction = $strongly_hydrophobic/$num_non_gap_amino_acids;

$non_strongly_hydrophobic_fraction = 1- $strongly_hydrophobic_fraction;}

else{

$gapfraction = $num_non_gap_amino_acids;

$small_residues_fraction = $num_non_gap_amino_acids;

$strongly_hydrophobic_fraction = $num_non_gap_amino_acids;

$non_strongly_hydrophobic_fraction = $num_non_gap_amino_acids;}

print OUTFHNDL"E=$entropy_val,FG=$gapfraction,FSR=$small_residues_fraction,";

print OUTFHNDL"FSHP=$strongly_hydrophobic_fraction,FNSHP=$non_strongly_hydrophobic_fraction\n";

} while(!eof(FHNDL));

print OUTFHNDL "\n\n";

close(FHNDL);

close(OUTFHNDL);}}

end;

--------------------------------------------------------------------------------------------------------

--------------------------------------------------------------------------------------------------------

--------------------------------------------------------------------------------------------------------

# Author: Radhika Pallavi Mishra

# Date : September 21, 2008

# Purpose: Program to extract entropy values from entropy "ENT Files" and

#print in one file for aggregate plot

# File: extract_individualfractentropy_density_aggr.pl

--------------------------------------------------------------------------------------------------

if($#ARGV < 1) {

print "Usage : perl extract_entropy_aggr.pl <directory with .fract files>

<directory with density files> \n";

}

# Open a directory and read a file

$p_directory = $ARGV[0] ;

$p1_directory = $ARGV[1] ;

# Open files for reading and writing

# open file from density directory

opendir (DIRECTORY1, $p1_directory) or die "cannot open directory $p1_directory \n";

while (defined($p1_filename = readdir(DIRECTORY1))){

if ($p1_filename != "." || $p1_filename != "..") {

print "filename is $p1_filename and directory is $p1_directory \n";

open ( FHNDL1 ,"$p1_directory/$p1_filename") or die "Cannot open input files for read"."\n";

$PDBName = substr($p1_filename,0,5); # Get PDB protein name as 1st parameter
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$PDBName = uc($PDBName);

open(OUTFHNDL, ">$PDBName\.txt");

# open corresponding fract file

$filetoopen = $p_directory."/".$PDBName."\.fract";

print "file to open is $filetoopen\n";

open(FHNDL, $filetoopen) or die "Cannot open file $p_filename";

$lines1 = <FHNDL1>;

$lines = <FHNDL>;

do{

if ($lines1 =˜ /C\(9\)/){

@filearray1 = split(/ +/,$lines1); # @LIST = split(/PATTERN/, STRING);

$density_val = $filearray1[9];

$entropy_val = $lines;

chomp($density_val);

chomp($entropy_val);

print OUTFHNDL "Den=$density_val,$entropy_val\n";

$lines= <FHNDL>;}

$lines1 = <FHNDL1>;}

while(!eof(FHNDL1) && !eof(FHNDL));

print OUTFHNDL "\n\n";

close(FNDHL1);

close(FHNDL);

close (OUTFHNDL);

}}

end;

--------------------------------------------------------------------------------------------

--------------------------------------------------------------------------------------------

-------------------------------------------------------------------------------------------

#Author : Radhika Pallavi Mishra

#Date : September 21, 2008

#Purpose : Program to calculate aggregate values of all the parameters for each protein.

#Takes input from the .text files and prints output in separate directory.

#File: calculate_aggr_per_protein.pl

------------------------------------------------------------------------------------------

if($#ARGV < 1) {

print "Usage : perl calculate_aggr_per_protein.pl <Input directory with .txt files with

individual protein density-parameter value> <output directory name> \n";

exit;

}

# Open a directory and read a file

$p_directory = $ARGV[0] ;

$p_directory1 = $ARGV[1];
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# Open files for reading and writing

# open file from density directory

opendir (DIRECTORY, $p_directory) or die "cannot open directory $p1_directory \n";

while (defined($p_filename = readdir(DIRECTORY))){

if ($p_filename =˜ /txt/) {

print "filename is $p1_filename and directory is $p1_directory \n";

open ( FHNDL ,"$p_directory/$p_filename") or die "Cannot open input files for read"."\n";

$PDBName = substr($p_filename,0,4); # Get PDB protein name as 1st parameter

$outputfilename = $PDBName."Aggr"."\.txt";

$outputfilename = $p_directory1."/".$outputfilename ;

open(OUTFHNDL, ">$outputfilename");

# Following Arrays will store the average value of ent, fg, fsr fshp and fnshp

#for den = 0 to 40 in their index 0 to 40

my @aggr_rsa_array = ();

# Following Array will store the average number of occurences of den=i, at index i

my @num_density_occurences = ();

for($i=0;$i<=40;$i++){

$aggr_rsa_array[$i] = 0;

$num_density_occurences[$i] = 0;}

do{

$lines = <FHNDL>;

if($lines =˜ /ˆPDB/){

@filearray = split(/,/,$lines); # @LIST = split(/PATTERN/, STRING);

print "$lines ";

@temp = split(/\=/,$filearray[2]);

$den = $temp[1];

print "Density is $den \n";

if($den ne "NA"){

for($i=0;$i<=40;$i++) {

if($den == $i){

@temp = split(/=/,$filearray[3]);

$rsa = $temp[1];

print "$rsa\n";

$aggr_rsa_array[$i] = $aggr_rsa_array[$i] + $rsa;

$num_density_occurences[$i] = $num_density_occurences[$i] + 1;}}}}}

while(!eof(FHNDL));

for($i=0; $i<=40; $i++){

if($num_density_occurences[$i] > 0) {

$aggr_rsa = $aggr_rsa_array[$i] / $num_density_occurences[$i] ;

print OUTFHNDL "Den=$i,RSA=$aggr_rsa,N=$num_density_occurences[$i]\n";}

else{

print OUTFHNDL "Den=$i,RSA=NA,N=0\n";}}

print OUTFHNDL "\n\n";
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close(FHNDL);

close (OUTFHNDL);}}

end;

-----------------------------------------------------------------------------------------------------

-----------------------------------------------------------------------------------------------------

-----------------------------------------------------------------------------------------------------

# Author: Radhika Pallavi Mishra

# Date: September 21, 2008

# Purpose: Program to calculate double aggregate values of parameters

#from the individual protein aggregate files(’.txt’).

# File: double_aggr_forPlot.pl

---------------------------------------------------------------------------------------------------

if($#ARGV < 1) {

print "Usage : perl extract_entropy_aggr.pl <directory with .txt files> <name of output file> \n";}

# Open a directory and read a file

$p_directory = $ARGV[0] ;

$outputfile = $ARGV[1];

# Open files for reading and writing

open(OUTFHNDL, ">$outputfile");

# open file from density directory

opendir (DIRECTORY, $p_directory) or die "cannot open directory $p_directory \n";

while (defined($p_filename = readdir(DIRECTORY))){

if ($p_filename != "." || $p_filename != "..") {

print "filename is $p_filename and directory is $p_directory \n";

open ( FHNDL ,"$p_directory/$p_filename") or die "Cannot open input files for read"."\n";

$lines = <FHNDL>;

#print "$lines";

do

{

print OUTFHNDL "$lines";

#print "$lines\n";

$lines= <FHNDL>;}

while(!eof(FHNDL));}}

close(FHNDL);

close(OUTFHNDL);

end;

--------------------------------------------------------------------------------------------------

--------------------------------------------------------------------------------------------------

--------------------------------------------------------------------------------------------------

Author: Radhika Pallavi Mishra

Date: November 6, 2008

Purpose:Program to list the number of alignments in a blast file saved as .txt
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File: listNoAlignments.pl

-------------------------------------------------------------------------------------------------

if($#ARGV < 2) {

print "Usage : perl listNoAlignments.pl <directory with .txt files> <name of output file> \n";

}

# Open a directory and read a file

$p_directory = $ARGV[0] ;

$output = $ARGV[1];

open(OUTFHNDL, ">$output");

opendir (DIRECTORY, $p_directory) or die "cannot open";

while (defined($p_filename = readdir(DIRECTORY))) {

if ($p_filename =˜ /\.txt/) {

$filetoopen = $p_directory."/".$p_filename;

#print "file to open is $filetoopen\n";

open(IN, $filetoopen) or die "Cannot open file $p_filename";

#print" opened file $p_filename from $p_directory\n";

$line = <IN>;

$n=0;

while(!eof(IN))

{

if ( $line =˜ /ˆ Score =/) {

$n++;

}

$line = <IN>;}

print "$n\n";

print OUTFHNDL "Total Number of alignments = $n\n";

close(IN);}

close(OUTFHNDL);

end;

--------------------------------------------------------------------------------------------------

--------------------------------------------------------------------------------------------------

--------------------------------------------------------------------------------------------------

#Author:Radhika Pallavi Mishra

#Date: September 15, 2008

#Purpose: Program to list the number of residues in a density file

#File: No_of_res_count.pl

---------------------------------------------------------------------------------------------------

if($#ARGV < 2) {

print "Usage : perl extract_entropy_aggr.pl <directory with .den files> <name of output file> \n";

}

# Open a directory and read a file

$p_directory = $ARGV[0] ;

$outputfile = $ARGV[1];
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# Open files for reading and writing

open(OUTFHNDL, ">$outputfile");

# open file from density directory

opendir (DIRECTORY1, $p_directory) or die "cannot open directory $p_directory \n";

while (defined($p_filename = readdir(DIRECTORY1))){

if ($p_filename != "." || $p_filename != "..") {

print "filename is $p_filename and directory is $p_directory \n";

$filetoopen = $p_directory."/".$p_filename;

print "file to open is $filetoopen\n";

open(FHNDL, $filetoopen) or die "Cannot open file $p_filename";

$lines = <FHNDL>;

while(!eof(FHNDL)){

if ($lines =˜ /NO_RESIDUES=/){

print "$lines \n";

@filearray = split(/ +/,$lines);

$no_res = $filearray[2];

chomp($no_res);

print OUTFHNDL "$p_filename $no_res\n";}

$lines= <FHNDL>;}

close(FHNDL);}}

close(OUTFHNDL);

end;

-------------------------------------------------------------------------------------------------

-------------------------------------------------------------------------------------------------

-------------------------------------------------------------------------------------------------

# Author: Radhika Pallavi Mishra

# Date : November 11, 2008

# Purpose: Program to list the scores in a blast file saved as .txt, and the corresponding bit score

# File: Bitscorelistno_ofsubject.pl

-----------------------------------------------------------------------------------------------------

if($#ARGV < 2) {

print "Usage : perl Bitscorelistno_ofsubject.pl <directory with .txt files> <name of output file> \n";}

# Open a directory and read a file

$p_directory = $ARGV[0] ;

$output = $ARGV[1];

open(OUTFHNDL, ">$output");

opendir (DIRECTORY, $p_directory) or die "cannot open";

while (defined($p_filename = readdir(DIRECTORY))) {

if ($p_filename =˜ /\.txt/) {

$filetoopen = $p_directory."/".$p_filename;

open(IN, $filetoopen) or die "Cannot open file $p_filename";

$line = <IN>;
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while(!eof(IN)){

if ( $line =˜ /ˆ Score =/) {

print "$line \n";

@filearray = split(/ +/,$line);

$bitscore = $filearray[3];

chomp $bitscore;

print "$bitscore\n";

print OUTFHNDL "$bitscore\n";}

$line = <IN>;}

close(IN);}}

close(OUTFHNDL);

end;

----------------------------------------------------------

----------------------------------------------------------

----------------------------------------------------------
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Appendix B

Additional Figures
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Figure B.1: Aggregate entropy-inverse density correlation plots of 268 proteins for
a set of BLASTP alignment cutoffs. Here, double average entropy is calculated by
averaging the entropy values per protein and then averaging them over the 268 set of
proteins. Entropy-inverse density plot for A. Expect cutoff 0.001. B. Percentage
Identity 25%. In both these plots, gaps are excluded in the entropy calculations and
entropy values are averaged for each inverse density value.
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Figure B.2: Entropy-inverse density correlation plots. A. For Expect 0.001 B. For
Percentage Identity 25%. In both these cases, mutational insertions and deletions,
represented by gaps, were included in the entropy calculations as the 21st amino acid.
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Figure B.3: Gaps Included Aggregate plots for learning set list.
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Figure B.4: Entropy inverse density plots for a set of 268 proteins. A. Single average
aggregate plot of 40% entropy calculated by considering gap as the 21st term. B.
Single average aggregate 40% entropy- inverse density plot calculated by excluding
gaps in the entropy calculations. C. Double average aggregate 40% entropy- inverse
density plot calculated for each packing density position. Here, gaps were taken into
account while calculating the Entropy values. D. Double average aggregate plot of
gaps excluded 40% entropy for a set of 75891 query proteins.
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Figure B.5: Z Score analysis of the learning set list of proteins.
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Figure B.6: Aggregate correlation plot of fraction strongly hydrophobic for the
learning set list. Aggregate correlation plot of fraction strongly hydrophobic for
the learning set list versus inverse density, for residues that have exclusively strongly
hydrophobic residues in their alignments (FSHP = 1) and residues that have some
other residues in addition to strongly hydrophobic residues in their alignments (Without
FSHP 1). All this data was calculated after removing all the residues with FSHP = 0 .
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Figure B.7: Visual alignment of 1LS9 and 1C6S. Both Cytochrome C6. Shown
are the positions (red) of the literature-noted patch residues from 1C6S and aligned
for 1LS9 (Beissenger et al., 2004; Do, S., San Jose State University, personal
communication, 2009). Note 1LS9 is an example of test protein for application of
filter parameters. Examination of prediction of surface hydrophobic patches should
prove interesting.
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Figure B.8: Alignment of 1C6S and 1LS9, two related proteins by ClustalW in Jalview
2.4. The conserved motif for Cytochrome C6 is bordered in red and the literature-noted
patch residues for 1C6S are bordered in blue (Do, S., San Jose State University,
personal communication, 2009).
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Figure B.9: RSA versus Fraction strongly hydrophobic for the learning set list of 268
proteins.
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Figure B.10: Frequency distribution of query residues for the learning set list of 268
proteins. Enlarged image of the frequency distribution is shown in the insert.
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Appendix C

Additional Tables

Table C.1: List of 65 monomeric protein chains present in the learning set list.

IDs = PDB ID +
Chain

IDs = PDB ID +
Chain

IDs = PDB ID +
Chain

13PKA 1G2AA 1THTA
1AG9A 1GARA 1TOAA
1AH7A 1GJMA 1URPA
1AKOA 1HF8A 1VBTA
1AMUA 1ILR1 1XGSA
1ATLA 1KPTA 256BA
1AW7A 1KWAA 256LA
1AYLA 1MPGA 2ACYA
1BEAA 1NAWA 2ATJA
1BINA 1NP4A 2BC2A
1BYOA 1PBGA 2BLSA
1C02A 1PDAA 2G3PA
1CKIA 1QAZA 2IHLA
1CQXA 1QCIA 2MBRA
1DYSA 1QHAA 2SCPA
1EHYA 1QJPA 2SHPA
1EWFA 1QMEA 2TPSA
1FEHA 1QPAA 2UGIA
1FGKA 1QTQA 3PMGA
1FJMA 1RHSA 830CA
1FKDA 1RNEA 8PTIA
1FMTA 1SHKA

Table C.2: List of 99 homodimeric protein chains present in the learning set list.

IDs = PDB ID +
Chain

IDs = PDB ID +
Chain

IDs = PDB ID +
Chain

IDs = PDB ID +
Chain

IDs = PDB ID +
Chain

IDs = PDB ID +
Chain

12ASA 1BBHA 1CSHA 1ISAA 1QR2A 2ILKA
1A4IA 1BD0A 1CTTA 1IVYA 1REGX 2NACA
1A4UA 1BIQA 1CZJA 1JHGA 1RPOA 2OHXA
1AA7A 1BISA 1DAAA 1JSGA 1SESA 2SPCA
1ADEA 1BJWA 1DORA 1KBAA 1SLTA 2SQCA
1AFWA 1BMDA 1DPGA 1KPFA 1SMNA 2TCTA
1AJSA 1BRWA 1DQSA 1M6PA 1SMTA 2TGIA
1AMKA 1BSLA 1E98A 1MKBA 1SOXA 3DAPA
1AORA 1BUOA 1EBHA 1MORA 1TC1A 3GRSA
1AQ6A 1BXGA 1F13A 1NOXA 1TOXA 3SDHA
1AUOA 1BXKA 1FIPA 1NSEA 1TRKA 5CSMA
1B3AA 1CDCA 1FROA 1NSYA 1UBYA 5RUBA
1B5EA 1CG2A 1GVPA 1OACA 1UTGA 8PRKA
1B67A 1CHMA 1HJRA 1OPYA 1VOKA 9WGAA
1B8AA 1CMBA 1HXPA 1PGTA 1XSOA
1B8JA 1CNZA 1ICWA 1QFHA 2ARCA
1BAMA 1COZA 1IMBA 1QHIA 2HDHA

Table C.3: List of 40 heterodimeric protein chains present in the learning set list.

IDs = PDB IDs
+Chain

IDs = PDB IDs
+Chain

IDs = PDB IDs
+Chain

IDs = PDB IDs
+Chain

1A2KA 1DFJI 1GOTG 1TX4B
1AK4C 1DHKA 1GUAB 1YCSA
1AVWB 1DHKB 1HIAI 1YCSB
1BRSA 1EFNB 1HWGA 1YDRE
1BRSD 1EFUA 1HWGB 2PCCA
1CSEE 1EFUB 1MCTA 2SICI
1CSEI 1FINB 1NMBN 2TRCP
1DANL 1FLEI 1OSPO 3SGBE
1DANT 1GOTA 1STFI 3SGBI
1DANU 1GOTB 1TX4A 4HTCI
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Table C.4: Z Score values at each density position for the learning set list of proteins.

Packing Density Z=(x-mean)/std.dev
3 -2.850413391
4 -2.600950285
5 -2.351487178
6 -2.102024072
7 -1.852560965
8 -1.603097858
9 -1.353634752
10 -1.104171645
11 -0.854708539
12 -0.605245432
13 -0.355782326
14 -0.106319219
15 0.143143887
16 0.392606994
17 0.642070101
18 0.891533207
19 1.140996314
20 1.39045942
21 1.639922527
22 1.889385633
23 2.13884874
24 2.388311847
25 2.637774953
26 2.88723806
27 3.136701166
28 3.386164273
29 3.635627379
30 3.885090486
31 4.134553593
32 4.384016699
33 4.633479806
34 4.882942912
35 5.132406019

Table C.5: Trend comparison for the three protein lists with the aggregate trend of the learning set list of 268 proteins.

Entropy FSHP FNSHP FSR FG
Average
Ratio

Absolute
Deviation

Average
Ratio

Absolute
Deviation

Average
Ratio

Absolute
Deviation

Average
Ratio

Absolute
Deviation

Average
Ratio

Absolute
Deviation

268/Monomeric 0.996 0.004 1.065 0.065 1.008 0.008 1.053 0.053 1.026 0.026
268/Homodimeric 1.054 0.054 0.963 0.037 0.999 0.001 0.988 0.012 1.909 0.909
268/Heterodimeric 1.211 0.211 1.109 0.109 1.024 0.024 1.463 0.463 4.180 3.180
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Table C.6: Distributional analysis of the query residues for the learning set list of 268 proteins.

Packing density Small
Residues
(SR)

% SR Strongly
hydrophobic
residues
(SHP)

% SHP Non-Strongly
Hydrophobic
residues(NSHP)

%NSHP (SR/T)% (SHP/T)% (NSHP/T)% Total No.
of Res.
at each
density T =
SHP+NSHP

x < 4 5 0.006782 13 0.018 27 0.0366 12.5 32.5 67.5 40
4 ≤ x > 11 2435 3.302591 1803 2.445 11382 15.437 18.468 13.67463 86.3253697 13185
11 ≤ x ≥ 25 9608 13.03133 22052 29.91 38263 51.896 15.9297 36.56139 63.4386139 60315
25 < x 86 0.116642 39 0.053 151 0.2048 45.2632 20.52632 79.4736842 190
1 0 0 0 0 0 0 - - - 0
2 0 0 0 0 0 0 - - - 0
3 5 0.007 13 0.018 27 0.037 12.5 32.5 67.5 40
4 19 0.026 20 0.027 65 0.088 22.353 23.529 76.471 85
5 43 0.058 40 0.054 173 0.235 20.188 18.779 81.221 213
6 153 0.208 79 0.107 591 0.802 22.836 11.791 88.209 670
7 274 0.372 155 0.210 1107 1.501 21.712 12.282 87.718 1262
8 467 0.633 268 0.363 2048 2.778 20.164 11.572 88.428 2316
9 697 0.945 462 0.627 3303 4.480 18.513 12.271 87.729 3765
10 782 1.061 779 1.057 4095 5.554 16.044 15.983 84.017 4874
11 809 1.097 1157 1.569 4737 6.425 13.726 19.630 80.370 5894
12 828 1.123 1456 1.975 4609 6.251 13.652 24.007 75.993 6065
13 728 0.987 1828 2.479 4253 5.768 11.972 30.061 69.939 6081
14 806 1.093 2231 3.026 4154 5.634 12.623 34.941 65.059 6385
15 855 1.160 2670 3.621 3934 5.336 12.947 40.430 59.570 6604
16 916 1.242 2804 3.803 3570 4.842 14.371 43.991 56.009 6374
17 865 1.173 2604 3.532 3239 4.393 14.804 44.566 55.434 5843
18 907 1.230 2367 3.210 2742 3.719 17.753 46.330 53.670 5109
19 828 1.123 1892 2.566 2287 3.102 19.813 45.274 54.726 4179
20 725 0.983 1318 1.788 1754 2.379 23.600 42.904 57.096 3072
21 505 0.685 831 1.127 1200 1.628 24.865 40.916 59.084 2031
22 380 0.515 456 0.618 843 1.143 29.253 35.104 64.896 1299
23 249 0.338 252 0.342 524 0.711 32.088 32.474 67.526 776
24 133 0.180 130 0.176 276 0.374 32.759 32.020 67.980 406
25 74 0.100 56 0.076 141 0.191 37.563 28.426 71.574 197
26 37 0.050 20 0.027 69 0.094 41.573 22.472 77.528 89
27 18 0.024 15 0.020 40 0.054 32.727 27.273 72.727 55
28 15 0.020 2 0.003 22 0.030 62.500 8.333 91.667 24
29 10 0.014 0 0.000 11 0.015 90.909 0.000 100.000 11
30 1 0.001 2 0.003 4 0.005 16.667 33.333 66.667 6
31 2 0.003 0 0 2 0.003 100 0 100 2
32 2 0.003 0 0 2 0.003 100 0 100 2
33 0 0.000 0 0 0 0 - - - 0
34 0 0.000 0 0 0 0 - - - 0
35 1 0.001 0 0 1 0.0014 100 0 100 1
More 0 0 0 0 0 0 - - - 0
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