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ABSTRACT 

EVALUATION AND IMPROVEMENTS OF THE OFFLINE CLM4 USING ARM 

DATA 
 

by Terrence J. Mullens 

Hourly ground observations for year 2004 from the Atmospheric Radiation 

Measurement (ARM) program of the Department of Energy were used to examine the 

surface and subsurface energy simulations of the Community Land Model version 4 

(CLM4). The 2 m air temperature, wind speed, solar radiation, downward longwave 

radiation, and precipitation observed by the ARM project were used to force the offline 

CLM4, and the ARM land surface and soil observations including skin temperature 

(Tskin), soil temperature and moisture, and sensible, latent, and ground heat fluxes were 

used to evaluate the model outputs. The default and ARM-forced CLM4 runs for 2004 

were compared to assess the improvements to the model for hourly, daily, and seasonal 

timescales. The root mean square error and the Pearson correlation coefficient show that 

the ARM-forced offline CLM4 leads to improved accuracy in surface and soil energy 

fluxes in comparison with the default offline CLM4. Nevertheless, a warm bias of 2°C to 

3°C was assessed on Tskin in summer due to warm maximum temperatures and in winter 

due to warm minimum temperatures. To improve CLM4 Tskin simulations, a proposed 

vegetation emissivity parameterization was evaluated locally and globally using both 

ARM and Moderate Resolution Imaging Spectroradiometer remote-sensing observations. 

This new algorithm results in cooling and an improvement of 0.17 K for the ARM site. 

Global evaluation revealed improvement in areas of intermediate canopy density. 
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1. Introduction and Background 

a. Introduction 

Reliable general circulation models (GCMs) are critical tools to predict, mitigate, 

and adapt to natural and human-induced climate changes (Bernstein et al. 2007; Williams 

et al. 2009; Brown et al. 2012). Because it is unfeasible to study the entire climate system 

through experimental methods, GCMs have become the primary tools for scientists to 

study climate change (Edwards 2011). These models use known physical laws, 

parameterizations, and governing equations to predict how components in the climate 

system will respond to anthropogenic changes. Originally, GCMs focused primarily on 

the atmosphere, so other components were represented by a set of observations and 

constants or were disregarded altogether (Dickinson et al.1995; Sellers et al. 1997). In the 

past two decades, however, GCMs have integrated the ocean, land surface, sea ice, urban 

centers, and carbon cycle to their models, with each being an individual subcomponent 

interacting with one another.  

 Land models are a critical component of GCMs because the energy, momentum, 

and moisture exchanges at the land surface are critical to local and global climate (Sellers 

et al. 1986; Dickinson 1995; Sellers et al. 1997; Nicholson 1998; Dickinson et al. 2006; 

Baklanov et al. 2011). Furthermore, land models simulate how the biosphere responds to 

climate change (Bonan et al. 2002a). Land models have developed from simple “bucket” 

methods (Manabe 1969) to a complex system that can model land and biogeophysical 

processes, such as surface energy fluxes and vegetation evolution on the land surface. For 
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example, the Community Land Model (CLM; Bonan et al. 2002b; Dai et al. 2003; Oleson 

et al. 2010) managed at the National Center for Atmospheric Research (NCAR), models 

ecosystem evolution, vegetation dynamics, transport of moisture, and surface energy 

fluxes throughout the climate system. These physical processes are crucial to climate 

modeling because they partially determine the availability of energy and moisture in the 

atmosphere.  

There is substantial uncertainty in the performance of GCMs. The accurate 

simulation of observed climate variability increases confidence in a model’s performance 

(Brown et al. 2012). Similar to GCMs, land models contain uncertainties and thus require 

validation. The validation of past land models has led to the incorporation of better 

physical, ecological, and hydrological parameterizations in the models. Examples include 

the introduction of plant functional types (PFTs), the improvement of fractional snow 

cover using Advanced Very High Resolution Radiometer (AVHRR) data (Bonan et al. 

2002a; Niu and Yang 2007), and improvements to land and vegetation cover parameters 

using the Moderate Resolution Imaging Spectroradiometer (MODIS) data (Lawrence and 

Chase 2007). In addition, single-point tower data sets, such as FLUXNET data 

(Baldocchi et al. 2001; Williams et al. 2009) and GAME-Tibet data (http://monsoon.t.u-

tokyo.ac.jp/tibet), have been used to evaluate both localized and global simulations of 

land models (Stockli et al. 2008; Zeng et al. 2012). Furthermore, the strengths of various 

models have been identified through validation, allowing new models to include the 

strengths of previous models. For example, the CLM inherits the strengths of three 

separate land models: the Biosphere-Atmosphere Transfer Scheme (Dickinson et al. 

http://monsoon.t.u-tokyo.ac.jp/tibet
http://monsoon.t.u-tokyo.ac.jp/tibet
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1993), the NCAR Land Surface Model (LSM1 and LSM2; Bonan 1996; Oleson and 

Bonan 2000), and the Chinese Academy of Science Land Model (IAP 94; Dai and Zeng. 

1997). 

The validation of land surface models identifies weaknesses in a model. For 

example, validations have revealed that the simulation of latent heat flux is a weakness in 

CLM and in other climate models (Leuning et al. 2012; Lawrence et al. 2012). 

Furthermore, validation has revealed weaknesses in the simulations of fractional snow 

cover (Niu and Yang 2007; Swenson and Lawrence 2012), vegetation cover (Lawrence 

and Chase 2007), and sensible heat flux (Zeng et al. 2012). Knowledge of these 

weaknesses leads to modifications to improve land models. These modifications undergo 

the same validation process that the original model underwent to determine if the 

modification improves the simulation while maintaining the integrity of the rest of the 

model. 

High-quality in situ data sets to force and to evaluate land models provide an 

accurate validation approach (Bonan 2008; Williams et al. 2009). Currently, typical land 

model evaluations use multiple data sets taken through different field campaigns (Bonan 

et al. 2002b; Dai et al. 2003; Niu and Yang 2007; and Zeng et al. 2012). These data sets 

are valuable in evaluating model performance. However, differing measurement 

techniques and resolutions of different campaign data sets can produce uncertainties 

when used in forcing and evaluating land models. Therefore, a set of observed data 

measured simultaneously at the same site would be appropriate for model evaluation. 
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The Atmospheric Radiation Measurement (ARM; Stokes and Schwartz 1994; 

Ackerman and Stokes 2003) project aims to provide various data sets for climate model 

evaluations. For example, the ARM data have been proven successful in validating model 

parameterizations, such as albedo (Yang et al. 2008), as well as surface energy fluxes and 

their relationships with cloud fraction (Qian et al. 2012). Although atmospheric 

measurements from ARM have been used to evaluate models, land surface observations 

have not been adequately used. For example, measurements of land surface temperature 

(LST) and soil fluxes have not yet been used to evaluate land models. Because similar 

field campaigns have succeeded in evaluating and improving land models, the ARM 

project, which has more instrumentation and staff at each site compared with similar 

campaigns, could potentially be a major contribution to land model validation.  

This thesis focuses on evaluating the offline NCAR Community Land Model 

version 4 (CLM4; Oleson et al. 2010; Lawrence et al. 2011; Lawrence et al. 2012). The 

goal is to validate CLM4 using ARM observations that have been developed into forcing 

(ARM-forcing) and evaluation (ARM-evaluation) data sets (Table 1). An offline CLM4 

run was forced using the default atmospheric data for 2004 (Qian et al. 2006) and the 

observed ARM-forcing data for the year 2004. Afterward, both runs were evaluated with 

the ARM-evaluation data set at hourly, daily, and monthly timescales. The results of this 

study highlight physical processes that need further improvement. Furthermore, the 

results suggest particular seasons and times of day that improvements should be focused 

on. Finally, an example of improvements to vegetation canopy emissivity (εv) made 

through this validation is given in Appendix B. 
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Table 1. ARM observations used as forcing and evaluation data in this experiment. 

 

b.  Land Surface Processes in Climate Models 

The Earth’s surface and atmosphere interact through various geophysical and 

chemical processes in the planetary boundary layer (Dickinson 1995; Sellers et al. 1997; 

Nicholson 1998; Dickinson 2000; Dai et al. 2003; Baklanov et al. 2011; Jin and Mullens 

2012). Thus, an understanding of the structure, composition, and evolution of the land 

surface is crucial in climate modeling. Furthermore, Dirmeyer et al. (2012) suggest that 

global warming potentially increases the influence of the land surface on geophysical 

exchanges in the climate system, specifically between the atmosphere and the land 

surface; therefore, properly modeling these exchanges is necessary to predict future 

impacts. CLM4 models the land surface; the various exchanges of heat, moisture, and gas 

(such as CO2); and the ecological elements between the land surface and the atmosphere, 

Forcing Data Evaluation Data 

2 m air temperature (T) Upward shortwave radiation (Sup) 

Direct solar radiation (Sdir)  Upward longwave radiation 

• Used to calculate Tskin 

Diffuse solar radiation (Sdif)  Sensible heat flux  

Relative humidity Latent heat flux 

Wind speed (V) Soil temperature at 5 and 25 cm depth 

Precipitation Soil moisture at 5 and 25 cm depth 
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such as dynamic vegetation and parameterizations of urban areas. As these processes are 

introduced into the modeled climate system, the accuracy of future climate prediction 

may increase substantially. 

The surface energy balance (SEB) is an important relationship between the land 

surface and the atmosphere. Incoming shortwave radiation from the sun and downward 

longwave radiation emitted by the atmosphere are distributed in terms of heat and 

moisture fluxes, as shown in the following SEB equation: 

       

   
  

  

   
  

       
 

   
 

  

   
  

  

   
 

 

   
   (1) 

 

A. A percentage of the incoming solar shortwave radiation (Sd) is reflected off 

the land surface, based on the surface albedo (α), the ratio of reflected 

radiation to incoming radiation at the surface. The rest is absorbed at the 

surface. 

B. Some longwave radiation is emitted from clouds and the atmosphere, directed 

toward the Earth’s surface (Ld). 

C. An amount of the energy absorbed by the land surface is emitted as longwave 

radiation. This is a function of the radiometric surface temperature, also 

known as skin temperature (Tskin; Jin et al. 1997; Jin 2004; Jin and Dickinson 

2010), and the emissivity (ε) of the land surface. This relationship is 

quantified through the Stefan-Boltzmann law. 
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D. Because the land surface and the atmosphere often have different 

temperatures, energy is exchanged between them to achieve thermodynamic 

equilibrium. This is called sensible heat (SH) flux, which is highest when the 

temperature difference between the land surface and the atmosphere is at its 

highest level. For example, in CLM4, the SH flux between the ground and the 

atmosphere is calculated as follows (Oleson et al. 2010, Eq. 5.61): 

          
         

   
,   (2) 

where ρatm and θatm are the density and the potential temperatures of the 

atmosphere, respectively; Cp is the specific heat of the air; Tg is the 

temperature of the ground; and rah is the aerodynamic resistance to SH 

transfer. 

E. Some of the energy is involved in the phase changes of water, which either 

absorb or emit heat through evaporation or condensation near the land surface. 

This is called latent heat (LE) flux. In CLM4, this quantity is a product of λ, 

the LE of vaporization (or sublimation if air temperature is below freezing 

point), and the water vapor flux, calculated as follows (Oleson et al. 2010, Eq. 

5.62): 

        
             

   
,   (3) 

where βsoi is an empirical function of soil water, qatm is the specific humidity 

of the atmosphere, qg is the specific humidity at the ground surface, and raw is 

the aerodynamic resistance to water vapor transfer. 
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F. The remaining energy that is not reflected, emitted, exchanged between the 

land and the atmosphere or used in the phase changes of water is then 

absorbed into the ground. This is called the heat flux into the ground or, more 

commonly, the ground (G) flux. 

 

All of the terms in the SEB equation are important and must be accurately 

simulated in GCMs. Atmospheric conditions (e.g., the presence of clouds, humidity, air 

temperature, and greenhouse gases) and land properties (e.g., snow cover, land use, soil 

moisture, and vegetation cover) affect the SEB. Therefore, these parameters substantially 

affect the transfer of energy and moisture between the land and the atmosphere and thus 

the Earth’s climate (Wiscombe and Warren 1980; Anthes 1984; Dirmeyer 2000). All of 

these parameters are modeled in CLM4 and measured by the ARM project. 

 

c. History of CLM Validations 

CLM0, the first version of the model (Zeng et al. 2002), was compared with 

LSM1 and LSM2 using observational data from Willmott and Matsurra (2000) and 

Valadi hydrological data (Schlosser 1996). Later, Bonan et al. (2002b) demonstrated the 

improvements of CLM2 over LSM1 and LSM2. In particular, simulated snow water 

equivalent, 2 m air temperature (Tair), precipitation, and runoff were improved when 

CLM2 was coupled with NCAR’s Community Climate Model (CCM3). In addition, Dai 

et al. (2003) used the same runs from Bonan et al. (2002b) but included additional offline 
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validations using the Valadi data together with data from the Anglo-Brazilian Amazonian 

Climate Observation Study (Gash et al. 1996). These studies demonstrated CLM’s ability 

to simulate land surface properties in comparison with CLM’s predecessors, even with 

the same offline forcing data. Lawrence and Chase (2007) used MODIS data to develop 

new land surface parameters (such as vegetation types) in the offline CLM3.0. Their 

study showed encouraging accuracy of the offline CLM and clear improvement gained by 

using observations. Roesch (2006), Niu and Yang (2007), and Wang and Zeng (2010) 

have used various satellite remote-sensing (such as AVHRR and MODIS) and surface 

observation data sets to evaluate snow cover and albedo and how their modifications to 

the algorithms improved the CLM’s simulations. Jin and Liang (2006) used the MODIS 

and the National Center for Environmental Prediction (NCEP)-NCAR reanalysis data to 

improve bare soil emissivity. Qian et al. (2006) used a set of global and station data to 

validate the hydrological elements of the model and a new set of forcing data that is 

currently used. FLUXNET data have been used to evaluate single-point simulations of 

carbon, water, and energy fluxes (Baldocchi et al. 2001; Williams et al. 2009). MODIS 

data and snow depth observations have been used to improve modeled fractional snow 

cover (Swenson and Lawrence 2012). Furthermore, observational data have been 

assimilated into the model through the Data Assimilation Research Testbed (Anderson et 

al. 2009).  

The CLM serves as the land surface component of NCAR’s Community Earth 

Systems Model (CESM; Oleson et al. 2010), a major contributor to the 2007 

Intergovernmental Panel on Climate Change (IPCC) fourth assessment report (Dickinson 
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et al. 2006; Bernstein et al. 2007). The CLM underwent extensive validation (Bonan et al. 

2002b; Dai et al. 2003; Qian et al. 2006) to demonstrate its performance. Because of 

CLM’s role as a component of CESM, and thus the IPCC reports, improvements made to 

the model may lead to improvements in forecasting future climate change. 

In this study, ARM data sets were used to evaluate CLM4, the current version of 

the model. The advantage of using ARM observations is that the forcing data are 

collected with the evaluation data (at the same site and same time). Consequently, a more 

accurate one-to-one validation can be performed, thus removing uncertainties that occur 

otherwise due to inconsistencies between data sets. In addition, ARM provides data in a 

finer spatial and temporal scale than many forcing and evaluation data sets, which allows 

for a more robust evaluation of land models. 

Section 2 outlines the description of the offline CLM4 as well as the ARM-

forcing and ARM-evaluation data collected from the CO2 flux site in Lamont, Oklahoma, 

and the experimental design and methods used for evaluating the model. Section 3 

discusses the results of offline CLM4 default runs and runs with the ARM-forcing and 

discussion of these results. Final remarks are made in Section 4. Appendix B proposes a 

new scheme to improve vegetation canopy emissivity (εv). 
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2. Data, Model, and Experimental Design. 

a. Model Description 

CLM4 (Oleson et al. 2010; Lawrence et al. 2012), the latest released version of 

the CLM, models ecosystem, groundwater, and surface energy fluxes. Recent 

developments in CLM4 include improved software and computational performance, 

competition between PFTs for water in a single column, improved hydrological cycle, 

and improved vegetation dynamics. Furthermore, improvements were also made in 

vegetation burial by snow and simulated fractional snow cover. A more detailed history 

and description of the model is provided by Oleson et al. (2010). The current status of the 

model along with new developments and challenges are outlined by Lawrence et al. 

(2012). 

CLM4 splits the Earth into individual grid cells and calculates parameters for each 

cell. The cell is further split into a heterogeneous nested subgrid for different land units 

(glacier, wetland, vegetated, lake, or urban), which are then split into soil-snow columns 

and broken up into various PFTs (Bonan et al. 2002a). In addition, the model simulates 

soil temperature and soil moisture at 10 subsurface soil layers and 5 layers of bedrock 

(Table 2). CLM4 can be run in two different modes: fully coupled to the CESM or 

Community Atmosphere Model (the atmospheric component of CESM) or in offline 

mode with prescribed atmospheric forcing. CLM needs to be “spun up” prior to the 

period that model simulations will be run so that the model will stabilize after a 

climatologically abnormal period, such as a drought (Yang et al. 1995). The CESM (and 
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thus CLM4) runs on a “no-leap” calendar because of the algorithm used to calculate 

incoming solar radiation at the top of the atmosphere (Oleson et al. 2010; Neale et al. 

2010), thus leap days are not modeled. 

 

Table 2. Subsurface soil layers and subsequent depths in CLM4. 

Layer Depth (m) 

1 0-0.018 

2 0.018-0.045 

3 0.045-0.091 

4 0.091-0.166 

5 0.166-0.289 

6 0.289-0.493 

7 0.493-0.829 

8 0.829-1.383 

9 1.383-2.296 

10 2.296-3.433 

11–15 Bedrock 

. 

The default offline CLM4 uses the atmospheric forcing data of Qian et al. (2006), 

which are a blend of NCEP-NCAR reanalysis data variations and some observations-

based analysis. The spatial resolution of the default forcing data is T62 (~1.825°), and the 

temporal resolution is 3-hourly (0000, 0300, etc., UTC) for six parameters: precipitation 
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rates, Tair, specific humidity, wind speed, surface air pressure, and solar radiation. These 

data are then bilinear interpolated to hourly data for model simulations, which require 

more frequent output and consequentially input. The default atmospheric forcing data set 

spans from 1948 to 2004. 

However, the default forcing has a few disadvantages. First, the spatial resolution 

is too coarse when the model is being validated by surface data measured over a point far 

smaller than 1.825° in latitude and longitude. Second, the temporal resolution (3 h) is also 

too coarse. Because significant variation in conditions can occur hourly, a fine temporal 

resolution would be desired. 

Therefore, to truly understand how the model is performing when compared with 

observed land surface data over a given point, a set of complementary atmospheric 

forcing data over the same point and at a fine temporal resolution is necessary. Although 

ARM observations themselves contain uncertainties (such as instrument calibration, drift 

errors, etc.), they remove a majority of the uncertainties included by the forcing data, 

allowing for a much better evaluation of the model’s calculations themselves. 

 

b. ARM Data Sets 

A set of observed atmospheric and land surface data are recorded by the ARM 

Southern Great Plains (SGP) CO2 flux tower (Fischer 2005; Fischer et al. 2007). The CO2 

flux site at Lamont measures CO2, SH, and LE fluxes, as well as solar and terrestrial 
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radiation every hour, while friction velocity and Monin-Obukhov scale length are 

calculated. The data from the CO2 flux site are useful as forcing data and for evaluating 

the output of models. However, the data contain a large amount of missing values and 

uncertainties. To provide a more accurate atmospheric forcing data set, a value-added 

refinement of the data has been developed at San José State University as ARM-forcing 

and ARM-evaluation data sets, respectively. The ARM data underwent a quality control 

process, removing bad data and replacing missing data through linear interpolation or 

substitution of previous data points if the missing points span over too long a period to 

accurately interpolate (Jin et al. 2013, submitted). Most cases of missing data were solved 

by the first method, with only few instances requiring the second substitution method. 

Although these processes allow for a more continuous data set, they also introduce 

additional uncertainties in the data because missing data are simply replaced with 

interpolated data and therefore might not properly represent what is indeed occurring at 

that time point. Additional uncertainties from the data include the drift and calibration 

errors, which are common among instrumentation-based measurements, and the accuracy 

of the instrumentation, which is outlined in the CO2 flux handbook (Fischer 2005). An 

additional uncertainty is caused by the positioning of the sonic anemometer used at this 

site, which can lead to an underestimation of SH flux by as much as 10% (Frank et al. 

2013). For this study, 2004 was randomly chosen for initial data development. This data 

set, however, is being further developed for validations on a shorter timescale (such as a 

day or a month) for other years. 
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The ARM SGP site is located in Lamont, Oklahoma (36.6°N, 97.5°W; Figure 1) 

at an elevation of 1030 ft (314 m) in an area of open pasture blocked off from the 

surrounding farmlands (Figure 2). The region of Lamont, Oklahoma, is a humid 

subtropical climate (Koppen Classification Cfa), with hot, wet summers and cold, drier 

winters. The average high temperature for July is 93°F (33.9°C), and the average low 

temperature for January is 22°F (5.6°C). The average annual precipitation is 35 inches 

of rain and 12 inches of snow (approximately 1 inch of equivalent rain). The vegetation 

of the surrounding farmlands is typically winter wheat but varies by season and year and 

does not include the ARM SGP central facility itself (i.e., the vegetation on the site does 

not vary with farming). This may have a profound impact on land cover features in land 

models because the model could be using a different vegetation input compared with the 

site itself. 

 

Figure 1. Location of the ARM SGP site in Lamont, Oklahoma. Adapted 

from the Department of Energy ARM project (www.arm.gov). 
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Figure 2. Site layout at the ARM–Lamont Central 

Facility. Adapted from Stokes and Schwartz (1994). 
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At the ARM SGP CO2 flux site, there are two soil sensors taking half-hourly 

measurements in the ground: one at 5 cm (0.05 m) below the ground and one at 25 cm 

(0.25 m) below the ground. These depths are modeled in layers 3 and 5 of CLM4, 

respectively. The primary measurements taken by these instruments (and used in this 

study) are soil moisture and soil temperature. Although the quality of these data is 

acceptable for much of 2004, there exists a large amount of missing data for soil 

temperature in the second half of 2004. Furthermore, soil moisture readings during the 

same period vary unrealistically. For the purpose of this study, that those uncertain and 

missing data have been removed from the comparison to produce the most accurate 

results possible. 

The primary goal of this study is to evaluate the daily, diurnal, and seasonal 

simulations of Tskin. To have the best perspective on the validity of ARM data in 

evaluating Tskin, it is useful to compare the observations with another observed data set. 

To do so, monthly LST data, taken from the MODIS instrument on board the Terra 

satellite, are used. These data are described by Wan (2008), and the uncertainties are 

discussed by Jin and Mullens (2012). Because MODIS only takes two measurements of a 

given location each day (at approximately 10:30 a.m. and 10:30 p.m. local time), the 

values are averaged into a single temperature value for each month. The comparison 

indicates that although both observations have the same seasonality pattern, MODIS LST 

observations are warmer by as much as 3 K for most months (Figure 3). One possible 

reason for this is cloud cover. Because MODIS LST is determined based on the 

measurement of upward longwave radiation, LST can only be measured on clear days, 
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which likely subjects the measurements to a warm bias because the land surface is heated 

by higher solar radiation levels. 

 Figure 3. Time series of monthly ARM and MODIS Terra Tskin values over Lamont, 

Oklahoma, for 2004. 

 

c. Model Simulations and Evaluation 

Two offline CLM4 runs were performed for the year 2004. The first was a control 

run (CLM4) using the default (Qian et al. 2006) atmospheric forcing data, with a 50-year 

spin-up, performed over the globe. The grid point containing Lamont, Oklahoma, was 

extracted from the output to be evaluated with surface observations. The second was a 

single-point offline run (CLM4 ARM-forced) replacing the default Qian atmospheric 

forcing data with the ARM-forcing data we have developed. The run was performed with 

a 50-year spin-up, the initial soil moisture in the model was replaced with observations, 

and the land cover and the PFT weight were set as 0.4 C3 grasses, 0.4 C4 grasses, and 0.2 
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bare soil to represent the winter wheat and grass cover at the site. The temporal resolution 

of the model output was daily, from 1 January 2004 to 31 December 2004, with 

additional hourly output for January and July. The output of this run was then evaluated 

in the same manner as the default run, and the evaluations were compared with one 

another. Because there is no model output data for the leap day (29 February 2004), this 

date was removed from ARM-forcing data and observations. 

To evaluate the accuracy of CLM4’s output when compared with ARM-

evaluation data, the root mean square error (RMSE) and the Pearson correlation 

coefficient (r) were used. These metrics are calculated as follows: 

      
 

 
       , (4) 

  
         

                         
, (5) 

where n is the number of observations, M is the modeled output, and O is the observation. 

These quantities are the classical methods for evaluating model output (Taylor 2001). 

RMSE quantifies the differences between the two models, whereas r quantifies pattern 

similarity between the two models (Taylor 2001). Although these are classical methods 

for evaluating model output, Williams et al. (2009) argue that nonrandom errors and bias 

in fluxes prevent these methods from being optimal and suggest additional evaluation 

methods, specifically quantifying patterns at different frequencies. However, because 

evaluating Tskin is the primary goal of this study, the use of less traditional approaches in 
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the evaluation produces greater uncertainty than using the classical approach. It is 

however worth noting that the statistical approach in this study may produce uncertainty. 

This analysis was performed at hourly, daily, seasonal, and annual timescales to 

assess how the model performs at different timescales. For the seasonal analysis, winter 

was defined as the months of December, January, and February; spring was defined as 

March, April, and May; summer was defined as June, July, and August; and fall was 

defined as September, October, and November. An hourly analysis was also performed 

for January and July to determine whether the errors change diurnally during the winter 

and summer months. Investigating the errors and correlations sheds light on how the 

model performs when forced with the default forcing and again when forced with the 

improved ARM-forcing data. 

Modifications to CLM4 vegetation canopy emissivity (εv) are proposed and 

evaluated in Appendix B. The default canopy vegetation parameter was replaced with a 

parameter dependent on both the canopy density and the PFT structure of the land 

surface. The sensitivity experiment uses the same ARM-forcing data as discussed 

previously, and the output was compared with the CLM4 ARM-forced run. The 

emissivity changes were also applied globally, using MODIS data for global evaluation 

purposes. 
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3. ARM-forced Improvements and Evaluation 

a. Daily Calculated Surface Energy Evaluation 

The CLM4 ARM-forced run produces an RMSE of 2.43 K for Tskin compared 

with surface observations, whereas the CLM4 run produces an RMSE of 3.12 K for Tskin 

(Figure 4a). This results in an improvement of 0.68 K. Because Tskin is a function of 

radiative fluxes and Tair, it can be suggested that the majority of improvements in 

modeled Tskin are due to improved solar radiation and Tair forcing. Furthermore, the use of 

ARM-forcing data in the model did not result in uniform warming or cooling throughout 

the year. The forcing caused a decrease in simulated Tskin on some days but an increase 

on others, as seen in Figure 4b. 

When compared with ARM observations, CLM4 ARM-forced Tskin generally 

follows daily variations. The correlation between modeled Tskin and observations for 

CLM4 ARM-forced Tskin is 0.989 (Figure 4c). Although the modeled Tskin correlates well 

with observations, there are periods where modeled Tskin values are consistently higher 

than observations, specifically in the summer months (approximately days 160–250). 
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Figure 4. (a) Daily Tskin for CLM4 versus ARM Tskin from the ARM facility in Lamont, 

Oklahoma, for 2004. (b) Daily Tskin sensitivity to ARM-forcing. (c) Daily Tskin scatterplot 

between CLM4 ARM-forced Tskin and observations. 
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Sensible heat flux does not improve, in general, when forced with ARM-forcing 

data. CLM4 ARM-forced SH has an RMSE of 32.02 W m
2

 compared with an RMSE of 

31.13 W m
2

 for CLM4 (Figure 5). On many days, however, the forcing decreases the 

amount at which the model either overestimates or underestimates SH, such as between 

days 10 and 15. Furthermore, there are days where the forcing brings the modeled SH to 

more reasonable values, such as days 315–334, where the modeled SH shifts from 

negative to positive values because of the forcing data. However, these improvements are 

counteracted by increases in difference during other periods, with the most problematic 

being between days 40–70 and 140–200. 

 

Figure 5. Comparisons among daily SH flux for control (CLM4), CLM4 ARM-forced, 

and ARM observations at the Lamont, Oklahoma, for 2004. 

 

In addition, simulated LE fluxes do not improve with ARM-forcing in general. 

ARM-forced LE has an RMSE of 36.52 W m
2

 compared with an RMSE of 31.34 W m
2
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for CLM4 (Figure 6). However, the degradation in accuracy is not uniform. For example, 

the forcing improves LE during periods where the day-to-day variation is lowest, 

specifically during days 0–70 and 240–329, which is during winter, early spring, and late 

fall. The greatest degradation in accuracy occurs from days 130 to 230, which is during 

late spring, summer, and early fall. This suggests that the model struggles with simulating 

LE during warm periods where LE varies greatly from day-to-day, regardless of forcing. 

 Figure 6. Comparisons among daily LE flux for control (CLM4), CLM4 ARM-forced, 

and ARM observations at the Lamont, Oklahoma, for 2004. 

 

Although neither SH nor LE simulations show improvement, CLM4 ARM-forced 

ground flux simulations show some improvement. CLM4 ARM-forced G flux has an 

RMSE of 18.22 W m
2

, whereas CLM4 G flux has an RMSE of 20.53 W m
2

 (Figure 7). 

Much of this improvement occurs at the beginning and end of 2004, where the 

overestimation of G flux is somewhat tempered in the CLM4 ARM-forced simulations. 

This is seen clearly near days 10 and 330, where sharp decreases in G flux are moderated 
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by the forcing data. In general, the model overestimates day-to-day variations in G flux 

during winter months and underestimates variations during the summer months. 

 

Figure 7. Comparisons among daily ground heat flux for control (CLM4), CLM4 ARM-

forced, and ARM observations at the Lamont, Oklahoma, for 2004. 

 

Surface albedo is evidently improved with improved forcing and land cover 

changes (Figure 8). In general, albedo is closer to observations in the CLM4 ARM-forced 

run, particularly in days 300–365, where CLM4 has consistently low albedo whereas 

CLM4 ARM-forced albedo is close to the observations. Nevertheless, evident 

deficiencies also occur: between days 40 and 280, observed albedo is always higher than 

0.20, and both model runs have lower albedo, with the CLM4 run being lowest. In 

addition, during snow events at days 30 and 40 (Figure 8), observed albedo is higher than 

0.60 whereas modeled albedo is at most the same as days without snow. This suggests 

that the model may simulate some snow coverage but cannot simulate snow albedo well. 
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Figure 8. Surface albedo calculations for the default CLM4, ARM-forced CLM4, and 

ARM observations at the Lamont, Oklahoma, ARM facility for 2004. 

 

Two possible reasons for the underestimation of albedo on high albedo days are 

the short duration of the high albedo events and the poor simulation of snow cover. To 

determine which one is most likely, a comparison of CLM4 fractional snow cover to 

daily observed fractional snow cover is useful. Because ARM does not measure snow 

cover, the fractional snow cover product retrieved from the MODIS instrument flown on 

the Terra satellite is used as an alternative. Further information on the daily MODIS snow 

cover products is given by Hall and Riggs (2007). The comparison between calculated 

model fractional snow cover and MODIS (Figure 9) shows that CLM4 substantially 

underestimates the fractional snow cover for the region. This suggests that the primary 

reason why CLM4 does not reproduce the same spikes in albedo as the ARM 

observations is the lack of snow on the ground rather than the duration of the event. The 
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current snow algorithm in CLM4 (from Niu and Yang 2007) determines fractional snow 

cover by the depth of snow, which is a function of the amount of snow that has fallen. 

Therefore, neither of these precipitation events would be able to produce substantial 

fractional snow cover values in CLM4. 

 

Figure 9. Calculated ARM-forced CLM4 fractional snow cover and observed MODIS-

Terra fractional snow cover observations for the region covering Lamont, Oklahoma, for 

1 January to 30 April 2004. 

 

This is further illustrated by the actual precipitation forcing (Figure 10). Both 

instances of substantially high albedo and observed snow cover from MODIS do indeed 

correspond to a precipitation event (approximately days 30 and 41). However, both 

events were relatively light, resulting in an underestimation of fractional snow coverage 

by the model. In addition to snow events, sudden decreases in observed albedo 
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correspond to precipitation events due to the darkening of soil. Examples of this include 

days 20, 35, and 61. In all three events, the decrease in albedo was not simulated by 

either model run. This suggests that even with improved precipitation forcing, the model 

simulates neither snow coverage nor darkening of soil accurately. 

 

 

Figure 10. Daily observed precipitation taken at the Lamont, Oklahoma, ARM facility 

and used as the precipitation forcing in the ARM-forced CLM4 case for the first 120 days 

of 2004. 
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b. Daily Soil Temperature and Moisture Evaluation 

The CLM4 ARM-forced soil temperature RMSE improves from 2.07 K to 1.74 K 

in layer 3 (0.05 m depth) and from 4.74 K to 4.1 K in layer 5 (0.25 m depth; Figure 11). 

The main problems with CLM4 ARM-forced in layer 3 are that modeled winter 

temperatures are consistently lower than observed temperatures, and the variations in 

modeled soil temperature are slightly sharper than variations seen in the observed 

temperatures. In layer 5, CLM4 ARM-forced has a substantial cold bias compared with 

observations. Furthermore, there is a lag between temperature changes in the 

observations and changes modeled in layer 5, indicating that simulated heat flux from the 

upper layers of soil is not reaching this layer efficiently. In addition, because layer 3 has a 

lower RMSE compared to layer 5, it is suggested that errors in modeled heat flux occur 

between layers 3 and 5. 
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 a) 

 

b) 

 

Figure 11. Offline CLM4-simulated versus ARM-observed soil temperatures for (a) CLM 

layer 3 (0.05 m) and (b) CLM layer 5 (0.25 m) for the year 2004. Substantial amounts of 

ARM-observed data were missing in the second half of 2004.  
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Modeled volumetric soil moisture does not improve substantially using ARM-

forcing. In layer 3, the default RMSE values are 0.0463 and 0.0457 mm
3
 mm

3
 for the 

CLM4 ARM-forced. In layer 5, the default RMSE is 0.0358 mm
3
 mm

3
, and the CLM4 

ARM-forced RMSE is 0.0315 mm
3
 mm

3
. Soil moisture in layer 3 is substantially drier 

than observations (Figure 12a). The model, however, still simulates the same variations 

as the observations, especially when the model is forced with the ARM atmospheric 

observations, likely due to improvements in precipitation values for the ARM-forced 

CLM4 compared with the default CLM4. Nonetheless, although the model responds to 

precipitation events, the increase in soil moisture due to precipitation does not bring the 

simulated amounts to the same level as observations. This can be seen on days 14, 30, 60, 

and 175 in layer 3, where the simulated values do not peak as high as the observations. In 

addition, soil moisture in layer 5 is generally wetter than observations (Figure 12b). 

Similar to layer 3, many of the peaks in soil moisture are underestimated compared with 

observations, specifically on days 14, 30, and 60. Although the model responds to 

precipitation in the same manner as layer 3, moisture does not leave layer 5 efficiently. 

This suggests that the moisture fluxes may be too rapid in upper layers but not efficient in 

lower layers. There is the possibility that the inability for water to efficiently move 

through layer 5 might be compounded by layer 3 getting rid of its water too rapidly. A 

possible explanation for this is the type of soil used in this experiment. Although the 

forcing data and the PFT structure were modified to better reflect the ARM site, the soil 

type is still determined through a global data set, which may lead to an incorrect soil type. 
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Because soils transport both heat and water differently, depending on soil type, the use of 

an incorrect soil type may lead to an inaccurate simulation of soil moisture.  

 a) 

 

 b) 

 

Figure 12. Offline CLM4 simulated versus ARM-observed volumetric soil moisture for 

(a) CLM layer 3 (0.05 m) and (b) CLM layer 5 (0.25 m) for the year 2004. The control 

run is forced by the default atmospheric data from Qian et al. (2006), and the ARM-

forced run (CLM4 ARM-forced) is forced using ARM atmospheric observations. 
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c. Seasonal Evaluation 

Model performance varies at different temporal scales. The accuracy of Tskin in 

the ARM-forced CLM4 has a strong seasonal variation. Winter (Figure 13a) and summer 

(Figure 13c) prove to have the highest errors, with RMSE values of 2.75 K and 2.90 K, 

respectively. Furthermore, winter and summer are the lowest correlated between modeled 

and observed values of the four seasons, with r = 0.95 for winter and 0.92 for summer. 

Modeled Tskin calculations for winter have a warm bias present on the colder days. 

Summer Tskin has a substantial warm bias that is worse on warmer days. Both spring 

(Figure 13b) and fall (Figure 13d) are substantially less erroneous, with RMSE values of 

1.14 K for spring and 2.44 K for fall. In addition, both spring and fall have a correlation 

of r = 0.99. Furthermore, the primary errors for spring and fall occur due to an 

increasingly warm bias with higher temperatures. These results suggest that moderate 

temperatures are modeled best in CLM4, whereas extreme temperatures are more subject 

to a warm bias and poorer correlation with observations. 
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Figure 13. Scatterplot of daily CLM4 ARM-forced versus ARM-observed Tskin values, 

errors, and correlations for (a) winter, (b) spring, (c) summer, and (d) fall for 2004.  

 

Similar to daily averaged output, CLM4 exhibits difficulty in accurately 

calculating ground flux seasonally (Figure 14). Winter and spring have the highest errors 

and lowest correlations (winter: RMSE = 24.99 W m
2

, r = 0.54; spring: RMSE = 17.36 

W m
2

, r = 0.36), whereas summer and fall are better correlated (summer: RMSE = 17.73 
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W m
2

, r = 0.62; fall: RMSE = 14.02 W m
2

, r = 0.65). There are many instances where 

CLM4 ARM-forced G flux is significantly more negative than observations during winter 

months. This suggests that a substantial amount of the winter cold bias in layer 3 soil 

temperatures (as discussed earlier) may be due to overestimates of negative ground flux 

on certain days. With the exception of a few days during spring, this problem is not 

present in other seasons. 
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Figure 14. Scatterplot of daily CLM4 ARM-forced versus ARM-observed ground flux 

values, errors, and correlations for (a) winter, (b) spring, (c) summer, and (d) fall for 

2004. 

Sensible heat flux, although poorly correlated to the observations, exhibits a 

seasonal pattern similar to that of Tskin (Figure 15). Spring and fall are best modeled, with 

RMSE values of 31.2 and 20.72 W m
2

, respectively. In addition, both seasons have 

better correlations with observations (r = 0.44 for spring and r = 0.66 for fall), whereas 

winter and summer are poorly modeled (winter: RMSE = 34.4 W m
2

, r = 0.18; summer: 

RMSE = 47.52, r = 0.06). Because SH flux depends on the temperature of the ground 

(and thus Tskin), it can be suggested that much of the similarity to Tskin in seasonality is 

due to Tskin simulations. However, only fall has much resemblance to observations. In 

summer, the model typically overestimates SH. This suggests that the overestimation of 

Tskin during this period may result in the overestimation of SH. 

LE flux (Figure 16) has a similar pattern to SH flux with spring and fall being best 

correlated (r = 0.64 for spring and r = 0.73 for fall). However, calculated errors are 

lowest in winter (16.16 W m
2

) and highest in summer (91.37 W m
2

). A possible 

explanation is the amount of incoming solar radiation has the same seasonality, yielding 

more energy distribution in the summer and less in the winter. The lower incoming solar 

radiation leads to less evaporation, which results in lower amounts of LE being absorbed 

by water during the evaporation process. Nevertheless, the end result is that LE variation 

is lowest in winter and highest in summer, which suggests that errors are also lowest in 

winter and highest in summer. Furthermore, neither winter nor summer has a high 
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correlation (r = 0.3 for winter and r = 0.35 for summer), suggesting that although winter 

has the lowest RMSE, spring and fall are still the best simulated. 

 

 

 

Figure 15. Scatterplot of daily CLM4 ARM-forced versus ARM-observed SH flux 

values, errors, and correlations for (a) winter, (b) spring, (c) summer, and (d) fall for 

2004. 

 



38 
 

 

Figure 16. Scatterplot of daily CLM4 ARM-forced versus ARM-observed LE flux 

values, errors, and correlations for (a) winter, (b) spring, (c) summer, and (d) fall for 

2004. 

 

d. Hourly Temperature Evaluation and Soil Temperature Lag 

The diurnal variation of modeled Tskin reveals a better understanding of when the 

model is most problematic. For January (which is used to represent the winter season), a 

comparison with hourly observations (Figure 17a) shows that there is a warm bias in the 

daily minimum temperatures, which is likely the primary cause of the seasonal warm bias 
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(as seen in Figure 13a). The rest of the diurnal cycle is modeled more accurately when 

compared with the observations, especially when forced by the ARM-forcing data. 

CLM4-ARM-forced produces results that are remarkably close to the observations, even 

on days where there is little variation (such as between hours 380 and 430 of July). 

For the month of July, there is a substantial warm bias during the warmest time of 

the day (Figure 17b). Although the forcing data is able to temper this by keeping 

maximum temperatures close to observations on cooler days (especially on days of little 

variation, such as between hours 180 and 200 of July), the model still substantially 

overestimates the temperatures during the warmest part of the day, regardless of the 

forcing data. There also exists, on many days, a smaller warm bias in the daily minimum 

temperatures as well as a short lag between when the ARM observations reach minimum 

and when the modeled Tskin values reach bottom (such as hours 400 and 590 of July). 
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 a) 

 

 b) 

 

Figure 17. Hourly CLM4 ARM-forced versus ARM-observed Tskin values for (a) January, 

2004 and (b) July 2004 for Lamont, Oklahoma. 

 

One final issue in diurnal variation is the time lag between the maximum Tair, 

Tskin, and soil temperature layers in the model. Ideally, Tskin should have the largest daily 
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variation and a slight lead in maximum temperature when compared with Tair. Soil layers 

with increasing depth should have an increasing lag of maximum temperature and 

decreasing diurnal amplitude compared with Tskin. Indeed, this is what is seen for 

modeled Tskin and soil temperatures for both January and July 2004 (Figure 18). Both 

months model a Tskin diurnal cycle that closely follows the Tair cycle. There is a lead of 2 

h compared with Tair in both January and July. Both months model Tskin to be colder than 

Tair at night, and both months model Tskin to be warmer than Tair during the day. The time 

lag between maximum Tskin and maximum soil temperature does indeed increase which 

increasing soil depth. In addition, the amplitude of the daily variation indeed decreases 

with increasing soil depth in January, but the maximum soil temperature in layer 3 

becomes greater than maximum Tair in July. There is little diurnal variation in layer 5, and 

the maximum occurs approximately 10 h after the maximum Tskin, whereas layer 3 has 

higher amplitude and a maximum of approximately 4 h after the maximum Tskin. This is 

further discussed by Jin et al. (2013, submitted). 
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Figure 18. Daily time series for averaged CLM4 ARM-forced modeled air temperature, 

Tskin, and soil temperatures for (a) January 2004 and (b) July 2004 for Lamont, 

Oklahoma. Both cycles begin at Midnight CST and end at Midnight CST each day. 

 

e. Discussion 

These results validate Tskin, surface energy, and moisture parameters modeled in 

CLM4 and provide insight into areas of the model that can be improved. An attempt at 

improving the model is discussed in Appendix B. Although additional work is needed in 

assuring the robustness of the improvements (namely, applying the changes proposed to 

other single-point sites), they demonstrate the usefulness of ARM data as a tool for 

improving CLM4. 

When forced with ARM data, CLM4-modeled Tskin better follows both the diurnal 

and the seasonal cycles observed by the ARM-evaluation data than the model forced by 

the default (Qian) forcing. This is specifically seen in the winter, spring, and fall months, 

whereas the summer months produce a substantial warm bias in maximum temperatures. 
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Because most of the year experiences improvements when forced with improved forcing 

data, the lack of improvement in RMSE in summer Tskin suggests that other elements in 

modeling Tskin are likely responsible for such a warm bias. One possible explanation 

could be the substantial errors in LE flux, which may result in the addition of extra 

energy into the SEB and an increase in upward longwave radiation and thus in Tskin. 

The surface energy fluxes are a known problem in CLM4 (Lawrence et al. 2011; 

Lawrence et al. 2012). Interestingly, the errors in SH, LE, and G fluxes when forced with 

ARM-forcing data suggest that forcing data are not the primary cause of errors in the 

simulation of SH, LE, and G fluxes. In addition, model performance varies seasonally. 

Both SH and LE fluxes prove to be the most accurate during the spring and fall months 

and most problematic in the summer months. This may suggest, at least partly, that the 

errors in these fluxes may be responsible for the problematic calculations in Tskin during 

the summer months. 

Furthermore, the poor measurement and modeling of SH and LE fluxes have been 

shown to extend beyond CLM4 and even beyond modeling to the observations. Leuning 

et al. (2012) discuss the problems in accurately measuring SH and LE fluxes, specifically 

due to phase lags caused by the incorrect estimation of energy storage below the land 

surface. This leads to an unbalanced SEB budget and thus a remainder term. This is 

called the energy imbalance problem (Foken 2008). Therefore, it is indeed possible that 

the poor RMSE and R values calculated between the ARM data and the CLM4 output 

may be partially caused by the energy imbalance problem in the observations, not just by 
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the model itself. In addition, Frank et al. (2013) suggest that sonic anemometers that do 

not measure vertical wind orthogonally underestimate SH fluxes by as much as 10%. 

Indeed, the sonic anemometer used at the CO2 flux site does not measure the vertical 

wind orthogonally, making the observations subject to this error. Furthermore, because 

the simulations in this study use a single-point data set, horizontal wind effects are not 

represented in the calculation of SH.  

Although modeled G is still relatively inaccurate, it is better correlated to 

observed G year-round than SH or LE. In addition, the RMSE does not vary greatly from 

season to season. Ultimately, these results suggest a need for improvement in the 

modeling of all three heat fluxes. Such improvements might even make issues related to 

the accurate modeling of Tskin less significant because they may be at the root of Tskin’s 

problems. 

An additional surface parameter that vastly affects the distribution of surface 

energy is surface albedo. When compared with ARM observations, the model has 

consistently low albedo year-round. This problem is even worse during the presence of 

snow cover, which was poorly simulated in the model. The lack of modeled snow cover 

presents a challenge in the proper calculation of surface energy on snowy days. In 

addition, the model struggled to respond to precipitation events, namely, the decrease in 

albedo caused by the darkening of the soil from rainfall. Another possible issue with the 

calculation of albedo is the soil type. Because CLM4 uses a single soil type for each grid 

cell, the soil heterogeneity within the grid might not be properly represented. Future work 
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could include creating a mosaic of soil types that more accurately represents the ARM 

facility. Furthermore, the land cover at the site is in fact winter wheat, but the model 

currently does not have winter wheat as a land cover. This may also lead to unrealistic 

simulations. 

Soil temperature and soil moisture also have deficiencies in the model. Although 

too much ARM data are missing from the summer months to allow for a robust seasonal 

comparison as was conducted for the surface, the day-to-day comparison is still helpful in 

evaluating the soil in CLM4. Although modeled daily variation in soil temperature in 

layer 3 is relatively accurate (and further improved with ARM-forcing), the soil 

temperature in layer 5 was consistently too cold. One of the possible reasons may be the 

movement of heat from the surface layer to the lower layers. Nevertheless, the accuracy 

of soil temperature in layer 3 suggests that the movement of heat is accurately calculated 

in the first several layers of the model most of the year. However, the calculation of heat 

flux below (at least) layer 3 may be problematic. Because CLM4 output defaults to 

providing the heat flux data at the surface and between layers 1 and 2, it is not possible to 

determine that a low-biased flux calculation near layer 5 is the cause for the cold bias in 

that layer. In addition, the lag in day-to-day temperature changes in layer 5 (clearly seen 

in Figure 11b) also suggests that heat is not getting to this layer as quickly as it should be. 

Again, this problem is not seen in layer 3, which suggests that the problem creating this is 

likely manifesting somewhere between layers 3 and 5. 
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The diurnal comparison of modeled Tskin with ARM observations suggests that the 

main problems in the accurate calculation of a daily Tskin value are a bias in the 

calculation of maximum and minimum temperature values, especially in the summer 

months. In January, the CLM4 ARM-forced simulations followed observations more 

closely than the default CLM4. There is still a warm bias in the minimum temperature 

range however. The diurnal temperature cycle in the summer shows a substantial warm 

bias in the maximum temperature calculations as well as a small warm bias in the 

calculation of minimum temperature. Both of these issues result in a large overestimation 

in the daily Tskin during the summer months. As noted earlier, LE is grossly erroneous 

during this period, and that may have at least some contribution to the daytime 

overestimation of Tskin. A comparison with the diurnal cycles of Tair and soil temperatures 

suggests that the model properly simulates the lag between the maximum and the 

minimum temperatures at the surface and between the maximum and the minimum 

temperatures in the soil. However, it is noted that the maximum July soil temperature in 

layer 3 is greater than Tair, suggesting that the warm bias in maximum Tskin leads to a 

warm bias in simulated soil temperatures. 

The most urgent improvements that CLM4 needs may be of the surface energy 

fluxes, namely, the SH and the LE fluxes. It is likely that improvements to these fluxes 

will produce some improvement in Tskin calculations. In addition, the substantial increase 

in soil temperature error from layer 3 to layer 5 suggests that heat is not properly 

transported between those layers. Heat flux simulations might also benefit from 

improvements made to soil moisture, namely, in layer 5, which is often too moist. 
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Additional improvements in the calculation of snow cover and albedo at this site may be 

beneficial. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



48 
 

4. Conclusions 

a. Future Work 

Several uncertainties and key results of this study need to be addressed in future 

studies. The first uncertainty pertains to the land cover, the PFT structure, and the soil 

characteristics of this site. Although most of the ARM site is positioned over open 

pasture, the CO2 flux site is directly over winter wheat. Furthermore, because soil color 

and composition were based on a coarse global data set, it is likely that they do not 

properly represent the soil type at the ARM site. This results in both the inaccurate 

drainage of moisture in the soil and the potentially inaccurate simulations of albedo. 

Determining a proper PFT mosaic and soil type for the site through sensitivity studies 

could allow for a more robust comparison between model simulations and observations. 

Furthermore, additional work needs to be performed to understand why the peaks in 

simulated soil moisture due to precipitation are underestimated compared with 

observations. Using a more accurate soil type and land cover may even eliminate this 

problem, or it could provide insight into other causes of the problem.  

 In addition, because the model is a one-dimensional simulation that does not 

incorporate horizontal and vertical wind components, SH fluxes are not properly 

simulated. Currently, the model sets the u (west to east component) to equal v (south to 

north component) based on a single wind speed. Being able to break that wind speed up 

into directional (i.e., u, v, and w) components would allow for a better simulation of SH 
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fluxes. Future work using the ARM data could incorporate a directional wind component 

into CLM, which would lessen the uncertainty pertaining to the simulation of SH fluxes.  

 Furthermore, gaining insight into the cause of warm biases present in winter 

minimum and summer maximum temperatures is necessary. A potential cause is the 

inaccurate distribution of energy in the SEB, resulting in an overestimate of the amount 

of energy emitted as longwave radiation at certain times of the day. Understanding where 

the balance is inaccurately simulated and what can be modified would benefit the model. 

This would require sensitivity studies (similar to Zeng et al. 2012) to determine how 

energy needs to be properly distributed. In addition, the modifications would need to be 

shown to benefit model simulations globally rather than just at the ARM site. 

 Finally, further use of ARM data in evaluating CLM may be performed. The data 

set used here was only for one site and only for 1 year. Although this use of data is 

sufficient for validation studies, it does not take full advantage of the extensive amount of 

ARM observations available. The ARM project consists of six permanent ARM facilities 

and numerous mobile sites globally, with over one decade of observations at most sites 

(Xie et al. 2010). Furthermore, many of these sites take measurements at different 

locations in the site and for different purposes (such as the Climate Modeling Best 

Estimate data). Because ARM data proved to be useful in this evaluation, expanding its 

use to other locations on the same site, on other sites globally, and for other years would 

prove beneficial in further evaluations of CLM. Furthermore, using data taken from 
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different locations on the same site could increase the confidence in the results from this 

study.  

 

b. Final Remarks 

The purpose of this study was to perform an analysis on the offline CLM4, which 

is a critical component of the CESM climate model. When forced with ARM 

observations, many of the uncertainties related to the forcing data are reduced, allowing 

for a better understanding of how the model performs. The results demonstrated some of 

the issues currently affecting the CLM4 as well as the timescale in which they are most 

prevalent. 

First, despite uncertainties, the ARM data introduced in this thesis performed 

exceptionally in its use as both forcing and evaluation data for the model. This was seen 

by both a similarity to offline CLM4 in terms of the diurnal and seasonal cycle of many 

of the surface energy variables and a general improvement in calculated errors for most 

of those when forced with the ARM-forcing data. The main variables that did not 

improve with the ARM-forcing data are those with known substantial issues in the model, 

specifically sensible and LE fluxes (Lawrence et al. 2011, 2012; Zeng et al. 2012). 

Second, a diurnal and seasonal analysis of Tskin revealed a substantial warm bias 

in both winter minimum Tskin and summer maximum Tskin, which then ultimately leads to 

a warm bias in both of those seasons. This can be seen in both the seasonal scatterplots of 
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offline CLM4 Tskin versus ARM Tskin (Figure 13) and the diurnal analysis of offline 

CLM4 versus ARM Tskin (Figure 17). The warm bias in winter minimum Tskin ultimately 

leads to a warm bias in many of the daily averaged calculations, although the bias is 

small. The substantial warm bias in summer maximum Tskin also leads to a daily warm 

bias in the averaged calculation, and thus, much of the summer warm bias is due to the 

warmer maximum temperatures. This warm bias is further explained when comparing the 

diurnal cycle of Tskin with Tair and soil temperature. Soil from layer 3 became warmer 

than maximum Tair in July, indicating that the warm bias in Tskin could potentially be due 

to absorption of heat by the soil. Because the summer warm bias is substantial, it 

contributes substantially to the calculated annual error for daily Tskin. 

Third, this study showed that although energy and moisture are modeled to some 

accuracy below the surface, energy flux errors at the surface do indeed lead to energy 

flux errors in the soil below the surface. Soil temperature was found to have high 

precision and low bias in the upper layer, but higher (cold) bias in the lower layer. Soil 

moisture was found to be too dry in the upper layer and too moist in the lower layer, 

indicating that moisture fluxes in the model are too high (at least at this site). This can 

lead to errors in LE flux at the surface as well as in the thermal conductivity of the soil, 

which can then have profound impacts on Tskin. 

This study identifies problems and suggests improvements to CLM4, which can 

lead to improved climate simulations using the CESM. Although many studies have used 

ARM data to validate atmospheric climate models, few studies have used ARM for the 
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purpose of land modeling, and so this study shows that ARM data can be valuable for 

evaluating offline land models. Furthermore, this study revealed a warm bias at two 

different points of the diurnal cycle, demonstrating that accuracy on scales as small as 

even hourly can greatly affect the accuracy of the model daily, seasonally, and annually. 

There is great promise for the use of ARM data in further validating and improving land 

models.  
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APPEDNIX A: Acronyms 

ARM     Atmospheric Radiation Measurement 

AVHRR    Advanced Very High Resolution Radiometer 

CCM3    Version 3 of the Community Climate Model  

CESM     Community Earth System Model 

CLM    Community Land Model 

G    Heat Flux into the Ground (or Ground Flux) 

GCM    General Circulation Model 

IPCC    Inter-Governmental Panel on Climate Change 

LE    Latent Heat Flux 

LSM1    Version 2 of the Land Surface Model 

LSM2    Version 2 of the Land Surface Model 

MODIS   Moderate Resolution Imaging Spectroradiometer 

NCAR    National Center for Atmospheric Research 

NCEP    National Center for Environmental Prediction 

R     Pearson Correlation Coefficient 
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RMSE    Root-Mean Squared Error 

SEB    Surface Energy Budget 

SGP    Southern Great Plains 

SH    Sensible Heat Flux 

Tair    2-m Air Temperature 

Tskin    Land Surface Skin Temperature 
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APPENDIX B: Improvements to Vegetation Canopy Emissivity 

Adapted from T.J. Mullens et. al, 2013: Improving the Vegetation Canopy 

Parameterization in the Community Land Model (CLM4). Submitted to Environmental 

Research Letters.   

Abstract 

Vegetation Canopy Emissivity (εv), an important parameter in calculating upward 

longwave radiation from the land surface, has been poorly represented in land surface 

models. For example, the Community Land Model (CLM4) calculates εv through a 

simple, empirical algorithm that leads to unrealistically low emissivity values for 

intermediate (0.5 < ELAI+ESAI < 2.5) and sparse canopy densities (ELAI+ESAI <0.5). 

Such low εv causes CLM4 to underestimate upward longwave radiation and consequently 

overestimate land skin temperature (Tskin). This letter suggests a new parameterization 

that accounts for differences in emissivity by vegetation Plant Functional Type (PFT) to 

reduce the magnitude of the cavity effect in εv. Evaluation using the Atmospheric 

Radiation Measurement (ARM) ground observations show that the new parameterization 

improves CLM4 modeled daily Tskin by 0.17 °C on average.  Furthermore, evaluation 

using satellite remote-sensing data shows that this new εV parameterization improves 

CLM4 monthly Tskin simulation up-to 1 °C for areas of intermediate canopy density. No 

evident improvements on Tskin simulations are found over sparse canopy or dense 

vegetation areas (ELAI+ESAI > 2.5) suggesting that this improvement is beneficial only 

to areas of intermediate canopy density.  
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B1. Introduction 

The surface emissivity (ε), which is the ratio of the emitted radiance from a 

surface over that of a blackbody at the same temperature, is an important parameter in 

land surface models for calculating upward longwave radiation. This variable, however, 

is hard to measure from satellite remote-sensing, partly because the sensor measures 

spectral emissivity which has to be converted into a broadband emissivity in order to be 

used in a land surface model (Jin and Liang 2006, here after JL06) and partly because 

satellites view the heterogeneous surface as one pixel while a land model may treat 

ground and vegetation separately. Originally, many land models assumed εv to be equal 

to 1 (Dickinson et al. 1986; Sellers et al. 1986), and some models currently still set this 

parameter close to or near 1 (this is referred to as the constant- ε approximation). 

Nevertheless, other land models now use a simple, first order approximation to calculate 

this parameter. For example, the Community Land Model version 4 (CLM4; Oleson et al. 

2010, hereafter referred to as OEL10) calculates ground emissivity (εg) and vegetation 

emissivity (εv) independently. Specifically, εg in CLM4 is a function of fractional snow 

cover, bare soil emissivity, and snow emissivity, while εv is a function primarily of 

canopy structure, which is calculated as a sum of exposed one-sided leaf area index 

(ELAI) and exposed one-sided stem area index (ESAI):  

ε             ε         ε     Eq. (B1) (OEL10, 4.24),  

ε                        Eq. (B2) (OEL10, 4.25), 
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where εsoil = 0.96 is the emissivity for bare soil, fsno is the fraction of the ground covered 

by snow, εsno = 0.97 is the emissivity of snow, and µ = 1 is the average inverse optical 

depth for longwave radiation (OEL10). ELAI is the ratio of total leaf area over the 

ground area covered by the plant, and ESAI is the ratio of the total area of all stems of a 

plant to the area of ground covered by the plant. This letter specifically focuses on 

improvements made to Eq. (B2). For a discussion on the accuracy and potential 

improvements to Eq. (B1), see JL06. 

Because neither land nor vegetation are blackbodies, the emissivity parameters 

calculated above are then used to calculate total longwave radiation (L↑), vegetation 

longwave radiation, (Lvg↑) and skin temperature using the following equations: 

 

L↑ = δvegLvg↑ + (1- δveg)(1-εg)Latm↓ + (1-δveg)εg σ(Tg
n
)

4 
+4 εgσ(Tg

n
)

3
(Tg

n+1
-Tg

n
)  

Eq. (B3) (OEL10 4.16), 

where L↑ is the total upward longwave radiation emitted from the land surface, Latm↓ is 

the downward longwave radiation emitted from the atmosphere, Tg is the temperature of 

the ground at time steps n and n+1, and δveg is 1 for vegetated surfaces and 0 for non-

vegetated surfaces. Therefore, for vegetated surfaces (δveg = 1), Eq. (B3) becomes: 

L↑ = Lvg↑+4εgσ(Tg
n
)

3
(Tg

n+1
-Tg

n
) Eq. (B4) (OEL10  4.18). 
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Because this letter focuses on vegetated areas, all values of L↑ are assumed to be 

calculated from Eq. (B4). Lvg↑ is upward longwave emission from vegetated surfaces, 

calculated using the equation: 

Lvg↑ = (1- εg)(1- εv)(1- εv)Latm↓ + εv[1+(1- εg)(1- εv)]σ(Tg
n
)

3
[Tv

n
 + 4(Tv

n+1
-Tv

n
)]  

+ εg (1- εv)σ(Tg
n
)

4
 

Eq. (B5) (OEL10, 4.19), 

where Tv is the temperature of the vegetation at time steps n and n+1. The first term in 

Eq. (B5) is radiation that is emitted by the atmosphere, transmitted down through the 

vegetation, reflected by the ground, and transmitted up through the vegetation. The 

second term is the radiation emitted directly from the canopy and the third term is 

radiation that is emitted upward from the ground and transmitted through the canopy and 

into the atmosphere (OEL10).  Therefore, vegetation canopy emissivity affects the 

transmission of radiation from the atmosphere through the canopy, transmission and 

scattering of radiation from the ground, and emission of radiation from the canopy itself. 

The emission of radiation is determined by the scattering and emission of radiation from 

multiple walls and the floor, yielding an overall effect known as the “cavity effect” 

(Fuchs and Tanner 1996; Van De Griend and Owe 1993; Francois et al. 1997, Olioso et 

al. 2007 – hereafter referred to as OL07). The cavity effect is a result of the heterogeneity 

of the land surface (Prata et al. 1995). The total canopy emissivity is determined by the 

emissivity of the floor, roof, and the walls of the “cavity” (Prata et al. 1995). The total 

emissivity of the canopy increases when the ratio of the length of the canopy floor to its 
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height increases (OL07, Valor and Caselles 1996). A similar analogy is that of an urban 

canyon (Oleson et al. 2008). The urban land surface consists of floors and buildings with 

vertical walls and roofs. Each of these components has a different composition and thus a 

different emissivity. The total upward longwave radiation is determined by the sum of 

upward longwave radiation from each component, which is calculated by the temperature 

and emissivity of each surface (using the Stefan-Boltzmann law) and the reflected 

longwave radiation of each surface. Nevertheless, the total emissivity of the canyon 

increases with the ratio of the height (H) of the walls to the width of the canyon floor (W) 

because the total amount of emitted radiation from the walls increases with the height of 

the walls (Oleson et al. 2008). Therefore, erectophile canyons (those with high H-to-W 

ratios) have a higher canyon emissivity than more broad canyons (smaller H-to-W ratios). 

A further description of the urban canyon effect and its integration into CLM4 is found in 

Oleson et al. (2008).  

Tskin, the land surface skin temperature (Jin and Dickinson 2010) is then calculated 

from total L↑ based on the Stefan-Boltzmann law: 

Tskin =  
  

 
 

 

 
     Eq. (B6) (OEL10, 4.15), 

where σ is the Stefan-Boltzmann constant (5.67x10
-8

 Wm
-2

K
-4

). Therefore, accurate 

calculations of emissivity lead to improved calculations of L↑ and ultimately improved 

calculations of Tskin. The overestimation of Tskin in CLM4 is a long-standing problem for 

vegetated regions. This letter shows that the overestimation of Tskin can at least be 

partially attributed to the inaccurate calculation of εv  
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In CLM4, the algorithm for εv produces unreasonably low values for vegetated 

surfaces in areas of lower canopy density (ELAI+SLAI < 2.5). For example, for cropland 

with an ELAI+ESAI between 0.5-1.5, Eq. (B2) produces a maximum εv of approximately 

0.78 and a minimum of approximately 0.4, which are unrealistically low. These values 

then lead to underestimation of L↑, which consequently leads to an overestimation of 

Tskin. This unrealistic εv reveals a shortcoming of the existing algorithm. 

This letter proposes a new εv parameterization in Section 2. The sensitivity 

experiments are designed in Section 3. Section 4 shows the evaluations of the new εv 

parameterization by comparing CLM4 simulated Tskin with ARM and MODIS 

observations, followed by a brief discussion. 

  

B2. Proposed Canopy Emissivity Algorithm 

The emissivity of vegetation canopies depends on vegetation density, aerial extent 

and vegetation structure (e.g., height, leaf area index, etc.), which may differ across plant 

functional types (PFTs). In CLM4, vegetation cover is divided into 17 different PFTs, 

each having different optical properties, structure, and seasonality. For this study, a fixed 

emissivity value is applied to each PFT unless the literature suggests otherwise. The 

determined values for the PFT-based emissivity (εPFT) are listed in Table B1, and are 

based on a combination of literature review, and from MODIS averaged broadband 

emissivity values, calculated from Eq. 10 of JL06. Non-vegetated areas were assigned the 

default bare soil emissivity value of 0.96.  
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Table B1. Table of PFT Emissivity values determined by observations from Olioso et al 

(2007), Rubio et al (1997), Valor and Caselles (1996), and Wittich (1997). 

PFT  ε
max

(PFT)  

Bare Soil (Non-Vegetated)  0.960  
Needleleaf Evergreen Temperate Tree  0.982  
Needleleaf Evergreen Boreal Tree  0.982  
Needleleaf Deciduous Boreal Tree  0.985  
Broadleaf Evergreen Tropical Tree  0.978  
Broadleaf Evergreen Temperate Tree  0.981  
Broadleaf Deciduous Tropical Tree  0.982  
Broadleaf Deciduous Temperate Tree  0.970  
Broadleaf Deciduous Boreal Tree  0.968  
Broadleaf Evergreen Shrub  0.987  
Broadleaf Deciduous Temperate Shrub  0.987  
Broadleaf Deciduous Boreal Shrub  0.987  
C3 Arctic Grass  0.978  
C3 Non-Arctic Grass  0.978  
C4 Grass  0.978  
Corn  0.985  
Spring Temperate Cereal  0.981  
Winter Temperate Cereal  0.963  
Soybean  0.977  
Generic Crop  0.976  
Irrigated Generic Crop  0.981  

 

Because the cavity effect can have a significant effect on canopy emissivity 

(JL06; OL07), it is also important to include this effect in the calculation of canopy 

emissivity. Therefore, an algorithm based on the PFT emissivity values from Table B1 

and the canopy density is proposed: 
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ε     ε     ε                    Eq. (B7)  

where µ = 1 and  ε = 0.03 (from OL07) is the maximum variation caused by the cavity 

effect, which only has a maximum magnitude of near 0.03, as suggested by OL07. 

  

B3. Experimental Design 

Two sets of sensitivity simulations are performed: First, a pair of single-point 

offline CLM4 simulations forced with ARM atmospheric observations and compared 

with ARM land observations for Lamont, OK. The second is a pair of global offline 

CLM4 simulations and the outputs are compared with the monthly NASA MODIS 

observed Tskin.  

The two single-point offline CLM4 simulations are performed centered over the 

ARM Southern Great Plains (SGP) site in Lamont Oklahoma (36.6°N, 97.5°W) for the 

year 2004, with daily output. Both runs are forced by the ARM observed atmospheric 

data, including direct and diffuse solar radiation, downward longwave radiation, wind, 

precipitation and humidity, and evaluated using land observation data from the above 

experiment. A description of the ARM project can be found in Stokes and Schwartz. 

(1993), and a description of the data used can be found in Jin et al. (2013, submitted). 

Both runs are performed after a 50-year spin-up, with ARM-observed soil moisture as an 

initial condition, and the PFT’s changed to a mosaic of 0.2 bare soil, 0.4 C3 grass and 0.4 

C4 grass, determined from satellite photos and the ARM site description from Stokes and 
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Schwartz (1993). The first run (“ARM-forced Default”) is performed with the default 

canopy emissivity equation (eq. B5) and the second run (ARM-forced PFT-emis) is 

performed with our new PFT-based emissivity equation (eq. B7).  

To understand how the new εv affects the CLM at a global scale, the two global 

offline CLM4 simulations are conducted for the years 2001-2004, using a spatial 

resolution of 0.93° in latitude by 1.25° in longitude. The first simulation uses the default 

algorithm and the second uses the PFT-Based algorithm. Both global runs are forced 

using the default CLM4 forcing data of Qian et al. (2006). MODIS monthly Tskin 

measured on the Terra satellite during the years 2001-2004 is used to validate the global 

runs. The description and uncertainties of MODIS Tskin are discussed in Jin and Mullens 

(2012), and the accuracy is discussed in Wan (2008). The MODIS data has a resolution 

of 0.05° x 0.05° and is resized to match the resolution of 0.93° x 1.25° used in CLM4. 

Because MODIS produces a daytime (10:30 AM) and nighttime (10:30 PM) dataset for 

each month, these are averaged, producing a single monthly Tskin value at each point to 

compare with the monthly temperature values modeled by CLM4. The RMSE is then 

calculated at each grid point, similar to the single point case. 

 

B4. Results 

a. Evaluation of the new εv parameterization using ARM SGP observations 

A time series of the calculated canopy emissivity values is given in Figure B1a for 

the default equation (Eq. B5) and for the new εv parameterization (Eq. B7).  Apparently, 
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εv is much more realistic after using the modified equation (Eq. B7) when compared to 

monthly MODIS broadband emissivity values.  

 

 

 

Fig B1: (a) Satellite observed ELAI and ESAI for Lamont OK. (b) Daily default Canopy 

Emissivity values based on current emissivity parameterization (shown in blue) and 

proposed PFT-Based Canopy Emissivity values (shown in red) compared to MODIS 

monthly broadband values (green triangles). Values are for Lamont, Oklahoma for 2004. 
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The new εv improves the Tskin simulation in the offline CLM4 by 0.17°C (Figure 

B2).  Forced with observed ARM forcing, the default ARM-forced CLM4 Tskin has an 

RMSE of 2.44°C, while with the new εv, the RMSE between PFT-emis CLM4 Tskin and 

ARM observed Tskin is reduced to 2.27°C (Figure B2a). Although both the default CLM 

run and the new εv run are warmer than the ARM observations by as much as 6°C, the 

new εv algorithm is less so (Figure B2c), which is a reduction of the warm bias. Late fall, 

winter, and early spring are the most sensitive to the change (Figure B2c), which is when 

canopy density is lowest; this suggests that lower canopy densities are indeed most 

sensitive to the new algorithm. Although the algorithm reduces the warm bias, it does not 

substantially affect either the day-to-day cycle of Tskin changes, or the day-to-day 

changes in difference between modeled and observed Tskin at the ARM SGP site; it 

merely reduces the magnitude of the departure from observations. In addition, the 

difference taken between the two daily outputs (Figure B2c) shows that the late fall to 

early spring periods are most sensitive to εv improvement, suggesting that canopies with 

lower densities are improved most.  
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Figure B2 a) Offline ARM-Forced CLM4 Tskin with emissivity based on current 

parameterization and Offline ARM-Forced CLM4 Tskin with proposed emissivity 

calculated by equation B5 versus ARM-observed Skin Temperatures for the Southern 

Great Plains ARM Facility in 2004. b) Difference between CLM4 model runs and ARM 

land observations for 2004. c) Calculated difference between Offline ARM-forced 

Default and Offline ARM-forced PFT-Emissivity CLM4 runs.  
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In addition to daily changes to Tskin caused by the implementation of Eq. (B7), the 

changes also exhibit a diurnal cycle (Figure B3). For example, in July, the 

implementation of the new parameterization leads to cooling of as much as 0.7°C in the 

morning as Tskin is increasing and warming of as much as 0.5°C in the late afternoon as 

Tskin begins to decrease (Figure B3b). A possible cause of this result is a decrease in the 

rate of warming and cooling due to the new parameter. The cooler temperatures in the 

morning indicate that the new emissivity slows down the warming process and the 

warmer temperatures in the late afternoon indicate that the new emissivity slows down 

the cooling process. It takes longer for the canopy to respond to changes in incoming 

radiation. Further studies need to be performed to truly understand the cause of this 

decrease in the rate of warming in the morning and cooling in the afternoon. 
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Figure B3 a) Offline hourly ARM-Forced CLM4 Tskin with emissivity based on current 

parameterization and Offline ARM-Forced CLM4 Tskin with proposed emissivity 

calculated by equation B5 versus ARM-observed Skin Temperatures for the Southern 

Great Plains ARM Facility in July, 2004. c) Calculated difference between Offline ARM-

forced Default and Offline ARM-forced PFT-Emissivity CLM4 runs.  

 

 

 



75 
 

b. Evaluation of the new εv parameterization using MODIS data 

The distribution of ELAI + ESAI in CLM4 (Figure B4a) suggests that many 

regions may be affected by the new εv parameterization since most of the land has low to 

intermediate values of ELAI + ESAI. The difference in RMSE between the new εv case 

and default case shows encouraging improvements in Tskin simulations (Figure B4b). 

Areas of blue indicate a decrease in error when the new εv algorithm is used while areas 

of red indicate that the error increased with use of the new algorithm. Specifically, areas 

of intermediate canopy density (with ELAI+ESAI in the range of 0.5 to 2.5 as shown in 

Figure B4a) show improvement as high at 1 K. These areas include the Southwestern 

edge of the Tibetan Plateau in Northern India, savanna areas between the Sahara desert 

and the Gulf of Guinea, while areas such as the Indian Peninsula, interior Southern 

Africa, and the Southern fringe of the Boreal forests in Northern Europe experience a 

marginal improvement of 0.2°C to 0.5°C, similar to the improvement seen over the ARM 

SGP site. Error increases occur over arid and semi-arid areas such as the Australian 

deserts, the southeastern edge of the Tibetan Plateau, parts of the Taklimakan desert, the 

Siberian tundra on the eastern Siberian peninsula, and the western United States 

Mountains. Areas of heavily dense canopy (ELAI+ESAI above 2.5) experience little 

noticeable change in RMSE between the two simulations.  
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Figure B4. (a) Map of monthly Canopy Density (ELAI+ESAI) used as CLM4 input, 

averaged over 2004. The ELAI and ESAI values are CLM4 surface conditions, based on 

MODIS observations.  (b) Difference in RMSE between default monthly offline CLM4 

run and CLM4 run with improved vegetation emissivity. Average MODIS monthly Tskin 

for 2001-2004 is used as observational data. MODIS data is average of Monthly daytime 

and nighttime data collected by the MODIS instrument on the Terra Satellite. MODIS 

data has a resolution of 0.05 x 0.05 degrees, which is reduced to the 0.93 x 1.25 

resolution of the CLM4 grid.  
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B5. Discussion 

The introduction of Eq. (B7) to the CLM proves beneficial for the calculation of 

Tskin over intermediate canopies. The ARM SGP site is a winter wheat site with 

seasonally variable canopy density and has Tskin improvements of 0.17°C. Areas such as 

the Southwestern edge of the Tibetan Plateau and the African Savanna have greater 

seasonality of canopy density due to monsoonal presence and the shifting in the Inter-

Tropical Convergence Zone over Africa. These regions of intermediate canopy density 

currently have unreasonably low εv values based on the default algorithm, and show 

significant improvement by up to 1°C in Tskin simulation. Areas with sparse canopy have 

the biggest increase in RMSE, due to overestimation of emissivity in these areas. This 

problem is noted in JL06, where bare soil emissivity values below 0.9 were suggested to 

be reasonable. In addition, many of these areas have recorded cold biases (Zeng et al. 

2012); therefore the implementation of a higher vegetation emissivity in these areas can 

add to that cool bias. However, many of these areas are more subject to bare soil 

emissivity because they have little vegetation, so improvements to the bare soil algorithm 

might solve problems in these areas. This research suggests that further work is needed in 

developing an algorithm for sparse canopies, with a focus on bare ground emissivity, 

which can be integrated into Eq. (B7) to produce globally accurate emissivity values in 

CLM4.  
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