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ABSTRACT 

DYNAMICS OF VIBRIO WITH VIRULENCE GENES DETECTED IN PACIFIC 

HARBOR SEALS (PHOCA VITULINA RICHARDII) OFF CALIFORNIA: 

IMPLICATIONS FOR MARINE MAMMAL HEALTH 

by Stephanie N. Hughes 

Given their coastal site fidelity and opportunistic foraging behavior, harbor seals (Phoca 

vitulina) may serve as sentinels for coastal ecosystem health.  Seals using urbanized 

coastal habitat can acquire enteric bacteria, including Vibrio, that may affect their health.  

To understand Vibrio dynamics in seals, demographic and environmental factors were 

tested for predicting potentially virulent Vibrio in free-ranging and stranded Pacific 

harbor seals (P. v. richardii) off the coast of California.  Vibrio prevalence did not vary 

with season and was greater in free-ranging seals (29%, n = 319) compared with stranded 

seals (17%, n = 189).  Of the factors tested, location, turbidity, and/or salinity best 

predicted Vibrio prevalence in free-ranging seals.  The relationship of environmental 

factors with Vibrio prevalence differed by location and may be related to oceanographic 

or terrestrial contributions to water quality.  Vibrio parahaemolyticus, V. alginolyticus, 

and V. cholerae were observed in seals with V. cholerae found almost exclusively in 

stranded pups and yearlings.  Additionally, virulence genes (trh and tdh) were detected in 

V. parahaemolyticus isolates.  Vibrio cholerae isolates lacked targeted virulence genes, 

but were hemolytic.  Three out of four stranded pups with V. parahaemolyticus (trh+, 

and/or tdh+) died in rehabilitation, but the role of Vibrio in causing mortality is unclear, 

and Vibrio expression of virulence genes should be investigated.  Considering that 



 

humans share the environment and food resources with seals, potentially virulent Vibrio 

observed in seals also may be of concern to human health.  
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Introduction 

Marine mammals are sensitive to changing environmental conditions and can serve as 

sentinels for ecosystem health [11, 13, 35, 60]. Long-term monitoring of marine mammal 

health includes measuring contaminants, trace elements, biotoxins from harmful algal 

blooms, baseline blood values, and prevalence of infectious disease so that deviations 

from normal values may be detected [10, 12, 32, 33, 35-38]. Cumulative effects of one or 

more of these factors may have contributed to the deterioration of marine mammal health 

[10, 11, 13, 35]. Because infectious marine diseases appear to be increasing and are of 

immediate concern to marine mammal health, the dynamics and virulence potential of 

aquatic microbes should be investigated [4, 10, 28, 38, 48, 75]. 

Baseline epidemiological data on marine pathogens can be obtained from a 

representative marine mammal to aid in disease mitigation in marine mammals [10, 36, 

48, 65, 83]. Harbor seals (Phoca vitulina) are an excellent indicator species because they 

are long-lived and upper-level trophic consumers that inhabit coastal areas throughout the 

northern hemisphere. Harbor seals often have strong site fidelity to areas near dense 

human populations (e.g., San Francisco Bay), and forage opportunistically on available 

benthic and pelagic prey [9, 23, 62, 69, 84, 91]. Terrestrial inputs from urbanized coastal 

communities may alter the quality of habitat or food resources exploited by harbor seals 

[32, 53, 58, 70, 72, 82]. These inputs also may contribute to increases in marine 

pathogens [39, 42], thereby leading to an increasing incidence of disease in marine 

animals including harbor seals. 
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Current knowledge of the diversity and ecology of marine pathogens in harbor 

seals is limited to clinical cases, serological surveys, zoonotic cases (marine mammal 

caretakers), and epidemics associated with animal-stranding events [10, 37, 38, 73, 78, 

83, 92].  The most common cause of live harbor seal strandings in central California 

during the last ten years was malnutrition (52%) [16]. Malnourished individuals may be 

more susceptible to enteric pathogens [44]. To better understand impacts of enteric 

pathogens on the health of harbor seals, enumerating these pathogens in healthy and 

stranded seals is warranted [10, 16, 32, 48, 51]. 

Marine pathogens of the genus Vibrio are of concern to marine mammal and 

ecosystem health. Vibrios are facultative anaerobes that can be found in aquatic 

environments throughout the world [18, 24]. Pathogenic strains may proliferate following 

environmental perturbation, and nonpathogenic strains may become competent pathogens 

via inter-microbial gene transfer [4, 7, 18, 24, 34, 39, 57, 63, 79]. The diversity and 

versatility of this group of bacteria allows their persistence in a variety of ecological 

niches and hosts [17, 20, 23, 33, 47, 93]. Infectious species and serotypes of Vibrio can 

deleteriously affect a broad range of marine taxa causing mass mortality events [18]. 

Vibrio may persist in the water column, although greater concentrations of some 

pathogenic species of Vibrio have been observed in sediment, zooplankton, mussels, and 

fish [19, 21, 43, 45, 55, 78]. In humans, enteric Vibrio infections are acquired by 

ingesting water or raw seafood that is contaminated with virulent or pathogenic strains of 

Vibrio. Ingesting pathogenic Vibrio may lead to gastroenteritis, dehydration, septicemia 

and in some cases death in human and experimental hosts [7, 18, 78]. Given their 
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mammalian physiology, marine mammals may be similarly affected following a Vibrio 

infection. 

Vibrio species have been detected in marine mammals suffering from enteritis and 

septicemia [58, 83]. Species of Vibrio also were detected in harbor seals, although the 

virulence of these strains was unknown [32]. Measuring the abundance, distribution, and 

virulence potential of Vibrio from seals and corresponding environmental conditions may 

aid in identifying processes that promote pathogen proliferation and thus may impact seal 

health [58, 83]. The goal of this study was to investigate the dynamics and virulence 

potential of Vibrio among free-ranging and stranded Pacific harbor seals (P. v. richardii) 

off the coast of California to identify risks associated with the presence of Vibrio. We 

determined the temporal and spatial prevalence of Vibrio spp. in seals and examined 

demographic risk factors (age, sex, and body condition) and environmental conditions 

(precipitation, nutrients, temperature, pH, salinity, and turbidity) associated with Vibrio 

detection. Vibrio prevalence and species distribution in free-ranging seals were compared 

with those of stranded seals to better understand the role that Vibrio may play in the 

health of harbor seals. Lastly, the virulence potential of V. parahaemolyticus and V. 

cholerae isolates was determined by screening for virulence genes, and clinical signs 

associated with potentially virulent Vibrio were examined. 

 

Materials and Methods 

Isolation and characterization of Vibrio spp. from free-ranging and stranded seals 
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Free-ranging harbor seals (n = 220, Fig. 1) were captured on mud flats, sand spits, or 

rocky outcrops in San Francisco Bay (SFB), Elkhorn Slough (ES), Tomales Bay (TB) 

and Humboldt Bay (HB) using beach seine, drift net, or hand-held salmon nets [32]. 

Seals in SFB and TB were sampled during the dry (May to October) and wet (November 

to April) seasons from May 2010 to June 2011. Seals in ES were sampled from August to 

December 2010, and those in HB were sampled in June of 2011. Free-ranging seals were 

not sampled during the pupping season (March to April) to avoid disturbance of mother 

and pup pairs. Seals were weighed (± 1 kg) and restrained physically and chemically with 

5mg/ml of diazepam (Hospira, Inc., Lake Forest, Illinois USA) at a dose of 0.25mg/kg. 

Standard length (± 1 cm) and axillary girth (± 1 cm) also were measured. Sex and age 

class were determined using external characteristics, mass, standard length criteria, and 

time of year [9, 32]. 
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Figure 1. Sampling sites and sample sizes for free-ranging harbor seals (n = 319, black 
dots) and area between San Luis Obispo and Mendocino (black bars) where stranded 
animals were sampled (n = 189) during admission to The Marine Mammal Center in 
2007 through 2011.  
 

Harbor seals that stranded between San Luis Obispo and Mendocino were 

opportunistically sampled during admission for rehabilitation from May 2010 to July 

2011 (Fig. 1). These individuals were primarily pups and yearlings that beached alive (n 

= 53) and appeared ill, emaciated, or were recently deceased (n = 4, died in transit to the 

rehabilitation facility, or sampled less than six hours post-mortem). Mass (± 1 kg), 

standard length (± 1 cm), axillary girth (± 1 cm), sex, and age class were noted as 

described above. Locations of stranded seals were assigned to the nearest capture 

location, Monterey Bay (MB, -121.95ºW / 36.61ºN to -122.11ºW / 36.95ºN), SFB (-
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122.45ºW / 37.49ºN to -122.80ºW / 37.99ºN), and TB (-122.98ºW / 38.08ºN to -

123.09ºW / 38.39ºN), to compare with free-ranging seals. 

Fecal samples were collected from each seal using sterile double-tip cotton swabs 

in Amies transport media (HealthLink, Inc. USA) inserted into the rectum of each seal. 

Swab samples were placed on ice, and transported to the University of California, Davis 

Veterinary Medical Teaching Hospital Microbiology for sample processing. One swab 

from each seal was placed in alkaline peptone water (Hardy Diagnostics USA) incubated 

at 35ºC overnight in an oxygenated incubator. Plates of thiosulfate citrate bile salts agar 

(TCBS, Hardy Diagnostics USA), selective for Vibrio growth, were inoculated with the 

enriched swab and incubated at 35ºC overnight. Individual green or yellow colonies on 

TCBS agar were subjected to biochemical testing to confirm genus using triple sugar iron 

agar slants, Christensen’s urease agar slants, spot indole test, and cytochrome oxidase 

test. Species identification was determined using API 20E test strips (API 20E Test Kit, 

bioMereux, Inc., Hazelwood, MO USA). Isolates from 2010 to 2011 were cryogenically 

preserved (MicroBank vials, Copan Diagnostics USA) and stored at -80ºC. Isolates that 

were not identified to the species level using biochemical testing were genetically 

characterized by targeting the species-specific ToxR gene region using the polymerase 

chain reaction (PCR) amplification and amplicon visualization methodology of Bauer and 

Rorvik (2007) [6]. If species could not be determined, or more than one species of Vibrio 

was isolated from an individual seal, the sample was categorized as Vibrio mixed culture 

for data analysis purposes. Vibrio prevalence and species distribution data in free-ranging 

seals were compared with stranded seals among locations for all years sampled. 
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Banked isolates from 2010 and 2011 characterized as V. parahaemolyticus and V. 

cholerae were screened for genes encoding virulence factors. Multiplex PCR 

amplification procedures previously outlined were followed with minimal modification 

[6, 8, 77]. Crude deoxyribonucleic acid (DNA) was extracted from each isolate using the 

boiling method [56], and a 1:10 dilution was used as a template for multiplex PCR 

amplification. Primer dilutions (Invitrogen, Inc USA), reaction buffer concentrations 

(dNTP Mix, GeneAmp UK; Hot Start Taq Kit, Qiagen USA), and PCR (Thermocycler, 

Eppendorf, USA) amplification conditions follow those of previous studies listed above. 

Thermostable direct hemolysin (tdh; 269 bp), related thermostable direct hemolysin (trh; 

500 bp), and thermolabile hemolysin (tl; 450 bp) gene regions were targeted for V. 

parahaemolyticus isolates, whereas cholera toxin (ctx; 617 bp) and toxin co-regulated 

pilus (tcp; 385 bp) gene regions were targeted for V. cholerae isolates. Amplicons were 

separated via gel electrophoresis and visualized using 7 µl of GelStar nucleic acid stain 

(Gel Star, Lonza, ME USA) per 100mL of 1.5% agarose (USB Corporation, OH USA) in 

tri-acetate-EDTA (TAE) buffer (Bio-Rad, Inc., USA). A subset (n = 7) of positive 

samples and sample controls were sequenced (ElimBio, CA USA) to confirm 

amplification of target regions (Geneious 5.5, NZ). Virulence gene profiles from isolates 

collected from free-ranging seals were compared with stranded seals among locations. 

Lastly, clinical signs in seals carrying potentially virulent Vibrio were also documented. 
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Environmental data collection  

Water quality and weather data collected at a resolution of 15-minute intervals were 

downloaded from NOAA’s National Estuarine Research Reserve System (NERRS) 

database from SFB (SCQC1, 38.21° N / -122.03°W; SFX1, 38.22°N / -122.03°W) and 

ES (ELQC1 and ELXC1, 36.82°N / -121.74°W). Daily averaged salinity (ppt), 

temperature (ºC), turbidity (NTU), pH (standard units), nutrient data (NO3- uM, available 

only for ES), and daily cumulative precipitation (mm) were computed from raw, quality 

assured, and quality controlled NERRS data files (Matlab R2011a, Mathworks, Inc., 

USA) for both sampling locations. Missing or flagged data from NERRS quality control 

and assurance checks were excluded from analyses [94].  

 

Data analysis  

Previous Vibrio prevalence data collected from free-ranging seals (n = 99) in SFB and TB 

(May, June, and December of 2007, and May and June of 2008) using similar 

methodology were included to test the effects of environmental and demographic 

predictors among locations and years [32]. Chi-squared ( ) tests were performed to 

determine if the presence or absence of Vibrio was dependent on year, season (wet or 

dry), or location (SFB or TB) in free-ranging seals. A separate  test was used to 

compare presence or absence of Vibrio in free-ranging seals from ES to that of other 

locations sampled in 2010 to 2011. If no significant differences were detected, data were 

combined for subsequent analyses. Factors that were significant were either separated by 

factor level, or used as covariates in a logistic regression assessing risk factors. The 

! 2

! 2
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magnitude of effect of categorical predictor variables used in logistic regression was 

determined by comparing odds ratios (OR = proportion of cases/ 1- proportion of cases 

for reference category). Age classes were collapsed into two main categories; pups were 

grouped with yearlings, and subadults with adults. Residuals from the linear regression of 

length versus mass were used as an indicator of body condition (BCI). A forced entry, 

exploratory logistic regression analysis was used to determine whether age, sex, and body 

condition predicted the presence or absence of Vibrio in free-ranging harbor seals. 

Stepwise lagged correlation analysis (Matlab, Student Version R2011a, 

Mathworks, Inc., USA) was used to determine if Vibrio prevalence in free-ranging seals 

sampled in SFB and ES was related to rainfall events for up to twenty-two days before 

sampling date. Environmental predictor variables measured for SFB and ES were tested 

for multicollinearity and normality. Daily average nutrients (ES only), temperature, 

salinity, pH, and turbidity values for each sample day were assigned into categories using 

the bin criteria determined by the mean and/or median for SFB (Appendix A) and ES 

(Appendix B). Vibrio prevalence corresponding to each category was tested for goodness 

of fit (Pearson’s χ 2 , or Cochran’s for df = 1). Variables with the greatest  value and 

correlation coefficients less than 0.70 were retained for further analysis. A backwards 

stepwise logistic regression was used to assess the effect of environmental predictors on 

the presence or absence of Vibrio in free-ranging seals. Odds ratios were calculated to 

determine the magnitude of effect.  

Similarly, previous Vibrio prevalence data from live (n = 102) and recently 

deceased stranded seals (n = 30) seals in January 2007 to September 2008 were included 

! 2



	   10	  

to test the effects of predictors on the presence or absence of Vibrio [32]. Chi-squared 

tests were performed on categorical (year, season, location, sex) predictor variables, and 

t-tests were performed on continuous (admission mass, BCI) predictor variables. Only 

significant predictors were included in a backwards stepwise logistic regression of Vibrio 

prevalence. The overall model fit was determined using the likelihood (LR) ratio test 

and/or the Homer and Lemeshow (HL) test statistic [68]. Statistical analyses were 

performed using PSAW Statistics (19.0, IMB, USA), and statistical significance was 

assumed for an alpha level less than 0.05 for all analyses.  

 

Results 

Vibrio prevalence in free-ranging harbor seals 

From 2007 to 2011, the overall prevalence of Vibrio in free-ranging seals was 29% (n = 

319). Neither year ( = 5.512, P = 0.138 for years sampled in SFB, and = 

4.643, P = 0.200 for TB) nor season (Cochran’s = 0.276, P = 0.599) had an effect 

on presence of Vibrio in free ranging seals, therefore, these data were pooled within 

locations for further analyses. Significant differences in Vibrio presence were detected 

among locations ( = 56.237, P < 0.001; Fig. 2). Elkhorn Slough had the greatest 

proportion of seals confirmed with Vibrio (58.7%, n = 46), followed by SFB (45.0%, n = 

71), and TB (11.5%, n = 174). Seals sampled in ES were ten times more likely to carry 

Vibrio (OR = 10.94), whereas seals in SFB were six times more likely (OR = 6.32) than 

seals in TB (P < 0.001). The overall model was significant (LR, P < 0.001; HL, P <  

 

! 2
0.05,3 ! 2

0.05,3

! 2
0.05,1

! 2
0.05,2
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1.000), and was 75% accurate in classifying presence or absence of Vibrio (Table 1). 

Because location significantly predicted Vibrio in seals, data were separated by location 

for further analyses. 

 

 
Figure 2. Proportion of free-ranging harbor seals with Vibrio (seals confirmed with 
Vibrio/ total seals sampled) by year and location (SFB = San Francisco Bay, TB = 
Tomales Bay, ES = Elkhorn Slough). Seals were sampled from ES only in 2010. Sample 
sizes are indicated in parentheses.  
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Table 1. Results from logistic regression testing location as a predictor for Vibrio 
presence and absence in seals sampled in 2007 to 2011.  

 
Free-ranging pups and yearlings from SFB were more likely to carry Vibrio 

(52%) compared with adults and subadults (36%), although age class was not a 

significant predictor of Vibrio when tested using logistic regression (P = 0.26). Body 

condition (P = 0.93) and sex (P = 0.41) also were not significant predictors of Vibrio in 

free-ranging seals from SFB. Demographic risk factor analysis was not performed on 

data from seals sampled at other locations because pups and yearlings were poorly 

represented (ES) or presence of Vibrio was rare (TB).  

No relationship was detected between Vibrio prevalence of free-ranging seals and 

daily average precipitation in SFB and ES, and no lag in Vibrio prevalence with rainfall 

was detected using lagged correlation analysis. The occurrence of Vibrio in seals was 

related to pH (Cochran’s = 3.82, P = 0.051 for SFB, and = 5.81, P = 0.016 

for ES), and turbidity (Cochran’s = 8.02, P = 0.005 for SFB, and = 7.94 , P = 

0.005 for ES). Salinity was not significantly related, however this parameter met the 

criteria to be included in logistic regression (greatest chi-squared; r < 0.70). Temperature 

was significantly correlated with nutrients (r = 0.988, P < 0.01), and salinity (r = 0.999, P 

< 0.01), but neither temperature nor nutrients were related to Vibrio presence 

! 2
0.05,1 ! 2

0.05,1

! 2
0.05,1 ! 2

0.05,1

Location n n1
a Prevalence 

(%) 
P value Odds Ratio 

(OR) 
CI for OR 

Location 2007-2011 291 79 30.00    
    Elkhorn Slough 46 27 58.69 <0.001* 10.94 5.17- 23.15 
    San Francisco Bay 71 32 45.07 <0.001* 6.32 3.27-3.22 
    Tomales Bayb 174 20 11.49 <0.001* - - 
    Constant       <0.001 0.17 - 
aVibrio+, bReference Category      
!
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(Appendices A & B). Salinity, pH, and turbidity (r < 0.70) in SFB and ES were then 

selected for logistic regression analysis. The most parsimonious model (LR, P = 0.005; 

HL, P < 1.000) for predicting Vibrio in free-ranging seals from SFB included only 

turbidity (P = 0.008). Vibrio was four and a half times more likely to occur in harbor 

seals sampled in SFB when the turbidity was greater than 66 NTU with a classification 

accurracy of 65%  (Table 2). Vibrio in free-ranging seals from ES was best predicted by 

turbidity (P = 0.003) and salinity (P = 0.090) with a classification accuracy of 72% (LR, 

P = 0.002; HL, P < 1.000). In contrast to SFB, seals from ES were twenty-six times more 

likely to carry Vibrio when turbidity was less than 7 NTU and four and a half times more 

likely when salinity measured less than 33 ppt (Table 2).  

Table 2. Results from multivariate backwards stepwise logistic regression testing 
environmental variables as predictors of the presence or absence of Vibrio in free-ranging 
seals sampled from Elkhorn Slough in 2010 and then San Francisco Bay from 2007 to 
2011. 

 

 

 

 

 

 

 

Predictors n n1
a Prevalence 

(%) 
P value Odds Ratio 

(OR)  
CI for OR 

Elkhorn Slough       
      Salinity (ppt) 47 29 61.70 - - - 

<33 21 12 50.00 0.09 4.67 0.78-28.05 
!33b 26 17 65.38 - - - 

      Turbidity (NTU) 47 29 61.70 - - - 
" 7 17 15 88.23 0.003 26.25 3.04-226.6 
> 7b 30 14 46.67 - - - 

       
San Francisco Bay       
      Turbidity (NTU) 71 32 45.07 - - - 

" 66b 26 6 23.07 - - - 
> 66 45 26 57.78 0.008 4.51 1.49-13.64 

 aVibrio +, bReference Category     
!
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Vibrio prevalence in stranded seals  

The overall prevalence of Vibrio in stranded seals from 2007 to 2011 was 17% (n = 189). 

Stranded adults and subadults were dropped from further analysis because of small 

sample size (n = 5). Differences in Vibrio prevalence were detected among years 

(Cochran’s  = 10.31, P = 0.016) with the greatest percentage of seals positive for 

Vibrio (33 %, n = 43) in 2011 (Fig. 3). There was no effect of season (Cochran’s  =  

0.08, P = 0.782), or sex (females 20 %, n = 49, males 21 %, n = 53; Cochran’s  =  

0.002, P = 0.966) for the presence or absence of Vibrio in stranded seals. 

 
Figure 3. Proportion of stranded pups and yearlings admitted to The Marine Mammal 
Center with Vibrio, 2007 to 2011. Sample sizes are indicated in parentheses. 
 

Pups and yearlings with Vibrio had slightly greater masses at admission ( = 8.9 

kg, SE = 0.49), and a slightly greater BCI ( = 0.03, SE = 0.22) compared with 

individuals without Vibrio (mass: = 8.5 kg, SE = 0.30; BCI: = -0.01, SE = 0.11), 

however, these differences were not statistically significant (mass t (100) = -0.613, P = 
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0.541; BCI t (99) = -0.174, P = 0.862). Since none of the demographic factors were 

significantly related to Vibrio prevalence in stranded seals, no further analyses were 

performed.  

Prevalence of Vibrio in stranded seals varied by stranding county and year; 

however, data were too sparse to test for statistical significance. In general, San Luis 

Obispo (SLO), Monterey, Marin, and Mendocino counties had the greatest percentage of 

stranded seals positive for Vibrio from 2007 to 2011, although it varied among years (Fig. 

1). The greatest prevalence of Vibrio observed per county occurred in 2011 for stranded 

seals sampled from SLO (67 %, n = 3), followed by Monterey (42 %, n = 12), Marin (33 

%, n = 9), Mendocino (33 %, n = 9), and San Mateo (25 %, n = 4). Animals that stranded 

in Alameda and Santa Cruz counties were negative for Vibrio in all study years.  

 

Comparison of Vibrio prevalence, species distribution, and virulence profiles between 

free-ranging and stranded seals 

Because there were very few stranded adults and subadults, only data from pups and 

yearlings were used to compare Vibrio prevalence between free-ranging and stranded 

seals among sample locations. Vibrio prevalence observed in stranded and free-ranging 

pups and yearlings increased from 2007 to 2011 in all locations and varied among sample 

year (Table 3). Vibrio was not detected until 2011 in free-ranging pups and yearlings 

sampled from TB (17 %, n = 6). Vibrio prevalence was greater in free-ranging pups and 

yearlings compared with stranded pups and yearlings from SFB and ES. The opposite 
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trend was observed for TB in 2011.  All free-ranging pups and yearlings sampled from 

ES in 2010 were positive for Vibrio, whereas all stranded individuals were negative.  

Table 3. Prevalence of Vibrio in free-ranging and stranded pups and yearlings positive for 
Vibrio per location from 2007 to 2011.  
 

 

 

 

 

 

 

 

Vibrio parahaemolyticus, V. alginolyticus, and V. cholerae, were isolated from 

seals, although the proportions of these species were not equal in free-ranging and 

stranded seals among locations (Fig. 4). Isolates from free-ranging seals in ES were 

predominantly V. parahaemolyticus, whereas greater proportions of all three Vibrio 

species were observed in seals that stranded in MB. All three Vibrio species also were 

isolated from free-ranging and stranded seals from SFB, although greater proportions of 

V. parahaemolyticus and V. alginolyticus were isolated than V. cholerae in free-ranging 

seals. Vibrio cholerae was isolated primarily from stranded pups and yearlings except it 

was found in one free-ranging adult from ES and one free-ranging pup from SFB. The 

majority of isolates from free-ranging seals sampled in TB and HB were V. alginolyticus, 

with the exception of three isolates of V. parahaemolyticus (TB, n = 1; HB, n = 2). One 

                                        Vibrio Prevalence % (n) 
Location 2007 2008 2010 2011 
Tomales Bay         
    Free-ranging    0 (4)    0 (12)     0 (1) 17 (6) 
    Stranded    0 (4)    0 (6) 100 (1) 25 (4) 
San Francisco     
    Free-ranging 64 (11) 47 (19)  67 (6)   0 (2) 
    Stranded 11 (19) 17 (23)    0 (5) 60 (5) 
Monterey Bay     
    Free-ranginga NA NA 100 (4) NA 
    Stranded 13 (8)   0 (13)     0 (3) 57 (7) 
aSampled in Elkhorn Slough   
NA = did not sample    
!
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stranded seal in TB was positive for V. paraheamolyticus, and one for V. cholerae. Three 

isolates (SFB, n = 2; ES, n = 1) could not be identified to species level due to mixed 

biochemical and genotypic results.  

A. 

  
B. 

  
 
Figure 4. Proportions of Vibrio species isolated from (A) free-ranging harbor seals 
sampled in Humboldt Bay (HB, n = 13), Tomales Bay (TB, n = 20), San Francisco Bay 
(SFB, n = 32) and Elkhorn Slough (ES, n = 28), and (B) harbor seals stranded in TB (n = 
2), SFB (n  = 11), and Monterey Bay (MB, n = 6). Mixed Vibrio Culture are isolates that 
could not be identified to species level, and samples with more than one species of Vibrio 
detected.  
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 V. parahaemolyticus and V. parahaemolyticus-like species (API 20E confirmed, 

ToxR-) were detected in free-ranging and stranded seals at all locations. Ninety percent of 

V. parahaemolyticus isolates (n = 53) contained the tl gene, whereas 67% contained both 

trh and tl genes (Table 4). Five V. parahaemolyticus isolates were positive for all three 

hemolysin genes (tl, trh, and tdh), and were collected from free-ranging seals sampled in 

SFB (n = 2) and ES (n = 3). Overall, 77% percent of V. parahaemolyticus (n = 53) 

isolates contained one or more virulence genes (trh, tdh, or both), with the majority of 

virulent isolates from free-ranging adults and subadults in SFB and ES. Two isolates of 

V. parahaemolyticus (ToxR+), and three isolates biochemically similar to V. 

parahaemolyticus (ToxR-) were lacking all three target genes. One free-ranging seal 

sampled from ES was carrying V. cholerae (ToxR+) and potentially virulent V. 

parahaemolyticus (trh+, and tl+) simultaneously. All V. cholerae (ToxR+) isolates (n = 3) 

collected from seals in 2010 and 2011 demonstrated hemolytic activity on blood agar 

media, although they were negative for tcp and ctx virulence target genes. Target 

amplicon identity was confirmed by comparing sequences from a subset of V. 

parahaemolyticus and V. cholerae isolates with reference sequences in Genbank 

(Appendix C). 
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Table 4. Virulence gene profiles for V. parahaemolyticus isolates collected from free-
ranging seals from Elkhorn Slough (ES), San Francisco Bay (SFB), Tomales Bay (TB), 
and Humboldt Bay (HB), and stranded seals (TMMC) in 2010 and 2011. Sample sizes 
represent the number of isolates tested. 
 

 
 

 

 

 Four stranded pups sampled in 2010 and 2011 were carriers of potentially virulent 

V. parahaemolyticus (trh+) and V. parahaemolyticus-like (trh+) isolates, and three of 

those seals died in treatment. Evidence of enteritis was observed during necropsy for two 

of the three deceased seals carrying potentially virulent V. parahaemolyticus, and one 

carrying hemolytic V. cholerae. 

 

Discussion 

Pacific harbor seals off the coast of California were carriers of potentially virulent 

isolates of Vibrio. All free ranging seals appeared healthy at the time of sampling, so 

were asymptomatic carriers, whereas stranded seals were all underweight for their age, 

thus could potentially have been impacted by the Vibrio infections. Similar species of 

Vibrio were observed among free-ranging and stranded seals, with the exception of V. 

cholerae. Vibrio cholerae were primarily detected in non-weaned stranded pups and may 

  

 
Target Genes 

     
Location 

    

Species tdh trh tl 
ES  

(n=27) 
SFB 

(n=12) 
TB  

(n=2) 
HB   

(n=5) 
TMMC 

(n=7) 
         
V.parahaemolyticus + + + 3 2 0 0 0 
 - - - 0 2 0 0 0 
 - + + 20 7 1 2 1 
 - - + 4 1 0 0 2 
         
Vibrio spp. (Vp like) - - - 0 0 1 1 1 
  - + + 0 0 0 2 3 
!
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be of greatest concern to harbor seal health. Stranded seal pups with potentially virulent 

V. parahaemolyticus and hemolytic V. cholerae presented symptoms of enteritis. Future 

clinical studies should focus on assessing the impact of virulent Vibrio strains on stranded 

seal health. 

Vibrio likely contribute to the natural microbial flora of coastal areas used by 

harbor seals, and population dynamics of Vibrio may be influenced by both 

oceanographic and terrestrial contributions to water quality. Changes in temperature and 

salinity commonly relate to the seasonal abundance and distribution of Vibrio in the 

water column [17, 19, 39, 45, 52, 55]. However, turbidity and/or salinity best predicted 

Vibrio occurrence in harbor seals, although the relationship differed with location. The 

differences in related environmental factors suggest that Vibrio exposure in seals may be 

related to other factors not measured in this study. Furthermore, the lack of seasonal 

variation for Vibrio prevalence in seals may indicate that seals may frequent reservoirs of 

Vibrio that are decoupled from seasonally influenced environmental factors measured 

here [27, 55, 86].  

Differing land-use practices may influence the variation in Vibrio prevalence 

observed in seals among locations. Vibrio prevalence in seals from TB was the least 

among all the locations. Rural land surrounding TB is typically used for agriculture 

where the dominant enterprise is livestock farming [5]. Movement patterns and habitat 

use of seals from TB are unknown making it difficult to make inferences about dynamics 

of Vibrio in seals sampled at this location. However, we can conclude that it is unlikely 

that dairy cattle near TB are a source of Vibrio because TB had the greatest concentration 
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of dairies yet the lowest prevalence of Vibrio compared with ES or SFB. Furthermore, no 

cattle sampled near ES were confirmed with Vibrio during years we sampled harbor seals 

[65]. 

San Francisco Bay is the largest urbanized estuary on the eastern Pacific, and is 

greatly impacted by industrial and residential inputs from the Sacramento and San 

Joaquin rivers. Compared with ES and TB, the SFB estuary is deeper on average and 

comprised of a larger watershed [14]. Tidal mixing and run-off from rivers, tributaries, 

treatment plant effluent, industry, and groundwater contribute to changes in turbidity 

throughout the bay. Turbidity best predicted Vibrio in seals from SFB. Bacterioplankton 

in SFB are generally evenly distributed, and areas of greater flow near the delta facilitate 

conditions of optimal bacterial growth [41, 42]. No differences were detected for Vibrio 

prevalence in seals sampled from north and south SFB. Freshwater run-off from the delta 

also may facilitate optimal conditions for Vibrio growth in SFB. The turbidity maximum 

zone of SFB where freshwater inputs from the delta meet seawater is dominated by 

aggregations of particle-associated bacteria and plankton [41, 42].  Vibrio can associate 

with plankton [45, 55, 86], therefore blooms following nutrient loading from the delta 

may relate to the abundance of Vibrio in SFB. It is unknown whether Vibrio in SFB are 

free-living, or form aggregations with plankton or particulate matter in the sediment. 

However, if Vibrio aggregate near the maximum turbidity zone in SFB, seals ingesting 

contaminated prey or sediment in these areas may acquire greater concentrations of 

Vibrio.  
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Environmental dynamics relating to Vibrio prevalence in free-ranging seals from 

ES were opposite to those of SFB. It is unknown whether ES is a source for Vibrio in 

seals, yet free-ranging seals in ES had the greatest prevalence of virulent Vibrio overall. 

If ES is a source of Vibrio for seals, conditions that are unique to ES may relate to the 

observed differences. Water quality and hydrography in ES have been altered by 

intensive agriculture cultivation and dairy farming [14, 15]. Pesticides are continuously 

used for crop production and are introduced into ES from irrigation run-off, erosion, and 

groundwater [70, 72]. The effects of these inputs likely are magnified due to the small 

size and shallow bathymetry of ES compared with SFB and TB [14]. Less turbid and less 

saline waters were related to Vibrio occurrence in seals of ES. Previous studies indicated 

the greatest concentrations of bacteria in ES were observed near areas with the greatest 

freshwater inputs [72]. Tidal relaxation events coupled with continuous freshwater inputs 

from crop irrigation and groundwater seepage may be the driving factor promoting Vibrio 

proliferation in this location. If conditions in ES allow Vibrio populations to flourish, this 

small estuary could act as a reservoir for dense aggregations of these bacteria. 

Furthermore, zooplankton or fish that occur in ES may acquire Vibrio and become 

vectors when recruiting to habitat in MB [76, 86]. Data from seals in ES were limited to 

one sample year, therefore it is possible the greater Vibrio prevalence observed in these 

seals was an anomaly. 

Alternatively, the different relationships between environmental factors and 

Vibrio prevalence in seals in ES and SFB may be explained by differences in habitat use 

and foraging behavior.  Harbor seals that haul-out in ES generally use this habitat to rest 
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after foraging bouts [23, 64, 85]. Seals sampled in ES may forage in ES, although they 

spend the majority of their time exploiting habitat and foraging on benthic and pelagic 

prey (e.g. octopus, flatfish, and cusk-eel) in MB [67]. Vibrio parahaemolyticus was 

detected most often in seals from ES, and can be pathogenic in fish and humans. Vibrio 

parahaemolyticus was shown to occur less frequently than other species of Vibrio from 

water and invertebrates sampled from ES [59], and may persist in greater concentrations 

in sediment, offshore zooplankton, and fish [19, 45, 55, 86]. Therefore, resources and 

habitat in MB may be a source of greater concentrations of Vibrio parahaemolyticus. 

Depending on the source of Vibrio in seals from ES, environmental data from ES may not 

represent Vibrio dynamics in seals sampled here. Further research is needed to determine 

inter-annual variability, population dynamics, and host-vector interactions of Vibrio in ES 

and MB.  

Similarly, V. parahaemolyticus was observed most often in seals from SFB, 

although seals in SFB primarily forage on benthic prey (e.g. gobies, staghorn sculpin, 

plainfin midshipman) within the estuary. They also forage offshore on pelagic schooling 

fish like northern anchovy, although these prey comprise a smaller portion of their diet 

[28, 62, 84]. Given V. parahaemolyticus can associate with sediment and zooplankton, 

transmission in seals from SFB may occur while foraging on benthic prey. Although total 

Vibrio prevalence was greater for seals from ES, similar proportions of Vibrio 

parahaemolyticus were observed in seals from SFB and ES. Seals from ES spend 

majority of their time exploiting habitat and resources in MB [23, 67, 85] therefore the 
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offshore life cycle of Vibrio parahaemolyticus may be important component for Vibrio 

dynamics in seals.  

In general, Vibrio prevalence in free-ranging seals was greater than that in 

stranded seals. If Vibrio were acquired by ingesting contaminated prey or sediments 

while foraging, differences in foraging behavior between weaned and non-weaned pups 

may explain the observed differences in Vibrio prevalence. The majority of stranded seals 

were non-weaned pups that were abandoned or separated from their mothers that are 

dependent on mother’s milk [32]. Stranded pups that were weaned may have foraged, 

although, not as successfully as healthy individuals. Weaned pups also may consume 

different types of prey in lesser quantities compared with older seals because of limited 

foraging experience and diving capacity [71]. Stranded individuals may suffer from other 

ailments or trauma, thereby, further hindering their abilities to successfully forage [50].  

Free-ranging pups and yearlings may be at greater risk of acquiring Vibrio if they 

frequent habitat and resources in ES and SFB with greater Vibrio burden because they 

have greater home ranges than adults [50, 62, 64]. Age was a poor predictor of Vibrio 

prevalence for seals in SFB, however, the transient behavior of pups and yearlings may 

explain the greater Vibrio prevalence observed when compared with adults and subadults. 

If resources and space are limited near preferred habitat, juveniles may forage in 

alternative habitats to avoid competition with adults [25]. Transient pups and yearlings 

also may transmit Vibrio among locations if they are shedding the bacteria. Age could not 

be tested as a predictor of Vibrio in seals from ES or TB because the majority of free-

ranging seals sampled in ES and TB were adults.  
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When comparing pups and yearlings, a greater Vibrio prevalence was observed in 

free-ranging seals than in stranded seals. All free-ranging pups and yearlings sampled 

were weaned, in better body condition, and likely were ingesting contaminated prey or 

sediment while foraging. In general, stranded weanlings and yearlings with Vibrio had 

greater body condition indices than those without. A few non-weaned and stranded pups 

in poor body condition were observed with V. parahaemolyticus and V. cholerae. The 

etiology of Vibrio in seals was not examined, and alternative transmission routes should 

be considered. Transmission also may occur via gestation, lactation, or contact with other 

seals shedding Vibrio at haul-out sites [90]. Additionally, Vibrio prevalence varied 

among locations and years for free-ranging and stranded pups and this was likely a result 

of poor sample sizes, or, the transient behavior of pups and yearlings. Prey abundance 

and distribution also may be a source of variation if pups and yearlings leave natal haul-

out sites to locate prey. Regardless, it is apparent from our data that Vibrio prevalence in 

stranded pups and yearlings is increasing. This increase may be due to increased 

susceptibility to Vibrio acquisition or mother-to-pup transmission before separation. It is 

unlikely that the increase in prevalence reflects increased ability to culture the organisms 

during the study, as all isolations were performed at diagnostic laboratory with consistent 

practices. 

Free-ranging and stranded seals not only differed by prevalence, but also the 

species of Vibrio. The proportions of Vibrio species differed among locations, and 

general trends between free-ranging and stranded seals were similar with the exception of 

V. cholerae. Vibrio cholerae was detected almost exclusively in non-weaned stranded 
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pups, and may be of greatest concern to harbor seal health. Vibrio cholerae are freshwater 

tolerant compared with other species of Vibrio and some strains are highly pathogenic in 

mammalian hosts [18, 24]. It is possible that stranded individuals may not have enough 

energy reserves to leave the shore and may accidentally ingest V. cholerae contaminated 

water or sediment near freshwater run-off sites. Sea otters (Enhydra lutris) using similar 

habitat consumed invertebrates near freshwater run-off sites and had similar prevalence 

of V. cholerae as stranded seals in this study [58]. Additionally, different species of 

Vibrio may associate with different prey or substrate types among regions [20, 45, 66]. 

This also may explain the differences in the proportions of species observed among 

locations for free-ranging and stranded seals.  

Potentially virulent V. parahaemolyticus and hemolytic V. cholerae were 

observed in seals from ES and SFB. Direct mechanisms that contribute to virulence of 

Vibrio in seals have yet to be identified, although it is possible that virulence relates to 

conditions that are location specific [22]. Virulence expression may occur in response to 

environmental stressors, although few researchers have adequately tested this hypothesis 

[57, 79]. For example, iron is an important factor for Vibrio growth [80], therefore, 

hemolytic activity may be an adaptation selected for iron-limited oceanographic 

conditions. This hemolytic stress response may relate to increased virulence in the host 

however, in situ research is needed to test this hypothesis [80, 89].  

The virulence gene regions targeted in this study can be up-regulated in human 

epidemic strains following experimental manipulation [22]. Environmental stressors 

introduced in Vibrio cell culture (e.g. pH, temperature, salinity, bicarbonate) can up-
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regulate toxin production [1, 87]. Virulence expression and adhesion also increased in 

experimental hosts when isolates were subjected to certain growth conditions before 

infection [79]. Industrial contaminants and pesticides also may induce a virulence related 

stress response for some species of Vibrio, although this has not been tested in situ [26]. 

Seals suffering from contaminant burden also may become immuno-compromised, 

therefore, more susceptible to virulent pathogens [53, 61]. 

Vibrio alginolyticus was detected infrequently in free-ranging and stranded seals 

from all sample locations. This species is considered a pathogen of invertebrates, 

although it is rarely associated with disease in mammals [58]. In some cases, V. 

alginolyticus can have deleterious affects on mammalian hosts [7], although its role in the 

health of marine mammals is unknown. Given the low prevalence of V. alginolyticus, this 

species of Vibrio likely has the least impact on the health of harbor seals.  

Environmental conditions resulting from climate variability may alter Vibrio 

ecology [17, 39, 49, 66, 75]. Because of this, real-time data on pathogen and host 

interactions relating to environmental perturbation are needed to better understand what 

induces virulence in the marine environment [57, 80, 88]. Furthermore, it is imperative to 

identify risks of potential pathogens like Vibrio to the health of marine mammals. In this 

study, we demonstrated that seals using habitat and resources near urbanized watersheds 

ES and SFB may have the greatest risk of acquiring potentially virulent Vibrio. 

Considering that humans share the environment and food resources with seals, potentially 

virulent Vibrio observed in seals also may be of concern to human health. Impaired 

watersheds like ES and SFB may be further perturbed as human populations increase 
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along the coast [43], and Vibrio may serve as a bioindicator for monitoring changes to 

regional ecosystem stability. It is critical to identify mechanisms of pathogen 

proliferation and associated risks of infection so we can forecast how aquatic pathogens 

may impact the health of marine mammals and the ecosystem they inhabit. 
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Appendix A. Descriptive statistics, and bin criteria used for categorizing environmental 
predictor variables to be used in multivariate logistic regression analysis for SFB, from 
2007 to 2011. Presence and absence of Vibrio were tested between categories for each 
predictor using a Pearson’s chi-squared test, and associated p-values are reported. 
 
 

 

 
 
 
Appendix B. Descriptive statistics, and bin criteria used for categorizing environmental 
predictor variables to be used in multivariate logistic regression analysis for ES in 2010. 
Presence and absence of Vibrio were tested between categories for each predictor using a 
Pearson’s chi-squared test, and associated p-values are reported. 

 
 

 

 

 

 

 

 

 

 

 

Predictor Variable  na Min Max Mean Median S.E.  S.D. Bin Criteria Cochran's X2, P 
    Nutrients (N03- uM) 47 16.17 108.11 59.64 24.92 6.43 44.12 !24.92, >24.92 0.01, P=0.901 
    Temperature (*C) 152 9.37 20.29 15.91 16.53 0.25 3.07 <16, "16 0.01, P=0.908 
    Salinity (ppt) 152 28.45 34.81 33.35 33.48 0.09 1.15 <33, "33 0.33, P=0.563 
    pH (standard units) 101 7.79 8.26 7.98 7.97 0.01 0.1 !7.9, >7.9 5.81, P=0.016 
    Turbidity (NTU) 140 3.43 19.39 7.37 6.80 0.21 2.54 !7, >7 7.94, P=0.005 
aDaily values collected for sampling duration       
!

Predictor Variable  na Min Max Mean Median S.E.  S.D. 
Bin 

Criteria Cochran's X2, P 
Temperature (*C) 873 7.19 23.88 16.51 17.22 0.13 3.92 <16, !16 0.640, P = 0.424 
Salinity (ppt) 874 7.97 28.22 23.23 24.78 0.15 4.32 <23, !23 2.22, P = 0.136 
pH (standard units) 837 7.65 9.08 8.03 7.98 0.01 0.20 "8, >8 3.82, P = 0.051 
Turbidity (NTU) 874 7.51 603.94 66.37 36.59 2.61 77.18 "66, >66 8.02, P = 0.005 
aDaily values collected for sampling duration        
!



	   39	  

Appendix C. Sequence confirmation for target genes for a subset of isolates collected 
from harbor seals. 
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Harbor Seal 
Isolate 

Target 
Region 

Observed 
Length Expected E-Value 

% 
Pairwise 
Identity 

Strain & Reference 
Accession # 

V.parahaemolyticus  
tdh, trh, tla      

 Adult Female C tdh 313 270 5.13E-130 98.2 
V.parahaemolyticus 03:K6 
(Bangladesh), AY044114 

 trh 482 500 0 97.6 
V.parahaemolyticus 
TH3996, AB455531 

 tl 447 450 0 98.7 
V.parahaemolyticus, 
AY289609 

  1972-1973 tdh 315 270 8.94E-128 97.9 
V.parahaemolyticus 03:K6 
(Bangladesh), AY044114 

 trh 481 500 0 98.5 
V.parahaemolyticus, 
AY742213 

 tl 434 450 0 99.1 
V.parahaemolyticus ATCC 
33846, GU971655 

  1935-1936 tdh 309 270 4.04E-131 98.5 
V.parahaemolyticus 03:K6 
(Bangladesh), AY044114 

 trh 481 500 0 97.9 
V.parahaemolyticus, 
AY742213 

 tl 434 450 0 98.8 
V.parahaemolyticus, 
AY289609 

  1892-1893A tdh 306 270 6.70E-129 97.8 
V.parahaemolyticus 03:K6 
(Bangladesh), AY044114 

 trh 445 500 0 98.2 
V.parahaemolyticus, 
AY742213 

 tl 436 450 0 98.7 
V.parahaemolyticus, 
AY289609 

V.parahaemolyticus 
ToxRb      

   2014-2015 ToxR 274 297 3.59E-133 98.5 
V.parahaemolyticus RIMD 
2210086, AY527397 

   1822-1823C ToxR 246 297 2.56E-109 96.3 
V.parahaemolyticus RIMD 
2210086, AY527397 

V.cholerae 
ToxRb       

   1824-0491  ToxR 573 640 0 98.6 
V.cholerae 01 El Tor 
N16961, AE003852 

aBej et al. 1999, bBauer & Rorvik 2007     
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