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ABSTRACT 
 

21st

 

 CENTURY CHANGE IN SEA-LEVEL PRESSURE INVESTIGATED IN NORTH 
PACIFIC OCEAN  

 
by Emerson N. LaJoie 

 

Mean changes in the climatology of 21st century annual variance of the sea-level 

pressure field in the North Pacific Ocean were investigated from all climate models that 

were used in the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment 

Report (AR4).  In several specific areas, a statistically significant increase in the annual 

variance of sea-level pressure was simulated for the 21st century in three emission scena-

rios; however, the magnitude of change did not follow the forcing.  The results indicate 

increased low-pressure activity for the Bering Sea, Bering Strait, Alaska, Gulf of Alaska, 

Canadian Rocky Mountains, and the west coast of the U.S.  A separate study investigated 

the potential correlation between the magnitude of change predicted by individual models 

and the models’ equilibrium climate sensitivity value.  Statistically significant, positively 

correlated regions from each emission scenario over the eastern portions of the North Pa-

cific Ocean were found.  The results indicated that, in the regions of Alaska, the Gulf of 

Alaska, the Canadian Rocky Mountains, and the west coast of the U.S., the magnitude of 

change in the annual variance of sea-level pressure could be predicted by the model’s 

sensitivity to CO2 forcing.  The sensitivity and robustness of the results from each study 

were examined using two different multimodel groups.  
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1.  Introduction and Review of Storm Track Response to Increased Forcing 

This thesis investigates the 21st century forcing effects of increased atmospheric 

CO2 levels on the seasonal climatology of the SLP field over the North Pacific Ocean 

(NPO).  Two different multimodel groups (explained below) were used in the investiga-

tion and helped to determine the sensitivity of the results.  The research presented in this 

thesis divides into three elements: research on the changes in the climatology of the SLP 

field, investigation of model variability, and exploration of correlations between intrinsic 

model properties and output.   

To research the future climatology of the SLP field, the metric of calculating the 

percent difference in the first and last 30-year averages of annual variance was used.  An-

nual variance is calculated from simulated monthly mean sea-level pressure (MSLP) val-

ues.  The results from this metric revealed wide-ranging differences between the models.  

The investigation into model variability and robustness of the results was led by the com-

parison of two multimodel groups.   

The multimodel group is comprised of every model available from the Intergo-

vernmental Panel on Climate Change (IPCC) 2007 Fourth Assessment Report (AR4).  

The select-multimodel group members are a subclass of the multimodel group.  They are 

chosen based on their skillful simulation of 20th century observations.  The two multimo-

del groups help to examine model-to-model variability, robustness of the results, and the 

sensitivity of the results to model choice.  To examine the influence model parameters 

may have on model output, a corresponding study explores the relationship between the 

magnitude of change predicted by the model) and their sensitivity to CO2 forcing. 
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There is limited research published on the topic of climate-related changes to the 

annual variance of MSLP over the NPO.  The metric of variance, however, parallels re-

search published on investigations into storm tracks and their response to increased 

greenhouse gas (GHG) forcing.  The main points from the literature on storm tracks and 

climate change for the NPO are summarized in the following passages.   

While general agreement exists on how large-scale features, such as the jet 

stream, will respond to increased forcing (e.g., Archer and Caldeira 2008; Bengtsson et 

al. 2006, Randall et al. 2007), consensus is not found on topics such as relocation, fre-

quency, intensity, and distribution changes to storm tracks (e.g., Lambert and Fyfe 2006; 

Pinto et al., 2007).  Storm tracks are identified as areas that experience frequent seasonal 

passing of storm activity associated with middle latitude cyclogenesis.  In the passages 

that follow, it will become evident that research conclusions regarding the future changes 

to frequency, distribution, and/or intensity of storm tracks are inconsistent.   

The westerly wind regimes, or jet streams, are instrumental in the development of 

baroclinic wave activity in the middle latitudes.  Strong baroclinic disturbances develop 

from steep temperature gradients which occur with a meridional jet stream.  Baroclinic 

disturbances play a key role in the conversion and transport of energy in the atmosphere.  

Horizontal temperature gradients and thermal wind balance are determinants of how 

geostrophic winds will vary with height, and thus determine the characteristics of the 

pressure and temperature fields.  Regions that are dense with storm tracks are most fre-

quently observed in regions that are disturbed by baroclinic disturbances, for example, 

the wintertime domain of the Aleutian Low. 
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In recent literature, a general consensus among researchers indicates a poleward 

shift of the westerly wind regimes in response to a warming climate (e.g., Archer and 

Caldeira 2008).  The shift is occurring in both hemispheres and storm tracks are follow-

ing (e.g., Randall et al. 2007).  The Hadley Cell is reported to be weakening and also 

shifting poleward (Lu et al. 2007, 2008).  As tropospheric temperature rises due to in-

creasing GHG concentrations, the NH polar regions are warming faster than the tropics, 

causing the equator-to-pole (or meridional) temperature gradient to decrease.  The maxi-

mum meridional temperature gradient is occurring at higher latitudes, and the jet stream 

is responding by shifting poleward and weakening (e.g., Bengtsson et al. 2006; Yin 

2005).  Higher latitudes are expected to experience increased storm frequency and preci-

pitation (Bengtsson et al. 2006; Haiyan et al. 2008; Salathé 2006).  Middle latitudes may 

see increased storm intensity but reduced storm frequency (Lambert and Fyfe 2006).  As 

the Hadley Cell responds to increased forcing, the subtropics are expected to experience 

less annual precipitation leading to desertification (Lu et al. 2007, 2008).   

 Bengtsson et al. (2006, hereafter BHR06) reported on the influence climate 

change may have on storm tracks.  Using the MPI model (See Table 1 for model informa-

tion) and the A1B scenario, BHR06 concluded that changes in storm track activity are 

directly correlated to changes in sea-surface temperature (SST).  They also concluded a 

poleward translation of storm tracks during boreal winter.  BHR06 found weakening 

along the southern domain of the North Pacific storm track (~30°N) and at the starting 

zone of the storm track over Japan.  Conversely, an increase in storm activity was simu-

lated over the northeastern Pacific.  For this region, their results indicated that while the 
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frequency of storms may increase, storm intensity will not.   

Table 1.  List of climate models used in this study.  ECS values are provided as available 
from the IPCC AR4.  Asterisk (dash) indicates monthly mean sea-level pressure data was 
(was not) available from that model for the scenario listed.  Bold entries indicate the mo-
dels chosen for the select-multimodel group based on the index of model performance 
developed by Reichler and Kim (2008). 

Short name Model, Origin ECS (°C) A2 A1B B1 
INMCM INM-CM3.0, Russia 2.1 * * * 
NCAR PCM, United States 2.1 * * * 
IAP FGOALS-g1.0, China 2.3 - * * 
NCAR2 NCAR-CCSM3, United States 2.7 * * * 
GISSEH GISS-EH, United States 2.7 - * - 
GISS GISS-ER, United States 2.7 * * * 
GFDL0 GFDL-CM2.0, United States 2.9 * * * 
CSIRO30 CSIRO-Mk3.0, Australia 3.1 * * * 
ECHO ECHO-G, Germany/Korea 3.2 * * * 
MRI MRI-CGCM2.3.2, Japan 3.2 * * * 
HADCM3 UKMO-HadCM3, United Kingdom 3.3 * * * 
CCC47 CGCM3.1 (T47), Canada 3.4 * * * 
CCC63 CGCM3.1 (T63), Canada 3.4 - * * 
MPI ECHAM5/MPI-OM, Germany 3.4 * * * 
GFDL1 GFDL-CM2.1, United States 3.4 * * * 
MEDRES MIROC3.2(medres), Japan 4 * * * 
HIRES MIROC3.2(hires), Japan 4.3 - * * 
IPSL IPSL-CM4, France 4.4 * * * 
HADGEM1 UKMO-HadGEM1, United Kingdom 4.4 * * - 
BCCR BCCR-BCM2.0, Norway n.a. * * * 
CNRM CNRM-CM3, France n.a. * * * 
CSIRO35 CSIRO-Mk3.5, Australia n.a. * * * 
GISSAOM GISS-AOM, United States n.a. - * * 
SXG INGV-SXG, Italy n.a. * * - 
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BHR06 experiments showed a robust connection between SST and storm track 

changes.  They indicate that the maximum SST warming that occurs in the eastern Pacific 

signals an El Niño-like condition.  This result led BHR06 to examine the influence of the 

ENSO in their climate change experiment.  They concluded that the warming trend from 

the 20th century to the 21st

Yin (2005, hereafter Y05) examined changes to storm tracks with 15 coupled 

GCMs that were also included in the 2007 IPCC AR4.  Storm tracks in the 20

 century is suggestive of the underlying ENSO variability in the 

MPI model.  BHR06 concluded that the change in storm distribution is mainly related to 

changes in SST patterns.  Changes in SST patterns are related to changes in atmospheric 

circulation patterns hence, increased GHG concentrations are changing atmospheric cir-

culation patterns (BHR06). 

th century 

were compared to the A1B scenario for the 21st

Y05 suggested that changes in the DJF storm track are due to three main factors, 

which appeared in each models’ simulation.  The first factor was an increase in the tem-

perature of the upper-troposphere in tropical regions due to a decrease in the moist adia-

batic lapse rate during DJF and JJA.  Second, an increase in NH high latitude surface 

 century.  Y05 title their paper to indicate 

a consistent poleward shift was found in each hemisphere for the December, January, and 

February (DJF) winter storm track, however, not all of the models showed significant 

changes.  The Y05 study included four models that did not show a poleward shift of the 

DJF storm tracks: INMCM, GISSAOM, MPI, and MRI.   Additionally, the June, July, 

August (JJA) storm track is weakened and shifted poleward in only 9 of 15 models.  The 

different results given by the models were not further addressed in Y05. 
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temperatures was observed due to a decrease and retreat of sea ice.  Third, a minor 

change in surface temperature was also observed at Southern Hemisphere high latitudes 

due to the thermal inertia of the Southern Ocean. 

Pinto et al. (2007, hereafter P07) used the MPI model to analyze storm tracks in 

three scenarios: A2, A1B, and B1.  They reported that the magnitude of change detected 

was dependent on the change in forcing imposed in each simulation.  The main change 

simulated for the winter half year (October to March), was a reduction of storm activity 

in the storm track exit region in the Pacific Northwest.  P07 reported an overall decrease 

in mid-latitude cyclone density for the NH.  Along the Canadian coast and east of Japan, 

the decreases were more significant.  Regarding mid-latitude cyclone frequencies in the 

NPO, P07 reported that changes were insignificant.  They also reported very little change 

in the future position of the NPO storm tracks. 

Lambert and Fyfe (2006, hereafter LF06) provided an in-depth study of 15 GCMs 

that were involved in the 2007 IPCC AR4.  They examined changes in the November to 

March, mid-latitude cyclone frequencies, and strengths, for several simulation scenarios, 

including A2, A1B, and B1.  They tracked storms via the minima value found from daily 

averaged mean sea-level pressure (MSLP) data.  They concluded that with each increase 

in emission scenario, a progression of decreasing storms and increasing intensity can be 

expected for the future.  This result indicates that as the magnitude of GHG forcing in-

creases, so does the magnitude of the changes in storm tracks.  LF06 did not find changes 

to the geographical position of storm tracks.  LF06 highlighted that their results oppose 

the assertion made by BHR06 that increased temperature at the surface leads to increased 



7 
 

water vapor, which in turn increases the available energy for more frequent storm events 

(BHR06).   

Teng, Washington, and Meehl (2008, hereafter TWM08) investigated the A1B 

scenario with the NCAR2 model, and found a significant increase in January, February, 

and March mid-latitude cyclone frequency along the west coast of the U.S., and a de-

crease in Alaska.  Their findings are not in accord with the findings of LF06, who stated 

that models are generally simulating fewer, but more intense, cyclones with no relocation 

of storm tracks in both hemispheres.  This contrast between researchers’ result is hig-

hlighted here because it exemplifies the variability that can be found between two studies 

using the same GCM (both studies used the NCAR2 model).  TWM08 reported that in-

creased storm activity results from lower troposphere warming, together with warming in 

the upper troposphere over tropical regions and cooling over higher latitudes in the stra-

tosphere.   

TWM08 study showed that future anomalies in the zonal wind over the Pacific 

would be negative in the Northern Pacific and positive in the subtropics.  Their result 

suggested that the exit region of the jet stream moves southeastward, which would favor 

cyclonic development along the west coast of the U.S.  These findings are similar to Y05, 

with the exception that TWM08 reported more extratropical cyclones at higher latitudes.   

Greeves et al. (2006, hereafter G06) noted that coupled models exhibit cold biases 

in tropical-Pacific SST distribution, which affect storm tracks in the region.  G06 used the 

Hadley Centre models and stated HadGEM1 (a coupled GCM) is known to lack the va-

riability normally associated with the ENSO.  They concluded that a northward shift of 
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storm activity is likely for the western portions of the NPO.  They also concluded that 

this result is related to the cold equatorial SST bias that mimics La Niña anomalies.   

Lu et al. (2008, hereafter LCF08) investigated the effects of El Niño-like forcing 

versus GHG forcing in the A2 scenario.  They used the A2 simulations from the GFDL 

CM2.1 coupled GCM.  They made a comparison between the Hadley Cell response to 

GHG forcing versus El Niño-like forcing (given as increased SST in the eastern tropical 

portion of the Pacific Ocean).  The Hadley Cell responded to increased GHG forcing in 

the model by weakening and shifting poleward.  The maximum meridional temperature 

gradient occurred at higher latitudes and thus strengthened the poleward flank of the jet.  

When the model used El Niño-like forcing, the Hadley Cell responds by contracting and 

strengthening, thus, drawing the jet stream equatorward.  This contraction of the tropical 

circulation is also seen in observations (LCF08).   

Observed with GHG-induced warming trends, precipitation at the equator in-

creased, whereas between 25° to 45°N precipitation decreases (LCF08).  The increase 

could be credited to the increased atmospheric moisture content, and would occur regard-

less of the expansion of the Hadley Cell (LCF08).  Conversely, the tropical response to El 

Niño-like forcing was amplified by a contracted and strengthened Hadley Cell.  The sub-

tropical dry zone (defined as where precipitation equals evaporation) is tightly coupled to 

the descending branch of the Hadley Cell, and as reported by LCF08, there are conflict-

ing results on its future position.   

From this literature review, it is clear the models do not entirely agree on the fu-

ture changes to the frequency, intensity, and distribution of storm tracks.  It is possible 
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that parameterizations that are used by GCMs are the contributing factor.  Currently, 

there is little evidence to support a link between parameterized cloud processes and mod-

el-to-model variability regarding storm tracks.  Soden and Held (2006) showed that mod-

els vary widely due to parameterizations that are used for sub-grid processes such as 

cloud processes, radiative processes, and boundary-layer processes.  In their study, Soden 

and Held (2006) found that the majority of uncertainties from model output of global 

mean surface temperature results from cloud processes.   

Cloud processes have been linked to CO2 forcing.  The effect of different cloud 

parameterizations was examined by Sanderson et al. (2008).  They identified two specific 

parameterizations that played a primary role in determining model sensitivity to CO2 

forcing: the entrainment coefficient and the icefall speed.  The direct link between cloud 

microphysics and model sensitivities will not be explored in this thesis.  However, it is 

worth noting the origin of model uncertainty because identifying sources responsible for 

the variability between models is an opportunity to understand and improve the physical 

processes that are simulated by models, as well as identify the factors that are most in-

fluential on model performance.  

Two popular methods are used by researchers to determine future changes to 

storm tracks: examine the vorticity from the geopotential height field at either 500 hPa or 

850 hPa; or locate minima in the MSLP field and then map trajectories from frontogene-

sis to frontalysis.  From these methods researchers can extract the changes in frequency, 

intensity, and distribution of storm tracks in a warming climate.   

In this thesis, 21st century changes in the annual variance of the MSLP field were  
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examined.  From those results, potential changes in storm activity are inferred.  Examin-

ing annual variance was the preferred method because of an interest in the climatological 

changes that may be taking place in the MSLP of the NPO under different forcing scena-

rios, and a parallel interest to investigate model-to-model variability.  As Bengtsson et al. 

(2006) and Hoskins and Hodges (2002) explain, using the annual variance of the MSLP 

field produces a broad picture of how the field might change in a warming climate.    

The methods and results are detailed in Sections 2 and 3.  The mean changes in 

the annual variance of MSLP are quantified and summarized from the two multimodel 

groups introduced in Section1, in Section 3a.  In Section 3b, the attributes of the changes 

calculated from the annual variance study are analyzed and discussed.  In Section 3c, an 

explanation of model equilibrium climate sensitivity values is provided.  In addition, the 

results of a correlation study between model sensitivity and simulated changes in annual 

variances from each scenario are given.  In Section 4, some possible implications from 

the results are discussed, as are future research opportunities.   

 

2.  Methods 

Table 1 lists the models used in this study.  In several studies performed by other 

researchers, these models have been verified by comparison studies using 20th century 

observations (e.g., Lambert and Fyfe, 2006), and were extensively used in the IPCC AR4 

published in 2007 (see Randall et al. 2007).  When available from each model, monthly 

MSLP values simulated from three emission scenarios were used in this study to investi-

gate the 21st century changes in the annual variance of the NPO.  The monthly MSLP da-
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ta used in this study were obtained from the archives of the Program for Climate Model 

Diagnosis and Intercomparison.  The three CO2 emission scenarios considered are A2 

(836 ppm of CO2 by 2100), A1B (703 ppm of CO2 by 2100), and B1 (540 ppm of CO2 by 

2100).   

At each gridpoint in a model, the annual variance (AV) was calculated from 12 

monthly MSLP values, N, using Eq. 1.   

( )
21

0
, 1

1 ∑
−

=

−
−

=
N

k
k

y
ji xx

N
AV ,    (1) 

The superscript, y, indicates the year and the subscripts, i and j, indicate the gridpoint.  

The subscript, k, indicates the individual monthly MSLP value and N, is the number of 

months per year.  The application of Eq. (1) yields 100 annual variance values at each 

gridpoint and was then repeated for each model and scenario.   

 From the century of AV values, the climatological change is evaluated by taking 

30-year means and calculating a percent difference.  A percent difference in the annual 

variance of the 21st century, ΔAV21C, is calculated by subtracting the average of the first 

30 AV values from the average of the last 30 AV values, and then dividing by the average 

of the first 30 AV values.  The resultant value is then multiplied by 100.  Subscripts on the 

right-hand side of Eq. (2) denote the first (F30) and last (L30) 30 years of the 21st cen-

tury.   

100*
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3030
21

F
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AVAVAV −
=∆ ,                                      (2) 

Using Eq. (2), ΔAV21C is calculated at each gridpoint and the application was repeated for  

each model and scenario.  A negative (positive) value indicates a climatological decrease  
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(increase) in the annual variance of the SLP.   

 

3.  Results    

a. Two multimodel summaries of the mean change in annual variance 

Figures 1-3 are the contour plots of globally calculated ΔAV21C for each emission 

scenario for select models.  The model data plotted in Figs. 1-3 provides a sample of the 

extensive variability that is seen between the models involved in this study.  The two pa-

nels in each figure display the model that exhibited the maximum positive (top), and 

maximum negative (bottom), change in ΔAV21C values that were calculated from a spa-

tial-average taken over the area defined by 50°-70°N and 165°E-160°W (hereafter re-

ferred to as Region 1 and indicated with a red box on each panel).  Region 1 is chosen as 

an example of the extensive model-to-model variability seen in a region of high mid-

latitude cyclonic activity in the NPO.     

 Figure 1 is an example of the variability between models with the A2 scenario.  In 

Region 1, HADGEM1 has the maximum increase in ΔAV21C (18.8%) and GISS has the 

maximum decrease in ΔAV21C (-23.5%).  Figure 2 is the same as Fig. 1, except for the 

A1B scenario.  In the A1B scenario, HADGEM1 has the maximum increase in ΔAV21C 

(36.6%) and GISSEH has the maximum decrease in ΔAV21C (-4.4%).  In Fig. 3, the same 

as Fig. 1 except for the B1 scenario, BCCR has the maximum increase in ΔAV21C (24%), 

and IAP has the maximum decrease in ΔAV21C (-7%).  From these figures, large model- 

to-model variability on the future changes of the MSLP field is evident.   
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Fig. 1.  From the A2 scenario, the top (bottom) panel indicates the model with the maxi-
mum increase (maximum decrease) in spatially-averaged ΔAV21C calculated within the 
red box (Region 1).  Solid (dashed) lines indicate positive (negative) change in variance.  
Contour increment is 10%.  The zero-change contour is indicated in black. 
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Fig. 2.  Same as in Fig. 1 except for A1B scenario.  
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Fig. 3.  Same as in Fig. 1 except for B1 scenario. 
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Multimodel means were calculated by averaging the ΔAV21C values given by indi-

vidual models.  These values were calculated within eight separate regions throughout the 

NPO.  These eight regions were chosen to segment the NPO into distinct zones that have 

similar climatologies and seasonal activity.  In each of the eight regions, the multimodel 

means and standard errors (SEs) of the spatially-averaged ΔAV21C values from each sce-

nario were computed and are provided in Fig. 4.  A ratio indicating the number of models 

with a positive ΔAV21C relative to the total number of models analyzed in that scenario is 

also provided.   

Results from the multimodel group are shown in Fig. 4, and statistically signifi-

cant values are in bold type.  For Regions 1-4 and 6, statistically significant positive in-

creases in the annual variance at the end of the 21st century occur in at least one of the 

scenarios.  Scenario A2 shows positive ΔAV21C in Regions 2 and 4.  It is the only scenario 

to show statistically significant decreasing variance (-8 ± 7.7%), which occurs in Region 

5.  Scenario A1B results show positive increases in ΔAV21C for Regions 1, 2, 3, and 4 

with an average increase of 11.6%.  Scenario B1 results indicate that positive increases in 

the ΔAV21C occurs for Regions 1, 2, and 6.   

 Due to the agreement between the spatially-averaged values, an additional multi-

model mean of the ΔAV21C was calculated for a new area, Region 9.  Region 9 is a com-

bination of Regions 1, 2, 3, 4, and 6.  In each scenario, the Region 9 results indicate ro-

bust model agreement that statistically significant positive changes in ΔAV21C will occur 

in that large area that is seasonally dominated by the Aleutian Low.  The results showed 

increases in 21st century annual variance on the order of 5.8 ± 2.5% (A2), 9.3 ± 2.4%  
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(A1B), and 5.1 ± 2% (B1).   

 
Fig. 4.  Map of eight regions in the NPO that were used for the multimodel group statis-
tical analyses discussed in Section 3a.  Listed in each region is the multimodel mean 
change in ΔAV21C and SE calculated from each scenario.  Following that entry is a ratio 
indicating the number of models with positive values relative to the total number of mod-
els used for that scenario.  Bold entries indicate statistically significant results at the 95% 
CL. 
 

A standard t-test was performed to determine if the multimodel group changes, 

calculated from each scenario, were statistically different from one scenario to another.  

The results indicate that in Region 9, the multimodel mean change from the A1B scenario 

is significantly different from either the A2 or B1 scenario changes.  However, the mul-

timodel mean changes given by the A2 and B1 scenarios are not statistically significantly 

different from each other.   

This finding indicates that the magnitude of change in ΔAV21C does not linearly 

increase with increased CO2 forcing.  By comparing the A2 and A1B results, it appears 

Region 1 

Region 2 Region 4 

Region 5 

Region 6 

Region 7 
Region 8 

A2 -2.3 ± 5.8 %, 13/19 
A1B 18.1 ± 3.8 %, 23/24 
B1 10.3 ± 3.6 %, 18/21 

A2 12.7 ± 4.9 %, 14/19 
A1B 13.5 ± 4.8 %, 20/24 

B1 6.2 ± 2.9 %, 18/21 
 

A2 3.4 ± 5.1 %, 11/19 
A1B 6.3 ± 5.3 %, 17/24 
B1 -0.2 ± 3.8 %, 10/21 

A2 9.2 ± 5.5 %, 16/19 
A1B 8.6 ± 5.9 %, 18/24 
B1 3.9 ± 4.2 %, 15/21 

 

A2 1.6 ± 3.4 %, 11/19 
A1B <0.1 ± 3.7 %, 9/24 
B1 4.6 ± 2.9 %, 15/21 

A2 -8.0  ± 7.7 %, 5/19 
A1B -5.5 ± 7.4 %, 6/24 
B1 -4.6 ± 5.1 %, 9/21 

A2 -2.7 ± 9.4 %, 12/19 
A1B 1.5 ± 7.3 %, 12/24 
B1 -1.9 ± 4.2 %, 8/21 

 

A2 -0.9  ± 9.3 %, 11/19 
A1B -1.5 ± 3.4 %, 11/24 
B1 -0.2 ± 4.4 %, 11/21 

 

Region 3 
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that with the higher forcing scenario (A2), the annual variability of MSLP decreases.  

This result runs counter to the findings of LF06 and P07, who reported in their studies 

that the magnitude of change in storm tracks was dependent on the forcing.  It is not clear 

if the reduced ΔAV21C in the A2 scenarios indicates that seasonal variability will return to 

prior levels by the end of the 21st century, or if it indicates future changes in the funda-

mental processes of storm development in the middle-latitudes.   

In Fig. 5, the results from the select-multimodel group are provided.  However, 

before the results in Fig. 5 are discussed, a brief passage follows in which the rationale 

for using a select group of models is provided and as well as the selection criteria.  The 

rationale for singling out a subset of models to examine as a separate multimodel group 

was to explore the possibility that some models may be better than others at resolving 

atmospheric processes.  A group comprised of these superior performers would conceiv-

ably provide a more skillful prediction of the future climate in the NPO.  Moreover, com-

paring the results between the two multimodel groups would demonstrate the sensitivity 

of the study to the models chosen, and indicate the robustness of the results.   

After performing a literature review on the subject of model performance, the in-

dex crafted by Reichler and Kim (2008) was used to select the members of the select-

multimodel group.  Reichler and Kim (2008) developed their metric to objectively quan-

tify the degree of agreement between model simulations of the 20th century and 20th cen-

tury observations.  Using a wide range of variables, they derived an index that ranked the 

models from poor-to-best performance in simulating 20th century observations.  Models 

that ranked at least average or better became the members of the select-multimodel 
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group.  Bold entries in Table 1 identify the members of the select-multimodel group used 

for the studies performed in this thesis.   

The select-multimodel mean changes in ΔAV21C and SEs are shown in Fig. 5.  The 

ratios indicate the total number of models with positive ΔAV21C values relative to the total 

number of models available for that scenario.  The number of statistically significant val-

ues (bold type) is fewer compared to the multimodel study.  However, the agreement be-

tween scenarios is more robust in two broad regions.  In Regions 1 and 2, the A2, A1B, 

and B1 results are all statistically significant, and show positive increases in ΔAV21C.  As 

in the multimodel analyses, the magnitude of change appears to reach a maximum with 

the A1B scenario, reinforcing earlier results that the magnitude of change does not follow 

the forcing. 

 
Fig. 5.  Same as in Fig. 4 except for the select-multimodel group.    

 
 

Region 1 Region 2 

Region 3 

Region 4 

Region 5 

Region 6 

Region 7 Region 8 

A2 15.9 ± 5.0 %, 10/11 
A1B 19.6 ± 5.3 %, 13/13 
B1 11.0 ± 4.4 %, 10/11 

A2 11.0 ± 6.4 %, 8/11 
A1B 14.1 ± 6.9 %, 12/13 

B1 6.7 ± 3.6 %, 10/11 

A2 1.9 ± 5.5 %, 6/11 
A1B 7.0 ± 7.8 %, 10/13 

B1 0.1 ± 6.0 %, 6/11 

A2 6.4 ± 4.1 %, 10/11 
A1B 4.1 ± 6.8 %, 7/13 
B1 5.6 ± 6.5 %, 8/11 

A2 1.5 ± 4.7 %, 6/11 
A1B 0.7 ± 5.7 %, 4/13 
B1 5.2 ± 5.4 %, 7/11 

A2 -2.0  ± 10.1 %, 4/11 
A1B -1.7 ± 11.1 %, 4/13 

B1 -3.3 ± 7.8 %, 5/11 

A2 1.4 ± 13.5 %, 5/11 
A1B -4.4 ± 8.7 %, 8/13 
B1 -0.8 ± 6.8 %, 5/11 

A2 0.5  ± 7.1 %, 6/11 
A1B -2.5 ± 4.2 %, 5/13 
B1 -1.5 ± 7.0 %, 6/11 
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b. Characteristics of annual variability and interpretation of 3a findings 

 Calculating the annual variability of monthly MSLP helps to determine the range 

of seasonal activity an area is likely to experience in a given year.  The NPO is a vast 

area, with regions that seasonally experience frequent baroclinic disturbances, and re-

gions that experience frequent, semi-permanent high-pressure systems.  Examining long-

term variability of the MSLP field helps to identify changes to seasonally active zones.  

Although the ΔAV21C calculation indentifies a climatological change occurring in a re-

gion, it does not characterize the nature of the change in the pressure field.   

 To characterize the nature of the changes given by the ΔAV21C calculations in the 

preceding subsection, several statistical studies were performed on the multimodel aver-

age of monthly MSLP data.  With the A1B scenario, the multimodel mean revealed a sta-

tistically significant, decreasing trend (-0.01 hPa yr-1, Fig. 6) in the annually averaged, 

monthly MSLP values for Region 9.  Figure 7 shows a statistically significant, decreasing 

trend (-0.02 hPa yr-1) in the annual minimum monthly MSLP values of the A1B scenario 

for Region 9.  An analysis of maximum monthly MSLP values showed no statistically 

significant trends over the century.   

 The number of monthly mean values that were less than or equal to a threshold of 

1005 hPa were also studied.  This threshold of 1005 hPa is known as the Aleutian Low 

Index, and identifies pressure values associated with the Aleutian Low (see Rodionov et 

al. 2004).  In the first 30 winters (in this study, winter is defined by November to March) 

of the A1B 21st century, there were 17 monthly MSLP values ≤ 1005 hPa.  That number 

increased to 24 in the last 30 winters of the century.  Comparing the number of pressure  
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values ≤ 1005 hPa suggests an increase in the frequency of months with a lower monthly 

average in future SLP values.  For the A1B scenario, this indicates that positive ΔAV21C 

values imply increased monthly low-pressure activity as opposed to increased monthly 

high-pressure activity in winter.  The increased monthly low-pressure activity will result 

from deeper than average low-pressure systems and/or increases in the frequency of 

monthly low-pressure systems during winter in the NPO. 

 
Fig. 6.  For the A1B scenario, the Region 9 area-average of the multimodel-mean, an-
nually-averaged MSLP.  The decreasing trend is statistically significant (-0.01 hPa yr-1). 

 Figure 8 indicates a statistically significant decreasing trend (-0.01 hPa yr-1) in the 

annually-averaged monthly MSLP values calculated from the B1 scenario in Region 9.  

In the B1 emission scenario, a count of MSLP values ≤ 1005 hPa also indicates a future  
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increase in the frequency of monthly low-pressure values. 

 
Fig. 7.  For the multimodel-mean of the A1B scenario.  Plot indicates the Region 9-
average of minimum monthly SLP pressure values for each year.  The decreasing trend is 
statistically significant (-0.02 hPa yr-1). 

   In the first 30 winters of the B1 century, there were 44 monthly MSLP values ≤ 

1005 hPa, and 55 in the last 30 winters.  With the A2 scenario, a count of low-pressure 

values (≤ 1005 hPa) also returned an increase from 16 to 22 monthly mean SLP values 

between the first 30 and last 30 winters.  These results consistently indicate deeper than 

average monthly lows and/or increases in the monthly frequency of low-pressure activity 

during winter can be expected for the future in the NPO.   

 Using these statistical analyses, the nature of ΔAV21C values discussed in Section  
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3a can now be understood.  Positive ΔAV21C values can be attributed to increases in win-

ter low-pressure activity.  Conversely, a negative ΔAV21C value indicates a reduction in 

the winter low-pressure activity.  The statistical analyses in Section 3a showed robust 

model agreement that the annual variance in the MSLP field will increase for several 

areas of the NPO.  These results indicate that the climate of those regions is shifting to-

ward deeper and/or more frequent low-pressure activity during the winter months.  In ad-

dition, the results from Section 3a combine to suggest that storm activity may intensify 

and/or increase in frequency as forcing increases to B1-levels (540 ppm).   

Fig. 8.  From the multimodel-mean of the B1 scenario, the annually averaged MSLP for 
Region 9 and trend line.  The decreasing trend is statistically significant (-0.01 hPa yr-1). 
 
As A1B-levels are reached (704 ppm), storm activity may slightly decrease in frequency,  
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but storm intensity will increase and low-pressure systems will become notably deeper.   

At A2-levels (836 ppm), the meridional temperature gradient may appreciably decrease 

and markedly reduce cyclogenesis in the middle latitudes.  These results indicate that the 

magnitude of change in storm activity does not follow the forcing.   

c. Correlation between the magnitudes of change in ΔAV21C and ECS values 

Model equilibrium climate sensitivity (ECS) values are derived from the equili-

brium temperature (°C) reached after a 100 year simulation in which the models were 

forced with 540 ppm of CO2.  The ECS value helps to rank a model’s sensitivity to CO2 

forcing.  Low values, such as those shared by INMCM and NCAR at 2.1°C; indicate 

models which exhibit low sensitivity to CO2 forcing.  HADGEM1 and IPSL both share 

the 4.4°C value which indicates those models show comparably higher sensitivities to 

CO2 forcing.  ECS values were the chosen for the correlation study that follows because 

their availability maximized the number of models that could be included.  ECS values 

were published in the 2007 IPCC AR4 report, and the pertinent information is reproduced 

in Table 1 (Randall et al., 2007).   

In this portion of this thesis, ECS values are used to conduct a correlation study to 

determine if the magnitude of change in ΔAV21C can be predicted by a model’s sensitivity 

to CO2 forcing.  In other words, does a model with a high ECS value return a stronger 

change in annual variance?  To objectively examine the domain of the NPO, numerous 

randomly designated areas were chosen.  In each area, the spatially-averaged ΔAV21C val-

ues from each model were regressed with their respective ECS values.  This procedure 

was done separately for the multimodel group and the select-multimodel group.  Figures  
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9 and 10 are included to demonstrate the nature of a positive correlation.   

Figure 9 typifies a random region in which a positive correlation was found.  In 

this example, the positively correlated region is designated by an orange box.  This de-

monstrates where the linear regression calculated between the select-multimodel group 

and respective ECS values in the A2 emission scenario returned a positive relationship 

between the magnitude of change in ΔAV21C and model sensitivity.  Figure 10 is the ac-

companying linear regression scatterplot for the region shown in Fig. 9.  The ECS values 

in the legend are for the members of the select-multimodel group.  A strong positive rela-

tionship (r = 0.8) between the degree of change in the ΔAV21C and model sensitivity is 

evident.   

Figure 11 displays the results from the multimodel group correlation study.  Re-

gions with positive (negative) correlations that are statistically significant, at the 95% CL 

or better, are indicated with orange (green) boxes.  A dense grouping of positively corre-

lated areas is found in the eastern part of the NPO from each scenario.  In addition, a 

small region of negatively correlated areas is found in the lower-half of the eastern NPO 

(A1B scenario).  A discussion of the results from each scenario in Fig. 11 follows.   

Scenario A2 (top right panel) shows positively correlated regions from eastern Siberia to 

the middle portions of Alaska and from the Bering Sea to Fort Barrow, Alaska.  The A2 

scenario also indicates positively correlated regions exist off the west coast of the U.S.  

The results indicate that greater magnitudes of change in ΔAV21C are correlated to higher 

ECS values.  No negatively correlated regions exist in the A2 scenario (top left panel).  

The regions of positive correlation in the A1B case (middle right panel) is densely  
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located over the Bering Strait, eastern half of the Bering Sea, all of Alaska, the Canadian 

Rocky Mountains, and the Gulf of Alaska.  A1B is the only scenario with negatively cor-

related regions (middle left panel) located off the west coast of the U.S. and further south.  

The B1 scenario exhibits a combination of the A2 and A1B scenarios with an extension 

down the west coast of the U.S. to the Tropic of Cancer (bottom right panel).  The bottom 

left panel shows no negatively correlated regions. 

 
Fig. 9.  An example region (orange box) from the select-multimodel correlation study of 
the A2 scenario.  The orange box indicates where a positive correlation between 21st cen-
tury increases in annual variance and model ECS values was found. 
 
 The results for the select-multimodel group are in Fig. 12.  All scenarios indicate 

positively correlated regions along the eastern portions of the NPO.  For scenario A2 (top 

right panel), increases are indicated for the lower half of the NPO, Canadian Rocky 
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Mountains, eastern part of the Gulf of Alaska, and southward to the Tropic of Cancer; 

there are no negatively correlated regions in the A2 case.  In A1B (middle right panel), 

 
Fig. 10.  A linear regression plot for the area shown in Fig. 9.  Model ECS values are on 
the x-axis and the percent difference in the 21st century change in annual variance 
(ΔAV21C) is on the y-axis. 
 
areas are grouped over the Canadian Rocky Mountains, eastern part of the Gulf of 

Alaska, and extending southward to the Tropic of Cancer.  The B1 results (bottom right 

panel) resemble the A1B coverage.   

Negatively correlated regions result from the A1B and B1 scenarios (middle left 

and bottom left panels, respectively), and populate the western half of the NPO.  A1B 

exhibits many more negatively correlated areas in the western half of the NPO, and B1  

exhibits negatively correlated areas extending from northern Japan to the Sea of Okhotsk.   

 ECS 



28 
 

The areas with negative correlations indicate a statistically significant relationship that 

describes how models with higher ECS values simulate less strong changes in the 

ΔAV21C.  Similarly, models with lower ECS values simulate stronger changes in the an-

nual variance of the area.   

 

 
Fig. 11.  Results from the linear regression analysis of the multimodel group study where 
correlations were found.  Regions that are positively (orange boxes) and negatively 
(green boxes) correlated indicate a relationship was found between the magnitude of 
change in annual variance predicted by the models and the model ECS values.  Results 
are from the A2 (top panels), A1B (middle panels), and B1 (bottom panels) scenarios. 
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Fig. 12.  Same as in Fig. 11 except for the select-multimodel group.    
 

In summary, the results from the multimodel and select-multimodel groups indi-

cate that in the eastern half of the NPO, positive correlations exist between the magnitude 

of individual model ΔAV21C values and model sensitivity to CO2 forcing.  These results 

are robust between scenarios.  The results suggest that in those areas, a model with a 

higher ECS value will simulate a greater change in the future annual variance of MSLP.  

In addition, negatively correlated areas were found in the western half of the NPO and 

lower-half of the eastern NPO.  Negative correlations indicate that models with higher  
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ECS values exhibit less intense changes in ΔAV21C.   

 Both multimodel groups give similar results in similar areas indicating that the 

nature of those correlations is a robust feature for the eastern portions of the NPO and 

warrants further investigation.  Why this correlation does not exist in all parts of the NPO 

is unclear.  Why negative correlations appear only in the A1B (and B1) scenario is also 

unclear.  Both of these questions present opportunities for further study. 

 

4.  Discussion and Future Work 

Statistical analyses of the climtatological changes in the annual variance of MSLP 

over the NPO were conducted for the A2, A1B, and B1 scenarios using two multimodel 

groups.  The metric employed for the analyses was the change between the first and last, 

30-year averaged, annual variance values of monthly MSLP (ΔAV21C).  Due to the inhe-

rent differences between GCMs, parallel investigations took place using two different 

multimodel groups.  From the two multimodel groups, the changes in the ΔAV21C

The results from the three emission scenarios used in this thesis combine to indi-

cate robust agreement that annual variance in MSLP will increase by the end of the 21

 simu-

lated by the models were quantified and summarized, model variability was investigated 

and discussed, and a link between model sensitivity and model output was also explored.   

st 

century for the Gulf of Alaska, Canadian Rocky Mountains, the Bering Sea/Strait, and the 

west coast of the U.S.  These results suggest these regions will experience increased win-

tertime low-pressure activity by the end of the 21st century.  This increased low-pressure 

activity may be from deeper than average lows and/or increases in the frequency of mon-  
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thly low-pressure activity in the winter.  

The statistical analyses suggested a relationship between the magnitude of change 

in forcing and the change in storm activity but not to the same degree as discussed in 

LF06 and P07.  From both multimodel groups, the statistical summary of mean change in 

ΔAV21C revealed that, as forcing increased beyond A1B levels, the mean change did not 

continue to increase but instead decreased.  The change from A2 resembled the order of 

change seen from the B1 analyses, but this does not mean that the mechanisms associated 

with the mean variability found in those cases were the same.  The physical implications 

of this finding are suggestive of the long-term effects associated with a decreasing and 

poleward displacing meridional temperature gradient.  However, it is not realistic to ex-

pect that the jet stream will perpetually move poleward in response to elevating GHG le-

vels.  At the maximum forcing investigated, the degree of change in ΔAV21C

The results from this thesis lead to additional speculations about the future res-

ponses of seasonal, low-pressure activity over the NPO in highly perturbed GHG forcing 

scenarios.  As GHG forcing progresses through B1 and A1B levels, baroclinic activity 

may continue to strengthen along with the poleward-displacing (maximum) meridional 

 was less 

than for A1B in both multimodel group studies.  This may have indicated that under A2 

forcing levels, low-pressure activity reduces and resembles storm activity seen from low-

er emission scenarios.  Alternatively, the nature of storm dynamics could change for the 

middle latitudes in a way that resembles storm processes found in the tropics.  In either 

case, the result was indicative of an upper limit to the poleward displacement of the jet 

stream and the frequency of baroclinic disturbances.   
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temperature gradient (BHR06; Y05).  As the poles continue to warm, it is plausible that 

an appreciably decreased meridional temperature gradient would cause the jet stream to 

exhibit predominately zonal flow.  To aid in the interpretation of these results, examining 

paleoclimate records or simulating extreme forcing conditions with high pollutant levels 

may help to understand changes to storm processes.   

From the correlation studies performed on both the multimodel and select-

multimodel groups, areas of positive correlation were found in the eastern portions of the 

NPO.  These robust results indicate that, in those regions, the magnitude of change in 

ΔAV21C simulated by the models can be predicted by the model’s sensitivity to CO2

Future work could explore the fragmented nature of the correlated areas by per-

forming the calculations for larger portions of the globe and looking for spatial trends.  

Another approach could investigate connections between the spatial use of certain sub-

grid parameterizations and positively (or negatively) correlated areas.  In addition, the 

metric of ΔAV

 forc-

ing.  Positively correlated areas were found in Alaska, the Gulf of Alaska, the Canadian 

Rocky Mountains, and the west coast of the U.S.  Negative correlations were found in the 

select-multimodel group, in the west-central portions of the NPO.   

21C used in this thesis could be applied to different multimodel groups that 

are selected based on inherent parameterizations or on the choice to select or neglect 

models with the lowest or highest sensitivities.  Finally, performing the analyses devel-

oped in this thesis on other areas where storm track activity is expected to change, for 

example, the North Atlantic Ocean and portions of the Southern Ocean, would provide 

valuable feedback regarding the robustness of the analyses used in this thesis. 
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