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ABSTRACT 

THE BIOLOGY AND ECOLOGY OF SIX RARE PLANTS FROM                                                  
PLUMAS NATIONAL FOREST, NORTHERN CALIFORNIA, USA 

 
by Suzie Woolhouse 

 
The majority of our knowledge about the natural world has come from the study 

and observation of common species, yet a significant portion of species in the world are 

rare.  In this study, biological and ecological data was collected for six rare taxa from 

Plumas National Forest.  The taxa were Monardella stebbinsii, Monardella follettii 

(Lamiaceae), Lewisia cantelovii (Montiaceae), Cypripedium californicum, Cypripedium 

fasciculatum (Orchidaceae) and Clarkia mildrediae subsp. mildrediae (Onagraceae).  The 

two Monardella’s and Cypripedium californicum are serpentine endemics, and the 

Lewisia is found growing both on and off serpentine.  Five sites were visited per species, 

and soil samples and leaf tissue were collected to examine elemental concentrations in 

the soil and respective ion uptake.  Detailed studies were conducted on the three rarest 

taxa, including comparative ecology and reproductive biology of the two congeners and 

a reciprocal transplant to assess the extent of local adaptation to substrate in L. 

cantelovii.  Significant differences were found in the study of the two Monardella’s and 

Lewisia cantelovii showed early evidence for local adaptation to substrate.  Gaining a 

better understanding of the biology and ecology of these rare plants will increase the 

efficacy of management practices as well as provide data in order to inform a multi-

species conservation approach. 
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CHAPTER ONE 
RARE PLANTS OF PLUMAS NATIONAL FOREST 

  
Introduction — Common species are by their nature easier to study, and 

potentially more ecologically important, yet rare species contribute a great deal to 

Earth’s biodiversity.  In order to be informed for best management practices to protect 

these resources, it is critical to have a basic understanding of these rare organisms 

(Kunin and Gaston, 1993).   

Humans have long been fascinated with rarity.  Whether it is a rare piece of art, 

a rare coin, or a rare organism, things that are rare are often ranked as more important 

than their more common counterparts.  When we think of a rare species we tend to 

think of a cute cuddly one like the Giant Panda or another charismatic mega-fauna such 

as the Cheetah.  Unfortunately, when it comes to recognizing and protecting rare plants, 

they tend to be overlooked.  While almost 50% of the federally listed threatened or 

endangered species in the United States are plants, they tend to receive a very small 

percent of the recovery funds spent by the U.S. Fish and Wildlife Service (Schemske et 

al., 1994).   

Stebbins proposed two theories to explain why plants are rare.  One implies that 

rare species are young in an evolutionary sense and have not yet had time to spread 

throughout their potential range (i.e., neoendemic).  The other theory implies that rare 

species are old evolutionarily and their populations are exhibiting biotype depletion 
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(i.e.,paleoendemic) where their genetic stock may be dwindling and are on a natural 

path to extinction (Stebbins, 1942, 1980).   

Mills and Schwartz (2005), point out that species with narrow distributions, 

whether containing large or small population sizes, are usually endemic species.  In 

contrast, those that have a wide distribution but are sparse throughout their range are 

considered “suffusively” rare species.  They found that only 2% of the species in the 

North American Flora are suffusively rare while over 22% are endemic, and around 20% 

of all plants in North America are rare in some sense of the word.  Suffusively rare 

species have distinctive life-history traits including being found in bogs, being monocots, 

and being seedless vascular plants.  Endemic species tended to be shrubs and were 

more often able to exhibit plasticity in their growth form (Mills and Schwartz, 2005).   

In a similar study by Harper (1979), it was found that shrubs were 

underrepresented on lists of rare and endangered plants while herbaceous species were 

in abundance.  In addition, plants that had flowers with bilateral symmetry were very 

common among rare and endangered taxa.  This final observation points to the 

conclusion that the species with this trait are most likely reliant on specific pollinators to 

reproduce (Harper, 1979).    

When it comes to taxonomic recognition of rare species there are times when 

varieties or ecotypes of a species go unrecognized even though they may be rare 

(Kruckeberg and Rabinowitz, 1985).  The serpentine endemic Streptanthus polygaloides 

(Brassicaceae) is an example of a plant that is relatively common throughout the 
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foothills of the Sierra Nevada mountain range, yet the species contains four distinct 

sepal morphotypes; none of these color morphs get any special protection or taxonomic 

recognition (Boyd et al., 2009).  Although this is an example of diversity that is visible to 

the naked eye, it is also important to pay attention to cryptic forms of diversity that may 

otherwise go unnoticed (e.g., genetic), especially if these species are rare.  

Over 44% of all vascular plant species worldwide are endemic to one of the 25 

hotspots of biodiversity that cover less than 2% of the land surface on Earth (Myers et 

al., 2000).  California is one of those hotspots, and serpentine outcrops within the state 

play host to much of the States biodiversity.  Over 30% of taxa found in California are 

endemic to the state (Raven and Axelrod, 1978).  Serpentine in California covers just 

1.5% of the landmass, yet almost half of the plant species endemic to the State double 

as serpentine endemics (Kruckeberg, 1984, Safford et al., 2005).  Similar patterns are 

found throughout the world on serpentine outcrops (Thorne et al., 2011).   

There are many morphological adjustments (i.e., adaptations) that plants show 

in response to serpentine.  Included in these responses are xeromorphisms such as 

reduction in overall plant size or in individual above ground structures, increased 

pubescence, sclerophylly, glaucousness and an increase in the size of the root system.  

Although many physiognomic differences can be seen between serpentine and non-

serpentine vegetation, the most noticeable difference between vegetation growing on  

the two soil types is that there is an abrupt change in vegetation types (Kruckeberg, 

1984).  
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The term “serpentine” is generally used by non-geologists to refer to soils 

derived from ultramafic rocks (Kruckeberg, 1984).  Ultramafics are mantle rocks that 

have been uplifted and contain at least 70% ferromagnesian minerals (Brady et al., 

2005).  In California, ultramafics are mainly serpentinite and peridotite (Alexander, 

2009).  Serpentine soils provide a harsh environment for plant growth by having a low 

Ca/Mg molar ratio (<1), being mostly low in essential nutrients, and having a high 

concentration of heavy metals (particularly Ni) that are toxic to plants (Kazakou et al., 

2008).  Serpentine soils host high rates of endemic species (Kruckeberg, 1984, Safford et 

al., 2005), low rates of plant productivity, and vegetation types that are distinct from 

those on surrounding non-serpentine substrates (Brady et al., 2005).  Partly due to their 

small geographic range, serpentine endemic plant species are greatly overrepresented 

on the list of California’s rare and endangered plants (Safford et al., 2005).  Due to the 

unique conditions that harbor specially adapted species and the patchy or island-like 

distribution of serpentine throughout California, the species growing on these 

ultramafic outcrops provide an excellent means to examine the causes and 

consequences of plant rarity. 

Rare plants are more likely to be found in “unique” habitats than in “normal” 

habitats (Kruckeberg and Rabinowitz, 1985), and serpentine outcrops are a unique 

habitat for plants found throughout the world (Brooks, 1987; Roberts and Proctor, 

1992).  Due to the patchy distribution of many rare serpentine endemic plants, there is a 
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need for more small preserves and other means of conservation than are necessary for 

rare plants growing on normal soils (Thorne et al., 2011). 

Particular interest is given to rare species because they are at a greater risk of 

extinction and  play a key role in contributing to Earth’s biodiversity (Myers et al., 2000).  

Conservation of rare plant species is an issue of concern that has held great importance 

for ecologists over the years (Drury, 1980; Schemske et al., 1994; Bevill and Louda, 1999; 

Mills and Schwartz, 2005; Sadler and Bradfield, 2010).  In order to conserve rare plants 

and inform landowners how best to manage for these species, it is critical to be 

informed about their biology and ecology (Stebbins, 1980; Kruckeberg and Rabinowitz, 

1985; Schemske et al., 1994; Bevill and Louda, 1999).  Here, I will examine the biology 

and ecology of six rare plants found in Plumas National Forest with detailed studies on 

three of the plants found on serpentine.  In describing the natural history of these six 

species, I looked at reproductive biology (including seed set, reproductive strategy, and 

pollinators), germination rates, below ground ecology, above ground ecology, and ion 

uptake.  

The six study taxa are Clarkia mildrediae (A. Heller) H. Lewis and M. Lewis subsp. 

mildrediae (Mildred’s Clarkia; Onagraceae), Cypripedium californicum A. Gray (California 

lady’s slipper), Cypripedium fasciculatum Kellogg (clustered lady’s slipper; Orchidaceae), 

Monardella stebbinsii Hardham and Bartel (Stebbin’s Monardella), Monardella follettii 

(Jeps.) Jokerst (Follett’s Monardella; Lamiaceae), and Lewisia cantelovii J.T. Howell 

(Cantelow’s Lewisia; Montiaceae).  All species are endemic to California with the 
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exception of Cypripedium fasciculatum, which is found scattered throughout the 

Western United States (USDA/NRCS 2011).  Aside from the two orchid species, there is 

almost no published literature on the biology of these rare plants and baseline data are 

crucial for better management of these taxa.  

Methods — Study area and taxa — Plumas National Forest (Lat 39°54'56''N, Lon 

121°50'24''W) covers 46,3800 hectares in the Northern Sierra Nevada, California just 

south of the Cascade Range.  Elevations range from about 610 to 2440 m.  The average 

annual minimum temperature from 1985 to 2010 was 0°C and the maximum was 19°C.  

Average total annual precipitation is 103.1 cm and average total snowfall is 139.4 cm 

(California Climate Data Archive http://www.calclim.dri.edu/data.html, Quincy, CA).  

 The six taxa chosen for study are all United States Forest Service (USFS) Region 5 

sensitive species and are found in Plumas National Forest.  They include two geophytes 

(Cypripedium californicum and Cypripedium fasciculatum), two woody perennials 

(Monardella stebbinsii and Monardella follettii), one semi-succulent perennial (Lewisia 

cantelovii) and one annual (Clarkia mildrediae subsp. mildrediae).  The rarity status for 

all six taxa is listed in Table 1.   

 

 

 

 
 
 

http://www.calclim.dri.edu/data.html
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Table 1.  Rarity status for all six taxa.   
 

CNPS Global State 
Clarkia mildrediae subsp. mildrediae 1B.3 G3 S3.3 
Cypripedium californicum 4.2 G3 S3.2 
Cypripedium fasciculatum 4.2 G4 S3.2 
Lewisia cantelovii 1B.2 G3 S3.2 
Monardella follettii 1B.2 G2 S2 
Monardella stebbinsii 1B.2 G1 S1.2 

Notes:  The rankings mean the following; CNPS list - 1B “rare, threatened or endangered in 
California or elsewhere”, 0.2 “fairly endangered in California”, 0.3 “not very endangered in 
California”.  4 “limited distribution (watch list)”.  Global rank – G1 “critically imperiled”, G2 
“imperiled”, G3 “vulnerable”, G4 “apparently secure”.  State rank – S1.2 “less than 6 
occurrences or less than 1,000 individuals or less than 2,000 acres”, S2 “6-20 occurrences or 
1,000-3,000 individuals or 2,000-10,000 acres”, S3.2 “21-80 occurrences or 3,000-10,000 
individuals or 10,000-50,000 acres”, S3.3 “21-80 occurrences or 3,000-10,000 individuals or 
10,000-50,000 acres”.  
 

 Above-ground ecology and soil-tissue ion relations — Five sites per species and 

five individual plants per site were sampled.  At each site, general habitat characteristics 

were measured including slope, aspect, and percent cover of rock, boulder, duff, shrubs 

and herbaceous species.  All plant species found at each site were recorded.        

 Microhabitat characteristics were recorded at each of the five plants per site, 

including canopy cover using a convex spherical crown densitometer (Forestry Suppliers, 

Inc., Jackson, Mississippi), light intensity using a Quantum Meter (Model MQ-100 

Apogee Instruments Inc., Logan, Utah), and soil moisture using a FieldScout© TDR 200 

soil moisture meter (Spectrum Technologies, Inc., Plainfield, Illinois).  In addition, 

phenology of each plant (whether it was in fruit, flower, or bud) was recorded and the 

number of reproductive units (fruits, flowers, or buds) was counted.  Descriptive 

statistics were conducted on all six taxa and Principle Components Analysis (PCA) was 
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performed in order to observe separation of the taxa in multivariate space.  All data 

were checked for parametry and skewed data was log transformed (Systat 12, Chicago, 

Illinois). 

All sites were located using shapefiles of USFS known populations and a Trimble 

(Sunnyvale, California) GPS unit (Juno in 2009 and GeoXM in 2010).  Field rhizospheric 

soil and leaf tissue were collected during the summer of 2009.  Two hundred g of soil 

was dug from the rhizosphere of each plant using a stainless steel hand trowel.  Forty-

five grams (dry weight) of leaf tissue was collected from the upper portion of each plant 

so as to avoid as little soil contamination as possible.  Soil and tissue samples were 

pooled into one sample per population for all taxa except the two Monardellas in which 

all samples were analyzed separately.  This was done in order to conduct detailed 

studies on the Monardellas and broad studies on the other four taxa, and due to limited 

funding for soil and tissue analysis. 

Soil samples were air dried in a lab at San José State University and rocks were 

removed by hand.  Samples were then sent to A and L Western Agricultural Laboratory 

(Modesto, California, Stanislaus County) for analysis.  Organic matter values were 

obtained using the loss of ignition method at 360°C.  Extractable Potassium, Calcium, 

Magnesium and Sodium were obtained using 1.0 N ammonium acetate at a pH of 7.0.  

Cation Exchange Capacity (CEC) was measured using the Ammonium Replacement 

method or computed according to the sum of meq K, Mg, Ca, Na and H/100g of soil and 

pH was measured using the saturated paste method (Gavlak et al., 2003).  Values for Ni, 
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Zn, Mn, Fe, Cu and Mo were obtained by extraction with 0.005M diethylene triamine 

pentaacetic acid (DTPA) buffered with triethanolamine to pH 7.3 (Lindsay and Norvell, 

1978).  

Leaf samples were washed in the field in 0.1M HCl, rinsed three times in distilled 

water and then oven dried for 48 hours at 70˚F.  Tissue was sent to the University of 

Maine (Orono, ME) Analytical Laboratory for analysis where it was ground and 

elemental concentrations determined by the dry-ashing method and detected by ICP-

OES.    

Breeding systems and germination — Knowing if sensitive species are self-

compatible or obligate outcrossers can help managers to better understand the reason 

for a decrease in fitness should one occur (Ellstrand and Elam, 1993).  Six plants from six 

populations of Lewisia cantelovii, Monardella stebbinsii, M. follettii, and Clarkia 

mildrediae subsp. mildrediae were randomly selected to determine if the species are 

predominantly selfers or outcrossers.  Bags made of thin white cloth and closed at the 

bottom with velcro were placed on budding flowers.  These were collected two months 

later when the plant was in fruit along with an un-bagged fructescence from each plant 

whenever possible.  Mature seeds were counted in all fruits collected and divided by the 

number of flowers to get percent seed set.  Seeds were determined as mature when 

black in Lewisia and brown to dark brown in the other three taxa.  Percent seed set was 

compared in bagged vs. un-bagged fruits using a two sample t-test (Microsoft Excel 
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2007, Redmond, Washington).  Results for the two Monardellas are reported in Chapter 

two.  

Seeds were collected from a randomly chosen population of Clarkia mildrediae 

subsp. mildrediae and two sets of 20 seeds (representing 10 different mothers) were 

germinated in two 15 cm petri dishes.  Seeds were removed from the capsules and 

placed in a petri dish with wet soil for germination with no cold stratification treatment. 

Separate and more detailed studies were conducted on the two Monardellas and the 

Lewisia.  With the exception of the PCA all results shown below only include the two 

Cypripediums and the Clarkia.  Data on the two Monardellas and the Lewisia are 

displayed in chapters two and three but all taxa were included in the PCA in order to 

show the separation of all six species together in PCA space. 

 Results — Above-ground ecology and soil-tissue ion relations — Clarkia 

mildrediae subsp. mildrediae (CLMIM) is found in dry (Table 3), open (average canopy 

cover was 24%, Table 2) yellow pine forests.  The majority of the CLMIM sites visited 

were composed of granitic soils with one population being found near a serpentine 

contact zone, although CLMIM did not occur on the serpentine.  Slopes range from 55% 

to 75% and almost all aspects are represented (Table 2). 

Dominant species found at CLMIM sites include Pinus ponderosa Douglas ex 

Lawson and C. Lawson (Ponderosa Pine; Pinaceae), Pseudotsuga menziesii (Mirb.) 

Franco (Douglas-Fir; Pinaceae), Calocedrus decurrens (Torr.) Florin (Incense Cedar; 

Cupressaceae), Quercus chrysolepis Liebm. (Canyon Live Oak; Fagaceae), Quercus 
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garryana Hook. var. breweri (Engelm.) Jeps. (Brewer’s Oak; Fagaceae), Acer 

macrophyllum Pursh (Big-Leaf Maple; Sapindaceae), and Ceanothus integerrimus Hook. 

and Arn. (Deer Brush; Rhamnaceae).  Other associates include Quercus kelloggii Newb. 

(Black Oak; Fagaceae), Mimulus aurantiacus Curtis (Sticky Monkeyflower; Phrymaceae), 

Cornus nuttallii Audubon (Mountain Dogwood; Cornaceae), Ribes roezlii Regel (Sierran 

Gooseberry; Grossulariaceae), Asyneuma prenanthoides (Durand) McVaugh (Harebell; 

Campanulaceae) Draperia systyla (A. Gray) Torr. Ex A. Gray (Draperia; Boraginaceae), 

Eriogonum nudum Douglas ex Benth. (Naked Buckwheat; Polygonaceae), Pteridium 

aquilinum (L.) Kuhn (Bracken Fern; Dennstaedtiaceae), Castilleja sp. (Indian Paintbrush; 

Orobanchaceae), and Lupinus dalesiae Eastw. (Quincy Lupine; Fabaceae).  

CYCA is found in serpentine fens and seeps making its habitat extremely wet 

(roots often completely inundated with water year round, Table 3) with high canopy 

cover (average 53%, Table 2).  It is found on gentle slopes that range from 15% to 50% 

and on almost all aspects (Table 2).   

While CYCA grows at very wet sites with high organic matter (Table 3), it shows 

harsh conditions in its soil content as it is high in heavy metals (Ni, Mg, Fe, Cu), low in 

essential nutrients for plant growth (P, Ca), and has a low Ca/Mg ration (<1) in 

comparison to the other two taxa shown (Table 3).  Similar patterns are shown in the 

tissue content of these plants (Table 4).  

Dominant species found at CYCA sites include Rhododendron occidentale (Torr. 

and A. Gray) A. Gray (California Azalea; Ericaceae),  Calocedrus decurrens and 
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Pseudotsuga menziesii.  Other species associated with CYCA include Hastingsia alba 

(Durand) S. Watson (White Schoenolirion; Agavaceae), Aquilegia formosa Fisch. ex DC. 

(Crimson Columbine; Ranunculaceae), Adiantum aleuticum (Rupr.) C. A. Paris (Five-

Finger Fern; Pteridaceae), Lilium pardalinum Kellogg subsp. pardalinum (Leopard Lily; 

Liliaceae), Angelica breweri A. Gray (Brewer’s Angelica; Apiaceae), Epipactis gigantea 

Douglas (Stream Orchid; Orchidaceae), and at one site it was found growing with the 

carnivorous Darlingtonia californica Torr. (California Pitcher Plant; Sarraceniaceae). 

CYFA was found growing in dense, moist coniferous forest almost always directly 

under Cornus nuttallii with large Pseudotsuga menziesii nearby and with little competing 

herbaceous vegetation (Table 2, Table 3).  Average canopy cover at CYFA sites is 89%, 

and it is found on gentle slopes that range from 10% to 42% on all aspects (Table 2). 

Dominant species associated with CYFA are Cornus nuttallii and Pseudotsuga 

menziesii.  Other associated species include Abies concolor (Gordon and Glend.) Lindl. ex 

Hildebr. (White Fir; Pinaceae), Pinus lambertiana Douglas (Sugar Pine; Pinaceae), 

Chrysolepis sempervirens (Kellogg) Hjelmq. (Bush Chinquapin; Fagaceae), Adenocaulon 

bicolor Hook. (Trail Plant; Asteraceae), Symphoricarpos mollis Nutt. (Creeping 

Snowberry; Caprifoliaceae), Trientalis latifolia Hook. (Starflower; Myrsinaceae), and 

Amelanchier utahensis Koehne (Service-Berry; Rosaceae).  
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Table 2.  Habitat variables.   

Notes:  Values displayed are averages of the five sites visited per species.  Slope and canopy 
cover are in percent and aspect is in degrees.  Values listed are as follows:  mean ± SE (range).  
For canopy cover and light intensity n=25 (measurement taken at 5 individuals x 5 sites per 
species) and for all other variables n=5 (one measurement taken per site). 
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Table 3.  Soil analysis.   

 
Notes:  Values displayed are pooled samples from five plants and averages of the five sites per 
species.  Organic matter (OM) is in percent, elemental concentrations are measured in µg g -1 
dry soil (ppm), cation exchange capacity (CEC) was measured in meq 100 g -1, and soil moisture 
was measured in % volumetric water content.  Values listed are as follows: mean ± SE (range), 
n=25 for soil moisture and n=5 for all other variables.  
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Table 4.  Leaf tissue analysis.   

Notes:  Values displayed are pooled samples from five plants and averages of the five sites per 
species.  Measurement units are in µg g -1 dry tissue and values listed are as follows:  mean ± SE 
(range), n=5. 

 

The PCA for habitat variables (Figure 1, Table 5) had 47% of the variance 

explained by the first principle component which was influenced by slope, aspect, 

percent boulder, percent duff, percent cover of shrubs, percent cover of herbaceous 

species, and percent canopy cover (Table 5).  The second principle component explained 

15% of the variance and was mainly influenced by percent rock, percent shrub, and 

percent herbaceous cover (Table 5).   

For the PCA of soil variables, the first and second principle components 

explained 24% and 22% of the variance, respectively (Figure 2, Table 6).  The first 

component was  influenced by pH, K, Ca/Mg ratio, S, Zn, Mn, Fe and Cu, whereas the 

second component was influenced by soil moisture, organic matter, P, pH, Na, cation 
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exchange capacity, S, Zn and Cu (Table 6).  The PCA for tissue variables (Figure 3, Table 

7) had 34% and 20% of the variance explained by the first two principle components.  

The first component was influenced by K, Ca/Mg ratio, P, Al, B, Cu, Na, and Ni whereas 

the second principle component was influenced by Mn, Al, Zn, and B (Table 7). 

 

 
Figure 1.  PCA of habitat variables. 

Notes:  The x-axis is PC 1 and the y-axis is PC 2.  Arrows are in order of the loadings (the closest 
to the plot being the strongest loading) and their direction (negative or positive).   
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Table 5.  PCA of habitat variables. 
 PC 1 PC 2 

Eigenvalues 3.819 1.242 

% variance explained 47.736 15.524 

 Loadings Loadings 

Slope -0.869 0.062 

Aspect 0.338 -0.173 

% Rock -0.082 0.877 

% Boulder -0.722 0.062 

% Duff 0.917 -0.101 

% Shrub 0.648 0.446 

% Herb 0.723 0.372 

Canopy cover 0.799 -0.296 

Notes:  Eigenvalues, percent variance explained and component loadings are shown.  Significant 
loadings are highlighted in bold. 
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Figure 2.  PCA of soil variables. 
Notes:  The x-axis is PC 1 and the y-axis is PC 2.  Arrows are in order of the loadings (the closest 
to the plot being the strongest loading) and their direction (negative or positive). 
 

 

 

 

 

 

 

 



 

19 
 

Table 6.  PCA of soil variables.   
 PC 1 PC 2 

Eigenvalues 3.486 3.139 

% variance explained 24.901 22.418 

 Loadings Loadings 

Soil moisture -0.093 0.877 

Organic matter 0.078 0.595 

P 0.128 -0.361 

pH -0.558 0.528 

K -0.489 0.253 

Ca/Mg ratio -0.329 0.251 

Na 0.034 0.573 

Cation exchange capacity -0.291 0.846 

S 0.725 0.302 

Ni 0.27 0.229 

Zn 0.697 0.342 

Mn 0.383 -0.244 

Fe 0.849 0.134 

Cu 0.87 0.309 

Notes:  Eigenvalues, percent variance explained and component loadings are shown.  Significant 
loadings are highlighted in bold. 
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Figure 3.  PCA of leaf tissue variables.   

Notes:  The x-axis is PC 1 and the y-axis is PC 2.  Arrows are in order of the loadings (the closest 
to the plot being the strongest loading) and their direction (negative or positive). 
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Table 7.  PCA of leaf tissue variables.   
 PC PC 2 

Eigenvalues 3.843 2.286 

% variance explained 34.938 20.784 

 Loadings Loadings 

K 0.808 0.074 

Ca/Mg ratio 0.847 -0.012 

P 0.785 -0.232 

Al 0.33 0.778 

B -0.41 0.448 

Cu 0.33 -0.09 

Fe -0.036 0.165 

Mn 0.091 0.906 

Zn 0.107 0.722 

Na 0.904 -0.174 

Ni -0.796 -0.117 

Notes:  Eigenvalues, percent variance explained and component loadings are shown.  Significant 
loadings are highlighted in bold. 
 

 
Breeding systems and germination — Of the 30 plants from five populations 

bagged for the CLMIM selfing experiment, 23 made it through anthesis.  Due to the 

explosive dehiscence of the CLMIM capsules, I was unable to get an exact seed count on 

the unbagged specimens, but the fruits of this species produce anywhere between 30-

70 seeds.  Percent fruit set in the bagged specimens was 58% (SE ± 0.07, range = 0-100, 

n = 23).  Of the 23 plants bagged, three had no fruit set, five had 100% fruit set and five 
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had greater than 70% fruit set.  Both trials for CLMIM germination showed 100% 

germination success.   

Of the 26 plants from six populations bagged for the LECA selfing experiment, all 

remained on the plants through anthesis.  This was a great success as LECA has very 

thin, delicate flowering scapes and it appeared unlikely that the bags would last through 

the flowering season.  Fruits of this species produce approximately 2-15 seeds each.  

Average percent seed set was 3% (SE ± 0.01, range = 0-33, n = 36) in bagged specimens 

and 33% (SE ± 0.05, range = 0-100, n = 27) in un-bagged specimens and was significantly 

different when compared using a two sample t-test (p<0.001).   

Discussion — Above-ground ecology and soil-tissue ion relations — Out of the 

three species focused on in this chapter, CYCA, the taxon found on serpentine, shows a 

low Ca/Mg ratio (<1), indicative of the substrate, and higher amounts of heavy metals 

(Cu, Fe, Zn and mainly Ni) when compared to the other two taxa that are found growing 

on non-serpentine soils.  These results are consistent with studies that have been done 

throughout California and on various species (Kruckeberg, 1984; Wright et al., 2006).  A 

similar pattern is seen in the tissue with the Ca/Mg ratio, Ni and Fe content but 

interesting results were seen for Cu and Zn in the leaf tissue.  Cu was highest in CYFA 

and Zn was highest in CLMIM but was lowest in CYCA, although opposite patterns were 

seen in the soil content.  These results show that it is possible that CYCA is an excluder 

of Cu and Zn (Baker, 1981).  Excluders are plants that are able to refrain from transport 

of metals to the shoot system over a wide range of metal concentrations in the soil 
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(Kazakou et al., 2008).  Common garden or hydroponic studies where the amount of 

these ions are controlled in the soil would need to be conducted in order to say 

anything conclusive about these differences seen in ion accumulation.    

 Out of the three PCAs, the one for habitat variables showed the most separation 

by species in PCA space.  Two of the plants found growing on serpentine, MOST and 

LECA, which grow at very steep and rocky sites (LECA often out of a cliff face), are 

clustered together where percent slope and percent boulder are high.  In contrast, the 

two orchid species, CYCA and CYFA, are clustered together where slopes are not as 

steep, canopy cover is high, and the sites are more productive with a higher percent 

cover of shrubs and herbaceous plants. 

 Conservation and management plans for rare species often take a single species 

approach (Carlsen et al., 2002; Ramp Neale et al., 2008; Rechinger et al., 2009), although 

this may not be the most effective and efficient route (Thorne et al., 2011).  While these 

data may point to the need for a single species approach because all species occupy 

different habitats, it is important to note that there are other rare taxa found growing in 

the area that were not included in this study.  Plumas National Forest has 62 plants that 

are listed as rare, sensitive, or endangered (Hanson, 1999).  Although the two 

Cypripedium orchids were outliers that were not found growing with other rare plants, 

to our knowledge, this was not the case for the five other study taxa.   

At most MOFO sites, four other rare plants (Erigeron petrophilus var. sierrensis, 

Packera eurycephala var. lewisrosei, Frangula purshiana subsp. ultramafica and Arabis 
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constancei) were almost always present.  Sedum albomarginatum (another rare 

serpentine endemic) can often be found growing in association with MOST and LECA (at 

serpentine sites), and Lupinus dalesiae (another rare taxa from Plumas National Forest) 

can be found growing in association with CLMIM.  Due to the sharing of habitat by 

numerous rare plants, many parts of Plumas National Forest, and, in particular, much of 

the serpentine, are prime candidates for conservation and preservation of critical 

habitat.  

Breeding systems and germination — In order to manage for rare species, it is 

critical to understand their reproductive strategy and pollination system as this can have 

implications for their persistence and survival (Kearns et al., 1998; Carlsen et al., 2002; 

Sargent and Ackerly, 2008).  If persistence of the species is questionable and restoration 

is warranted, it is imperative to have a basic understanding of the germination 

requirements so plants can be propagated and brought in to establish new populations 

(Brumback, 1989; Karlsson and Milberg, 2007).  Both of these points are particularly true 

for rare plants that are found growing on serpentine or other harsh substrates when 

their habitats become degraded or altered as they will require careful planning in re-

establishing the species and restoring its habitat (O’Dell and Claassen, 2011).   

Pollen exclosure bag experiments were not conducted on either of the orchid 

species, but most orchids are believed to be outcrossers due to pollinator specialization 

(Bernhardt and Edens-Meier, 2010).  It is not known what pollinates CYCA but CYFA is 

pollinated by small wasps.  Neither species offers rewards to its pollinators (Lipow et al., 
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2002).  While germination trials were not conducted on the orchids, members of this 

family are known for having extremely particular germination requirements as they 

often require a mycorrhizal symbiont in order to germinate (Shefferson et al., 2005).                                                                                                

Considering many of the bagged CLMIM flowers had 100% fruit set, it appears to 

not have a problem selfing.  In fact, reproducing does not at all appear to be an issue for 

this species as it also showed 100% germination with no pre-treatment for the seeds.   

As seen from the bagging experiment, LECA is not able to self.  In addition to this 

field experiment, a plant that was rescued from poachers in the field was observed in 

the greenhouse at San José State University over two flowering seasons.  While it 

produced many flowers, not a single seed was ever produced, most likely due to lack of 

pollinators.   

These observations are consistent with those of Richerson (1997).  She described 

LECA as an entomophilous (insect pollinated) species that attracts generalist pollinators 

due to its unspecialized radial flowers.  The insects she lists as pollinators for LECA 

include; Andrena auricoma (Andrenidae), Dialictus sp., Evylaeus sp. (Halictidae), Osmia 

sp., Protosmia rubifloris (Megachilidae), Xylocopa tabaniformis orpifex (Anthophoridae), 

Bombus mixtus, B. vosnesenskii, B. melanoygus (Apidae), Paragus sp. (Syrphidae), and 

Bombylius sp. (Bombyliidae).  

 

 



 

26 
 

CHAPTER TWO 
ECOLOGY AND REPRODUCTIVE BIOLOGY OF TWO SERPENTINE ENDEMIC CONGENERS 

 
Introduction — While the term “serpentine” is usually a blanket term used to 

clump any soil derived from ultramafic rock, just like with any ecosystem, not all 

ultramafic outcrops are the same.  For example, Alexander (2009) looked at soil and 

vegetation differences between peridotite and serpentinite outcrops in the Rattlesnake 

Creek terrane in the Klamath Mountains (Southern Oregon, USA) and found significant 

differences between the two substrates.  Harrison and Inouye (2002) found that within 

a local serpentine outcrop, α diversity may be low but β diversity – turnover across 

serpentine sites throughout California – is high.  When each site contains different 

species, β diversity is highest.  This uniqueness on a site–by–site basis creates a 

challenging situation in regards to conservation planning for California’s serpentine flora 

(Thorne et al., 2011).  

This heterogeneity across the serpentine landscape can provide opportunities 

for niche partitioning among closely related species, which can lead to reproductive 

isolation.  This phenomenon has been shown with the flowering stones in the genus 

Argyroderma (Aizoaceae) in the South African succulent karoo.  This genus is part of the 

subfamily Ruschioideae, which contains over 1500 species that range in form from small 

succulent stone plants to large shrubs.  It is one of the most impressive examples of 

adaptive radiation in plants (Klack et al., 2004).  Two quartz specialists within the genus 

were found to be keying in on specific edaphic differences across this unique quartz 
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gravel plains landscape (Ellis and Weis, 2006).  One of the methods suggested for 

radiation in this group has been allopatric divergence through use of different 

microhabitats (Ellis et al., 2006).  This could be a potential means of divergence in the 

two Monardella species as well if differences in the microhabitat and below ground 

ecology for the two prove to be significantly different.  

Specific life-history traits are sometimes known to be associated with plants that 

have restricted distributions or small isolated populations.  Plants that grow in small 

isolated populations are known to undergo a shift in breeding systems (Kruckeberg and 

Rabinowitz, 1985; Kunin and Gaston, 1993).  On the contrary, in a study by Harper 

(1979) in which rare plants from Utah, Colorado, and California were examined, it was 

found that flowers of rare plants tended to have bilateral symmetry, which means they 

are most likely outcrossers due to pollinator specialization.  Sixty-seven percent of 

flowering plants rely on insects for pollination, and for these outcrossing species, 

pollinators are as important as light and water (Kearns and Inouye, 1997). 

In this portion of my study, I compared the ecology and reproductive biology of 

two serpentine endemic Monardella species from Northern California, USA.  This study 

included several aspects:  1) above-ground ecology, 2) soils and soil-tissue relations, 3) 

seed germination, seedling growth, and survival, 4) breeding systems, and 5) 

reproductive ecology.   

Methods — Study area and taxa — The Feather River complex (Lat 39° 59' 56" N, 

Lon 121° 7' 26" W) is a belt of ultramafics approximately 53 km long and 3-6 km wide 
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consisting mainly of serpentinite and peridotite.  Most of the belt occurs in Plumas 

County (Northern California, USA) although parts also stretch into Sierra, Placer, and El 

Dorado Counties.  The elevations range from 760 to 1920 m, the latter being the peak of 

Red Hill where both study taxa can be found growing in close sympatry.  Red Hill is also 

one of the highest ultramafic peaks in the Sierra Nevada Mountain Range (Alexander et 

al., 2007).    

The genus Monardella (Lamiaceae) is found throughout western North America 

and contains over 30 different annual and perennial species representing at least 50 

recognized taxa.  The center of diversity and distribution for this genus is in California 

where there are approximately 45 taxa and all 30 species.  Outside of California, the 

genus occurs in Washington, Oregon, Idaho, Nevada, and Baja California (Elvin and 

Sanders, 2009).  It has long been known as a taxonomically difficult genus (Epling, 1925), 

as it commonly hybridizes and hybrids often outnumber the non-hybrids.  In addition, 

many species have subspecies or varieties (Baldwin et al., 2012).  

Monardella stebbinsii (MOST) and M. follettii (MOFO) are both classified as strict 

serpentine endemics by Safford et al. (2005).  They are both small-statured woody 

perennials in the mint family that exhibit a rhizomatous growth form.  The two are easily 

distinguished morphologically by their leaves, which are glabrous in M. follettii and 

covered by a dense coat of white hairs in M. stebbinsii (Baldwin et al., 2012).  The leaves 

are lanceolate to elliptic with long internodes in M. follettii and narrowly ovate in M. 

stebbinsii.  However, one need not use these leaf shape characters to distinguish the 
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two species, as the difference in leaf pubescence is quite dramatic.  While both are 

restricted to the same region and the same belt of ultramafics,  M. follettii has a wider 

distribution than M. stebbinsii across the belt.   

Above-ground ecology — In addition to collecting habitat information as outlined 

in Chapter One (p. 9), temperature was recorded at all five sites for each Monardella.  In 

order to record diurnal temperatures Ibutton temperature loggers (Maxim Integrated 

Products, Sunnyvale, California) were deployed at each site in a five cm piece of PVC 

pipe and attached with wire or string.  They were left at the site from July 26- August 22, 

2010.  The loggers were set to take a temperature reading every two hours.  

Soils and soil-tissue relations — Soil and tissue collection and analysis methods 

were described in Chapter 1.  Data were checked for parametry prior to analysis and 

differences between species for habitat, soil, and tissue data were analyzed using t-tests 

(Microsoft Excel 2007).  PCA was performed on the data in Systat 12 to examine 

separation based on these characters by species in PCA space.  Skewed data were log-

transformed prior to running the analysis.  In order to look for correlation between ionic 

content of the soil and that which the plant was taking up in its tissue, linear regression 

analysis was performed, also using Systat 12.  

Seed germination, seedling growth and survival — Seeds were collected from 

five sites per species during the late summer in 2009.  In order to create a pooled 

sample representing more than a single site for each species, rhizospheric field soil was 

collected from two sites per species and mixed (by species).  Twenty seeds from each 
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site (representing ten mothers, two seeds collected per mother) were germinated in 

thirty 15-cm petri dishes in three different soil treatments – native serpentine soil from 

each of the two species home sites and a control treatment (potting soil).  Both native 

soil treatments were used in order to see if the species pair would show any signs of 

local adaptation to their respective soil type.  The potting soil served as a control 

treatment in order to determine if germination and survival would increase in soil more 

favorable for plant growth.   

Prior to germination, three groups of 20 seeds each from the five populations 

per species were weighed in order to compare average seed weight between species.  

Groups of 20 seeds were used because it was difficult to get one seed to register weight 

on the scale due to its miniscule size.  Seeds were given a two-week cold treatment in a 

growth chamber (Conviron, Winnipeg, Manitoba) with a constant temperature of 5˚C 

and then the temperature was changed to 15˚C during the day and 10˚C at night to start 

germination (12 hour day/12 hour night).   

Germination was recorded weekly for nine weeks at which point germination 

ceased.  Surviving seedlings were then transplanted to 68 two-inch pots in their 

respective soil types (both species home soil and potting soil).  Seedling measurements 

were taken on size including height, width (of widest leaf), length (of longest leaf), and 

number of leaves per seedling.   
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Breeding systems — Six plants from six populations per species were randomly 

selected to determine if the species are predominantly selfers or outcrossers.  Methods 

for the bagging experiment were described in Chapter one (p. 12).  

Reproductive ecology — Pollination was observed at peak flowering over the 

summer of 2010.  Three sites per species were visited and pollinator observations were 

done from 1000-1100 h and 1300-1400 h (PST) with three separate plants observed 

each hour.  Both species of Monardella spread by underground rhizomes, making it very 

difficult or impossible to identify an individual plant.  In order to make observations 

feasible, an individual was defined as a 0.5 m square clump.  The number of heads and 

open non-dried flowers were counted and recorded in each clump.  A visitor was 

defined as any animal that landed on a flower and made contact with the stigma or 

anthers during the hour sitting.  Visitors were collected for identification and observers 

used consistent codes for all visitors.  This was done in order to be able to show the 

diversity of visitors even if those visitors were unidentified.  The Shannon-Weiner 

Diversity index was used to examine the diversity of pollinators for M. stebbinsii in 

comparison to M. follettii.   

For five plants per site at each of the five sites the number of buds, flowers and 

fruits (depending on phonological state) were counted to determine the average 

number of reproductive units per plant.  Although a single flower is technically one 

reproductive unit, the Monardella inflorescence is a compact head, and counting the 
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individual flowers would have been extremely time consuming.  In order to collect data 

in a timely fashion, I defined a head of buds, flowers or fruits as one reproductive unit. 

Results — Above-ground ecology — Results of the above ground ecology data 

collection showed significant differences between percent slope, percent boulder cover, 

percent duff cover, percent herbaceous cover, and percent canopy cover (Table 8).  M. 

stebbinsii sites were steeper (p = 0.05), had lower canopy cover (p<0.001), and were 

hotter on average (daily) by 4 °C (p < 0.001, Table 8). 

Table 8.  Habitat variables for the Monardellas.   

 
Notes:  Values displayed for slope and canopy cover are in percent and aspect is in degrees.  
Light intensity is measured in µmol m-2s-1 and temperature is in °C.  Values listed are as follows: 
mean ± SE (range).  For canopy cover and light intensity n=25, for temperature n=336 and n=5 
for all other variables.  P-values are based on a two sample t-test with significant values listed in 
bold font.   
 
 

Both taxa had Pinus jeffreyi Grev. and Balf. (Jeffrey Pine; Pinaceae) and 

Calocedrus decurrens (Torr.) Florin (Incense Cedar; Cupressaceae) as dominant species 

at all sites as well as Ceanothus arcuatus McMinn (Arching Ceanothus; Rhamnaceae).  
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Additional dominants at M. follettii sites were Pseudotsuga menziesii (Mirb.) Franco 

(Douglas-Fir; Pinaceae), Pinus lambertiana Douglas (Sugar Pine; Pinaceae), and 

Ceanothus integerrimus Hook. and Arn. (Deer Brush; Rhamnaceae).  Other associated 

species for the two include Quercus durata Jeps. (Leather Oak; Fagaceae), Quercus 

chrysolepis Liebm. (Canyon Live Oak; Fagaceae), Epilobium minutum Lindl. (Willow Herb; 

Onagraceae), Aspidotis densa (Brack.) Lellinger (Indian’s Dream; Pteridaceae), 

Streptanthus tortuosus Kellogg (Mountain Jewelflower; Brassicaceae), Holodiscus 

microphyllus Rydb. (Rock Spiraea; Rosaceae), Eriogonum ursinum S. Watson (Bear Valley 

Buckwheat; Polygonaceae), Eriogonum nudum Benth. (Naked Buckwheat; 

Polygonaceae), Chrysothamnus nauseosus (Pall. Ex Pursh) Britton (Rubber Rabbitbrush; 

Asteraceae), Eriophyllum lanatum (Pursh) J. Forbes (Woolly Sunflower; Asteraceae), 

Achillea millefolium L. (Yarrow; Asteraceae), Erigeron petrophilus Greene var. sierrensis 

G. L. Nesom (Serpentine Rayless Daisy; Asteraceae), Packera eurycephala (Torr. and A. 

Gray) W. A. Weber and Á. Löve var. lewisrosei (J. T. Howell) J. F. Bain (Cutleaf Ragwort; 

Asteraceae), Frangula purshiana Cooper subsp. ultramafica Sawyer and S. W. Edwards 

(Plumas Coffeeberry; Rhamnaceae) and Arabis constancei Rollins (Constance’s Rock 

Cress; Brassicaceae).  Additional associates at M. stebbinsii sites include Penstemon 

deustus Lindl. (Scabland Penstemon; Plantaginaceae) and Sedum albomarginatum R. T. 

Clausen (Feather River Stonecrop; Crassulaceae).   
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Soils and soil-tissue relations — For the soil analysis, organic matter 

(MOFO>MOST), P (MOST>MOFO), pH (MOST>MOFO), K (MOFO>MOST), Ca 

(MOFO>MOST), Mg (MOFO>MOST), Ca/Mg molar ratio (MOFO>MOST), S 

(MOST>MOFO), Ni (MOFO>MOST), Mn (MOFO>MOST) and cation exchange capacity 

(MOFO>MOST) were all significantly different between the two taxa (Table 9).  For the 

soil PCA the first principle component explained 29% of the variance and was influenced 

by pH, organic matter, K, Ni, cation exchange capacity, Mn, soil moisture, Ca/Mg ratio 

and P.  The second principle component explained 15% of the variance and was 

influenced by Zn, Fe, S, Cu, and Mn (Figure 4, Table 10).  

 Significant differences in the tissue content for the two Monardella’s was found 

for K (MOFO>MOST), Mg (MOST>MOFO), Al (MOFO>MOST), Fe (MOFO>MOST), Zn 

(MOFO>MOST) and Ni (MOFO>MOST) (Table 11).  The tissue PCA showed separation 

between the two taxa with the first component explaining 25% of the variance and 

being mainly influenced by Fe, Al, Ni, P, K, Zn, Na, and B (Figure 5, Table 12).  The second 

component explained 19% of the variance and was mainly influenced by Mn, Zn, Ca/Mg 

ratio, B, Ni, and Cu (Figure 5, Table 12).  
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Table 9.  Soil analysis for the Monardellas.   

 
Notes:  Values displayed for organic matter (OM) are in percent, elemental concentrations are 
measured in µg g -1 dry soil (ppm), cation exchange capacity (CEC) was measured in meq 100 g -1, 
and soil moisture was measured in % volumetric water content.  Values listed are as follows: 
mean ± SE (range), n=25.  P-values are based on a two sample t-test with significant values listed 
in bold font.  
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Figure 4.  PCA of soil variables for the Monardellas.  

Notes:  The x-axis is PC 1 and the y-axis is PC 2.  Arrows are in order of the loadings (the closest 
to the plot being the strongest loading) and their direction (negative or positive).  M. stebbinsii = 
X; M. follettii = O 
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Table 10.  PCA of soil variables for the Monardellas. 
 PC 1 PC 2 

Eigenvalues 4.114 2.235 

% variance explained 29.385 15.966 

 Loadings Loadings 

Soil moisture 0.534 -0.065 

Organic matter 0.799 0.168 

P -0.452 0.232 

pH -0.858 -0.194 

K 0.777 -0.272 

Ca/Mg ratio 0.493 0.35 

Na -0.179 0.059 

Cation exchange capacity 0.647 -0.2 

S -0.27 0.489 

Ni 0.749 -0.233 

Zn 0.01 0.828 

Mn 0.554 0.413 

Fe 0.094 0.702 

Cu 0.045 0.477 

Notes:  Notes:  Principle components analysis for soil variables for the two Monardella’s.  
Eigenvalues, percent variance explained and component loadings are shown.  Significant 
loadings are listed in bold. 
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Table 11.  Leaf tissue analysis for the Monardellas.   

 
Notes:  Measurement units are mg/kg and values listed area as follows:  mean ± SE (range), 
n=21 for M. follettii and n=25 for M. stebbinsii.  P-values are based on two sample t-tests and 
significant values are listed in bold font. 
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Figure 5.  PCA of leaf tissue variables for the Monardellas. 

Notes:  The x-axis is PC 1 and the y-axis is PC 2.  Arrows are in order of the loadings (the closest 
to the plot being the strongest loading) and their direction (negative or positive).  M. stebbinsii = 
X; M. follettii = O  
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Table 12.  PCA of leaf tissue variables for the Monardellas.  
 PC 1 PC 2 

Eigenvalues 2.815 2.158 

% variance explained 25.593 19.622 

 Loadings Loadings 

K 0.493 0.069 

Ca/Mg ratio 0.117 0.604 

P 0.51 0.06 

Al -0.753 0.258 

B -0.426 0.482 

Cu 0.293 -0.392 

Fe -0.766 0.086 

Mn -0.19 0.806 

Zn 0.475 0.666 

Na 0.428 -0.074 

Ni 0.657 0.477 

Notes:  Notes:  Principle components analysis for leaf tissue variables for the two Monardella’s.  
Eigenvalues, percent variance explained and component loadings are shown.  Significant 
loadings are listed in bold. 
 

 

The elemental content of soil and tissue were significantly correlated for some of 

the elements in each of the two Monardellas as regression analysis came back 

significant.  For M. stebbinsii, positive correlations were found between soil and tissue 

content for K, Ni and Zn (Figure 6).  For M. follettii positive correlations were found 

between soil and tissue content of Ca/Mg ratio, K, Ni, and Mn while a negative 

correlation was found for Cu content (Figure 7). 
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 Figure 6.  Linear regression – Monardella stebbinsii. 

Notes:  Linear regression between soil and plant tissue concentrations for Monardella stebbinsii.  
A) K:  r2 = 0.194; P = 0.027; f-ratio = 5.542.  B) Ni:  r2 = 0.282; P = 0.006; f-ratio = 9.020.  C) Zn:  r2 = 
0.222; P = 0.017; f-ratio = 6.581. 
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Figure 7.  Linear regression – Monardella follettii.  

Notes:  Linear regression between soil and plant tissue concentrations for Monardella follettii A) 
K:  r2 = 0.287; P = 0.006; f-ratio = 9.27. B) Ni:  r2 = 0.22; P = 0.018; f-ratio = 6.48.  
C) Ca/Mg:  r2 = 0.245; P = 0.012; f-ratio = 7.45. D) Mn:  r2 = 0.241; P = 0.013; f-ratio = 7.30.   
 E) Cu:  r2 = 0.193; P = 0.028; f-ratio = 5.509 
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Seed germination, seedling growth and survival — M. stebbinsii and M. follettii 

had average germination rates of 74% (SE±0.04, range 40-95) and 62% (SE±0.03, range 

30-80), respectively (p=0.02).  In soil from M. follettii sites, M. stebbinsii sites and 

standard potting soil, M. stebbinsii had average germination rates of 74% (SE±0.08, 

range 40-85), 77% (SE±0.05, range 60-85) and 72% (SE±0.1, range 45-95), respectively, 

and in the same three soil types M. follettii had average germination rates of 64% 

(SE±0.05, range 50-75), 70% (SE±0.05, range 50-80) and 52% (SE±0.07, range 30-70), 

respectively (Table 13).  The average seed weight (Table 14) per individual seed was 0.67 

mg (SE±0.02, range 0.55-0.85) for M. stebbinsii and 0.95 mg (SE±0.06, range 0.7-1.55)  

for M. follettii (p<0.001).  

 M. follettii seedlings had 100% survival when planted in M. follettii soil, 77% 

survival when planted in potting soil and 0% survival when planted in M. stebbinsii soil 

(Table 15).  M. stebbinsii had 0% survival when planted in M. stebbinsii soil, 44% survival 

when planted in potting soil and 76% survival when planted in M. follettii soil (Table 15).  

Size measurements on both species in all three soil types showed that seedlings grown 

in potting soil and M. follettii soil were the largest and most robust while those grown  

M. stebbinsii soil were much smaller (Table 16).  
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Table 13.  Germination rates. 

 
Notes:  Percent germination for all populations of both Monardellas.  Numbers reported are in 
percent and represent groups of 20 seeds.  The respective soil types that seeds were germinated 
in are listed across the top. 
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Table 14.  Seed weight. 

 
Notes:  Seed weight for all populations of both Monardellas.  Seeds were weighed in groups of 
20.  The average for one seed was calculated and is reported below.  Three separate groups 
were weighed for each population.  The weight was compared between the two species and 
was significantly higher in M. follettii (p<0.001). 

 

 
Table 15.  Seedling survivorship. 

 
Notes:  Survivorship of seedlings in soil from M. follettii sites, M. stebbinsii sites and in standard 
potting soil is shown below.  The first row lists the source of the soil, the second row lists which 
species the seed came from, the third row lists the number of seedlings that were transplanted 
and the bottom row lists the percent of those seedlings that survived. 
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Table 16.  Size measurements for the Monardellas. 

 
Notes:  Results of size measurements for the two Monardellas.  The first column is the soil 
source (So) and the second column is the species (Sp).  In the first two columns, F = M. follettii, S 
= M. stebbinsii, and P = potting soil.  All measurements are taken in mm and values reported are 
as follows:  mean ± SE (range) with the exception of the M. follettii grown in M. stebbinsii soil 
where the sample size was only one individual.  The top set of seedlings were measured on 
October 28, 2010 and the bottom set on February 1, 2011. 
 

Breeding sytems — Results of the pollen exclosure bag experiment showed that 

both species are primarily outcrossers, with both taxa setting a significantly greater 

amount of seed in unbagged vs. bagged flower heads (Figure 8).  Results of the two 

sample t-test comparing bagged and unbagged heads for M. follettii showed p < 0.01 

and for M. stebbinsii p = 0.01.  When comparing seed set across species in unbagged 

flower heads, M. follettii had a rate of 77% seed set while M. stebbinsii had a rate of 

45% seed set      (p = 0.01).  Seed set across species in bagged flower heads was not 

significantly different (p=0.22). 
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Figure 8.  Percent seed set. 
Notes:  Mean percent seed set for bagged and unbagged specimens of the two Monardellas.  
Sample size was 24 plants for M. follettii and 22 plants for M. stebbinsii.  Error bars indicate 
standard error.   
 

Reproductive ecology — Over the course of the three days of observations M. 

stebbinsii had a total of 498 visitors (Figure 9) and M. follettii had a total of 393 (Figure 

10).  Shannon-Weiner diversity indices for M. stebbinsii and M. follettii were 4.33 and 

16.29, respectively.  M. stebbinsii had a total of nine different morphospecies as visitors 

and M. follettii had a total of 25.  Included in this is a category for “unknown” 

morphospecies (14% of visits for M. follettii and 7% of visits for M. stebbinsii), which 

could include some of the known insects listed on the graph since I was not able to 

identify the unknowns (Table 17).  Seventy-five percent of visits to M. stebbinsii flowers 

were from three small native bees in the families Apidae, Halictidae and Colletidae 

(Order: Hymenoptera).  Twenty-eight percent of insect visitors were shared between 
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the two taxa.  There was an average of 6 (SE±1.6, range 0-28) reproductive units per 

plant for M. stebbinsii and 44 (SE±21.7, range 0-530) for M. follettii (p = 0.04). 

Figure 9.  Pollinators for Monardella stebbinsii. 
Notes:  Each bar represents a different insect, UK stands for unknown pollinator, n=498.  
 

Figure 10.  Pollinators for Monardella follettii. 
Notes:  Each bar represents a different insect, UK stands for unknown pollinator, n=498. 
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Table 17.  Pollinators. 

Notes:  Total number of pollinators observed on the two Monardellas during peak flowering 
over the summer of 2010.  The first column lists the code shown in Figures 9 and 10, the second 
column contains the ID for the specimens if known and the last two columns list the percent 
that visitor represents out of the total number of visits for M. follettii and M. stebbinsii, 
respectively.  Pollinators that were shared between species are listed in bold.  The bottom five 
rows are unknown pollinators without specimens. 
 

Discussion — Above-ground ecology — When first visiting populations of the two 

Monardellas it is clear that they occupy very distinct habitats.  The most drastic and 

noticeable difference on first encounter is the steepness of their slopes.  In a recent 

Conservation Assessment on M. stebbinsii prepared for the USFS (Coppoletta and 
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Woolhouse, 2010), management recommendations for this taxon were to minimize 

monitoring as much as possible.  Due to the extreme steepness of the slopes, it is very 

difficult to monitor in a consistent manner and visiting the sites is potentially damaging 

to the plants through trampling and erosion, as it can be extremely difficult to find 

footing.  Overall, M. stebbinsii sites were much harsher than those of M. follettii, being 

steeper, hotter, and having less canopy cover, thus providing less duff.  Although light 

intensity measurements averaged out to be greater at M. follettii sites with the 

reflection of the large bare serpentine rocks, it felt more intense at M. stebbinsii sites.  It 

is possible that this measurement was influenced by different lighting at different times 

of day, as it was not taken in a consistent manner.   

Soils and soil-tissue relations — The results from the soil and tissue analysis 

demonstrate significant differences in the elemental content of the soil for the two 

Monardellas, which is most likely leading to the differences seen in ion accumulation for 

the two.  While it is possible that these two taxa have different ion uptake physiologies 

based on soil ionic content, the differences seen in ion accumulation may be genetically 

fixed.  Further examination is needed in a common garden setting with equal amounts 

of elements made available to each species in order to determine the nature of the 

physiological differences.  

Much work has been done on the Lasthenia californica complex where it has 

been shown that edaphic differences within the same serpentine outcrop have led to 

the partitioning of different races of the same species (Rajakaruna and Bohm, 1999; Yost 
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et al., 2012).  The soil analysis results for the two Monardellas are also pointing to 

cryptic heterogeneity across the serpentine landscape that is providing unique niche 

conditions that these species are keying in on.  In a study done in Eastern Australia, 

Batianoff and Singh (2001) found that serpentine outcrops with higher Ni content in the 

soil supported a greater number of endemic species when compared to sites with lower 

soil Ni content.  M. follettii grows on sites with greater Ni content in the soil and is also 

taking up greater amounts of Ni in its tissue than M. stebbinsii.  Further studies would 

be useful to shed light on the relationship between M. follettii, its associated species, 

and the high amounts of Ni found in the soil.   

In another study looking at the ecology of Polybotrya ferns across what appeared 

to be a homogeneous environment in the Amazon, the researchers found that even 

though the distributions of the ferns overlapped, they each occupied unique niches 

defined by soil texture, soil cation content and inundation level of the soil (Tuomisto, 

2006).  When designing conservation and management plans, it is critical to pay 

attention to these types of cryptic differences that may be found in the edaphic 

environment and would otherwise go unnoticed.  While both taxa are endemic to an 

ultramafic substrate, there are clearly some cryptic differences across their range 

contributing to their distribution.  

Seed germination, seedling growth and survival — While M. follettii appeared to 

be more reproductively fit than M. stebbinsii, due to greater seed set, more 

reproductive units and greater seed mass, M. stebbinsii had greater germination rates.  
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This points to more of a quality over quantity approach in M. stebbinsii, the rarer of the 

two taxa.  It is possible that due to the harsh and extreme conditions found at M. 

stebbinsii sites, it would be very difficult if not impossible for a small seedling to survive, 

and therefore, M. stebbinsii would be making a greater number of high quality seeds.  

This hypothesis is further supported by the fact that no seedling of either species 

survived when transplanted into soil from M. stebbinsii home sites in a common garden 

setting.  M. follettii sites are more nutrient rich and have higher soil moisture holding 

capacity than those of M. stebbinsii.  It is believed that the moisture level in the soil was 

the main contributing factor to seedling survival in the greenhouse experiment.  The 

pots containing M. follettii soil were visually moist whereas pots containing M. stebbinsii 

soil were completely dry.  It appears that M. stebbinsii has developed a strategy to 

create a greater amount of seedlings in the hopes that this would mean more survival of 

a greater number of individuals.   

These results are mostly inconsistent with a study done by Carlsen et al. (2002) 

on reproductive biology of an extremely rare California annual, Amsinckia grandiflora, in 

comparison to a common congener, A. tessellata.  In their study, seed set was greater in 

the more common of two taxa but the number of flowers per plant and seed mass were 

greater in the rare taxon which is contrary to what was found in my study.  Consistent 

results were not found in their germination trials and there was a lot of variation in the 

results (Carlsen et al., 2002).    
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 Breeding systems — Both Monardellas are primarily outcrossers.  This result is 

consistent with a study done by Espeland and Emam (2011) that looked at trends in 101 

rare species through a literature search and found habitat specialists with small 

geographic ranges were more likely to have an outcrossed breeding system.  Rare plants 

are known to be associated with high degrees of self-incompatibility which does not 

lead to large populations but can lead to stable population sizes for rare species (Kunin 

and Gaston, 1993).  Espeland and Emam (2011), point out that high rates of outcrossing 

help to protect habitat specialists with small geographic ranges from genetic drift, 

thereby maintaining as much genetic diversity as possible (Ellstrand and Elam, 1993).   

Being medium sized shrubs with many flowering stems, it makes sense that 

these Monardellas will need to be able to self and not be complete and obligate 

outcrossers.  Most insects go from flower to flower on the same plant before moving on 

to another one.  Spreading by rhizomes, there can be very large clumps of the same 

individual making it possible for an insect to spend its entire time at any given 

population, only visiting one plant.  In fact, it is possible that any given population could 

be composed of only one plant, although the size and extent of individuals has not yet 

been examined.  Considering seed set in bagged flower heads did not differ between 

species while unbagged seed set differed significantly, with higher seed set in M. follettii 

than in M. stebbinsii, pointing to more successful pollination for this taxon. 

Reproductive ecology — Pollinators play a critical role in the abundance and 

persistence of approximately 67% of flowering plants worldwide (Kearns and Inouye, 
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1997).  Monardella stebbinsii had a greater total number of insect visitors overall than 

did M. follettii (498 vs. 393), yet M. follettii had a greater diversity of insect visitors (25 

vs. 9 different morphospecies).  The pollination system for M. stebbinsii appeared to be 

more specialized, as 75% of the visitors were from three small (and similar looking to 

the untrained eye) bees in the familes Apidae, Halictidae, and Colletidae.  The behavior 

of the insects was different depending on which plant species was being visited.  The 

small bees visiting M. stebbinsii plants tended to dive into the base of the corolla, 

sometimes missing the anthers and stigmas completely, while the larger bodied insects 

that were more common at M. follettii plants would crawl across the top of the flower 

heads definitely making contact with the reproductive structures.   

Adaptation to new habitats has been known to bring about shifts in flowering 

times (Bomblies, 2010).  Typically, serpentine populations flower earlier than 

populations of the same species found on non-serpentine soils, most likely as a means 

for drought avoidance (Wright et al., 2006), the case for the two Monardellas seems to 

be slightly different.  M. stebbinsii, which is found at the harsher, drier sites, is in full 

flower in late July/early August while M. follettii is in full flower in June.  The difference 

in flowering times for the two Monardellas could have led to separation as distinct 

species or be keeping their separate gene pools intact.  Although possible hybrids 

between the two were seen at the top of Red Hill (Lat 40° 2' 17"N, Lon 121° 11' 22"W), 

this is the only area where the two grow in close sympatry and where cross pollination 

would be likely during the overlap in flowering times.  
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The differences in flowering times could also lead to differences in pollinators 

between the two species.  M. follettii is in flower earlier in the summer when most of 

the surrounding flowering plants are also in bloom helping to attract pollinators to the 

general area by putting on impressive floral displays.  M. stebbinsii  is in full flower very 

late in the season and almost no other plants are flowering in association when it is 

trying to attract pollinators.  While only 28% of pollinators were shared between the 

two taxa, it is possible that this is happening due to which pollinators are around at the 

time of flowering and not necessarily occurring based on preferential choice by the 

pollinators.  

Although the flowers of the two taxa are almost morphologically identical, it is 

important to pay attention to differences in pollinators because there may be unseen 

differences in the flowers taking place that affect pollinator preferences and may lead to 

reproductive isolation.  An example is given with two species of Pedicularis that grow 

sympatrically.  They have the same flower color and structure, but have different 

lengths for the beak of the corolla, which affects pollen delivery onto the pollinator.  It 

was discovered that these plants were pollinated by the same species of Bombus, but, 

the visitor gets pollen on different parts of its body depending on which species it visits, 

thereby preventing cross pollination (Sprague, 1962).  Pollinators represent one of the 

many niche components for most flowering plants and also play a key role in their 

reproductive fitness (Waser and Ollerton, 2006).     
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CHAPTER THREE 
INTRASPECIFIC VARIATION IN A RARE BODENVAG 

 

Introduction — Ecotypic differentiation occurs when a set of genetically distinct 

populations of a particular species are adapted to an identifiable habitat or set of 

environmental conditions (Gurevitch et al., 2002).  Some ecotypes have been shown to 

be just as well adapted as reproductively isolated serpentine endemics (Alexander et al., 

2007).  While ecotypes of a species can be locally adapted, the term local adaptation is 

in reference to a single population that shows increased fitness when grown at its home 

site.  Both ecotypic differentiation and local adaptation are a result of natural selection 

that occurs within a heterogeneous environment (Wright and Stanton, 2007; Wright, 

2007).   

There is a great deal of variation in morphology, physiology and reproductive 

biology exhibited by species in response to environmental heterogeneity.  Any given 

species cannot be considered out of the context of its environment (Bradshaw, 1965).  

In addition to ecotypic differentiation and local adaptation, species that vary on a site to 

site basis may also be showing a plastic response.  While it is quite likely that many 

species found across edaphic gradients may be differentiated into genetically distinct 

ecotypes (Kruckeberg, 1984) and not merely exhibiting plasticity, this is simply heresay 

without experimentation (Wright et al., 2006; Wright and Stanton, 2011).  

 From a plants perspective, the amount of obstacles found on physically and 

chemically harsh serpentine sites can be extremely overbearing.  The patchy distribution 
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of serpentine soils often allows for close proximity to non-serpentine populations thus 

perpetuating gene flow between edaphically distinct sites.  With all these obstacles in 

place, adaptation to serpentine has arisen on numerous occasions (Rajakaruna, 2004; 

Anacker et al., 2010).  

 Lewisia cantelovii (hereafter referred to as Lewisia or LECA) is what is known as 

a “bodenvag” (i.e., soil wanderer) because its populations are found growing both on 

and off serpentine (Kruckeberg, 1984).  During field surveys over the summer of 2009, I 

noticed that there was a distinct serpentinomorphism in the plants found at serpentine 

sites.  My objective for this study was to determine if these populations of Lewisia have 

formed edaphic ecotypes, or if they are merely exhibiting phenotypic plasticity in 

response to serpentine and non-serpentine substrates.    

Methods — Field study — Five serpentine (S) and five non-serpentine (NS) sites 

were chosen for this study.  The majority of the sites were located within Plumas 

National Forest with two sites in nearby Tahoe National Forest (Lat 39°33’45’’N, Lon 

120°33’49’’W).  Sites were located using a Trimble GeoXM containing shapefiles of USFS 

and CNDDB (California Natural Diversity Database, Department of Fish and Game, 

Sacramento, California) populations.   

 A stratified random sampling method was used to choose ten plants at each site.  

Plant functional trait measurements (Cornelissen et al., 2003) were taken at each plant 

and included diameter of basal rosette, height of tallest flower scape, number of leaves, 

number of flower scapes, number of reproductive units (fruits, flowers or buds), average 
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flower size (diameter), average spike length, average leaf width, and specific leaf area.  

All measurements were taken to the nearest 0.01mm.  Specific leaf area is the area of 

the leaf divided by its dry weight mass.  Averages were derived by randomly selecting 

three flowers, spikes, or leaves to measure on a given plant and averaging the three.  

Soil was collected from the rhizosphere of five different plants using a stainless 

steel hand trowel and totaling 200 g of soil per site.  Soil analysis was done in the same 

manner as described in Chapter 1 (p. 10).  Differences between substrates were 

analyzed using t-tests (Microsoft Excel 2007).  

Ibutton temperature loggers (Maxim©) were deployed at each site in a five cm 

piece of PVC pipe and attached with wire or string.  They were left at the site from June 

23-July 23, 2010.  The loggers were set to take a temperature reading every two hours 

over the month.  

Reciprocal transplant study — Approximately 2000 grams of rhizospheric field 

soil was collected from two serpentine and two non-serpentine sites and mixed 

together to make pooled serpentine and non-serpentine soil samples.  In each 

treatment, 20 seeds from three serpentine sites (from 10 different mothers) and 20 

seeds from three non-serpentine sites (from 10 different mothers) were sowed for 

germination (20x3 = 60 seeds representing three populations per soil treatment).  This 

process was repeated for the non-serpentine soil.  After being sown, all seeds were 

given a cold treatment in a growth chamber at 5°C for one month.  
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 Germinants were transplanted to five cm pots with the appropriate soil type.  

The first set was grown outside in San José and after discovering that they did not 

exhibit their normal growth form, the second set was grown in a growth chamber.  The 

seedlings in the growth chamber were kept at a temperature of 10°C at night and 24°C 

during the day and the temperature was increased by a few degrees every couple of 

weeks until 15°C at night and 31°C during the day were reached.  Trays containing 

seedlings were rotated in position in the growth chamber once every week, and both 

treatments were exposed to the same watering regime.  Seedlings were measured every 

two weeks for diameter of entire plant, length of longest leaf, height and number of 

leaves.  Percent purple leaf tissue in the plant was added as a measurement for the 

second (growth chamber) reciprocal transplant study.  All measurements were taken in 

mm using digital calipers.  Final growth measurements were compared in strains across 

and between substrates using two sample t-tests.  Reaction norm graphs were also 

plotted to see if they showed evidence for local adaptation.   

Results — Field study — Of all the functional traits measured in the field, 

diameter of basal rosette, number of leaves, height of plant, number of flower scapes, 

number of flowers, width, area and weight of dry leaves all differed significantly 

between substrates and were greater at non-serpentine sites (Table 18).  The first 

principle component for the PCA on functional traits explained 44% of the variance and 

was mainly influenced by (in order from most to least important) weight of dry leaves, 

diameter, area, height, width, scape number, flower number, leaf number and spike size 
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(Figure 11 and Table 19).  The second principle component explained 14% of the 

variance and was mainly influenced by (in order from most to least important) specific 

leaf area, flower size and leaf area (Figure 11 and Table 19).   

 
Table 18.  Functional traits. 

Notes:  Results of functional traits analysis for five serpentine and five non-serpentine sites for L. 
cantelovii.  Diameter, height, flower size, spike size, and leaf width are in mm, area is in mm2 and 
weight is in mg.  Specific leaf area (SLA) is the ratio of fresh leaf area/dry leaf mass.  Values listed 
are as follows: mean ± SE (range), n=50 (10 plants per five sites per substrate).  P-values are 
based on a two sample t-test with significant values listed in bold font. 
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Figure 11.  PCA for functional traits.   

Notes:  Shown in this PCA are the functional traits for serpentine and non-serpentine L. 
cantelovii populations (x-axis is PC 1 and y-axis is PC 2).  Arrows are in order of the loadings (the 
closest to the plot being the strongest loading) and their direction (negative or positive).  
Serpentine = X; Non-serpentine = O; n = 50.  
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Table 19.  PCA for functional traits. 
 PC 1 PC 2 

Eigenvalues 4.836 1.526 

% variance explained 43.967 13.873 

 Loadings Loadings 

Diameter 0.843 -0.270 

Leaf number 0.569 0.166 

Height 0.755 0.277 

Scape number 0.740 0.229 

Flower number 0.671 0.031 

Flower size -0.040 -0.563 

Spike size 0.514 0.253 

Width 0.745 -0.027 

Area 0.803 -0.470 

Weight 0.875 0.020 

SLA 0.046 -0.832 

   Notes:  Principle components analysis for functional trait variables for five serpentine and five 
non-serpentine L. cantelovii sites.  Eigenvalues, percent variance explained and component 
loadings are shown.  Significant loadings are listed in bold. 
 
 

Significant differences were found between substrates in P (S<NS), K (S<NS), Mg 

(S>NS), S (S<NS), cation exchange capacity (S>NS), and pH (S>NS) (Table 20).  The first 

principle component for the PCA on soil variables explained 39% of the variance and 

was mainly influenced by (in order from most to least important) pH, Mg, cation 

exchange capacity, P, Fe, Mn, Cu, organic matter, Ca, Zn, K and Ca/Mg ratio (Figure 12 

and Table 21).  The second principle component explained 30% of the variance and was 



 

63 
 

mainly influenced by (in order from most to least important) Na, Ca/Mg ratio, K, 

Moisture, Ni, Fe, Ca, Mn, organic matter, Cu, S and Mg (Figure 12 and Table 21).  

 

Table 20.  Soil analysis for Lewisia cantelovii. 

 
Notes:  Soil analysis results for samples collected from five serpentine and five non-serpentine              
sites for L. cantelovii.  Values displayed for organic matter (OM) are in percent, elemental 
concentrations are measured in µg g -1 dry soil (ppm), and cation exchange capacity (CEC) was 
measured in meq 100 g -1.  Values listed are as follows: mean ± SE (range), n=5.  P-values are 
based on a two sample t-test with significant values listed in bold font.  
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Figure 12.  PCA of soil variables for Lewisia cantelovii.   

Notes:  Principle components analysis of soil variables for serpentine and non-serpentine                   
L. cantelovii populations (x-axis is PC 1 and y-axis is PC 2).  Arrows are in order of the loadings 
(the closest to the plot being the strongest loading) and their direction (negative or positive).  
Serpentine = X; Non-serpentine = O; n = 5.  
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Table 21.  PCA of soil variables for Lewisia cantelovii.   
 PC 1 PC 2 

Eigenvalues 6.212 4.732 

% variance explained 38.825 29.575 

 Loadings Loadings 

Organic matter 0.536 0.415 

P 0.773 0.130 

pH -0.987 0.013 

K 0.416 0.818 

Ca -0.522 0.512 

Mg  -0.918 -0.314 

Ca/Mg ratio 0.338 0.827 

Na -0.022 0.957 

Cation exchange capacity -0.876 0.103 

S 0.799 -0.343 

Ni -0.286 -0.670 

Zn 0.466 0.274 

Mn 0.615 -0.489 

Fe 0.700 -0.616 

Cu 0.605 -0.364 

Moisture -0.095 -0.714 

Notes:  Principle components analysis for soil variables for five serpentine and five non-
serpentine L. cantelovii sites.  Eigenvalues, percent variance explained and component loadings 
are shown.  Significant loadings are shown in bold font. 
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Percent cover of boulders was significantly higher at non-serpentine sites and 

percent purple leaf tissue (per plant) was significantly higher at serpentine sites (Table 

22).  A native rust, Uromyces unitus Pk. (Pucciniaceae), was found in greater abundance 

on L. cantelovii at serpentine sites but was not found in significantly higher amounts 

(two sample t-test: n=50, P>0.05) (Table 22).   

The dominant species found at serpentine sites were Pinus jeffreyi Grev. and Balf. 

(Jeffrey Pine; Pinaceae), Quercus durata Jeps. (Leather Oak; Fagaceae), Calocedrus 

decurrens (Torr.) Florin (Inscence Cedar; Cupressaceae), Avena sp. (Oat; Poaceae), and 

Epilobium minutum Lehm. (Willow Herb; Onagraceae).  Non-dominants found at 

serpentine sites were Holodiscus microphyllus Rydb. (Rock Spiraea; Rosaceae), Aspidotis 

densa (Brack.) Lellinger (Indian’s Dream; Pteridaceae), Gilia capitata Sims (Bluehead 

Gilia; Polemoniaceae), Sedum albomarginatum R. T. Clausen (Feather River Stonecrop; 

Crassulaceae) Penstemon deustus Lindl. (Scabland Penstemon; Plantaginaceae), 

Eriogonum ursinum S. Watson (Bear Valley Buckwheat; Polygonaceae), Umbellularia 

californica (Hook. and Arn.) Nutt. (California Bay; Lauraceae), Pseudotsuga menziesii 

(Mirb.) Franco (Douglas-Fir; Pinaceae), Streptanthus tortuosus Kellogg (Mountain 

Jewelflower; Brassicaceae) and various bryophytes.  
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Table 22.  Habitat variables for Lewisia cantelovii. 

 
Notes:  Habitat variables for five serpentine and five non-serpentine sites for L. cantelovii.                   
Values displayed for canopy cover are in percent and aspect is in degrees.  Values listed                          
are as follows: mean ± SE (range).  P-values are based on a two sample t-test with significant 
values are listed in bold.  Sample size for percent rust and percent purple leaf tissue is n = 50 
and for all other variables n = 5. 

 

Moss and leafy liverworts were the dominant plants found at non-serpentine 

sites.  In addition L. cantelovii, Heuchera micrantha Lindl. (Alum Root; Saxifragaceae), 

Pinus ponderosa Douglas ex Lawson and C. Lawson (Ponderosa Pine; Pinaceae) and 

Pseudotsuga menziesii were also dominants at some sites.  Moss collections were made 

at one of the non-serpentine sites and identified by Dr. Jim Shevock (California Acadamy 

of Sciences).  The species collected were Homalothecium pinnatifidum (Sull. and Lesq.) 

E. Lawton (Pinnatifid Homalothecium Moss; Brachytheciaceae), Polytrichum juniperinum 

Hedw. (Juniper Polytrichum Moss; Polytrichaceae), Grimmia leibergii Grev. (Grimmia Dry 

Rock Moss; Grimmiaceae), Dicranum howellii Renauld and Cardot (Howell’s Dicranum 

Moss; Dicranaceae) and the leafy liverwort Scapania undulate (L.) Dumort. 
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(Scapaniaceae).  Other associated species found at non-serpentine sites were Quercus 

chrysolepis Liebm. (Oak; Fagaceae), Acer macrophyllum Pursh (Big-Leaf Maple; 

Sapindaceae), Streptanthus tortuosus, Sedum spathulifolium Hook. (Broadleaf Stonecrop; 

Crassulaceae), Polystichum sp. and Ribes nevadense Kellogg (Mountain Pink Currant; 

Grossulariaceae).  

On average (all times of day across the entire month) serpentine sites were 4˚C 

hotter than non-serpentine sites (Figure 13).  Since two Ibuttons were lost down steep 

ravines or stolen, this analysis only includes eight sites instead of ten. 

 

 

Figure 13.  Temperature. 
Notes:  Average temperature from June23-July 23, 2010 for serpentine and non-serpentine L. 
cantelovii sites.  Error bars indicate standard error.  
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Reciprocal transplant study — For the first set of germination, in non-serpentine 

soil serpentine strains had a germination rate of 38% and non-serpentine strains had a 

germination rate of 28% (two sample t-test: n=3, P=0.3).  In serpentine soil, serpentine 

strains had a germination rate of 62% and non-serpentine strains had a germination rate 

of 24% (two sample t-test: n=3, P=0.06).  Survival rates for transplanted seedlings were 

76% for serpentine strains in serpentine soil, 92% non-serpentine strains in serpentine 

soil, 95% serpentine strains in non-serpentine soil and  93% for non-serpentine strains in 

non-serpentine soil.  Results from the final measurements of the first reciprocal 

transplant study can be seen in Table 23a with results of the t-tests shown in Table 23b.   

 For the second set of germination trials, serpentine strains had a germination 

rate of 26%, in non-serpentine soil and non-serpentine strains had a germination rate of 

41% (two sample t-test: n=6, P=0.07).  In serpentine soil, serpentine strains had a 

germination rate of 33% and non-serpentine strains had a germination rate of 45% (two 

sample t-test: n=6, P=0.2).  Results from the final measurements of the second 

reciprocal transplant can be seen in Table 24a with results of the t-tests shown in Table 

24b.  The second reciprocal transplant showed local adaptation in regards to all 

measurements whereas the first reciprocal transplant only showed local adaptation in 

regards to width (Figures 14 and 15).  
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Table 23a.  Size Measurements – Lewisia cantelovii (1). 

Notes:  Size measurement results for first L. cantelovii reciprocal transplant study (3/2/2010-
3/3/2011).  All measurements are taken in mm and values reported are as follows: mean ± SE 
(range).  Variables measured include width of basal rosette, height of plant, length of longest 
leaf, and total number of leaves per plant. 
 

 

Table 23b.  Comparison of Size Measurements (1). 

 
Notes:  P-values reported as a result of two sample t-tests run in order to compare L. cantelovii 
size measurements (see Table 23a) in serpentine and non-serpentine strains within the same 
substrate as well as serpentine and non-serpentine strains across substrates. Significant p-values 
are highlighted in bold. 
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Table 24a.  Size Measurements – Lewisia cantelovii (2). 

 
Notes:  Size measurement results for first L. cantelovii reciprocal transplant study (10/27/2010-
3/22/2011).  All measurements are taken in mm and values reported are as follows: mean ± SE 
(range).  Variables measured include width of basal rosette, height of plant, length of longest 
leaf, total number of leaves per plant, and percent of purple leaf tissue per plant.  

 
 
 
 

Table 24b.  Comparison of Size Measurements (2). 

Notes:  P-values reported as a result of two sample t-tests run in order to compare L. cantelovii 
size measurements (see Table 24a) in serpentine and non-serpentine strains within the same 
substrate as well as serpentine and non-serpentine strains across substrates. Significant p-values 
are highlighted in bold. 
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Figure 14.  Reaction Norms (1)  
Notes:  Average width, height and length for both sets of L. cantelovii reciprocal transplants.  
Averages are from the final set of measurements.  Experiments ran from 3/2/2010-3/3/2011 for 
the first set and 10/27/2010-3/22/2011 for the second set.  
            = non-serpentine                             = serpentine strain 
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Figure 15.  Reaction Norms (2) 
Notes:  Average number of leaves and percent purple leaf tissue for both sets of L. cantelovii 
reciprocal transplants.  Percent purple leaf tissue was not measured in the first reciprocal 
transplant experiment.  Averages are from the final set of measurements.  Experiments ran from 
3/2/2010-3/3/2011 for the first set and 10/27/2010-3/22/2011 for the second set. 
             = non-serpentine strain                   = serpentine strain 
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 Discussion — Field Study — Consistent with other studies that have looked at 

serpentine and non-serpentine populations of the same species (Kruckeberg, 1951; 

Kruckeberg, 1984; O’Dell and Rajakaruna, 2011), the L. cantelovii plants found growing 

on non-serpentine soils were significantly larger than those growing on serpentine soils.  

These edaphically distinct populations showed clear separation in PCA space in regards 

to functional traits of the plants and ion content of the soil.  Above-ground habitat 

variables were not significantly different between serpentine and non-serpentine sites.  

This species therefore has specific above-ground habitat requirements yet is able to 

adapt to a range of edaphic conditions.   

 When looking at speciation from an ecological context, local adaptation can play 

a key role (Givnish, 2010).  While some plants may be able to exhibit phenotypic 

plasticity (Bradshaw, 1965; Valadares et al., 2007) and are found on a wide range of 

habitats and edaphic conditions, some adapt to these new conditions and this variation 

can spawn speciation events (Givnish, 2010).  Serpentine endemics have been known to 

evolve from more common plants growing on normal soils (Baldwin, 2005) and 

morphological differences such as flower color have been witnessed between 

serpentine and non-serpentine populations that could lead to speciation events (Kay et 

al., 2011).  Further studies are needed to look for genetic differences in edaphically and 

morphologically distinct populations of Lewisia cantelovii.    

Reciprocal transplant study — In the reciprocal transplant study, non-serpentine 

strains are showing early evidence for local adaptation to non-serpentine soil.  This early 
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evidence can be seen in the width of the leaves, height of the plant, length and number 

of leaves.  Overall, when strains from normal soil were transplanted into serpentine soil, 

their level of fitness decreases.  In order to say conclusively if local adaptation is 

occurring, I need a measure of reproductive fitness.  After the seedlings have been 

allowed to grow for a few more years, I hope to get reproductive data to look for 

differences between these populations.  It is possible that with more time, this slow 

growing perennial may show evidence for local adaptation to serpentine soil as well.   
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CHAPTER FOUR 

 

Discussion — In an ideal world, ample funding and priority would be given to the 

study and observation of rare and common species alike.  Unfortunately, this is simply 

not the case.  There are over 7000 plant species in California, and with over 2000 (~30%) 

of them found nowhere else on Earth (Safford et al., 2005), California is a biodiversity 

hotspot (Myers et al., 2000).  Being that rare plants contribute a great deal to Earth’s 

biodiversity and are by their nature at a higher risk of extinction than common plants, it 

is critical to study them to be informed for best management practices.  

Having an understanding of genetic diversity is critically important for the 

conservation of rare plants (Ellstrand and Elam, 1993).  While a monograph on the 

genus Monardella (Epling, 1925), as well as a recent paper looking at nomenclature 

changes (Elvin and Sanders, 2009) have been published, there is no published literature 

on genetics within this genus, and very little work has been done on other aspects of the 

biology and ecology of the taxa.  Based on morphological characteristics, M. follettii and 

M. stebbinsii are not believed to be closely related (Elvin and Sanders, 2009), but their 

genetic relationship may tell a different story.  It is not known how diverse the 

populations of these Monardella’s are; however, current research in Dr. Kathleen Kay’s 

Lab (University of California, Santa Cruz) will better inform us about the genetic 

structure within each species as well as the relationships between the two.   
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Since there are three other common Monardellas that grow in the area (M. 

sheltonii, M. odoratissima, M. lanceolata), hybridization is frequent throughout this 

genus (Baldwin et al., 2012), and hybrids between M. follettii and M. sheltonii are 

commonly observed, it is important to have an understanding of how many known 

populations are pure species.  In order to understand the nature and direction of 

evolution for these two taxa as well as their relatedness, it is critical to have a phylogeny 

done for the genus.  

Since edaphically distinct populations of L. cantelovii have proven to be 

morphologically distinct and are showing evidence for local adaptation, there could be 

important implications for conservation of this already rare taxon if edaphically distinct 

populations also proved to be genetically unique.  Future studies on L. cantelovii should 

include a genetic component to investigate any genetic differentiation between 

edaphically distinct populations.  

Rare plants are more likely to be found in “unique” habitats than in “normal” 

habitats (Kruckeberg and Rabinowitz, 1985) and serpentine outcrops are a unique 

habitat for plants found throughout the world (Brooks, 1987; Roberts and Proctor, 

1992).  Due to the patchy distribution of many rare serpentine endemic plants, there is a 

need for more small preserves and other means of conservation than is necessary for 

rare plants growing on normal soils (Thorne et al., 2011).  Considering the difficulty in 

prioritizing conservation for plant species as a whole (Schemske et al., 1994), this matter 

is complicated even further for serpentine endemics (Thorne et al., 2011).   
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It is ideal to choose large serpentine patches vs. small, and those that contain 

more endemic species vs. less for conservation priorities (Harrison, 1999).  In a study by 

Harrison et al. (2008), the authors used a database of rare species within California’s 

serpentine flora to test the favorable-environment hypothesis.  Their findings showed 

that favorable environments support higher numbers of rare and endemic species and 

that these species are more likely to be found in areas where the specialized habitat is 

extensive.  The belt of ultramafics known as the Feather River Complex is one of the 

largest and most continuous areas of serpentine in the Sierra Nevada (Alexander et al., 

2007).  It is found in the Northern-most portion of the Sierra range, and has higher 

amounts of rainfall than the rest of the range, thereby providing a more favorable 

environment.  This area is therefore a high priority for conservation as it hosts many 

rare and endemic species, provides a large area of serpentine, is a relatively favorable 

environment, and does not experience great development or land conversion pressures 

(Thorne et al., 2011).  

In conserving rare plant species, focusing on groups of species that could benefit 

from similar conservation actions is the most efficient way to get the most out of 

conservation efforts (Vellak et al., 2008).  Systematic conservation planning based on 

prioritizing areas that have high biodiversity is a must (Thorne et al., 2011).  

Approximately 80 plants out of 2000 in Plumas National Forest are rare and about 35 of 

these are serpentine endemics (Hanson, 1999; Clifton, 2005).  The Feather River Basin 

and Plumas County contain 95 and 66 rare taxa, respectively (Shevock, 1996).  Plumas 
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National Forest is in the Northern most portion of the Sierra Nevada just South of the 

Cascade Range.  Shevock (1996), points out that the reason for the large number of rare 

taxa in this area is due to its close proximity to the Cascade Range.  While still 

supporting rare and endemic species from the Sierra Nevada, many rare species from 

the Cascades and the Klamath Mountains are found in their most southerly populations 

in the Feather River Basin (Shevock, 1996).  Species populations on the edge of their 

geographic range are often characterized by a reduction in genetic diversity (Freeland et 

al., 2010).  This factor along with the large amount of biodiversity found in Plumas 

National Forest, make it a high priority and of important conservation value (Thorne et 

al., 2011).      

Human-caused rapid climate change will be altering ecosystems throughout the 

world for years to come (Loarie et al., 2009; Damschen et al., 2011).  We may be 

presented with situations in the near future where preemptive restoration or managed 

relocation will be necessary for rare plants since they do not have the ability to get up 

and move (Richardson et al., 2009).  While climate models cannot inform us of the exact 

direction species will need to move (Ackerly et al., 2010), we know that the case for 

serpentine plants and those found on other harsh or unique substrates will be different 

(Loarie et al., 2008).  Plant species that are endemic to serpentine face challenges 

similar to species found on mountaintop areas or islands (Benito et al., 2011).  If 

changes in climate force them to move north or south over great distances, they are 
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faced with vast areas of unsuitable habitat that they will need to cross in order to get 

there (Damschen et al., 2011). 

Land managers are charged with the task of managing for rare species yet in 

order to do so it is critical to have a basic understanding of the biology and ecology of 

these little known species.  Considering the large amount of rare species that exist 

throughout the world (not to mention those that may still be unknown to science), 

knowledge of these species is scarce.  While shifting the focus of conservation plans 

from a single species approach to that which protects biodiversity and ecosystem 

services in general is critical, the more knowledge we can gain on individual species the 

more pieces of the puzzle we have to put together as we work towards conserving our 

precious resources and biodiversity worldwide.   
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