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ABSTRACT
PID-TUNING OF PLANTS WITH TIME DELAY USING ROOT LOCUS
by Greg Baker
This thesis research uses closed-loop pole analysis to study the dynangiorbeha
of proportional-integral-derivative (PID) controlled feedback systems imith delay. A
conventional tool for drawing root loci, the MATLAB function rlocus() cannot draw root
loci for systems with time delay, and so another numerical method was devised to
examine the appearance and behavior of root loci in systems with time delay.
Approximating the transfer function of time delay can lead to a mismatchdretwe
a predicted and actual response. Such a mismatch is avoided with the numerical method
developed here. The method looks at the angle and magnitude conditions of the closed-
loop characteristic equation to identify the true positions of closed-loop poles, the
associated compensation gains, and the gain that makes a time-delagmdbegstme
marginally stable. Predictions for system response made with the numestbald are
verified with a mathematical analysis and cross-checked against knayis.res
This research generates tuning coefficients for proportional-intdgjjatgntrol
of a first-order plant with time delay and PID control of a second-order pldntime
delay. The research has applications to industrial processes, such asttegsygerdrol

loops.
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1.0 Introduction

In this study, a numerical method is developed for examining the paths of closed-
loop polesyroot loci, in feedback systems with time delay. The paths of closed-loop
poles are rarely tracked in these systems because of a mathemdiocdtydgfosed by
delay. The numerical method developed here not only averts this mathematicaéobstac
but enables recommendations to be made for PID-tuning coefficientsemsysith
time delay, which is also known as latency, transport delay, and dead time. pier a
dead-time process, whatever happens at the input is repeated at thé totpuinits
later” (Deshpande & Ash, 1983, p. 10).

In this research a novel application of root locus analysis is developed for
producing tuning coefficients for proportional-integral (P1) and proportionadpiake
derivative (PID) compensators that give optimal transient responsesfeoriter and
second-order plants with time delay. “The time response of a control systeists of
two parts, the transient response and the steady-state response. By tra@sredanw
that which goes from the initial state to the final state” (Ogata, 2002, p. 220)s In thi
study, optimal transient response means rapid, and roughly equivalent, settisgftien
unit-step inputs in set-point change or load disturbance.

Frequency response analysis assesses closed-loop system stabuigi open-
loop Bode and Nyquist plots (Stefani, Shahian, Savant, & Hostetter, 2002, p. 461), which
convey the relationship of a plant's output at steady-state, in terms atudagmnd

phase, to a sinusoidal input. Closed-loop pole analysis, on the other hand, characterizes



the nature of closed-loop dynamics by tracking closed-loop pole locatiorsysiem
parameter, typically compensation gain, is varied. The decay rate and oscillati
frequency of each component of transient response, not easily predictablienfeem t
delay Bode or Nyquist plots, are known once the location of the associated pole, or pair
of poles, in thes-plane is identified. The relationship between a pole's location ist the

plane and associated transient response is depicted in Figure C1.

The transfer function of time deldy.,4, (s) is an exponential function of the

complex variables, and delayd (Ogata, 2002, p. 379).

Gdelay (s) = e™s? 1)

The traditional symbol for angkis used because time delay introduces a phase angle

difference between input and output sinusoids.

The exponential transfer function, as we will see in Appendix G, leads to a system
with time delay having a characteristic equation that is transcehdae&ning it can
only be expressed by a function with an infinite number of terms. Since the conventiona
tool for drawing root loci, the MATLAB function rlocus(), cannot accommodate time-

delay systems, another numerical technique is developed here (Appendix E).

Root loci for systems with time delay can be constructed with sevetiabdsg

for example, graphically (Ogata, 2002, p. 379), by approximating time delay (Vajta,



2000; Ogata, 2002), or by solving sets of simultaneous non-linear equations (Appendix
E). Time-delay approximations, however, can lead to significant differentvesdre
predicted and actual responses. Such mismatches, as well as possibldigs(aled

Figure 5; Silva, Datta, & Battacharyya, 2001), are avoided by drawinedtag root

loci with the straightforward and robust numerical technique developed in this steidy
predictions of closed-loop dynamic behavior and recommendations for PID coesficie
are cross-checked against known results, MATLAB and SIMULINK simulations

(Chapter 2), and mathematical derivations (Appendix G).

The Problems With Time Delay

Though a few systems actually benefit from the addition of time delay (Sipahi
Niculescu, Abdallah, & Michiels, 2011), time delay poses two difficulties todhea
of simple plants of interest in this study: 1) it is inherently destabilizird) 2ait is

difficult to accommodate mathematically.

Time delay's destabilizing influence is illustrated by comparing thgubof a
feedback system where the plant is pure time delay to a feedback systentheldaat
is first order. The open-loop response of a first-order plant is shown in Figure 1, where
the plant time constant is 10 s. After a unit-step input, it settles to within 2¢abf fi

value after four time constants (40 s.)
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Figure 1. Open-Loop Response of First-Order Plant WithoutTime Delay

SIMULIMEK simulation of open-loop output: a unit-step input is applied to a first
-order plant with a time constant of 10 5.
Mate plant output settles to within 2% of final value in four time constants.

The first-order plant can be accelerated with feedback. With a compensation g
of one, as shown in Figure 2, its output settles within 2% of final steady-sta¢eival
only 3.55 s. In Chapter 2 (Figures 10 and 11), it will be shown that the first-order plant’s

output is always accelerated by increasing compensation gain.

-. . ( i
w_ 1 # ’ Tt T I mMmM ™M ™M ™™
"D ¥ 1 a o8 : : : :
Unit- Compensaton  First-Order Plant : : : -
Step Gain Time Constant 0 : M i i
Input 1M s 0 10 20 30 40 50

Time (s)

Figure 2. Closed-Loop Reponse of a First-Order Plant Without Time Delay

SIMULINK simulation of closed-loop output: the first-order plant is placed in
a feedback loop under proportional compensation.

Mote the first-order plant is accelerated by feedback. Its output settlesto
within 2% of final value in one tenth the time required of the open-loop plant
in Figure 1.



The open-loop response of a pure time-delay plant, on the other hand, is shown in

Figure 3, where time delay is one second.

T

Lnit- Time Delay ' ' ' '

Step s N I S S

Input 0 2 4 6 8 10
Time (s)

Figure 3. Open-Loop Response of a Pure Time-Delay Plant

SIMULINK simulation of open-loop output: a unit-step input is applied
to a plant that is purely a time delay of one second.
Mote the plant output reaches final value in exactly one second.

When a feedback loop is comprised of a pure time-delay plant compensated at the
same gain used for the first-order-plant in Figure 2, the system oscdladenever
reaches steady state, as shown in Figure 4. Root loci drawn by the numeoittiinalg
(shown in Appendix G, Figure G1) are consistent with this time-series respbnsg
show reducing compensation gain below one stabilizes the system, thoughaimaith r
oscillatory, and increasing compensation gain above one destabilizes &me. sisci
cross the imaginary axis at a gain of one and at vertical positiorstr. These
positions correspond with angular frequeneies +m radians/sec, which exactly
match the oscillating output, shown in Figure 4. Angular frequenegeasured
in radians/sec, is 2w times frequency in time, which is measured uycles/sec or

Hz. Therefore, since = 2rf, for an angular frequency af = = the associated



frequency in time ig =

w radians[sec

= icycles/sec = é Hz. A frequency of 1/2 Hz

2n radians/cyle

corresponds with a period of 2 s, and clearly the period of oscillation in Figure 4 is 2

seconds.

L[

Unit-
Step
Input

4
|2

L J
Output

Comensation Time
Gain Delay
18 0

0 2 4 6 B 10
Time (s)

Figure 4. Closed-Loop Response of a Pure Time-Delay Plant

SIMULINK simulation of closed-loop output the one 5, pure time-delay plant is placed
in a feedback loop with the same compensation gain as used for the first-order plant

in Figure 2.

Mate: the time-delay plant is marginally stable, caontinuously ascilates, and never settles
atfinal value,



The four simulations above show how time delay can have a destabilizing
influence by isolating a pure first-order plant, and then a pure time delayiplant
feedback loop. We saw the simple first-order plant is accelerated by feetbathe

pure time-delay plant oscillates and can become unstable.

The difficulty that time delay poses to the mathematical analysis of feledba
systems comes from its exponential transfer funatiofl, which leads to transcendental
characteristic equations (explained in detail in Appendix G). Thys,, (s) is usually

approximated by a rational polynomial.

A comparison of root loci drawn by the numerical method in Figure 5
demonstrates the variations in predictions of system response that can bedexpente
using time-delay approximations. First-order Taylor and second-order Radé (s
Appendix F; Ogata, 2002, p. 383) time-delay approximations are used to produce these
root loci, which depict the closed-loop dynamics of compensated first-ordercnmtise

order plants with time delay.
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Figure 5. Comparison of Approximated Time Delay
and True Time-Delay Root Loci

Comparison of root loci drawn using three types of time-delay approximations, Taylar, first-
arder, and second-order Pade, to true time-delay root loci for three separate feedback
systems: 1) proportionally-compensated first-order plant, 2) proportionally-compensated
second-order plant, and 3) a PID-compensated second-order plant.

Mote the variation between the predictions of closed-loop dynamics by the root loci

based on time-delay approximations and true time-delay root loci. For example, the Taylor
approximation predicts the first-order plant is always unstable because closed-loop poles
are in the right half-plane for all gains. The Pade approximation is a closer match of true
behavior for the first-order plant but overestimates marginal gain to be 21, the true time-
delay loci cross the imaginary axis at a gain of 16.

The compensation gain that puts closed-loop poles on the imaginary axis,
marginal gain, places the feedback system in an oscillating state. Bredaftmarginal
gain by the three styles of time-delay approximations shown in Figurerfyclagy.

The second-order Padé approximation is probably the most accurate, but still gives



optimistic predictions of marginal gain for the first-order plant and thedeibpensated

second-order plant.

A side effect of the numerical method is that loci appear wider than they wrctuall
are in some regions, and they become invisible in other regions. Loci path widths at a
given location are easily thinned or broadened, however, by adjusting a paiarttete

numerical algorithm, the decision criterion, as explained in Chapter 2 and Appendix E

Another way to draw time-delay root loci would be to seek roots of the closed-
loop characteristic equation by solving simultaneous non-linear equationsarideal
imaginary parts of the characteristic equation would be the simultanacatioeg of
interest (Appendix E). The MATLAB function fsolve(), which requires an ingigdss
at the solution(s), could be used to find simultaneous solutions. Each call to fsolve()
would return a value of that satisfies the closed-loop characteristic equation, and which
would be a point on the loci. To completely define all branches comprising the loci
throughout a region of interest in te@lane, fsolve() must be called reiteratively with a
variety of initial guesses at the solution to cover the region, and a vareiyngiensation
gains to show response as a function of gain; some gaps might still be visible in.the loci
The approach used in this paper offers a simpler implementation while idenaflyin
points on the loci within a region of interest. The weakness of the numerical tecisnique

that the widths of the loci can vary.



PID Compensation

10

The PID compensator is a true workhorse of feedback control. “The majority of

control systems in the world are operated by PID controllers” (Silva,,[Xatta

Battacharyya, 2002, p. 241). A typical application, control of a first-order pligntime

delay, is shown in Figure 6.

350

Emor % Power —

Set Point
Input

=

Controller Time
Delay

. > P OB

g+1

Degrees F

First-order
Plant

>

Figure 6. Typical Feedback Loop With Time Delay

Process
Qutput

Block diagram of a typical feedback loop with a reference (set point) input. A
first-order plant is shown for illustration purposes only, the plant may be

second order, or higher, in nature.

Mote: the plant transfer funchion is stated as a function of the complex variable

5. In the s-domain transfer functions of neighboring blocks are multiplied
together for the combined transfer function.

The simple proportional compensator, used in Figures 1 through 4, will mostly

result in a static or steady-state error for plants of interest in thig stuch as

temperature-control loops (Astrom & Hagglund, 1995, p. 64; Ogata, 2002, p. 281). To

eliminate steady-state error and accommodate higher-order plants,angriex Pl and

PID compensators must be used. As described in detail in Chapter 3, the iftegral (

PID eliminates steady-state error, and the derivative (D) impromesiént response for

high-ordered plants.
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The PID compensator’s transfer function is a summation of three terms;

proportional, integral, and derivative, as shown in Figure 7.

Proportional Term
= Kp
Integral Term
Error g Power
— » Ki T
Derivative Term
= Ko s

Figure 7. Constituents of PID Block

The output (power) of the PID block in Figure & is the sum of
proportional, integral, and derivative control terms or actions.
Mote: setting the coefficients of the three terms (Kp, Ki, and Kd) is
equivalent to tuning the controller.

The proportional term produces control action equal to the product of process

error, anccompensation gaih,,.

k, (Proportional Term)

The integral term produces control action equal to the continuous summation of

process error times, amtegral gaink;. Thus integral action can be expressed as a

function of the complex variabke
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— (Integral Term)

v |&F

The derivative term produces control action equal to the rate of change of the
process times, derivative coefficienk;. As will be seen in Chapter 3, the derivative
stops ringing from occurring in a system composed of a proportionally-compensated

second-order plant. The derivative term can be expressed as a funetion of

kys (Derivative Term)

The complete PID transfer functidh,, (s) is the sum of all three terms (Silva et

al., 2002).
ki
GPID(S) = kp +?+ de, (PID)

(2)

The pole and two zeros of a PID compensator are easily identified by reagrangi

the three terms dfp;, (s) over a common denominator.

. 2 .
GPID(S) = kp‘l‘%‘l‘kds = M (3)

N



13

We sedipp (s) has a singl@olethat lies at the origin, whege= 0. The roots of

its quadratic numerator
kas? + ks +k; =0 (4)
are the two zeros @y, (s).

Whenk,; = 0in Gp;p(s) there is no derivative action, and the compensator has

proportional and integral terms only. The transfer function of the PI compensator

kpS+kL'

Gpi(s) = (5)

N

has a pole at the origin, like the PID compensator, and a single zero.
Settingk; = k; = 0 results in a proportional-only compensator, its transfer

function is justgaink,, and it has no poles or zeros.

GP—only (s) = kp (6)

Review of PID-Tuning Approachesfor Systems With Time Delay

“The process of selecting controller parameters to meet given perfamanc
specifications is known as controller tuning” (Ogata, 2002, p. 682). A variety of
theoretical approaches have been used to produce PID-tuning formulasstoedtr

plant with time delay.

A heuristic time-domain analysis (Hang, Astrom, & Ho, 1991) used set-point
weighting to improve Ziegler and Nichols' (1942) original PID-tuning foesuvhich

were also determined empirically. “Repeated optimizations using acdtdes Padé
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approximation of time delay produced tuning formulas for discrete values of rechali
dead time" (Zhuang & Atherton, 1993, p.217). Barnes, Wang, and Cluett (1993) used
open-loop frequency response to design PID controllers by finding the leastssfjua
between the desired Nyquist curve and the actual curve. In reviews offdrenparce

and robustness of both PI- and PID-tuning formulas, tuning algorithms optimized for set-
point change response were found to have a gain margin of around 6 dB, and those that
optimized for load disturbance had margins of around 3.5 dB (Ho, Hang, & Zhou, 1995;

Ho, Gan, Tay, & Ang, 1996).

PID-tuning formulas were derived by identifying closed-loop pole positions on
the imaginary axis, yielding the system’s ultimate gain and period. rigaare said to
suffer, however, for processes where time delay dominates “due to the exafterarey
closed-loop poles near the imaginary axis, where the effect of zero adgitioa b
derivative term is insignificant to change the response characteri®fiash, Hu, and
Gosine, 2001, p.255). In a general review of time-delay systems, Richard (2003)

discusses finite dimensional models and robust H2 apdrihlethods.

PID-Tuning Approach for Systems With Time Delay Used in This Study

One outcome of this research is to recommend PI- and PID-tuning coefficients
based on closed-loop pole analysis. PI coefficients for first-order plantsiand Pl
coefficients for second-order plants are given for six values of normdiime delay
(NTD), the ratio of time delay to plant time constant. A two-step approacbdsas

generate the tuning coefficients for each plant type and NTD.
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The first step is to select the most desirable locations for compensa®tazée.
The rationale for selection of location is discussed in Chapter 3, in the sectionsndn Pl a
PID-tuning of plants with time delay, where the effect of compensator @eabdns on
the form of loci is investigated, with three test points for the zeros. The locaksmtien
is also discussed in Appendix J, where an alternative mathematical methadl is use
show how zero locations affect break-away and reentry points. The ultimate goal
zero-location selection criteria is to achieve the greatest net movenwosed-loop

poles to the left.

The second step is to draw the root loci and select the most desirable locations for
the dominant closed-loop poles to lie on the loci. These locations determine

compensation gaik,.

The strategy of placing the compensator zero and choosing the point on the loci
where closed-loop poles move farthest left seeks the fastest possibiclomseransient
response (see the depiction of the relationship of pole position to the nature of transient

response time Figure C1).

Under feedback, open-loop zeros attidosed-loop poles, so compensator zeros
will be placed as far to the left as possible. In Chapter 3, it will be shown, usmg ti
delay limits, how far to the left a compensator zero can be placed before thge plant’
closed-loop poles no longer move toward it. Due to time delay, closed-loop poles get to

the compensator zeros first. If compensator zeros are too far to the lefgnuant
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integrator poles move into the right half of $aplane, which destabilizes the system,

rather than moving to the left half of teglane, stabilizing and accelerating it.

Pl and PID compensators can be represented by mapping their poles and zeros in
thes-plane as shown in Figure 8. For more details on mathematically identifying

compensator poles and zeros, see Appendix D.

Fole-Zzro Map Fole-Zero Map
R
3
F o 0% i o}o 0 X
i
E
Real &xiz Real Ao
Fl Compensator FID Compensator
Ti=10= Ti=10s, Td=1=s
Pl zero at s = 1/Ti - 0.01 PID zeros at = = -0.11, 085
Pl pole at the ongin, s = 0.0 PID pole at the origin, s = 0.0

Figure 8. Pole-Zero Maps Showing Pl and PID Compensators in the S-Plane

S-plane pole-zero plots of typical Pl and PID compensators produced by MATLAB.

Pl controllers have one pole and one zero, PID controllers have one pole and two
ZBI0S.

Mote the same value of Ti is used in both Pl and PID controllers above. The Pl zero
is ats =-1Ti, PID zeros are near s =-1/Ti and -1/Td since, as described in Appendix
D, the ratio of Tito Td is relatively large.
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2.0 validation of Numerical Algorithm

In this chapter, the ability of the numerical method developed here to draw root
loci for systems with time delay, is tested by comparing its output to known riesults

two simple plants without time delay.

Proportional Compensation of First- and Second-Order Plants Without Time Delay
A block diagram of a proportionally-compensated first-order plant without time

delay is shown in Figure 9.

G.F'.'c-.:‘{s}
1 ]
> - > Y(S)
Unit- Controller  First-order Plant Output
Step
Input

Figure 9. Block Diagram Showing Proportional Compensation of a First-Order
Plant Without Time Delay

Mote: the closed-loop transfer function, Yi(s)/ X{s)=Kp /(s + p + Kp), is rational.

Positions of this system's poles, closed-loop poles, are expressed asoa foincti
k,, below. Closed-loop pole paths are then plotted using MATLAB and the numerical
method. Root-loci diagrams produced by the numerical method must match those drawn

by MATLAB.

The open-loop transfer functidh,;(s) of the first-order system without time

delay in Figure 9 is:
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Gor(S) = Gepty () Gprane(s) = —= (7)

S+p

Distefano, Stuberrud, and Williams (1995, p. 156) describe the canonical form of

a system'’s closed-loop transfer functi@n(s) as:

Y(s) _ Geerr (5)Gpiant (S)
X(S) 1+ GCtlr (S)GPlant(S)

Ga(s) =

(8)
Thus, for the system in Figure 9, the closed-loop transfer function is

kP
bl =+,
p

The closed-loop characteristic equation of the system in Figure 9 is
1+ Gear(s)Gprane(s) = 0 9)

Values ofs that satisfy the closed-loop characteristic equation are its roots, thkeythea
denominator of the closed-loop transfer function equal to zero so they are closed-loop

poles.
The characteristic equation of the system in Figure 9 is

stp+k,=0 (20)
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If the plant is time invariant, the open-loop pples constant, so the position of

the closed-loop pole is simple to express as a functi@p.of
s=-k,—p (11)

If the plant in Figure 9 is second-order, for example, having pokes-at

—0.1 ands = —1.0, the open-loop transfer function is:

kp _ kp
(s+p)(s+py) (s+0.1)(s+1.0)

Gor(S) = Gy (8)Gprane(s) =

(12)
The closed-loop transfer function is:
Gyls) = Geoir (5)Gprant (5) _ ky
14 Gerr (S)Gpiant(s)  s2+ (p1 + p1)s + pip2 + kp
(13)

Closed-loop pole locations for this second-order system are the roots of its

characteristic equation:
s?+ (1 +p1)s + (Pip2+kp) =0
(14)

Roots of this second-order equation, as well as higher-order equations, can be
found with the MATLAB functionroots(), which takes polynomial coefficients as input

and returns roots
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>>roots([1 pl+p2 pl*p2+Kp))

The MATLAB functionrlocus() takes the uncompensated open-loop system
transfer function as input, as described by polynomial coefficients, plots tiemmosf
closed-loop poles, root loci, &g varies from zero to infinity It does this by iteratively
varyingk,, and at each value finding the roots of the closed-loop characteristic equation,

then plotting them.

Root loci for the closed-loop system shown in Figure 9, which contains a first-

order plant with a pole at= —0.1, would be drawn by issuing the MATLAB command:
>> rlocus([1], [1 O.1])

If the closed-loop system contains a second-order plant, for example with poles at

s = —0.1 ands = —1.0, root loci would be drawn with the MATLAB command:
>>rlocus([1], [1 1.1 O.1)])

These two calls to rlocus() generated the two root-loci plots in Figure 10.



21

Root Locus Root Loci
T - - 1 - . 1
E c c ; |
2 el : 2
£ j <
E ] e —— s Rt E Of-nnnnns et e 4
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15 -1 05 0 0.5 1 1.5 -1.8 -1 0.5 0 0.5
Real Axis Real Axis
First-order plant without time delay Second-order plant without time delay
Plant pole at s = -0.1 Plant Poles ats =-1.0, 2 =0.1
{Plant Time Constant = 10=s (Plant Time Constants = 15, 1058}

Figure 10. Root Loci of First- and Second-Order Plants Without Time Delay
Drawn by MATLAB

Root loci, drawn by the MATLAB function rlocus(), for a first-order and second-order
plant depict the movement of closed-loop poles as compensator gain Kp is varied.
Open-loop poles are marked by an x.

Mote: first-order plant response accelerates and remains stable as gain increases.
Second-order plant response accelerates until closed-loop poles collide with each
other, and then break away from the real axis, theirimaginary components

increase with gain which means the system rings at higher and higher frequencies as
gain increases.

To validate the numerical algorithm, which will be used mostly for systeths wi
time delay, the root loci that it draws for systems without time delayo@iiompared to

the root loci drawn by MATLAB in Figure 10.

Loci drawn by the numerical algorithm are shown in Figure 11. Note they differ
from the MATLAB plots in that they are shaded and the widths of loci vary. Théamatc
between the depictions of closed-loop pole trajectories in Figures 10 and 11, however, is

close enough to validate the tool. Further details are discussed in Appendix E.
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sigma sigma
First-order plant without time delay Second-order plant without time delay
Plant pole at s = -0.1 Plant poles at = = 01.0, -0.1
Time Constant = 10=s Time Constants = 18, 10s

Figure 11. Root Loci of First- and Second-Order Plants Without Time Delay
Drawn by the Numerical Algorithm

Maovement of closed-loop poles as compensation gain Kp (value indicated
by color-coding) varies from 0 to 50. Open-loop poles are marked by an X.
Mote: these figures serve to validate the numerical method because they
match the root loci drawn by MATLAB in Figure 10, showing a first-order plant
is accelerated by increasing gain; but a second-order plant can only be
accelerated to the point the two closed-loop poles collide, at which point it
starts to ring.

Systems with time delay have transcendental closed-loop characesjisiitons,
so the rules of root locus construction need to be modified (Ogata, 2002, p. 380). The
MATLAB function rlocus() cannot draw root loci for such systems because their
characteristic equations are transcendental (described in Appendix E). Aopitberfor
drawing time-delay root loci would be to use the MATLAB function fsolve()ciwHinds

roots of non-linear equations. In addition to a description of the non-linear equation it
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requires an initial guess at the solution as input. Each point in a dense grid of points
covering a region of interest in the s-plane would need to be input, and for a widg variet

of gains. This method could still leave gaps in the loci.

The method used in this paper, however, is favored for its simplicity and
robustness. It analyzes the angle and magnitude conditions of the closed-loop
characteristic equation, and is equally effective whether the equation is nbpody

form or transcendental.

The first step is to evaluate the angle condition of the characteristicayuadr

the system in Figure 9, the characteristic equation is
1+ kpGPlant(S) =0

This equation is a function of the complex variabt® each side of the equation has a
magnitude and phase angle. After moving the one to the right-hand side the phase angle

component of each side is expressed

Angle[k,Gpign: ()] = Angle[—1] = 180°(1 + 21) 1=0,12,-

(15)

Closed-loop pole positions are identified by compufingle[G ¢t (5)Gpian: (S)]
at each point on a grid that spans a region of interest mplame. Locations where the
angle condition is satisfied to within a specific criteriorgle[Gpign: (s)] = £180° +

Decision Criterion are marked as being on the loci, though their proximity to the actual
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loci depends on the decision criterion. Locations may be right on or just veryaltbse

root locus.

Compensation gains at the pole locations are computed from the magnitude
condition which comes from taking the magnitude of each side of the characteristi

equation, for the system in Figure 9 this gives

|kpGPlant(5)| = |_1| =1
Compensation gain at each pole location is then

1

k [
Gpiant (s)

p:

and is conveyed through color coding in the plots.

For this study, the decision criterion remains constant throughout any given plot

but varies from plot to plot as appropriate, to keep loci as thin as possible.

The reason loci widths vary within a given plot is because the rate of change of
Angle[Gcur(s)Gpian: (s)] is a function ok, yet the decision criterion remains constant.
As a result, some points that are not actual roots look like they are roots beegugpet t

color coded.

Figure 10 (drawn by MATLAB) and Figure 11 (drawn by the numerical method
developed in this paper) are essentially equivalent depictions of closed-ltemp sys
transient response, and so they serve as partial validation of the numercad.nigoth

depictions show the first-order plant’s return to steady state after setraimgput is
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accelerated with feedback, simply by increasing compensatiork gaiAs k,, increases
from zero to infinity, the single closed-loop pole in the system follows a plgrétmight
path from the open-loop pole positisr= —0.1 to its final destinatios = —oo, (Figure

C1 depicts the relationship between a pole's position, and its resulting ingsgease,
with ans-plane map of impulse response versus pole location throughout a region

surrounding the origin).

The second-order plant’s return to steady state after a transient input, dmethe ot
hand, is accelerated to a certain point by increasing compensatidy, ghirt then the
system starts to ring K, increases past that point, as shown in Figures 10 and 11. The
plot of the second-order plant in both figures shows two open-loop poles that lie on the
real axis. Ask, increases, they approach each other and collide; after colliding the poles
depart the real axis in opposite directions. Up to the point when both poles collide,
increasing gain accelerates the system. Beyond that point, incrgasingill not

accelerate the system, and merely leads to rirgjieger higher frequencies.
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3.0 Results
In this chapter, the numerical technique will draw root loci for systems with t
delay, and then produce PI- and PID-tuning recommendations for first- and sedend-
plants with time delay. The method of drawing root loci will be demonstrated on

feedback systems without time delay, and then time delay will be brought into the loop.

Pl-tuning coefficients will be stated for a first-order plant withetidelay, and
PID-tuning coefficients will be stated for a second-order plant with telay, for six

values of normalized time delay (NTD), the ratio of time delay to plant¢onstant.

Proportional Compensation of a First-Order Plant With Time Delay
Next, the numerical method draws root loci for the time-delayed systemureFig

12, a proportionally-compensated first-order plant with time delay.

1 r )
k - ]
o Pl e

Unit- Controller First-order  Time Delay Output
Step Plant
Input

Figure 12 Block Diagram Showing Proportional Compensation
of a First-Order Plant With Time Delay

Plant pole is at s =-p (plant time constant = 1/p), time delay = theta,
normalized time delay NTD = (p)theta).

Maote: the closed-loop transfer function,

Y¥(s)/X(s) = (Kp exp(-5 theta)) / (s + p + Kp exp(-5 theta)), is transcendental.

Root loci of this system are depicted at two magnification levels in Figure 1

Note the two highlighted locations on the loci, they are complex conjugates and
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correspond with a compensation gijn = 4.8. These pole locations are°48om the
real axis and, in a purely second-order system, would correlate with andampi
coefficient{ = 0.7, meaning, during recovery from a transient input, the overshoot of the

final value is expected to be 5% (Ogata, 1970, p. 238).

Gain Kp
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10 . . 16
JE— 2 sigma = -0.84 14
omega = 0.85 -
5 . Kp = 4.80 “12
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o
o
]
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@
{efawo) se Adeubewn
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5 zigma = -0.24
omega = -0.85 ™~ 4

—— 5] Kp=4.80
-10 2
. - 4 4 i i J n

0 5 0 B3 2 41 o
real axis (zigma) real axis (=igma)

Zoom-in View

Figure 13. Root Loci of a First-Order Plant With Time Delay

Root loci, drawn by the numerical method developed in this paper, for a first-
arder plant with a time constant of ten seconds, and one second of time delay.
MTD =1/10=0.1. Movement of closed-loop poles as compensation gain Kp
increases from zero to 17, as indicated by color-coding. Open-loop plant pole
marked with an X,

Mote: two loci, due to the presence of time delay, run roughly parallel to the real
axis and approach horizontal asymptotes separated verically by a distance of
(2 pi Mtime delay). These true time-delay root loci are what the time-delay
approximation root loci (Figure 5) try to match. Itis also interesting to note the
difference between the root loci above and root loci for the same plant without
time delay (Figure 11).

By comparing Figure 13 to Figures 10 and 11, we see the difference between the

closed-loop dynamics of a first-order plant with time delay and a firgrgudnt without
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time delay. The loci in Figure 13 are consistent with the assertion, proven in Appendix
G, that time delay introduces an infinite set of loci to the system. The three loci
trajectories shown in Figure 13 are members of that infinite set. Two dingegoles

due to time delay define loci that run from left to right, roughly parallel lmiitsy away
from the real axis. A third pole due to delay forms a locus with the plant pole. e tim
delay pole starts from = —oo and travels to the right along the real axis as gain
increases, it eventually collides with the plant pole, which moves left froopéts-loop
position. For this system, as shown in Appendix G (Equation G12), the compensation
gaink,, associated with a closed-loop pole crossing the imaginary axis is nearly

proportional to the pole's distance from the real axis

k,, =1+ (wT)? G12

A system is marginally stable when a closed-loop pole crosses the inyaapisaand no
other poles are in the right-half side of thplane. Thus, according to the equation
above, in a first-order system with time delay closed-loop poles that aestdoshe real

axis are dominant.

If the system is purely second order without time delay, applying the gain that
places closed-loop poles at the positions highlighted in Figure 13 would result in a 5%
overshoot of the final value after a transient input (Distefano et al., 1995, p. 98).
However, even though the plant is really first order with time delay, weseslishortly
SIMULINK simulations (Figure 16) show its behavior mimics a higher-ordantpl

without time delay. Based on this observation, recommendations for compensation gain,
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stated in Appendix H for a first-order plant with time delay, are produced by ptiténg

dominant closed-loop poles at these locations.

All tuning recommendations put forth in this paper are evaluated by measuring
the overshoot of final value produced, as well as the time required for tlesptocsettle
within 2% of final value, 2% settling time, after unit-step changes in set paribad
disturbance. As shown in Figure 14, the load disturbanicéroduced immediately

downstream of the compensator.

Input: Unit-Step
Load Disturbance

Input: Unit-Step
Set Point Change

E—a
L O] L ol o[
s+p

Compensator First-order  Time Delay COutput
Plant

Figure 14. Block Diagram Showing Feedback Loop With Set-
Point and Load-Disturbance Inputs

Mote: We provide PID-tuning recommendations that seek to optimize
2% settling time after unit-step changes in set point or load
disturbance. By optimize we mean rapid and roughly equivalent
settling times after set point or load change with minimal overshoot.

Three separate compensation gains, associated with the three highligbéed c
loop pole positions in Figure 15, are used for simulating system output. The three
highlighted points correspond with compensation gairis, 6 3.3,4.9,and11.9. In a

purely second-order system, poles at the angular positions, with respect tgithe ori



shown in Figure 15, would correlate with damping coefficients ©f1.0, 0.707, and

nearly 0.0, respectively (Distefano et al., 1995, p. 98).

omega

3 25 2 45 1 05 0O

sigma

Figure 15. Root Loci, With Three Highlighted Test Points, for a First-Order
Plant With Time Delay

Root loci drawn by the numeric algorithm: proportional compensation of a first-order
plant with time delay. Planttime constant=10s (open-loop plant pole ats =-0.1),
time delay=15 MNTD =15 /105 =0.1. Compensation gain Kpis shown as Z.
Cpen-loop plant pole is marked with . .

Maotea closed-loop pole due to time-delay ariginates from the far left extreme of the real
axis, then collides with the open-loop plant pole which maoves left as gain increases.
They both depart the real axis after colliding and move into the right half of the s-plane.

30
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The three SIMULINK simulations in Figure 16 show system response after unit-
step changes in set point and load disturbance for the three compensation gaeeassoc
with the highlighted pole locations in Figure 15. The time-series responsgine B6
suggests the dynamic behavior of a first-order plant with time delay issimiihe
dynamic behavior of a higher-order plant without time delay. At low gainsighame
ringing, at medium gains there is some ringing, and at high gains theeatg @f
ringing. Note, in this system, the final steady-state value is not guatdate®tch set
point, however, system output happens to reach the desired value because, after the unit-
step load disturbance, the input to the plant is exactly the desired output, so once the

control output goes to zero the plant output will equal the desired value.
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Figure 16. 5imu

lation of System Output for Highlighted Test Points in Loci

Three simulations of closed-loop output, for the system containing a
proportionally-compensated first-order plant with time delay (NTD = 0.1) depicted
in Figures 14 and 15, after a unit-step change in set point and load disturbance.
The three values used for compensation are associated with the three
highlighted closed-loop pole positions in Figure 15.

Maote steady-state error decreases with gain and, as predicted by root loci
produced by the numerical method in Figure 15, the system starts to ring. Such
dynamic behavior is similar to that of a second-order plant without time delay.
Lociin Figure 15 are similar to loci for second-order plant without time delay in
Figure 12 since two poles collide and then depart the real axis, except with time
-delay loci the poles ultimately move into the right half-plane.

Test Point 1k,, = 3.3. Closed-loop pole positions are on the real axis and have

no imaginary component. As expected, the system's output is free of oscillations.

Test Point 2k,, = 4.9. Closed-loop pole positions a4&° from the real axis and

would correspond with 5% overshoot in a purely second-order system. Actual overshoot

of final steady-state value is about 5%.

Test Point 3k,, = 12. Closed-loop pole positions are close to the imaginary axis.

The system is stable, but it is near marginal stability.
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Recommendations for compensation dgjnfor control of a first-order plant with
time delay, are tabulated in Appendix H for seven values of normalized time delay
(NTD) covering the rangé < NTD < 0.5. System performance, as measured by 2%
settling time after a unit-step change in set point or load disturbancéingéum the
recommended gains is also tabulated. Overshoot, verified through SIMULINK
simulations, are within 5%. Recommendations are based on root-loci diagrams, like the

one shown in Figure 15, created for each value of NTD.

Proportional-Integral (Pl) Compensation of a First-Order Plant Without Time
Delay
In the previous example, where a first-order plant is proportionally compeénsat

steady-state error is apparent (see Figure 16). Steady-stateagritoe eliminated,
however, if a factor o%, anintegrator, exists in the open-loop transfer function (Ogata,

2002, p. 847).

When integral control actioéi is added to a proportional compensator a
proportional-integral (Pl) compensator is created. Its transfer furgtids) is the sum

of proportional and integral terms:

GPI(S) = kp + % = M (16)

S

The pole ofGp;c¢-(s) lies at the origirs = 0, its zero lies at = — .
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Compensation gaik, is common to both proportional and integral terms when

the integral term is expressedsfqég,whereTi is integral time (Astrom & Hagglund, 1988,

p. 4):

1
kp (S+T_i)

N

_ kp _
Grr(s) =y +22 = (17)

The zero oftp,(s) is then independent &, and lies at = — Tl This form of

4

Gp;(s) simplifies our analysis because the zero location is determined byl& sing
parametef’;, and values of proportional galy are read directly from the root locus

diagram and its associated closed-loop pole position immediately iddntifi

Proportional-Integral (Pl) Tuning Strategy With and Without Time Delay

The strategy for tuning plants with time delay is now introduced and applied to
plants both with and without time delay. Since a Pl compensator’s pole must lie at the
origin of thes-plane, but its zero can be placed anywhere on the real axis at the discretion
of the designer, the compensator is tuned by first placing its zero, then drawatitagr,
and finally choosing compensation gainso closed-loop poles are at the most desirable

location. This sequence will now be described.
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Placement of Pl zero. In determining the best place to put the Pl zero, we consider
two rules restricting movement of closed-loop poles irsthkane:
o Under feedback, as compensation gain increases from zero to infinity, “the
root locus branches start from the open-loop poles and terminate at zeros”
(Ogata, 2002, p. 352). Zeros remain fixed in place.
. “If the total number of real poles and real zeros to the right of a test point

on the real axis is odd, then that point is on a locus” (Ogata, 2002, p. 352).

To meet the goal of accelerating the plant beyond its open-loop response, by
pulling open-loop poles to the left, the Pl zero is placed to the left of the plant pole, as
shown in Figure 17. In this configuration the two portions of the real axis that will
contain loci, according to the second rule stated above, lie between the two open-loop
poles and to the left of the PI zero. It will be shown that only in systems withraaut ti
delay can open-loop plant and integrator poles be pulled to the left of the Pl zero,
regardless of how far to the left the PID zero is placed. In such systemgrtransi

response can always be accelerated simply by increasing compenaation g
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Figure 17. Pole-Zero Map of a First-Order Plant Without Time Delay
and Pl Compensator

First-order plant time constant = 10 seconds, open-loop plant pole at s =-0.1.
Pl coefficient Ti=1 second, Plzero at s =-1.0.
Mote: a Pl compensator confributes one pole and ane zero to the system.
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Drawing root loci. Root loci are next drawn by the numerical algorithm for the
open-loop system without time delay depicted in Figure 17. Loci for this systéem a
shown in Figure 18 where, &g increases from 0 to 70, the two open-loop poles
approach each other on the real axis and collide. Both poles then depart thes raadl axi
head left to reenter the real axis on the left side of the Pl zero. The nuralgyacdahm'’s
drawing agrees with well-known behavior and shows the general shape of locntbat ca

expected for this type of system, regardless of how far to the left tredPikzplaced.
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Figure 18. Simulations of System Qutput for Three Test Points on the Root Loci

SIMULIME simulations of system output
after unit-step changes in set point and
load disturbance. The three Pl
compensators producing system output
are defined by the three highlighted
closed-loop pole positions.

Maote the times required for the
closed-loop process to settle within 2% of
final value are less than one tenth the time
afthe open-loop plant.

Root loci drawn by the numerical algorithm depict
closed-loop dynamics of a Pl-compensated first-
arder plant without time delay. Planttime constant =
10 seconds (open-loop plant pole ats =-0.1), time
delay =1 second, NTD =1 second / 10 seconds = 0.1,
Compensation gain Kp is shown as £.

Mate all highlighted closed-loop pole positions are at
least 10 times as far from the origin as the open-loop
plant pole.

Three SIMULINK simulations show system output for three different Pl
compensators, wheflg = 1 second. Three compensation gaiks,= 18, 38, and51,
complete the design of the three PI controllers, and are associateldentitinete closed-
loop pole locations highlighted in Figure 18. The simulations show the closed-loop

system returns rapidly to steady state after unit-step changetspoist or load
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disturbance and two percent settling times are much shorter than in open-loop. Such
performance is consistent with the fact that closed-loop poles are rgidaved the left

of the open-loop plant pole.

Choosing compensation gain. Once loci are drawn, the compensation gain that
results in the most desirable closed-loop pole locations, in terms of systenmpeder
can be chosen. For example, to favor a heavily-damped response closed-loop poles
should be close to or on the real axis. To favor less damping, which in some cases leads
to faster response (such as in a purely second-order system), closed-loghpoleéde

off the real axis, but no more than°4fsom the real axis.

Proportional-Integral (PI) Compensation of a First-Order Plant With Time Delay

When time delay is introduced to the feedback system previously discussed, a PI-
compensated first-order plant, the compensator’'s zero can no longer be piacedran
along the real axis and still pull open-loop plant and integrator poles over to #isléeft
Instead, if the Pl zero is placed too far to the left of the origin, a closed-loop pdte due
time delay gets to it first. Plant and integrator poles are forced to healderrigtt-half

plane.

Root loci produced by the numerical tool are drawn at two different levels of scale
in Figure 19, using three test points for the Pl zero. The three test poirdsades |
relatively far to the left{ = —0.5), just barely to the lefts(= —0.235), and to the right
(s = —0.1) of the left-most part of the region that allows open-loop plant and integrator

poles to reenter the real axis.
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Figure 19. Root Loci for Three Test Points of the P| Compensator Zero

Root loci drawn by the numerical method depict Pl compensation of a first-order
plant with time delay for three test points of the Pl zero. Planttime constant = 10
seconds (open-loop pole at s =-0.1), time delay =1 second, NTD =1/10=0.1.
Compensation gain is shown as £in captions, open-loop poles are marked by X.
Mote in Figure b) the Pl zero is slightly to the left of the region where loci would re
-enter the real axis. Since the dominant closed-loop poles are farthest left when
the zero is placed as shown in Figure b), this position is used to produce the
tuning coefficient recommendations in Table 1.

40
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The connection between the three highlighted closed-loop pole positions in Figure
19, which define three different Pl compensators, and associated time respdahses of
system, is made in Figure 20. System output after unit-step changes in sengdoaida

disturbance is simulated for each controller.

Kp=4.5. zero at s = -0.235 +f) Unit-step
Ti= & seconds : load disturbance
11}--t4 Kp=5.0 zeroat 5 =-0.125 -~~~ & SELELIILLIED .
Ti= 44 =econds ]
Kp=4.0 zeroat s =-0.125
- Ti= 4.4 zeconds
09} -4----eennenn-e — T -
Unit-step : ;
set-point change? H
T - Sesemssesssssanas deesssmasmsssnnan -
0 50 100 150
1.05 Kp=4.5, zero at s = -0.235 .
Ti= & =seconds -
- Kp = 5.0, zero at & = -0.125 :
w Ti= 4.4 seconds ;
w 4
; Kp=4.0, zero at3=-ll12%\
-3 1F-H T|=4:45&|:|:|nds et
w 1 H
= . i
~ : :
ngﬁ i H
0 50 100 150

Figure 20. Simulations of System Output for Three Pl-Zero Test Locations

Three SIMULINK simulations of system output, using the three Pl-compensation gains
associated with the closed-loop pole positions highlighted in Figure 19, after unit-step
changes in set point and load disturbance. Planttime constant = 10 seconds, time
delay =1 second, NTD =0.1.

Maote, of the choices above, the combination of the zero location s =-0.235 and
compensation gain value Kp = 4.5 that yields the shortest 2% settling time (4.3
secaonds) after a load disturbance also results in the most overshoaot of the final

value after a set-point change.
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This study found that closed-loop poles move farthest to the left when the PI
compensator zero is placed slightly to the left of the location that allow® lceenter
the real axis (see Figure 19b). As measured by 2% settling time, ihigazsdtion gives
the fastest recovery after a load disturbance (see Figure 20). Dungmeto steady
state after a set-point change, however, there is too much overshoot. Overshoot of set
point can be eliminated, however, with a technique that leaves load-disturbspoase
unaltered, as shown in Figure 21 where system output is simulated for the same
compensators used in Figure 20, but each compensator is modified to implement this
overshoot reduction method.

The overshoot-reduction technique used here linearly decreases the nawfl rat
integration as the distance between set point and process value grows. Effective
integration rate drops to zero when the process is separated from sélypmiet

proportional band = kj,.
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Figure 21. Simulations of System Qutput for Three Pl-Zero Test Locations
With Overshoot Reduction Method Applied

SIMULIMK simulations of system output for the same closed-loop
systems simulated and shown in Figure 20, however, here overshoot

inhibition is applied.

Mote: Comparison of these simulations to Figure 20 shows overshoot of
set point is eliminated without affecting load disturbance response.
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Proportional-Integral (Pl) Coefficientsfor a First-Order Plant With Time Delay
Recommendations for Pl-tuning parameter &gtandT;, are given in Table 1 for

six values of NTD; each set of coefficients is generated for a givén Mdm a root-

locus plot similar in form to the one shown in Figure 19b. The design goal is to move

closed-loop poles as far to the left of the Pl zero as possible.
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Table 1

Recommended PI-Tuning Coefficients for a First-Order Plant with Time Delay

NTD Recommendation Result Recommendation Result Result
Pl-Zero Position Equivalent Ti k, 2% Settling Time Unit- 2% Settling Time Unit-
(Multiples of Step Change in Set  Step Change in Load
Open-Loop Plant (% of Open-Loop Point Disturbance
Pole Position) Plant Time
Constant) (Multiples of Open- (Multiples of Open-
Loop Plant Time Loop Plant Time
Constant) Constant)
0.05 45 22.2 10.0 0.15 0.4
0.10 2.75 36.4 5.0 0.8 0.8
0.20 2.15 46.5 25 15 15
0.30 2..00 50.0 18 2.0 19
0.40 1.65 60.6 13 3.0 3.0
0.50 1.50 66.6 10 4.1 4.1

These recommendations meet the design goal of séiling times after unit-step changes in set tpail
load disturbance that are roughly equivalent wivenRl compensator is modified to eliminate overslodo
set point as described in the text. Note shosettling times occur with smallest normalized tidegay,
NTD.
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Proportional-Integral-Derivative (PID) Compensation of a Second-Order Plant
Without Time Delay

A closed-loop feedback system, comprising a second-order plant without time
delay, will ring or oscillate at high gairss previously discussed and depicted with root
loci in Figures 10 and 11. Ringing can be eliminated, however, by adding derivative
action to the compensator, which adds another zero to the system (see Chapter 1: PID
Compensation and Appendix D).

Derivative action allows higher gains to be used on a second-order plant without
time delay because it suppresses ringing at high gains, as illdgiyatiee root loci in
Figure 22 where two closed-loop poles depart the real axis but reconnect witteiteti
of the PID double zero. Loci will reconnect with the real axis to the left of the

compensator double zero, regardless of how far to the left the double zero is placed.
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Figure 22. 5-Plane Map of a PID Compensator and Second-Order Plant
Without Time Delay, and Resulting Root Loci

Mote: the PID double zero pulls plant and integrator poles left to re-enter the real axis to

the left of the double zero.

PID tuning recommendations will put both PID zeros at the same location,

making a double zero because this maximizes their ability to pull closed-locpt@oie

left.
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Proportional-Integral-Derivative (PID) Compensation of a Second-Order Plant
With Time Delay

“When one or two time constants dominate (are much larger than the rest), as is
common in many processes, all the smaller time constants work together to priauce a
that very much resembles pure dead time” (Deshpande & Ash, 1981, p. 13). Such a
process can be described by a tiwaeameter double-pole second-order plant model and

time delay (Astrom & Hagglund, 1995, p. 19):

— L —s6
G(s) = e (18)

Recommendations for PID-tuning coefficients will be based on this plant model.
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Proportional-Integral-Derivative (Pl D) Coefficientsfor a Second-Order Plant With
Time Delay

Recommendations for PID-tuning coefficients are based on root-loci diagrams
drawn by the numerical tool, which are similar in form to those used for R}ersator
design (Figure 19), and SIMULINK simulations for verification. Figure 23 dephe
dynamic behavior of a second-order plant, modeled by a double pote a0.10, with
a two-second time delay. The plant is controlled by a PID compensator with a doubl
zero ats = —0.13. The double zero is slightly to the left of the region which allows
closed-loop poles to reenter the real axis. After colliding and departingahaxis,
open-loop plant and integrator poles move to the left, roughly parallel to theigeaka
gain continues to increase, before moving away from the real axis and bauk tiosva
right-half plane. As was the case for PI-tuning of a first-order pléhttimne delay, PID-
tuning recommendations are generated from root loci with this form because, for a
limited range in compensation gain, closed-loop poles move relatasely the left of

their open-loop positions.
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Figure 23. Root Loci of a PID-Compensated Second-Order Plant with Time Delay

Raoot loci drawn by the numerical method depict the paths of closed-loop poles as
PID compensation gain is varied. Plantis second order (with double pole at 5 =
-0.1yand has a time delay of two seconds (MNTD =0.2). PID double zerois ats =
-0.13, gain is shown as Z in caption.

Mate the PID double zero is slightly to the left of the region on the real axis that allows
plant and integrator poles to reenter the real axis, then one would approach and

and be consumed by the double zero, as gain increases. Instead, a pole due to time
delay gets to the double zero first.

For a given second-order plant, the left-most point on the real axis that the PID
double zero can be placed, and still draw plant and integrator poles to its left to reente
the real axis, is forced to the right as time delay increases. Thenslap between
NTD and the maximum distance of separation between the double zero and the open-loop
double pole is shown in Table 2. WhEfiD > 0.5 the double zero can no longer be

placed far enough to the left of the plant's open-loop double pole to allow for reasonable
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error in modeling the plant, so PID-tuning recommendations are stated in Table 3 only
for the rang®.05 < NTD < 0.5. Two transient response performance metrics,
overshoot and 2% settling time, for the tuning coefficients are stateabla 3 and

plotted as a function of NTD in Figure 24.
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Table 2
Comparison of the PID Double Zero Position That is the Basis for Tuning Coefficient
Recommendations to the Left-Most Position Where Loci Reenter the Real Axis

Finding Recommendation
NTD Leftmost position on the real axis Position of the PID double zero
the PID double zero can be  selected for determining tuning
placed, where plant poles will coefficients

reenter the real axis

(multiples of plant double pole  (multiples of plant double pole

open-loop position) open-loop position)
0.05 271 3.00
0.10 1.72 2.00
0.20 1.25 1.30
0.30 1.11 1.15
0.40 1.05 1.10
0.50 1.03 1.06

Comparison between two key locations of the PIDbdimul) the left-most position on the real axisttha
permits plant poles to reenter the real axis, g€ position used to produce tuning coefficients.
Choice of the position for coefficients (listedTiable 3) is based on root loci drawn by the nunagric
algorithm, matching the form shown in Figure 23 Each value of NTD, SIMULINK simulations were
created to verify the design goal is achieved. gt is rapid return to steady-state conditiofter ainit-
step changes in set point or load disturbancegchieging net movement of closed-loop poles to ¢ |
Note: the left-most position the double-zero capleed and still allow loci to reenter the reakarmoves
to the right, toward the open-loop plant doublespak normalized time delay NTD increases. THecef
conveys deterioration in the ability of a PID feadk loop to accelerate the plant as NTD increases
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Table 3

Recommended PID-Tuning Coefficients for a Second-Order Plant with Time Delay

NTD Recommendation Finding Recommendation Finding Finding
PID double-zero Equivalent k, 2% settling time 2% settling time
position Ti, Td after a unit-step after a unit-step

change in set change in load
point disturbance
(multiples of (multiples of
plant double pole one of the (multiples of  (multiples of one
open-loop plant's double one of the of the plant's
position) poles' time plant's double double poles'
constant) poles' time time constant)
constant)

0.05 3.00 0.67, 0.17 55 0.7 0

0.10 2.00 1.00, 0.25 20 0.9 1.3

0.20 1.30 1.54,0.38 7 2.6 35

0.30 1.15 1.74,0.43 4 4.7 5.1

0.40 1.10 1.82,0.45 2.2 6.9 7.4

0.50 1.06 1.89,0.47 1.7 8.8 8.9

Recommendations for PID-tuning coefficiefts T, andT; in control of a second-order plant with time
delay. Coefficients meet the design goal of ragid] roughly equivalent 2% settling times, aftend-
step change in set point or load disturbance. Hitions of system response used to generate tbeiag
times used the suggested method of reducing set peérshoot described in the text. Note shortest
settling times occur with small NTD.
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Figure 24. Performance of Recommended PID-Tuning Coefficients

Plot of recommended PID gain as a function of normalized ime delay NTD, and expected
performance, as measured by 2% settling time, for a second-order double-pole plant
Mote, settling time increases linearly with NTD, when NTD = 0.5 closed-loop seftling time
is almost the same as the open-loop plant which is approximately 4 * (2.1 *T), where T is
the time constant associated with one of the plant's double poles.
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PID coefficient recommendations for optimal load-disturbance respoxse ha
been found to vary from those giving optimal set-point change response (Zhuang &
Atherton, 1993). The tuning recommendations given here optimize both set-point change
and load-disturbance settling times, though they intrinsically favor Icdrdance and
lead to overshoot after a set-point change, by applying an overshoot-redudtiod.me
The natural rate of integration called for by the PID algorithm's intégmal is linearly
reduced as the distance between set point and process value grows, sheh that t

integration rate reduces to zero when:

1
abs(Set Point — Process) = .
P

After modifying the PID algorithm with this overshoot-reduction technique; PID
tuning coefficients shown in Table 3, will give rapid and roughly equivalent settling

times after a unit-step change in set point or load disturbance, and with no overshoot.
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4.0 Conclusion
Root loci for systems with a variety of polynomial transfer functions are
commonly drawn and discussed in textbooks on classical control theory. However, pure
polynomial transfer functions cannot exactly express the effect of timg dEime delay
is prevalent in control systems, so it is of interest to see what loci fodehag systems
actually look like. In this study, a comprehensive set of root loci for thesensyiste
exhibited and then used to design PID compensators for first-order and second-order

plants with time delay.

Root loci for plants with time delay are drawn by a numerical method developed
here. The method avoids the need to approximate time delay and the mismatch between
predicted and actual response that sometimes results (see Figure 5).tldunlogy

used here shows:

. How to identify the true positions of closed-loop poles in feedback
systems with time delay.
o How to identify marginal gain (Figure G2) in feedback systems with time

delay.

Predictions of the numerical method developed here are consistent with

mathematical analysis and show:

. In feedback systems with time delay an infinite number of separate and
distinct closed-loop pole trajectories will exist. As compensation gain

increases from zero, closed-loop poles follow paths that start at the far left
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extreme of the real axis, separated vertically by a distan?ewhere
a

0,4is time delay, and travel to the right, roughly parallel with the real axis.
Some time-delay poles may be consumed by plant zeros, or system poles
my be contributed, but ultimately an infinite number of closed-loop poles

trend along horizontal asymptotes as gain increases, toward the right

extreme of the real axis, at vertical positi(irise1 (21 + 1) where
a

[=0,1,2,--- (see Appendix G, Figure G7).

In a first-order system with time delay, the two closed-loop poles that
cross the imaginary axis closest to the real axis are dominant because the
are the first poles to cross into the right-half plane (Appendix G and
Figure 13).

The behavior of a first-order plant with time delay is similar to the
behavior of a higher-order plant without time delay. As shown in Figure
16, the first-order plant with time delay begins to ring as compensation
gain increases.

An explanation is given for the limitation in the ability of Pl and PID
controllers to effectively accelerate open-loop transient response,las NT
increases. There is a restriction on how far to the left of origin a
compensator zero can be placed, so that closed-loop poles travel to its left

and accelerate the system (see Appendices | and J). As shown in Figure
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23, a pole due time delay gets to the compensator zero first, so plant and

integrator poles must move into the right half of thgdane.

The culmination of this research is the generation of PI-tuning coeffidmnts
first-order plants with time delay, and PID-tuning coefficients for secodergiants
with time delay. Coefficients are stated for a range in normalizeddigtag of 0.05 <
NTD < 0.5. When used with a modification that reduces overshoot of the final value
after a set-point change, these coefficients give rapid return to withof 8ady state

after a unit-step change in set point or load disturbance.



59

References

Arfken, G. (1970)Mathematicaimethods for physicis{&nd ed.) London: Academic
Press.

Astrom, K. J., & Hagglund, T. (1988)\utomatictuning of PID controllersResearch
Triangle Park, NC: Instrument Society of America.

Astrom, K. J., & Hagglund, T. (1995pID controllers: Theory, design, and tuni{2nd
ed.). Research Triangle Park, NC: Instrument Society of America.

Barnes, T. J. D., Wang, L., & Cluett, W. R. (1993, June). A frequency domain design
method for PID controllerg?roceeding of the American Control Confererigan
Francisco, 890-894.

Beyer, W. H. (Ed.). (1981ptandard mathematical tableéBoca Raton, FL: CRC Press.

Deshpande, P. D., & Ash, R. H. (198E)ements of computer process control with
advanced applicationd®Research Triangle Park, NC: Instrument Society of
America.

Distefano, J. J., Stuberrud, A. R., & Williams, I. J. (19%&edback and control systems
(2nd ed.). United States of: McGraw-Hill.

Hang, C. C., Astrom, K. J., & Ho, W. K. (1991). Refinement of the Ziegler-Nichols
tuning formulalEE Proceedings, 132), 111-118.

Ho, W. K., Gan, O. P., Tay, E. B., & Ang, E. L. (1996). Performance and gain and phase
margin of well-known PID tuning forumlalEEE Transactions on Control
Systems Technology43, 473-477



60

Ho, W. K., Hang, C. C., & Zhou, J. H. (1995). Performance and gain and phase margin of
well-known PI tuning forumladEEE Transactions on Control Systems
Technology3(2), 245—-248.

Mann, G. K. 1., Hu, B. -G., & Gosine, R. G. (2001). Time-domain based design and
analysis of new PID tuning ruledcE Proceedings-Applied Control Theory,
1483), 251-261.

Ogata, K. (1970)Modern control engineering=nglewood Cliffs, NJ: Prentice Hall.

Ogata, K. (2002)Modern control engineerin@th ed.) Englewood CliffsNJ: Prentice
Hall.

Richard, J-T. (2003). Time-delay systems: an overview of some recent advaghces a
open problemsAutomatica, 391667—-1694.

Silva, J. S., Datta, A., & Battacharyya, S. P. (2001). Controller design via Pade
approximation can lead to instabili§roceedings of the #0EEE Conference on
Decision and Contro4733-4736.

Silva ,J. S., Datta, A., & Battacharyya, S. P. (2002). New results on the synthd§ls of P
controllersIEEE Transactions on Automatic Control,(2y, 241-252.

Sipahi, R., Niculescu, S., Abdallah, C., & Michiels, W. (2011). Stability and stabilization
of systems with time delay: limitations and opportuniiE&E Control Systems
Magazine, 3(1), 38-53.

Stefani, R. T., Shahian, B., Savant, C. J., & Hostetter, G. H. (2D@2ign of feedback
systemsNew York, NY: Oxford University Press.



61

Vajta, M. (2000). Some remarks on Padé-approximati@nasTempus-Intcom
Symposiumyezprem, Hungary, 1-6.

Valkenburg, M. E. (1964 Network analysi$2nd ed.) Englewood Cliffs, NJ: Prentice
Hall.

Zhuang, M., & Atherton, D. P. (1993, May). Automatic tuning of optimum PID
controllers.IEE Proceedings-D140(3) 216-224.

Ziegler, J. G., & Nichols, N. B. (1942). Optimum settings for automatic consoller
Transactions of the ASME59-765.



62

Appendices
Appendix A
Laplace Transform
The Laplace integral transform simplifies the process of solvingamtifferential
equations, which describe the physical systemglamts we want to control. Time-
based differential equations are converted to polynomial functions of theeoompl

variables = ¢ + iw, simplifying analysis of feedback dynamics.

A function in timef (t) is transformed to a function ef(Arfken, 1970, p. 688)

F(s) = Lf(©)] = limg_, [, f(D)e~s'dt = [ f(D)e~*tdt (A1)

Consider a simple, first-order plant, its time respgf{($¢ to an impulse input

will exponentially decay, with time constdht

f)y=e'/r (A2)

The Laplace transform of the plaings), itstransfer functionis

o) t (o]

e_Te‘Stdtf e~ G+ptgr =
0

F(s) = LIf(D)] = f

0 S+T

The plant transfer function has a pole, goes to infinity,-at— %
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Appendix B
Inverse Laplace Transform and Residue Theorem
When the Laplace Transform is applied in characterizing the dynamicibebba

feedback system, the ability to convert back to the time domain is evemeatgd.

Transformation of a function of a complex varial#é€s), into a function of time,

f(®), is accomplished with the Inverse Laplace TransfbriF (s)] (McCollum 1965)
LF(S)] = £(0) = 5§ F(s)e*ds (B1)

The contour integral must surround a region instp&ane that contains all the poles of

F(s).

The residue theorem from complex analysis helps us apply the Inversed.apl
Transform. Residues of a polynomRads(F(s), s;) are theb, coefficients in its Laurent

expansion, they will be calculated below through partial fraction expansion.
The residue theorem
§ F(s) = 2mi X1, Res(F(s),s;) (B2)

states the sum of residues within an encircled region is proportio@alilig the contour

integral around the region.

As an example, the time-domain response is determined for a first-order plant

with transfer functiorG (s) = S /(S +a) excited by a unit-step inpRI(s) = 1/; .
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The output of the plarit(s) is the product of its inpuR(s) and the plant transfer

functionG (s)

Y(s) = =—

s (s+a)

(B3)

Using the residue theorem, the Inverse Laplace Transform is computed as the s

of the residues df (s)e*¢

1 eSt

s(s+a)

L y(s)]=L"1 [ ] = f(t) = lim,—, [s . ] + limg—_, [(s +a)-

s(s+a)

S=ta-e @

s(s+a) - Z
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Appendix C
Tools

Frequency analysis. In steady-state frequency analysis, a plant is excited by a
sinusoidal signal with a constant frequency and magnitude. After g&trapsriod
elapses the system output will oscillate at steady-state and, yistteensis linear, it
oscillates at the same frequency as the input signal. A difference behegqarase and
magnitude of the input and output signals, however, will probably be present. The
manner in which the plant alters the phase and magnitude of the input signal, as a
function of frequency, is an indication of the plant's stability in a closguldgstem.
Stability can be determined from gain and phase margins (Ogata, 1970, p. 430) and from
“the phase crossover frequenay). (Stefani et al., 2002, p. 465), the frequency at which
input and output sinusoids at80° out of phase.

Gain marginis the ratio of the magnitudes of input and output signals .atf
gain margin is greater than one the system is stable, when it's equal to orstetmevall
continuously oscillate, being marginally stable. When gain margin is less than one the

system is unstable.

“Phase margin is the amount of additional phase lag at the crossover frequency
w. required to bring the system to the verge of instability” (Ogata, 2002, p. 562). In
systems that are not second order “phase and gain margins give only raughessif

the effective damping ratio of the closed-loop system” (lbid, p. 565).



66

The introduction of time delay affects only the phase of the output signal, its
magnitude remains unchanged. The transfer function of time-delay (Equation 1) at

steady-statey = 0, is

— ,—S60 _ —(c+iw)f _ ,—-iwb
Gdelay(s) =e =e ( 9 = e ’

where@ is time delay. Thus, time delay adds a phase laguff, a value which

increases with frequency and the actual time delay, as comparedi®ahdree system.
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S-planeanalysis. The transient response of a linear system is comprised by one
or more first- or second-order response components that, in a stable systgm, dec
exponentially. Any first- or second-order response can be correléted single pole or
pair of poles, respectively, in the s-plane as shown below in Figure C1. Plant poles that

lie off the real axis must occur in complex conjugate pairs for the plant tréunsédion

coefficients to be real.

08

06

02

Imaginary Axis

0.8

Real axis

Figure C1. Impulse Responses for Pole Locations in the S-Plane

This map of the s-plane depicls the relationship between a pole’s
location and its associated impulse response .

Mote: single poles may only occur on the real axis, complex conjugate
pole pairs occur off the real axis.
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Impulse responses of first- and second-order plants are shown in Figure C1; this
visual aid describes the type of time-response that can be expected ®sdqgualtion in
the s-plane. Total transient response is the sum of all individual time-resporeses i
system (Valkenburg, 1964, pp. 280-284). Given a polynomial expression for total system
outputY (s), the amplitude of each component of response is determined through partial

fraction expansion df (s).

The following rules summarize the relationship between impulse response and

pole positions in s-plane shown in Figure C1

e Poles in the left half of the s-plane represent stable response
e Poles on the real axis indicate the absence of oscillatory content

e Poles off the real axis indicate the presence of oscillatory content.
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Comparison of closed-loop pole analysisto frequency analysis. Closed-loop
pole analysis can produce root loci which show the movement of closed-loop poles, and
thus describe the dynamic behavior of a plant in feedback, as a parametalytypic
compensation gain, varies. Steady-state frequency analysis assessédoop stability
by examining the open-loop plant and how it transforms a sinusoidal input to the
resulting sinusoidal output, as a function of frequency. The two techniques intersect
along the imaginary axis in the s-plane where 0 ands = iw. Poles that lie on this
axis represent impulse responses that are continuous oscillations (Staefard@2, p.
465).

In root-locus analysis, if a pole is on the imaginary axis and no poles &aee in t
right half of thes-plane, the system output continuously oscillates. The compensation
gain associated with this pole position is the reciprocal of what’s refereesd)&in
marginin frequency analysis.

The vertical position of the pole on the imaginary axis is the phase cross-over
frequencyw,, the frequency of excitation at which input and output sinusoids are

180 out of phase.
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Appendix D

I dentifying the Poles and Zeros of a PID Compensator
The method of using root locus in this paper for tuning PID controllers makes

proportional gairk,, a common factor to all three PID terms by expressing the integral
k . : o :
term asﬁ , WhereT; is integral time,and the derivative term &sT,; s whereT, is

derivative timgAstrom & Hagglund, 1995, p. 6)

k; k,
GPID(S) = kp+—+kds = kp +_+kadS
s T;s

1 1
s24+—s+

=y Ta (5 + o+ ) = kT, — T (D1)

TiTg4s Ta S

A Pl compensator’s zero location then depends onlff,anPID compensator’s
two zeros’ locations, identified below with the quadratic equation, depend only on

T; andT,.

2
e () .
Tq Tq T; Td 4’Td 3
2 ZTd T Td ZTd T;

(D2)
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Imaginary zeros. Both PID compensator zeros lie off the real axis when the
argument of the square root term in Equation D2 is negative because the squanel root, a

PID zeros, will have imaginary components. The argument of the square roc term
@) -7
Ty TiTq
which is less than zero when
T; < 4T,

Real zeros. Both PID compensator zeros lie on the real axis when the argument

of the square root term is greater to or equal to zero
1\* 4
() =
Tq TiTq
or

T; = 4T, (D3)

Both zeros lie at the same position, a repeated or daalde when the argument

of the square root term equals zero; this occurs when
T; = 4T, (D4)

This ratio ofT; to T,; is recommended in Ziegler-Nichols’ tuning forumlas (Ziegler &

Nichols, 1942).
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As T; becomes very large compared’tq the pole-zero configuration of a PID
compensator approaches that of a Pl-only compensator. Expansion of the expoession f

zero positions resulting from applying the quadratic equation above

1
1 1 4T 4]z
s=——+—|1-=4

2Tg — 2Tg4 T;

(D5)

Applying the binomial series expansion (Beyer, CRC Standard Mathematical

Tables, 1981, p. 347) gives

2Tg = 2Tg4 2 T; 2! T;

sl 1_1ﬂ+%(ﬂ)2_w(ﬂ)3+m] (D6)

If T; » T,, higher-order terms vanish

s=-letfioey oo Lyt o1 (o
2Tga 2Tga 2 T; 2Tq 2Tga T;
or
~_1 1
= Td' T; (D8)
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Appendix E

Numerical Computation of Root L ocus With and Without Time Delay
The numerical method developed in this paper finds poles of feedback systems with time
delay by brute-force. The roots of the systems' transcendental equatiouretdy
calculating the value of the open-loop transfer function at each point on a gridyf fine

spaced points within a region of interest in ghane.

For example, consider the closed-loop characteristic equation of a proportionally

compensated plaidt, (s) with time delayd
1+ kyG,(s)e™? =0 (E1)
where compensation gainks.

Values ofs that represent positions of poles in th@ane satisfy the

characteristic equation's angle condition

Angle[kpGp(s)e‘59 ] = Angle[ —1] (E2)

By recognizing that any angteequalsd + 2 it is clear how the exponential

component contributes an infinite number of poles to the system
Angle[kpGp(s)e‘se] = (r *+ 2nl) radians, 1=0,1,2:- o0

(E3)
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The value oﬂngle[Gp(s)e‘S"] is computed at each point on a\the grid,
locations where this value is within a small rangé&{° = © radians, thedecision

criterion or as labeled in the cogase variationare considered to be on the loci.

The characteristic equation’'s magnitude condition is

|kpGp(s)e™s| = |-1] =1
(E4)
It gives the value of compensation gain at any location on the loci
k ! (E5)

p = |Gp(s)e‘59|

The open-loop transfer function of a Pl compensated first-order plant with time

delayG(s) can be written

G(s) = ky— —— 5 (E6)
where T; is integral time and is the plant time constant.

An excerpt from MATLAB code developed in this study shows the open-loop

transfer function written as
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G = exp(-s*TimeDelay)*(1/(TimeConst*s+1))*( ((s+tizero))/s);

The value of is calculated at all points on the grid in the region of interest.
Locations wherelngle[ G ] is within a specified range aroutl0° are stored for

plotting, they form the loci.

if ( (thePhase > (180 - phaseVariation))
& (thePhase < (180 + phaseVariation)) )

Each point is color-coded to match the value of compensatiorkgavhich is

calculated from the magnitude condition

K =1/abs(G);

Root loci are depicted by plotting the magnitudé tfiroughout the region of

interest in the s-plane which has boundaries, g, Wmax, Fmin, aANACax-

surf(omegaMin:omegalncrement:omegaMax,
sigmaMin:sigmalncrement:sigmaMax,
abs(k));

The open-loop transfer function of a PID compensated second-order plant with

time delay can be expressed

1 1
24 - —
s“+ Td s+ Tde 1 1 w0

(Tys+ D) (T, + 1) °

Gpip(s) = kad
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(s+TiZero)(s+TdZero) 1 1 e_sg
s (Ty s+1) (T, + 1)

= kad (E?)

This form clearly shows the open-loop transfer function's two poles and two zestes. N
k,T, is a common factor to all terms. In MATLAB code the open-loop transfer function

IS written
GH = exp(-s * TimeDelay)

* (1/((TimeConstl s + 1) ) *(1 / (TimeConst2 s + 1) )
* ((s + tiZero) * (s + tdZero)) / s;

Points on the loci are again identified by the angle condition and the decision

criterion.
Angle[Gp;p(s)] = Angle[ —1 ] = mradians

Then compensation gak), at each point on the loci is found from the magnitude

of GH

1 / abs(GH)

The derivative timd,; is extracted from this quotient as follows to get compensation gain

kp

kp(sigmaCounter, omegaCounter) = (tiZero + tdZero)* 1/abs(GH);
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because

Ti s = (TiZero + TdZero) s (E8)
d

An alternate method of finding roots of transcendental equations. An
alternative to the technique developed in this paper would be to use the MATLAB
functionfsolve(), which is designed to find roots of simultaneous non-linear equations.
Real and imaginary parts of the closed-loop characteristic equatibotaraon-linear,

fsolve() could be used to find their roots and plot root loci.

For example, to find the poles of a closed-loop system comprised purely of time

delay, examine its characteristic equation

1+kyes9=0 (E9)

Real and imaginary parts are brought out by applyiege + iw and Euler’s law

e® = cos@ +isinb
1+ kpe“’e coswf =0, real part
kpe_"g sinwf =0, imaginary part

Both parts are encoded into a single MATLAB .m file function
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function z=char_equation(s) % pass in initial guess at solution
% s is 2x1 array

% s(1,1) = real(s) = sigma
% s(2,1) = imag(s) = omega

Kp=0.5;
theta=1;

z(1)= 1 + Kp * exp(-s(1,1)) * cos(-s(2,1)*theta);
z(2) = Kp * exp(-s(1,1)) * sin(-s(2,1)*theta);
end

In searching for a value sfthat satisfies both real and imaginary parts
char_equation() is called reiteratively by MATLAB oncésolve() is invoked from the
command line. An initial guess at the real and imaginary parts of a solutissexia

fsolve(), the initial guess is packaged in array format
>> s =[0; 3];
Then the search for a solution is launched by calling fsolve()

>> x = fsolve(@char_equation, s)
X —
-0.6931

3.1416

To draw root locus using fsolve() the s-plane would be scanned, as is done with
the method developed in this paper, and each point would be used as initial conditions for
fsolve(). Compensation gakj, would also need to be varied through an appropriate

range, while using each point in the s-plane as an initial condition, to fill-io¢he |
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The advantage of the method developed in this paper is it takes fewer steps to
determine whether a closed-loop pole exists at a specific location. Oroedtien of a
closed-loop pole is known it is simple to calculate directly its associatepertsation

gain as shown above in Equation E5.
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Appendix F

Root Loci for Simple Plants Drawn Using Approximated Time Delay
“We cannot apply conventional root locus rules to analyze a true time-detagnsys
because the root locus rules require rational transmittance (polynonua) eatd the true
delayGp(s) is irrational” (Stefani et al., 2002, p. 293). The transfer function of time

delay is
Gp(s) = e~ (F1)
whered is the delay.

For small time delays7, (s) can be approximated (Ogata, 2002, p. 383) by the

first two terms in a Taylor series

es0=1-50 Taylor Approximation
(F2)
or a first-order plant
1
S0 = P First — Order Approximation
(F3)

Padé approximations “approximate delay with a polynomial ratio.” (Stefahi, e

2002, p. 293), a second-order Pade approximation can be derived as follows
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e € 195/, —(s=2/p)

= =~ = Second — Order Pade
%l 1+85/2 S+2/9

e

(F4)

Padé approximations “are usually superior to Taylor expansions when functions
contain poles” (Vajta, 2000). A Padé approximation can be described by a rational

polynomial having a numerator of ordey and denominator of ordey, written as
_ Pp(x)
R () = 25 (F5)
where the definitions of numerator and denominator are

(m+n—-k)'m!
e (m+n)k!'(m—k)!

Pn(x) = (—x)"

0, (x) = . (m+n—-k)n!

L, Gm+n)! el (n = k) )"

(F6)
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The series of root loci diagrams in Figure F1 all depict closed-loop systems
comprised of a pure time-delay plant; where time delay is approximatedanyety of

Padé polynomials having up to a fifth-order numerator or denominator.

Pade(0,1) Pade(1.1)
- 1 oy >
" 0 Gain Tirra-Cala ¥
: ' Ep 1 second
Pade(2.2
= . = Feedback System With
Time Delay
| i |
= = = Pade(3,3) Increasing Order of
h : - - Mumerator
| i i i l

= sy — e = = Pade(4.4)

T
_—
—

- - o : - = Pade($,5)

-_— - T — - - -

Increasing COrder of Denominator

Figure F1. Comparison of Padé Time-Delay Approximations

Comparison of Pade approximations of time delay. each root locus diagram shows
movement of closed-loop poles, for a feedback system comprised of a proportionally
compensated plant that is purely a one-second ime delay. Each plot corresponds to the
Pade approximation labeled P(n, m) where n is the numerator order and m is the denominator
arder.

Mote: the variation in system dynamics predicted by the possible ime-delay approximations
leads to a mix and confusing array of results. The accuracy of our predictions of system
response rely on the choice of approximation.
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The numerical method developed here enabled the comparison, shown earlier in
Figure 5 of root loci that incorporate three different types of time-dg@lpso&imation to
root loci drawn using true time delay. In the figure, the actual mismatalede true
time-delay root loci and time-delay approximation root loci is apparent fahtee types
of systems shown: proportionally compensated first-order and second-order plants wi
time delay and a PID-compensated second-order plant with time delay. Tdi®ran
predicted from actual response depends on the type of system and the time-delay

approximation used and is sometimes significant.
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Appendix G

Root Loci for Simple Plants Drawn Using True Time Delay
The methodology developed here for drawing root loci for systems with timeidelay
based on analysis of the angle and magnitude conditions of a time-delagedsys
characteristic equation. The closed-loop characteristic equation camesdtting the
denominator of the closed-loop transfer funcii@(s) equal to zero. Values ofthat

make it equal to zero, its roots, makg (s) blowup, and are closed-loop poles.

For the feedback system with time delay shown in Figure 12, the canonical

equation for the closed-loop transfer funct®n(s) is

X(s) _ KG(s)e™s?

Gar(s) = Y(s)  1+KG(s)e—sP (G1)
Setting the denominator 6f;(s) equal to zero gives
1+ KG(s)e™ =0 (G2)

Note the characteristic equation is transcendental. Roots of the chatiacteri
equation are poles of the closed-loop transfer function and both magnitude and angle

conditions.

The magnitude condition is
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|[KG(s)e™s?| = |-1| =1 (G2)
The angle condition is
Angle[KG(s)e‘SG] =n(1+ 20) radians, [ =0,1,2--
(G3)

Euler’s formula states the complex nume#ris the sum of sine and cosine

functions (Ogata, 2002, p. 12)

e!® = (cos @ +isin ) (G3)

The value ofe? is a complex number, having a magnitude of 1, and a phase

angled.

Feedback system comprised of a proportionally-compensated pure time-
delay plant. If the proportionally-compensated feedback system in Figure 12 contains
the time-delay element only, i.€(s) = 1, the closed-loop characteristic equation is

1+KG(s)=1+Ke™9 =0 (G4)

Marginal gaink,,, occurs when one or more closed-loop poles lie on the
imaginary axis, and there are no poles in the right half-pl&pecan be determined by

evaluating the characteristic equation on the imaginary axis, whetie
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|Kme‘59|or=0 = |Kpe %] =1 (G5)

From Euler’s formulde’?| = 1

K, =1 (G6)

Note for this system marginal gaffy, is always one, regardless of the value of time

delay.

Vertical positions of closed-loop poles where loci intersect the imagaxasy

iw;, are given by the angle condition

Angle[l('me‘se](I=0 = Angle[Kye “®] = Angle[-1] == (G7)

which has solutions at

anzgﬂiZDlzaLlu (G8)

Note closed-loop poles are separated vertically by a distance that iipvers

proportional to time delay. As time delay increases the linear densitysefeloop
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poles, along the direction of the imaginary axis, also increases. Also nitalve
positions define a set of odd harmonics, and are consistent with system output shown in

Figure 4, a square wave with a period of two seconds.

Gain Kp
181 b 2
1] TR .............. .............. .............. .............. ..............
] - . . H F 15
.5 B 4 00 P A PSSR SR NEEEEEEEE R -
=
E [ ] T s S LR TR TR EP TP TR PEREPEEERE P - -1
L]
o T EO - EFFEEFERPIES
05
1 e e e e L =
15 : : : ; : 5 0
-15 -10 -5 1] 5 10 15

Figure G1. Root Loci of Pure Time-Delay Plant

Root loci drawn by the numerical method developed in this study depict the
paths of closed-loop poles for a feedback system comprised of a
proportionally-compensated plant that is pure time delay of one second.
Mote the vertical separation between loci is (2 pi / delay), and all poles
cross the imaginary axis at gain Kp = 1. This plot accurately represents
what the root loci drawn using Pade time-delay approximations (Figure F1)
attempt to match.

Feedback system comprised of afirst-order plant with timedelay. When the

feedback system in Figure 12 contains a first-order @és with time constant,

1
Ts+1

G(s) = (G9)

the closed-loop characteristic equation becomes
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1+KG(s) =1 +%e‘59 = (G10)

Marginal gaink,, and the frequency at which the system output will subsequently
oscillate are given by applying the magnitude and angle conditions, to idéstiples,
on the imaginary axis.

The magnitude condition of Equation G10 becomes

K, —
m_ o s6
Ts+1

= | et =1 (G11)

iwT+1

which yields marginal gain

K, =+/1+ (wT)? (G12)

To compute the frequency of oscillati@nat marginal gain the angle condition is

applied on the imaginary axis

iwT+1

Angle [% e‘se] = Angle [K—me‘i“’e] =n(1+2D)1=012- (G13)

This yields the following transcendental equation which relatestime delayd and

plant time constarit

—wh —tan"wT] = (1 +20) 1 =0,1,2-- (G14)
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Unlike the previous example of a system comprised of the pure time-delay plant,
where all poles cross the imaginary axis at the same gain, in thisidgsger
compensation gains are required for poles to cross the imaginary axis, the fieyreret
from the real axis. Note as plant time consfagbes to zero, as expected, points where
loci cross the imaginary axis become identical to a pure time-delegnsy$-or large

w, thetan™![wT] term becomes constant so the vertical spacing between points where

loci intersect the imaginary axis approacﬁgs

Values ofw that satisfy the transcendental equation G14 can be found
numerically, as the method developed in this paper does by generating thessysiem
loci in Figure G2. The frequency of oscillati@nat marginal stability, and the solution

of G14, is the vertical position where loci intersect the imaginary axis.
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Figure G2. Root Loci of a First-Order Plant With Time Delay
Showing Marginal Gain

Root lod drawn, using the numeric method developed in this paper, for a
proportionally compensated first-order plant with time delay. Planttime
constant T = 10s, plant open-loop pole at s =-0.1, time-delay = 15, NTD = 0.1.
Mote: marginal gain = 17 = sqri(1 + sqr(w) + sqr(T)), where w is the point of
intersection between pole paths and the imaginary axis,
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Feedback system comprised of a high-order plant with time delay. The
positions and orientations of root loci asymptotes are determined for the feeditack sy
shown in Figure 12 when the pla@€s) is of arbitrarily high-order, having a zero of

ordern, and a pole of orden.

G(s) = (G15)

T (s+p)m

The closed-loop system’s characteristic equation is

_ (s+2)" _so _
1+KG(s)=1+ K(S+p)me =0 (G16)

For small gain, K — 0. Closed-loop pole positions &— 0 are identified by
evaluating angle and magnitude conditions of the closed-loop characteristioghe

magnitude condition is

(s+2)"

KG(s)] = |k Som

e S =|-1=1 (G17)

Applying Euler’s equation and a rule of complex arithmetic, the magnitude of the

product of two complex numbers is the product of the two numbers’ magnitudes, yields

nlstal ,-00 — q (G18)

m|s+p|
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Thus, in regions near the real axis, dor> —oo

nls+z| ~ -l (G19)
mls+pl;_oo m|-1| m
Substitution into the magnitude condition gives the relationship betwaadK
m1
—06 =1In[>+] (G20)

Thus, a — 0, the real part of system pole positiongis> —oo.

The angle condition states
s
Angle{KG(s)} = Angle {Kﬁe‘se} = 180° = (w radians)(1 + 21)

[=0,1,2 (G21)

Using a rule of complex arithmetic, the angle of the product of two complex nsimsber

the sum of the two numbers’ angles, gives

n Angle{s + z} — m Angle{s + p} — w6 = n(1+20) 1 =0,1,2--
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(G22)

On the real axisp = 0 ands = g, so the angle condition becomes

n Angle{o + z} — m Angle{c + p} — w0 = nt—mn=n(1+20) [=0,12-

(G23)

Thus, the angle condition is satisfiedwat= 0,0 - —oo if

n + m = #zeros + #poles = odd number (G24)

This solution of the time-delayed system's characteristic equation igyedexk
consistent with a well known rule of root locus construction; regions of the real axi
contain loci when there are an odd number of poles plus zeros to the right. This means, if
n + m s even. no value af satisfies both magnitude and angle condition, i.e. no closed-

loop poles exist at the far left extreme of the real axis.

For points that are not on the real axis, but are near the real axis, the sneall ang|

approximation can be applied,

Angle{s + z};_oo = Angle{s + p}s_ 0o =T (G25)

The angle condition becomes

nt—mn—wl=n(1+20)1=0,12
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or
—w=Mm-m)r+n(1+20) 1=01.2 (G26)
Thus, solutions to angle and magnitude conditions have vertical positions
Vs
foro=—0w, = 5(1 +20) =012+ n+miseven

(G27)

and

Vs
foro=—0w, = 5(20 =012+ n+misodd

(G28)

For largegain, K — o. Closed-loop pole positions at high gain are identified, as
before, by evaluating angle and magnitude conditions. The magnitude condition of this

system, Equation G18, once again gives

nls+z| _gz9
mlstpl 9% =1 (G29)
If 0 >
nls+z| nl1| n
m|s+p]| - m| 1| T m (G30)
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The magnitude condition simplifies to

KZe 99 =1 (G31)
m

and is satisfied, al§ — o, if ¢ = oo.
The angle condition, Equation G21, once again gives

n Angle{s + z} — m Angle{s + p} — w6 = n(1 £ 20) 1 =0,1,2

Applying the small angle approximation near the real axis
Angle{o + z}s_., = Angle{o + p}s_ = 0 radians
simplifies the angle condition
n Angle{c + z} — m Angle{c + p} — w6 = —wl =nw(1+2l) [ =0,1,2
(G32)

Thus, regardless of whether+ n is even or odd the following set of values for

o, w satisfy the characteristic equationfas> o

=0, w= 3(1 +20) 1=0,12 (G33)
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Other examplesof root loci for plantswith time delay. The following series of
figures provide further examples of root loci for time-delay plants. Fig@rdepicts
loci for a single zero, differentiator, compensated with proportional feedback. Closed-
loop dynamic behavior of a proportionally-compensated double zero is illustrated with
the loci in Figure G4. Figure G5 shows loci and their break-away from the reébaa
single open-loop pole, a first-order plant, with time delay. The position of the break-
away point, shown close-up in Figure G6, can be compared to the location derived
through a mathematical analysis in the text, equation G37. Figure G7 shows #oci for
double-pole, a second-order plant, under proportional compensation. Figure G8 shows

loci for a PID-compensated first-order plant with time delay.
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Figure G3. Root Loci of a Single-Zero Plant, a Differentiator, With Time Delay

Root loci, drawn by the numeric tool developed in this paper, for a
feedback system comprised of a differentiator, with zero at s =-0.1, and
time delay of 15,

Mote: a closed-loop pole due to time-delay is consumed by the single
plant zero, paths of remaining closed-loop poles curve in such that loci
asymptotes are separated vertically by (2 pi / delay) at both extremes of the
real-axis,
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Figure G4. Root Loci of a Double-Zero Plant with Time Delay

Root loci, drawn by the numeric method developed in this paper, for a
feedback system comprised of a plant, described by a double zero at
5 =-0.1, and time-delay = 1s5.

Mote: two closed-loop poles due to delay are consumed by the double
rero, the others curve toward the real-axis such that all loci
asymptotes, which are horizontal, are vertically separated by (2 pi /
delay) at both extremes of the real-axis.
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Figure G5. Root Loci of a Single-Pole, First-Order, Plant With Time Delay

Root loci, drawn by the numeric method developed in this paper, show
paths of closed-loop poles, and their associated gain, for a feedback
system comprised of a first-order plant with time delay. Planttime
constant = 10s (open-loop pole at s =-0.1, and delay of 15,

Mote: as gain increases the plant pole and a pole due to time delay
collide and break-away from the real-axis. The break-away point moves
toward s = -infinity as time-delay goes to zero seconds.
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Break-away point for first-order plant with timedelay. The point on the real
axis where, as compensation gain is increased closed-loop poles collideradephe
the real axis, thbreak-awaypoint, is now determined for a feedback system comprised

of a first-order plant with time delay. The plant time constafit4s10 seconds so the

open-loop plant pole is locatedsat —% = —0.1, time delayd = 1 secondsthus

normalized time delay NTD= g = 0.1.

The breakaway point occurs where compensationlga@aks in value along the

real axis. Thusk must be expressed in terms of position on the realbaien its

. . L dk
derivative along the real axis is set to zefo,= 0.

Compensation gaikcan be expressed in termsoofd, andT by analyzing the

characteristic equation along the real axiss 0

14+ kG(s)e %y =0 (G34)
or
e~s? ke—°?
kG(lw=o = 7iglo=o = o7 = 71
SO
k=—(To+1)e? (G35)

The derivative of gain along the real axis is
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The derivative equals zero whér6To — 8 — T) = 0, thus breakaway occurs at

—-(0+T)
_O- e —

1_1__1_1__
- Z-2= =-11 (G37)

10 1
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Figure G6. Root Loci of a Single-Pole, First-Order, Plant With Time Delay
(Close-up View of Break-Away Point)

Rool loci, drawn by the numeric method developed in this paper, for a

feed back system comprised of a first-order plant with time constant = 10s

and time delay=1s. NTD =0.1

Mote: the break-away pointis ats =-1.1, matching the calculated value,

this supports the accuracy of the numerical method of drawing root loci developed
here.
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Figure G7. Root Loci of a Double-Pole, Second-Order, Plant With Time Delay

Root loci, drawn by the numerical method developed in this study, fora
feedback system comprised of a second-order plant (with double pole ats =
-0.1) and time delay of one second, NTD = 0.1.

Maote plant poles produce loci that ariginate at the apen-loop poles and
terminate at the extreme right-hand side ofthe real axis, along with all other
poles, due to time delay. Poles follow harizontal asymptotes separated
vertically by (2 pi / delay) = 2 pi.
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Figure G&8. Root Loci of a PID-Compensated First-Order Plant With Time Delay

Rootloci, drawn by the numenc method developed in this paper, of a
feedback system comprised of 3 PID controlled first-order plant with
time-delay. Planttime constantis 105 (open-loop pole at

s =-0.1), time delay = 1 5, compensator double zero is ats =-1.25.
MNTD =01

Mote: plant and integrator poles move toward the compensator's
double zero, but closed-loop poles due to time delay reach it first.
Plant and integrator poles instead head into the right half of the s-
plane.
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Appendix H

Compensation Gain K,, Yielding 5% Overshoot of Set Point for a First-Order Plant
With Time Delay
Compensation gain for a first-order plant with time delay is determineév¥ens
values of normalized time delay. A series of seven root-locus plots, drawn by the
numerical method developed in this paper, were used to identify gains as discussed in
Chapter 3: Results. Gains are selected such that the dominant closed-loo poles li
locations which correspond with a damping coefficient of 0.7 (5% overshoot), in a purely

second-order system, and are tabulated and plotted below in Table H1 and Figure H1.
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Table H1

Compensation Gain Yielding 5% Overshoot for a First-Order Plant With Time Delay

Recommended Resulting

Normalized-Time Delay, NTD Compensation Gaik, 2% Settling Time
Time Delayd Divided by (For 5% Overshoot)  (Multiples of Open-Loop

PlantTime ConstanT Settling Time)

0.05 9.90 0.015

0.10 4.85 0.029
0.15 3.16 0.0425
0.20 2.32 0.054
0.30 1.49 0.075
0.40 1.08 0.093
0.50 0.82 0.106

Note: Compensation gain for a first-order plant with time delay, resultiBéo
overshoot of final value, stated as a function of normalized time delay NTD.
Settling times are referenced to 2% open-loop settling time, assumed to he 4 pla

time constants.



Compensation Gain Kp
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Figure H1. Compensation Gain Giving 5% Overshoot
for First-Order Plant With Time Delay

Graph of values listed in TableH1: compensation gain Kp for a first-order
plant (resulting in 2% overshoot) versus normalized time delay = (plant
time constant) / (ime delay).

MNote: no more than 5% of set point will occur after a unit-step change in set
point or load disturbance,

107
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Appendix |
Ziegler-Nichols PID Tuning

First-order plant with timedelay. Ziegler-Nichols' step-response PID-tuning
formulas state (Ziegler & Nichols, 1942)

_ 12

Ky = (11)
T, =2L (12)
T, =05L (13)

The inputs to these formul&,andL, can perfectly characterize the time constant
T, and time delay, of a first-order plant with time delay, but here they are used to

characterize and tune a second-order process as shown in Figure 11, whieRdsrat

from their paper.
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Figure I1. "Process Reaction Curve"

This diagram shows how to characterize a process for PID tuning using
the Ziegler-Michols step-response method (1942).
Mote the process shown is actually second order, though metrics used

in the tuning formulas, and characterization above, fit a first-order
process.

The transfer function of a first-order plant with time consigrind time delay

0, has the form

Ts+1 (|4)

When Ziegler-Nichols tuning rules are applied to this plant, we show below the
PID compensator has a double zero that liss-at- %, a position that depends on time

delay alone.
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The zeros of a Ziegler-Nichols-tuned PID compensator are identified ity lowgi

their tuning forumlas to substitute time delay and plant time constant for Tigamth&

numerator of the PID transfer functiép;,(s)

1 1 1
Numerator|Gp;p(s)] = K, (Tds2 + s+ _) = K,Ty (SZ +—s+ _) =0
T; Tq  TiTq

G212y 204 1) oer(s+2) ()

Thus, Ziegler-Nichols PID tuning for a first-order plant with time delages the

1

1 1
compensator's double zerosat —T =g
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Appendix J

Deter mination of Break-Away and Reentry Pointsof Loci in Systemswith Time

Delay

Pl compensation of afirst-order plant with timedelay. The points where root
loci of a PI-compensated first-order plant break-away from or recowitbcthe real axis

can be identified by analyzing the closed-loop system’s characteagtation

14 Gp;(s) Grp(s)e™0 =1+ k,——e™5% =0 (J1)

Applying the constraint that these points are on the real@xsp, yields an

expression for compensation géipin terms of positior

s2+s o%+o
kpw—O = _359 s+zp = _60'9 : (JZ)
= w=0 o+z

Break-away and reentry points coincide with maxima or minima, respsgiivel

the value of gairk,, on the real axis, o% = 0. From Equation J2 above

22 = L1ef ()] =0 (93)

where
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flo) =732 (24)
Thus
Z0 = ¢ [0f(0) + = f(0)] = 0 (35)

Substituting the derivative of Equation J4

a _20+p o%+op
daf(a) T o+z (0+2)? (J6)

into Equation J5 results in a cubic polynomial

03+ (0z+ 0p + 1)o? + (Bpz + 22)d + pz =0 37)

Roots of this equation are the break-away and reentry points. The MATLAB
script shown below was written to generate a list of break-away and rpertty for a
variety of Pl zero positions. A list of break-away and reentry points is gedexatl
shown below for a system where time delay = 1 s, the open-loop plant poleslies at
—0.1, and where the PI zero positiag, is moved throughout the rangd.5 < s, <

0.0.



% FO+PI break away points

clear;
theta=1;

p =0.1;

z=0.125;

% time-delay

% plant pole

% PI controller zero

element=[0000];
rArray(1,:) = element;
rArraylndex=0;

for z=0.00:.01:1.5
rArraylndex = rArraylndex+1;

ThirdOrder = theta;
SecondOrder = (theta*(p+z)+1);

FirstOrder = theta*p*z+2*z;

ZerothOrder = p*z;

% compute zeros of dk/d(sigma) polynomial

rArray(rArraylndex, 1)=z;

b = roots([ ThirdOrder SecondOrder FirstOrder
rArray(rArraylndex, 2)=b(1,1);
rArray(rArraylndex, 3)=b(1,2);
rArray(rArraylndex, 4)=b(1,3);

end

strelement ={

strelement
rArray

'Pl Zero'

'root#1'

Sample Output of MATLAB Script
Time-Delay = 1s

Plant Pole at s =-0.1
Pl Zero Range: 0.0 to -0.5

PI
Zero

coococooo0o0000000

. 0100

0200
0300
0400
0500
0600
0700
0800
0900
1000
1100
1200
1300
1400

root#l

root#2

-1.
-1.
-1.
-1.
-1.
-1.
-1.
-1.
-1.
-1.
-0.
-0.
-0.
-0.

0
0916
0829
0739
0646
0550
0449
0344
0235
0120
0000
9873
9739
9596
9444

'root#2'

. 0092
. 0185
. 0280
. 0377
. 0475
. 0575
. 0678
. 0783
. 0890
. 1000
. 1468
. 1762
. 2039
. 2316

ZerothOrder]);
root#3'  };
'root#3'
-1.1000
0.0288i -0.0092 +
0.0388i -0.0185 +
0.0448i -0.0280 +
0.0483i -0.0377 +
0.0498i -0.0475 +
0.0493i -0.0575 +
0.0466i -0.0678 +
0.0411i -0.0783 +
0.0312i -0.0890 +
-0.1000
-0.0759
-0. 0699
-0.0664
-0. 0640

coooooo00

. 0288i

0388i
04438i
0483i
0498i
0493i
0466i

. 0411i
. 0312i
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OO 0000000000000 000000000000000000000

. 1500

1600
1700
1800
1900
2000
2100
2200
2300
2400
2500
2600
2700
2800
2900
3000
3100
3200
3300
3400
3500
3600
3700
3800
3900
4000
4100
4200
4300
4400
4500
4600
4700
4800
4900

. 5000

. 9280
. 9101
. 8906
. 8687
. 8438
. 8145
L7776
. 7234
. 6371
. 6423
. 6474
. 6526
. 6577
. 6629
. 6680
. 6731
. 6782
. 6833
. 6884
. 6935
. 6985
. 7036
. 7087
. 7137
. 7188
. 7238
. 7289
. 7339
. 7390
. 7440
. 7491
. 7541
. 7591
. 7642
. 7692
L7742

COLOOLELOOLLL00LRL00O000R000

. 2598
. 2890
. 3197
. 3525
. 3881
. 4282
. 4756
. 5404
. 6371
. 6423
. 6474
. 6526
. 6577
. 6629
. 6680
. 6731
. 6782
. 6833
. 6884
. 6935
. 6985
. 7036
. 7087
. 7137
. 7188
. 7238
. 7289
. 7339
. 7390
. 7440
. 7491
. 7541
. 7591
. 7642
. 7692
L7742

I i S S T S S A S A e i T A I e
COOLOOOOOLO00000000L000000000

. 0622
. 0608
. 0597
. 0588
. 0580
. 0574
. 0568
. 0563
. 0558
. 0555
. 0551
. 0548
. 0545
. 0543
. 0540
. 0538
. 0536
. 0534
. 0533
. 0531
. 0529
. 0528
. 0527
. 0526
. 0524
. 0523
. 0522
. 0521
. 0521
. 0520
. 0519
. 0518
. 0517
. 0517
. 0516
. 0515
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PID compensation of a second-order plant with time delay. Break-away and
reentry points of root loci depicting a PID-compensated second-order planimath t

delay are also found by analyzing the closed-loop system’s chatctequation

- (s+z1)(s+z) 1 -
1+ Gpip(s) Gso(s)e™? =1+ k= les = Gz © v = (J8)

Since these points are on the real axis, where0, gaink is expressed as a

function of positioro on the real axis

k= so  S(s+p)? . 06 0°+2pol+p?o 39
= e SO o0 oo (99)
(s+21)(s+22) ¢ 02+(z1422)%+212;

As was the case for a Pl-compensated first-order plant with time defagyan
and maxima are determined by finding where the derivativenwoth respect to position

on the real axis is zero

e=rler@] =0 (910)
where
f(o) = a3+2pa?+pio (311)

02+(21+22)%+2,2,
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Using

dk d
—=e76f(0) +—f(0)| =0

and

2 2
%f(O') _ 30%+4po+p . 20+(z1+23) (0_3 n po'z n pZO')

02+(21+23)%4212; (02+(21+23)2%+2125)>

(J12)

yields the fifth order polynomial af that determines where break-away or reconnection

points lie

dk
do

6o°
+(0(z, + z, + 2p) + 1)o*
+(0[z12;, + 2p(z1 + 2,) + p?] + 3(z; + 2,))0®
+(0(2pz12, + p? (21 + 23)] + 3212, + 2p(24 + z,) — p?)a?

+ ([6p + 4]pz12;)0
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+p2Z122:O (313)

The MATLAB script shown below generates a list of break-away and reentry
points for a range of PID double-zero positions. The list of break-away and rpeinttsy
is shown for a system where time delay = 1 s, the double plant pole+s-a0.1, and
where the PID double-zero positiaf, ,, is moved throughout the rang®.5 < s;_, <

0.0.



%%%%%%%%% %% %% %%

% MATLAB SCRIPT

%

% Calculate Second-Order Plant with PID compensatio
% root locus break-away/reconnection points

%

%

% time-delay
%

theta=1

%

% plant double-pole position
%

Zp=0.1

element=[{0000 0 Q];
rArray(1,:) = element;
rootArraylndex=0;

%

% Generate zeros of polynomial f or range in PID double-zero positions

%
for z=0.00:.01:0.5

%
% PID double-zero positions
%

Z1 =7z,

72 =1z;

%
% dKp/dsigma polynomial coefficients

%
FifthOrder = theta;

FourthOrder = theta*(Z1+Z72) + theta*2*Zp +1;

ThirdOrder = theta*Z1*Z2 + 2*theta*Zp*(Z1+Z22) +
3*(21+22) - (Z1+Z2);

SecondOrder = theta*2*Zp*Z1*Z2 + theta*Zp*Zp*(Z
4*Zp*(Z1+Z2) + Zp"2 - 2*Zp*Zp - 2*Zp*(Z1+Z22);

FirstOrder = theta*Zp*Zp*Z1*722 + 4*Zp*Z21*72 +(Z
(Z21+22)*Zp*Zp;

ZerothOrder = Zp*Zp*Z1*Z2;

%

theta*Zp*Zp +

1+72) + 3*21*Z2 +

Pr2)X(Z1+22) -
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% Calculate and store roots of polynomial
%
rootArray(rArraylndex, 1)=z;
b= roots([FifthOrder FourthOrder ThirdOrder Sec
ZerothOrder]);

rootArraylndex = rootArraylndex+1;

rootArray(rArraylndex, 2) = b(1,1);

rootArray(rArraylndex, 3) = b(2,1);

rootArray(rArraylndex, 4) = b(3,1);

rootArray(rArraylndex, 5) = b(4,1);

rootArray(rArraylndex, 6) = b(5,1);
end

%

% Display roots of (dK/dSigma) for the range of PID
positions

%

strelement ={ 'PID Double Zero' , 'root#l' | 'root#2'
root#4' , 'root#5' };
strelement

rootArray

ondOrder FirstOrder

double-zero

'root#3'
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Sample Output of MATLAB Script
Time-Delay = 1s
Plant Double-Pole at s =-0.1
PID Double Zero Range: 0.0 to -0.5

-0.0100
0.0172 - 0.0379i -0.0200

0.0042 - 0.0512i -0.0300

-0.0600

-0.0700

-0.0800

-0.0900

-0.0668

-0.0590

-0.0544

-0.0513

-0.0490

-0.0472

-0.0458

-0.0447

-0.0437

-0.0429

-0.0422

-0.0416

-0.0411

-0.0406

-0.0402

-0.0398

-0.0394

-0.0391

-0.0388

-0.0386

-0.0383

-0.0381

-0.0379

-0.0377

-0.0376

PID root#1 root#2 'root#3'

Double Zero
0 0 -1.1844 -0.1000 0.0844
0.0100 -1.1697 -0.1000 0.0359 0.0238
0.0200 -1.1544 -0.1000 0.0172 + 0.0379i
0.0300 -1.1385 -0.1000 0.0042 + 0.0512i
0.0400 -1.1218 -0.1000 -0.0091 + 0.0590i -0.0091 - 0.0590i -0.0400
0.0500 -1.1043 -0.1000 -0.0229 + 0.0633i -0.0229 - 0.0633i -0.0500
0.0600 -1.0859 -0.0371 + 0.0644i -0.0371 - 0.0644i -0.1000
0.0700 -1.0664 -0.0518 + 0.0623i -0.0518 - 0.0623i -0.1000
0.0800 -1.0458 -0.0671 + 0.0561i -0.0671 - 0.0561i -0.1000
0.0900 -1.0237 -0.0831 + 0.0434i -0.0831 - 0.0434i -0.1000
0.1000 -1.0000 -0.1000 -0.1000 + 0.0000i -0.1000 - 0.0000i -0.1000
0.1100 -0.9742 -0.1690 -0.1100 -0.1000
0.1200 -0.9458 -0.2152 -0.1200 -0.1000
0.1300 -0.9141 -0.2615 -0.1300 -0.1000
0.1400 -0.8776 -0.3111 -0.1400 -0.1000
0.1500 -0.8338 -0.3672 -0.1500 -0.1000
0.1600 -0.7766 -0.4361 -0.1600 -0.1000
0.1700 -0.6734 -0.5508 -0.1700 -0.1000
0.1800 -0.6177 + 0.1459i -0.6177 - 0.1459i -0.1800 -0.1000
0.1900 -0.6231 +0.2150i -0.6231 - 0.2150i -0.1900 -0.1000
0.2000 -0.6285 + 0.2664i -0.6285 - 0.2664i -0.2000 -0.1000
0.2100 -0.6339 + 0.3093i -0.6339 - 0.3093i -0.2100 -0.1000
0.2200 -0.6392 + 0.3468i -0.6392 - 0.3468i -0.2200 -0.1000
0.2300 -0.6445 + 0.3804i -0.6445 - 0.3804i -0.2300 -0.1000
0.2400 -0.6497 + 0.4113i -0.6497 - 0.4113i -0.2400 -0.1000
0.2500 -0.6549 + 0.4399i -0.6549 - 0.4399i -0.2500 -0.1000
0.2600 -0.6601 + 0.4666i -0.6601 - 0.4666i -0.2600 -0.1000
0.2700 -0.6653 + 0.4919i -0.6653 - 0.4919i -0.2700 -0.1000
0.2800 -0.6704 + 0.5158i -0.6704 - 0.5158i -0.2800 -0.1000
0.2900 -0.6756 + 0.5386i -0.6756 - 0.5386i -0.2900 -0.1000
0.3000 -0.6807 + 0.5605i -0.6807 - 0.5605i -0.3000 -0.1000
0.3100 -0.6858 + 0.5814i -0.6858 - 0.5814i -0.3100 -0.1000
0.3200 -0.6909 + 0.6016i -0.6909 - 0.6016i -0.3200 -0.1000
0.3300 -0.6960 + 0.6211i -0.6960 - 0.6211i -0.3300 -0.1000
0.3400 -0.7011 + 0.6399i -0.7011 - 0.6399i -0.3400 -0.1000
0.3500 -0.7062 + 0.6582i -0.7062 - 0.6582i -0.3500 -0.1000
0.3600 -0.7113 +0.6759i -0.7113 - 0.6759i -0.3600 -0.1000

-0.0374

‘root#4'

'root#5'
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0.3700

0.3800

0.3900

0.4000

0.4100

0.4200

0.4300

0.4400

0.4500

0.4600

0.4700

0.4800

0.4900

0.5000

-0.7164 + 0.6931i
-0.7215 + 0.7099i
-0.7265 + 0.7263i
-0.7316 + 0.7422i
-0.7366 + 0.7578i
-0.7417 + 0.7730i
-0.7468 + 0.7879i
-0.7518 + 0.8025i
-0.7569 + 0.8168i
-0.7619 + 0.8309i
-0.7669 + 0.8446i
-0.7720 + 0.8581i
-0.7770 + 0.8714i

-0.7821 + 0.8845i

-0.7164 - 0.6931i
-0.7215 - 0.7099i
-0.7265 - 0.7263i
-0.7316 - 0.7422i
-0.7366 - 0.7578i
-0.7417 - 0.7730i
-0.7468 - 0.7879i
-0.7518 - 0.8025i
-0.7569 - 0.8168i
-0.7619 - 0.8309i
-0.7669 - 0.8446i
-0.7720 - 0.8581i
-0.7770 - 0.8714i

-0.7821 - 0.8845i

-0.3700

-0.3800

-0.3900

-0.4000

-0.4100

-0.4200

-0.4300

-0.4400

-0.4500

-0.4600

-0.4700

-0.4800

-0.4900

-0.5000

-0.1000

-0.1000

-0.1000

-0.1000

-0.1000

-0.1000

-0.1000

-0.1000

-0.1000

-0.1000

-0.1000

-0.1000

-0.1000

-0.1000

-0.0372

-0.0371

-0.0370

-0.0368

-0.0367

-0.0366

-0.0365

-0.0364

-0.0363

-0.0362

-0.0361

-0.0360

-0.0359

-0.0359
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