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ABSTRACT 
 
 
DISTRIBUTION, ABUNDANCE, GROWTH AND HABITAT USE OF STEELHEAD 

IN UVAS CREEK, CA 
 
 

by Joel M. Casagrande 
 
 

 Distribution, abundance, growth, and habitat use of juvenile steelhead 

(Onorhynchus mykiss) were studied in a central California stream under two increased 

summer flow reservoir release strategies.  The effect of habitat quality (including 

longitudinal changes in flow, water temperature, canopy closure, substrate quality, and 

turbidity) on abundance and growth of steelhead among sites was determined.  Increased 

stream flow extended rearing habitat and steelhead distribution downstream to reaches 

that previously would have been dry.  Yearling or older steelhead were relatively scarce 

at all Uvas Creek sites.  Steelhead were most abundant, but small, in the upstream half of 

the study reach, despite higher flows and cooler water for most of the summer.  Insects 

were scarce at upstream sites due to dense shade, silty substrate, and high turbidity in late 

summer and fall.  Steelhead grew much larger at warmer downstream sites, and reached 

smolt size by their first winter.  Downstream sites were productive due to less shade, 

better substrate quality, and low turbidity.  Steelhead abundance in the downstream reach 

was limited by the scarcity of fast-water feeding habitat.  These results show that, where 

food is sufficient, steelhead can rear and reach smolt size in their first year in warm, 

augmented stream flows.  Management strategies that improve stream productivity would 

improve steelhead production in Uvas Creek below the reservoir. 
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Introduction 
 

Throughout California and much of the West, water resource managers are 

challenged with meeting increasing water demands for municipal and agricultural 

supplies while providing in-stream flows necessary for maintaining healthy aquatic 

ecosystems (Gillilan and Brown 1997; NMFS 2009).  The listing of multiple salmonid 

populations under the Federal Endangered Species Act (NMFS 2006) has further 

complicated this challenge because it obligates water resource managers to provide 

sufficient stream flows needed to maintain suitable habitat conditions for these species 

(NMFS 2009).  In periods of drought, this dilemma often results in intense conflict over 

the most beneficial use of the water and disagreements over how much water is needed to 

maintain suitable habitat and for recovery of populations of fish and other aquatic 

species.  Usually watershed or stream-specific data on the distribution and specific 

habitat uses of salmonids are limited; this is particularly true in the southern extent of 

their ranges where few populations persist and anthropogenic disturbances are high 

(Moyle et al. 2008).   

Within a watershed, several environmental factors influence the distribution, 

habitat selection, and growth of juvenile steelhead (Oncorhynchus mykiss).  These 

include seasonal and longitudinal changes in water temperature, habitat velocity, 

productivity, and turbidity: all of these are greatly affected by other variables such as 

flow volume, riparian canopy cover, and substrate conditions.  For regulated streams, the 

operation of upstream reservoirs greatly affects each of these variables in space and time 

(Ligon et al. 1995; Collier et al. 1996).   
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Salmonid growth rates can be used as an indicator of habitat quality and use 

within a watershed.  In most temperate coastal systems, juvenile steelhead typically rear 

between one and three years before entering the ocean (Shapovalov and Taft 1954; 

Moyle 2002; Quinn 2005; Sogard et al. 2009).  Growth in relatively small coastal streams 

or low order streams within a larger watershed is generally poor due to low summer flow, 

dense shade, and low overall stream productivity (Smith 1982; Quinn 2005; Alley and 

Associates 2007; Hayes et al. 2008).  Significant increases in fish growth generally occur 

after the fish emigrate downstream to more productive stream reaches or estuary habitats 

(Hayes et al. 2008).  Several studies have confirmed that size at ocean entry for juvenile 

salmonids plays a critical role in determining ocean survival (Ward et al 1989; Holtby et 

al. 1990; Bond 2006; Hayes et al. 2008), and therefore systems capable of producing 

greater numbers of relatively large juvenile salmonids each year are likely to have more 

robust adult populations. 

Longitudinal water temperature gradients within a watershed can have significant 

impacts on fish community partitioning, although with varying degrees of species overlap 

(Moyle and Vondracek 1985; Baltz et al. 1987; Cech et al. 1990; Marchetti and Moyle 

2001; Harvey et al. 2002).  In general, overlap of fish species increases as temperature 

gradients become more gradual (Brown and Moyle 1991; Reese and Harvey 2002).  

Water temperature affects the metabolic rate, physiology, and growth of juvenile 

salmonids (Hokanson et al. 1977; Wurtsbaugh and Davis 1977; Myrick and Cech 2005).  

An increase in water temperature has a positive effect on fish metabolic rates, and 

therefore water temperature can indirectly influence habitat selection of juvenile 
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salmonids (Chapman and Bjornn 1969; Smith and Li 1983; Vondracek and Longanecker 

1993).  If available, juvenile steelhead will use riffles and other fast water habitats where 

food resources, in the form of drifting invertebrates, are more abundant (Chapman and 

Bjornn 1969).  In order to cope with increased metabolic demands associated with rearing 

in warmer stream environments, juvenile steelhead utilize specific microhabitats where 

they can maximize food intake while minimizing energetic costs associated with feeding 

(Smith and Li 1983; Fausch 1984; Hill and Grossman 1993).  Smith and Li (1983) found 

that as water temperatures increased, juvenile steelhead increasingly used focal points 

with greater water velocities in order to obtain suitable amounts of food to meet 

metabolic costs.  Where food is abundant, high growth rates can be achieved in warmer 

water (Elliot 1973; Myrick and Cech 2005) and steelhead can reach smolt size in one 

year (Moore 1980; Smith 1982; Smith and Li 1983; Hayes et al. 2008).  However, in 

situations where food is limited and water temperatures are high, growth is reduced 

(McCarthy et al. 2009). 

In streams, drifting macroinvertebrates comprise the vast majority of the food 

resources for juvenile salmonids (Chapman and Bjornn 1969; Elliot 1973).  Stream 

primary productivity is regulated largely by light availability, and therefore riparian 

canopy cover can have a strong influence on invertebrate production and salmonid 

growth (Behmer and Hawkins 1986; Hill et al. 1995; Quinn et al. 1997; Poole and 

Berman 2001).  Stream substrate condition (size and surface heterogeneity) also has an 

influence on macroinvertebrate abundance and community structure (Erman and Erman 

1984; Gurtz and Wallace 1984), and therefore can influence salmonid production. 
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Turbidity has been widely studied for its impacts on the behavior, distribution, 

and growth of juvenile salmonids (Cordone and Kelley 1961; Bisson and Bilby 1982; 

Sigler 1988; Newcombe and McDonald 1991; Waters 1995; Newcombe and Jensen 

1996; Bash et al. 2001).  Elevated turbidity levels can produce behavioral effects such as 

increased coughing (Cordone and Kelley 1961; Berg and Northcote 1985), avoidance 

behavior or abandonment of territories and cover (Bisson and Bilby 1982; Sigler et al. 

1984), and a decrease in predator avoidance response (Newcombe and Jensen 1996).  

Other sub-lethal effects include: physical impairment of gill surface tissue (Cordone and 

Kelley 1961), increased stress levels (Redding et al. 1987), reduced growth caused by a 

reduction in visibility and prey capture success (Sigler et al. 1984; Barret et al. 1992; 

Sweka and Hartman 2001), and altered prey size-selection caused by impaired visibility 

(Rowe et al. 2003).  Chronic turbidity can force benthic feeding which can result in slow 

growth (Tippets and Moyle 1978).  Also, chronic turbidity can adversely impact stream 

productivity because of its ability to impair light available for primary production (Kirk 

1985; Davies-Colley and Smith 2001). 

Reservoirs can have a considerable influence on downstream riparian habitat and 

biological communities (Power et al. 1996; Poff et al. 1997).  Typical impacts to 

downstream reaches include an alteration of the seasonal hydrograph, a reduction of peak 

winter flows necessary for channel scouring and complex habitat formation (Ligon et al. 

1995; Gordon and Meentemeyer 2006), and a decline in coarse substrate replenishment 

(Kondolf 1997).  Impoundments also impact seasonal water temperature dynamics in 

downstream reaches, particularly within reaches immediately downstream of the 
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impoundment (Petts 1986; Nilsson and Berggren 2000).  Large modifications to water 

temperature regimes can have significant consequences on biological communities 

(Marchetti and Moyle 2001; Lessard and Hayes 2003).  Finally, because dams provide 

flood protection, development of downstream floodplain areas for urban and agricultural 

uses usually follows, which generally leads to more simplified channels designed for 

flood control objectives that are less suitable for aquatic species (Poff et al. 1997).   

Along the Central California Coast, many steelhead populations have declined 

substantially from historic levels (Good et al. 2005).  Factors for decline include dams, 

overdraft of water resources, habitat loss, and habitat degradation caused by stream flow 

regulation as well as urban and agricultural development.  In Uvas Creek, a tributary of 

the Pajaro River, the steelhead population has declined considerably due to the 

construction of Uvas Dam and development within the watershed.  Extensive studies on 

the distribution, relative abundance and habitat use of juvenile steelhead rearing in Uvas 

Creek were last conducted in the 1970’s and early 1980’s (Smith 1982; Smith and Li 

1983), 15 - 25 years after dam completion.  Since then, urban development has increased 

substantially within the watershed, stream flow regulation has continued for an additional 

25 years, and the impacts of these developments on steelhead production and their habitat 

have largely been unstudied. 

The Santa Clara Valley Water District (SCVWD) is responsible for maintaining 

adequate stream flows in Uvas Creek below Uvas Reservoir to protect steelhead 

populations and other aquatic resources.  In the past, a schedule of stream flow releases, 

based upon the original memorandum of agreement (MOA) (Anonymous 1956) at the 
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time of the dam’s construction, specified a variable set of reservoir releases during winter 

(December-April) and during the spring through fall period (May-December).  In 

addition, one conditional option for maintaining steelhead populations in this watershed 

was collecting and trucking returning adults over the dam to spawn upstream of the 

reservoir.  This practice was never conducted and would require out-migrating smolts to 

pass over the concrete spillway of Uvas Dam or through anoxic bottom waters of the 

reservoir and through the release port at the base of the dam which would severely limit 

smolt outmigration.  One of SCVWD’s current strategies is to prioritize smolt 

outmigration stream flow releases in April and May and to improve rearing habitat 

downstream of the dam by increasing base flow releases during summer and fall. 

My objectives for this study were to: (1) conduct an inventory of the range of 

habitat conditions present below Uvas Dam, (2) document the distribution, abundance, 

growth and habitat use of juvenile steelhead during the increased stream flow release 

strategies of 2005 and 2006 and (3) monitor the seasonal and longitudinal changes in 

water temperature, stream flow volume, and turbidity during the increased flow releases 

to see how these variables were affecting juvenile steelhead distribution, habitat 

selection, and growth.  The data have been used by a technical advisory committee to 

help the SCVWD develop a stream flow release strategy for Uvas Dam that will 

ultimately benefit steelhead populations while not compromising municipal water 

supplies.  
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Study Area 
 

The primary study area includes much of Uvas Creek downstream of Uvas 

Reservoir.  For comparison, additional steelhead sampling was conducted in Bodfish 

Creek, a tributary to Uvas Creek, and Blackhawk Canyon Creek, a tributary to Bodfish 

Creek. 

The Uvas Creek watershed drains the eastern side of the Santa Cruz Mountain 

range in southern Santa Clara County, California and forms one of the major tributaries 

to the Pajaro River (Figure 1).  The Pajaro River flows west and empties into Monterey 

Bay southwest of the City of Watsonville.  

The upper portions of the watershed include steep, densely forested slopes and 

rolling grazing lands, with sparse rural development.  Grazing, low density residential, 

and vineyard development increase in the foothill areas downstream of the reservoir.  

Farther downstream, Uvas Creek flows through expanding suburban neighborhoods in 

the City of Gilroy and then through extensive row crop agriculture on the Santa Clara 

Valley floor. 

Stream flow in the lower watershed is regulated by Uvas Reservoir, which has a 

capacity of 1.2×107 m3 (9,835 acre-feet) and is managed by the SCVWD for 

groundwater recharge and flood control.  Uvas Dam (built in 1957) captures runoff from 

83 km2 (32 mi2) and is located approximately 12 km (7.5 mi) upstream of the City of 

Gilroy and 17 km (10.5 mi) upstream of the Pajaro River confluence.  Releases from the 

reservoir are from the bottom port, and surface spills are generally of brief duration 
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during wet winters.  Below Uvas Reservoir, Uvas Creek is a relatively low gradient 

single thread stream with gradients ranging from 0.1% to 0.7%.  

The construction of Uvas Dam has significantly reduced both the frequency and 

intensity of flood flows in lower Uvas Creek; particularly in reaches immediately below 

Uvas Reservoir (Kondolf et al. 2001).  In their report, Kondolf et al. (2001) stated that the 

1.5-year return interval flow below Uvas Reservoir has been reduced from 60 m3/s 

(2,118 f 3/s) pre-dam to 27 m3/s (953 f 3/s) post-dam.  Farther downstream, the reservoir 

has less impact on flood flows due to contributions from unmanaged tributaries, primarily 

Bodfish and Little Arthur creeks, and also from storm runoff from the City of Gilroy and 

adjacent agricultural lands.  

The original MOA for reservoir operation included specific summer and fall 

releases, depending upon reservoir storage, of up to 0.28 m3/s (10 f 3/s), to protect 

steelhead and other wildlife in Uvas Creek below Uvas Reservoir (Anonymous 1956).  

During summer and fall, stream flows usually extended to approximately the western 

edge of the current city limits of Gilroy.  In most years, significant volumes of water were 

also transferred from Uvas Reservoir east to Llagas Creek for groundwater recharge 

(Smith 2007).   

Climate and Rainfall.—Climate in the Uvas Creek watershed is typical of the 

Mediterranean pattern observed throughout much of Central California, with cool wet 

winters and warm dry summers.  Most precipitation (> 90%) falls between November and 

April, with an average annual rainfall greater than 1270 mm (50 in) in the Santa Cruz 

Mountains and approximately 430 mm (17 in) on the valley floor near Gilroy (Figure 2).  
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During summer, afternoon air temperatures in southern Santa Clara Valley regularly 

exceed 32ºC (90ºF) on the valley floor.  Mean annual maximum air temperatures in the 

Uvas watershed range from 25ºC (77ºF) at the ridge of the Santa Cruz Mountains to 32ºC 

(89ºF) on the valley floor near Gilroy (Figure 3) 

Vegetation Communities.—The upper elevations of the watershed consist of 

mixed evergreen forest.  Coast redwood (Sequoia sempervirens) is the dominant tree 

species along Blackhawk Canyon Creek with tanoak (Lithocarpus densiflora) and 

California bay (Umbellularia californica) in the upland areas.  On upper Bodfish Creek, 

vegetation along the creek is also dominated by coast redwood with some California big-

leaf maple (Acer macrophyllum) and white alder (Alnus rhombifolia), while redwood, 

tanoak, and California bay are the dominant upland species.  Farther downstream on 

Bodfish Creek, deciduous species such as white alder, big-leaf maple, California 

sycamore (Platanous racemosa), and willow (Salix spp.) dominate the streamside, and in 

the upland the abundance of coast redwood, tanoak and California bay decline, while 

oaks (Quercus spp.) tend to dominate.   

Along Uvas Creek below Uvas Reservoir, the riparian canopy is predominantly 

deciduous consisting of white alder, willow, California sycamore, box elder (Acer 

negundo), and black cottonwood (Populus trichocarpa).  Coast live oak (Quercus 

agrifolia), valley oak (Q. lobata), and California bay are also present but are usually 

higher up on the stream banks.  Acacia, or green wattle (Acacia decurrens), a non-native 

and invasive evergreen, is found between Uvas Reservoir and the confluence of Little 
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Arthur Creek, and non-native blue gum eucalyptus (Eucalyptus globulus), occurs in small 

patches downstream of the Little Arthur Creek confluence.   

Emergent, rooted aquatic species such as bullrush (Scirpus spp.), cattails (Typha 

latifolia) and non-native arundo (Arundo donax) are occasionally common, especially in 

downstream reaches where canopy shading is reduced. 

Fisheries.—The Pajaro River watershed contains a freshwater fish community 

similar to, and descendent of, the San Joaquin-Sacramento River system (Smith 1982).  

Uvas Creek supports a self-sustaining population of steelhead that is part of the Southern 

Central California Coast Distinct Population Segment (DPS), which is listed as 

“threatened” under the Federal Endangered Species Act (Good et al. 2005).  Other native 

fish species in the Uvas Creek watershed include Sacramento sucker (Catostomus 

occidentalis), Sacramento pikeminnow (Ptychocheilus grandis), California roach 

(Lavinia symmetricus), riffle sculpin (Cottus gulosus), Pacific lamprey (Lampetra 

tridentata), and threespine stickleback (Gasterosteus aculeatus).  Prickly sculpin (Cottus 

asper) and hitch (Lavinia exilicauda) are also present, but are relatively scarce.   

Non-native species are relatively uncommon in Uvas Creek.  Based on recent 

sampling, bluegill (Lepomis macrochirus) was the most abundant and widespread non-

native species, while the common carp (Cyprinus carpio), channel catfish (Ictalurus 

punctatus), goldfish (Carassius auratus), largemouth bass (Micropterus salmoides), and 

inland silverside (Menidia beryllina) were occasionally captured primarily at sites 

between Uvas Reservoir and the Little Arthur Creek confluence (Smith 2007). 
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Methods 
 
Stream Flow 

I assessed stream flow using a combination of online data sources and field 

discharge measurements.  The Uvas Dam ALERT gauge hosted on the SCVWD’s 

website provided hourly flow release rates. 

Discharge measurements were taken at various sites and times throughout the 

project period.  Most discharge measurements were made by SCVWD staff during 

percolation tests in both 2005 and 2006.  During these tests, stream discharge was 

measured at eight to ten sites spaced below Uvas Reservoir.  I supplemented these data 

with discharge measurements at various sites throughout the summer of 2005 using a 

Global Water propeller-style flow probe (Global Water Instrumentation, Inc.). 

Discharge data derived from the percolation tests were used to understand 

seasonal changes in stream flow within different reaches below Uvas Reservoir and how 

longitudinal changes in flow volume influenced other environmental variables (e.g., 

water temperature) as well as the distribution, density, habitat selection and growth of 

juvenile steelhead. 

Habitat Assessment 

Between July and August of 2005, I conducted an assessment of habitat 

conditions in Uvas Creek using a modified CDFG Level III Habitat Inventory Method 

(Flosi et al. 1998).  Six stream reaches were selected to represent the longitudinal range 

of habitat conditions present in Uvas Creek below Uvas Reservoir (Figure 4).  Photos of 

each of these reaches are presented in Figures A-53 (a-l) in Appendix A.  A detailed 
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habitat assessment was not conducted in the Bodfish Creek sub-watershed, although 

stream canopy cover and substrate conditions were estimated at sites during fish 

sampling.   

Within each reach, I collected data at each mesohabitat, or habitat unit (pool, run, 

riffle, etc.).  In general, I classified habitat units following CDFG protocols (Flosi et al. 

1998).  However, I included a separate habitat unit called “head of pool” to distinguish 

portions of pools with fast water velocities, from sections of pools with minimal flow 

velocities.  The head of pool habitat type was isolated because of its unique combination 

of greater depth, high velocity, and often cover from surface turbulence, which presents 

suitable conditions for drift-feeding juvenile steelhead.  I used a velocity threshold of 15 

cm/s (0.5 ft/s, measured using a simple float technique) to distinguish between pool and 

head of pool habitat types.   

At each habitat unit I determined the habitat unit length, mean width, mean and 

maximum depth, percent substrate composition, and percent riparian canopy closure.  

Mean width and depth were determined after making several measurements throughout 

the habitat unit.  Because the reaches were assessed by a rapid foot traverse with hip 

chain, I used visual estimates of the channel substrate composition for each habitat type.  

Walking upstream, two observers estimated the channel substrate composition by 

visually examining the substrate throughout the habitat unit and then assigning 

percentages for each substrate class using a modified Wentworth Scale (Wentworth 

1922).  At the end of the habitat unit the two different estimates were compared and 

discussed, and final estimates were made for the habitat unit.   
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I measured percent riparian canopy closure and percent of the canopy as 

evergreen using a spherical densitometer.  For longer (> 30 m) or variable habitat units, I 

made multiple measurements (beginning, middle, and end) of the canopy and then 

averaged them for a single habitat unit value.   

Water and Air Temperature 

I analyzed water temperature data collected by a series of data loggers (Optic 

StowAway; Onset Computer Corporation) placed at nine sites in Uvas Creek below Uvas 

Reservoir (Figure 5).  The loggers, maintained by the SCVWD, were installed prior to the 

project’s start and collected data throughout the duration of the project period of each 

year (May-November).   

To prevent loss of data from logger failure, two loggers were deployed together at 

each site in the stream.  The loggers were kept in individual metal tubes perforated with 

several holes approximately 1 cm wide to allow sufficient contact with surrounding 

water.  A single logger (not in a tube) was placed in the riparian canopy adjacent to the 

in-stream loggers to record air temperature.   

The loggers recorded temperatures each hour, and I took the mean of the two in-

stream loggers for a single hourly reading.  I analyzed the data for the monthly average 

daily maximum (MAX), monthly average daily mean (MEAN), and monthly average 

daily minimum (MIN) for selected sites. These data provided me with the general range 

of temperature conditions present at sites below Uvas Reservoir throughout summer and 

fall. 
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In addition, I calculated the percentage of the 24 daily measurements that 

exceeded different temperature thresholds (16ºC, 18ºC, 20ºC, 21ºC, 22ºC, and 23ºC); 

these metrics indicated the general timing, frequency, and duration of elevated 

temperatures to which juvenile steelhead were exposed at various sites.   

I also analyzed water temperature depth profiles collected in Uvas Reservoir by 

SCVWD near Uvas Dam.  Stream flow is released from the base of Uvas Dam and 

therefore changes in water temperature on the bottom of Uvas Reservoir have a 

substantial impact on the temperature dynamics in Uvas Creek below the dam.   

Turbidity 

I measured stream turbidity at various sites below Uvas Dam during the summer 

and fall of 2005 and 2006, although data from 2005 are limited.  I used two methods to 

measure stream turbidity; water samples were analyzed for nephelometric turbidity units 

(NTU) with a HACH 2100P turbidity meter and water clarity, or visibility, was measured 

with a 120 cm transparency tube in the field.  On some occasions only one method was 

used.  However, I calibrated NTU values and transparency tube readings against each 

other (R2=0.90) in order to get estimates for missing values of the other method. 

Calibrated, the HACH 2100P turbidity meter has an accuracy of ±2% with a resolution of 

0.01 NTU.  I conducted all transparency tube readings under light conditions 

representative for that site.   

I also analyzed bi-weekly secchi depth measurements and water quality depth 

profiles taken in Uvas Reservoir by the SCVWD near Uvas Dam.  Dissolved oxygen, 

chlorophyll-a, and water temperature were analyzed to determine when the water column 
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in Uvas Reservoir became destratified.  I also compared the reservoir profile data and 

secchi depth measurements with the stream turbidity monitoring that I performed at 

various sites below Uvas Reservoir to better understand the influence of reservoir water 

quality conditions on water clarity and temperature observed in Uvas Creek downstream 

of the reservoir.  

Macroinvertebrate Diversity and Drift Rates 

I measured macroinvertebrate drift rates at three sites (Uvas Road, Watsonville 

Road and Miller Avenue) in Uvas Creek in September of 2006.  At each site, three drift 

nets were placed in three different habitat types to compare overall drift volume and rates 

from different velocities present in each habitat type.   

Each drift net had an opening of 760 cm square (20 cm x 38 cm) and was 70 cm in 

length with a mesh size of 363 µm.  I installed the nets approximately 5 cm off the stream 

bottom to prevent invertebrate predation by riffle sculpin and to limit invertebrates from 

crawling into the nets.  I then used test floats to ensure that upstream nets did not 

intercept the drift of nets placed downstream.  The nets were left in place for 

approximately one hour duration between 1100 and 1330 hours.  At each site, the nets 

were retrieved in a downstream to upstream order so that invertebrates were not 

incidentally stirred into downstream nets.  Samples were preserved in the field with a 

90% ethanol solution, and were then sorted in the lab and identified to Family level using 

standard keys (Merritt and Cummins 1996).   

For comparison, I installed multi-plate samplers (MPS) for one month at the same 

sites to see if there were differences in relative abundance and taxa (Family) richness 
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among sites.  Each sampler consisted of 12 plates (each plate was 7.5 cm x 7.5 cm).  The 

plates were separated by metal washers such that the distance between plates 

progressively increased slightly (about one washer width) from one end of the sampler to 

the other, which provided a variety of interstitial spaces utilized by different invertebrate 

taxa.  I anchored the samplers on the stream bottom using steel rods and cable zip ties; 

samplers were left in place for one month.  All invertebrates and accumulated debris were 

scraped from the plates and placed in jars which were then preserved with a 90% ethanol 

solution.  The samples were sorted and identified to Family level.   

I recorded the total number and relative volume of each taxa present from both the 

drift net and MPS samples.  To estimate volume, I utilized a point system where I 

assigned one point for each 0.5 cm x 0.5 cm of wet mass measured on a 0.5 cm grid.  

Drift rates were determined by dividing the total volume (excluding Physidae) by the 

length of time the nets were left in the water.   

Steelhead Microhabitat Utilization 

I assessed microhabitat habitat use by juvenile steelhead using an underwater 

camera system (Aqua Vu Z60, Nature Vison Inc.).  Water quality concerns associated 

with urbanized waterways (e.g., fecal coliform), poor visibility due to elevated turbidity 

and shading at upstream sites, and shallow depths in riffle habitats, made conditions 

unsuitable for traditional snorkel survey methods.  The use of a small camera on a 2 m 

extendable rod allowed for underwater observation of juvenile steelhead with minimal to 

no disturbance of the fish’s behavior.  The camera was tethered to the viewing screen and 

battery by an 18 m (60 ft) cable. 
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Walking in an upstream direction, I inspected all mesohabitat types for the 

presence of juvenile steelhead.  Once a fish was located, I observed the fish’s behavior 

for several minutes and noted what type of habitat it was using.  I then measured the 

fish’s length (standard length, SL), depth of normal swimming position (focal point), and 

feeding intercept depth (feeding loci) using a thin calibrated rod (Smith and Li 1983).    

I measured focal point velocity, feeding loci velocity (velocity at prey intercept), 

mean water column velocity (measured at 0.6 of depth from the surface), and surface 

velocity after each fish was observed for several minutes.  In some cases, I did not 

measure velocities immediately following fish observations.  Instead, I placed a weighted 

marker on the stream bottom at the exact location of the fish and returned later (within 

hours) to measure all velocities at the appropriate depths (Smith and Li 1983).  All 

velocity measurements were made using a Global Water propeller-style flow probe 

(Global Water Instrumentation, Inc.).  I noted additional environmental data including 

water temperature, dominant substrate size, and canopy closure.  Observations on the 

fish’s behavior, interactions with other fish, and interaction with physical habitat features 

(use of overhead cover, root wads etc.) were also noted. 

Steelhead Distribution, Densities, and Mesohabitat Use 

To determine general distribution, site densities, and mesohabitat use, I sampled 

steelhead using a backpack electrofisher at multiple sites along the mainstem of Uvas 

Creek and in the Bodfish Creek sub-watershed (Figures 6 and 7).  Sampling was 

conducted during the following dates: 13 October – 8 November 2005, 20 July through 

16 August, and 6 - 30 October 2006.  
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At each site I divided the sampled reach into stations usually consisting of a set of 

contiguous habitat units (or mesohabitat types).  Each station was typically less than 75 

meters in total length.  Within each station I generally conducted a two-pass depletion 

method using a Smith-Root LR-24 backpack electrofisher (Smith-Root, Inc.); 3 passes 

were rarely conducted, when inadequate depletion occurred between the first and second 

passes.   

I placed collected fish in a flow-through live car until all passes were completed 

within the station.  While sampling, the live car was kept in suitable water quality 

conditions and was covered with a thin cloth to reduce stress on the fish.   

I counted and measured all fish (SL), and scales were collected from a sub-sample 

to determine age-size relationships and relative growth rates.  After all fish were 

measured I measured the length of all habitat units sampled in the station.  The fish were 

then released throughout the station or placed back in the habitat unit from which they 

were collected.   

Although I generally sampled several mesohabitat types during each pass, I 

determined mesohabitat use by keeping a tally of the number of steelhead collected in 

each mesohabitat type.  All habitat units were sampled except for deeper sections of 

pools (or those greater than 1 meter deep), which could not be sampled effectively and 

rarely had steelhead during microhabitat investigations. 

I estimated steelhead densities for each site based on population estimates.  I 

calculated population estimates for each station using the Seber and Le Cren two-pass 

formula (Seber and Le Cren 1967).  I then summed the individual population estimates 
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for all stations sampled within each site to obtain a site population estimate.  However, I 

determined the density of juvenile steelhead per mesohabitat type based on actual counts 

of fish collected in each mesohabitat type instead of using the population estimates. 

Steelhead Age–Size Relationship and Growth 

 I analyzed scales taken from a sub-sample of steelhead of various sizes at each 

site to determine age, differences in age to size relationships, and relative growth rates.  

Scales were taken just posterior of the fish’s dorsal fin and above its lateral line (Murphy 

and Willis 1996).  In 2006, scales were collected from one side of the fish during the 

July/August sampling and from the other side during October sampling in order to reduce 

the chances of collecting regenerated scales.  Scales were placed in envelopes labeled 

with the fish’s standard length, date, and site location.    

For analysis, I placed multiple scales from each fish between two microscope 

slides, which were then magnified and analyzed using a Canon Microfiche reader.  

Annuli were recognized by circuli spacing and by “crossing over” of circuli during winter 

weight loss (Figure 8).  They were confirmed by length-frequency patterns, seasonal 

patterns of growth from July to October in 2006, and by relative position of growth 

checks on the scale.  I used only scales of relatively symmetrical shape as opposed to 

regenerated and obliquely shaped scales for final analyses.  Age determinations made 

from scale analyses were compared with size frequency histograms for each site to 

determine age classes.  To determine the size at annulus formation for older fish (Age 1 

and Age 2), I used the Frazier-Lee back calculation method (Murphy and Willis 1996).   
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After determining the age classes, I calculated the mean standard lengths of YOY 

from each site in order to compare the differences in growth during their first year and 

how these differences may be related to the range of environmental conditions in Uvas 

Creek.    

For Age 1 and older fish, I compared the size at first annulus formation with YOY 

fish sizes collected from the same sites.  The size at first annulus formation for Age 1 fish 

collected in October 2005 were compared with sizes of YOY fish collected during 

October 2005 because sampling was not conducted in 2004.  For Age 1 and older fish 

collected in October 2006, I compared their size at first annulus formation with YOY fish 

collected in October 2005 from the same sites.  For Luchessa Avenue, I compared size at 

first annulus formation with YOY fish sizes in October 2006, because this site was dry in 

2005.   
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Results 
 
Stream Flow   
 

2005 Stream flow.—Stream flow releases from Uvas Reservoir were maintained 

at approximately 0.28 m3/s (10 f 3/s) throughout most of the summer; they increased to 

approximately 0.35 m3s (12.5 f 3/s) in late August, and to 0.37 m3s 1 (14 f 3/s) for brief 

periods in September (Figure 9).  Stream flow was maintained beyond the Miller Avenue 

crossing throughout summer and fall of 2005.  On 18 July, I measured a stream discharge 

of approximately 0.17 m3s (5.9 f 3/s) at Miller Avenue, however by mid September the 

flows had declined to approximately 0.07 m3s (2.6 f 3/s) at this site, despite increased 

releases at the reservoir.  Farther downstream at Luchessa Avenue on 14 July, I measured 

a stream discharge of 0.12 m3s (4.2 f 3/s), but during a subsequent visit on 19 August the 

channel was dry.  Minimal flows recurred at this site for brief periods throughout 

September and October, but consistent surface flow did not occur.   

On 11 September, the SCVWD collected discharge measurements at nine sites 

below Uvas Dam as part of a percolation test to determine stream flow loss to streambed 

percolation downstream of the reservoir at a time when tributaries have no surface flow 

(Figure 10 and Table 1).  The upper 6.4 km (4.0 miles) had minimal stream flow loss of 

0.04 m3/s (1.41 f 3/s) and losses downstream of Luchessa Avenue (15.9 km) were 

minimal as well.  Substantial stream flow loss occurred in the percolating channel 

between Watsonville Road and Luchessa Avenue (6.4 - 15.9 km), with a total loss of 

0.35 m3s (12.3 f 3/s).  The highest rate of stream flow loss was 0.05 m3·s-1·km-1          

(1.72 f 3·s-1·mi-1), which occurred between Santa Teresa Boulevard and Miller Avenue 



 22

(12.7 - 14.3 km) and 0.04 m3·s-1·km-1 (0.80 f 3·s-1·mi-1) between Highway 152 and Santa 

Teresa Boulevard. 

2006 Stream flow.—In summer and fall of 2006, the SCVWD increased stream 

flow releases from Uvas Reservoir compared to 2005.  Early summer releases were kept 

between 0.34 - 0.5 m3s (12 - 17.5 f 3/s) which were supplemented with tributary flows, 

and apparently by some spilling from Uvas Reservoir (Figure 9).  By late July, water 

releases from Uvas Reservoir increased to 0.64 m3s (22.5 f 3/s) and were maintained near 

that level into November.  The greater stream flow releases in 2006 maintained surface 

flows throughout summer and fall at both the Miller Avenue and Luchessa Avenue sites, 

and also downstream beyond the Bolsa Road fish ladder (east of Highway 101).    

Staff from the SCVWD performed percolation tests on 21 July, 15 September, 

and 27 October (Table 1).  During each test, stream flow losses were minimal in the 6.4 

km (4 mile) reach just below Uvas Dam.  During the 15 September and 27 October tests, 

stream flow increased by 0.03 m3s (1.0 f 3/s) between Old Creek Road and Watsonville 

Road (Table 1).  Stream flow declined substantially in the 9.5 km (6 mile) reach between 

Watsonville Road and Luchessa Avenue (Table 1 and Figure 10).  During all three tests 

in 2006, the highest rate of stream flow loss per kilometer occurred in the reach between 

Highway 152 and Santa Teresa Boulevard (0.04, 0.06, and 0.04 m3·s-1·km-1) (Table 1).  

Stream flow loss was somewhat lower between Santa Teresa Boulevard and Miller 

Avenue (0.03, 0.05, and 0.04 m3·s-1·km-1).   

Downstream of Luchessa Avenue stream flow declined at much lower rates 

(Table 1), and during the 27 October test, flows actually increased by 0.06 m3s (2.3 f 3/s) 
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between Highway 25 and the Uvas-Carnadero Creek Preserve crossing due to agricultural 

return flows and presumably a full perched aquifer (Figure 10 and Table 1).                 

1968 Stream flow.—For comparison, I have included results from a percolation 

test conducted 11 September 1968 by the local water agency.  The volume of stream flow 

released from Uvas Reservoir was the same as in September 2006 (Table 1).  Percolation 

rates were minimal downstream to Watsonville Road (0.01 m3·s-1·km-1) and increased 

substantially between Watsonville Road and Santa Teresa Boulevard (0.05 and 0.04 m3·s-

1·km-1), with the highest rates occurring between Watsonville Road and Highway 152 

(0.05 m3·s-1·km-1). 

Habitat Assessment 
 

Habitat Types.—Downstream sites (Luchessa Avenue and Miller Avenue) were 

dominated by pool habitat (65% and 49%, respectively of the total length assessed), 

while riffle and head of pool habitats were relatively scarce (Figure 11).  Pool was the 

most abundant habitat type at Watsonville Road and Uvas Road, however these sites also 

had a greater abundance of fast water habitats (riffle, run, and head of pools) relative to 

downstream sites.  Overall, upstream sites (Old Creek Road and Uvas Road) had the 

highest total abundance of fast water habitats, particularly riffles (10% and 14%) and 

head of pools (13% and 10%). 

Substrate.—Channel substrate conditions, based on surface particle sizes, varied 

both by site and mesohabitat type (Figures 12 and 13).  Gravel was the most abundant 

substrate size class at all sites.  Coarse substrate, such as cobbles and boulders, was more 

abundant at upstream sites (Old Creek Road and Uvas Road), especially in riffles and run 
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habitats (Figure 13), and became increasingly scarce at most sites downstream of 

Watsonville Road.  Cobble abundance was notably higher at Highway 152 (compared to 

Watsonville Road and Miller Avenue) due to replenishment from Bodfish Creek which 

enters just upstream of this site.   

Watsonville Road had the highest combined amount of sand and fine 

sediments/detritus (51%) followed closely by Luchessa Avenue (49%).  Overall, 

substrate conditions at Watsonville Road were notably degraded compared to sites just 

upstream and downstream.  Substrate conditions would have been expected to improve 

below the Little Arthur Creek confluence due to coarse substrate replenishment from 

Little Arthur Creek and flushing of fine sediments from unimpaired storm flows.  

However there were substantial increases in the amount of both fine sediments and sand 

below the confluence compared to upstream (Figure 12).    

Often the fine sediment was a coating of variable thickness over the surface of 

gravel or even cobbles.  Although not quantitatively measured, the depth of very fine 

sediments in pools and glides was much greater upstream of Little Arthur Creek and 

immediately downstream of Little Arthur Creek than farther downstream.  In addition, 

high accumulations of fine sediments within the substrate were observed even in fast 

water habitats (e.g., riffles and runs) at sites upstream of Highway 152.  This was readily 

noticed when the substrate was agitated.  Algae on cobbles and root mats along the 

stream banks were also coated in fine sediments that produced sediment plumes when 

disturbed.    
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In the Bodfish Creek watershed, boulders and cobbles were the most common 

substrate classes at upstream sites (Bodfish Creek below Sprig Lake and Blackhawk 

Canyon Creek above Sprig Lake), while sand and fine sediments were generally scarce.  

Downstream at Whitehurst Rd gravel and cobbles were the dominant size classes with 

greater amounts of sand and fine sediment compared to upstream sites. 

Riparian Canopy Closure.—Average riparian canopy closure was greater at 

upstream sites with the highest occurring at Old Creek Road (80%) followed closely by 

Watsonville Road (77%) and Uvas Road (76%) (Figure 14).  Miller Avenue had the 

lowest average canopy closure (38%) which was dominated by relatively small willows 

with few mature trees on the banks and adjacent floodplain.   

In Uvas Creek, the percentage of the canopy closure as evergreen was greatest at 

Luchessa Avenue (48%) followed by Watsonville Road (20%).  Near Luchessa Avenue, 

parts of Uvas Creek are lined with coast live oak and planted eucalyptus trees, and at 

Watsonville Road coast live oak was common on the upper stream bank terraces.      

In the Bodfish Creek watershed, canopy cover ranged from 92 - 97% with the 

highest occurring at Blackhawk Canyon Creek above Sprig Lake.  Conifer and broadleaf 

evergreens (coast redwood and tanoak) dominated at the upstream two sites (83% and 

90%) but deciduous alders and willows dominated at Whitehurst Road.   

 
Water and Air Temperature 
 

Figures 15-18 show the monthly mean daily maximum (MAX), monthly mean 

daily mean (MEAN) and the monthly mean daily minimum (MIN) air and water 

temperature for multiple sites in Uvas Creek between May and November of 2005 and 
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2006.  Raw values are presented in Tables B-12 and B-13 (Appendix B). Figures 19-34 

show the daily percent exceedance of different water temperature thresholds at each site 

from May into November in both years.  Figures 39 and 40 show the results of the 

periodic reservoir water quality profile data collected during 2005 and 2006. 

Air Temperature.—In 2005, MAX, MEAN, and MIN air temperatures all peaked 

in July or August (Figure 15 and Table B-12 in Appendix B) with the highest MAX air 

temperature (33.9ºC) and MEAN (20.5ºC) occurring at Miller Avenue.  The MEAN 

temperatures were similar at all sites, with generally < 2.0ºC difference.  The highest 

MIN temperature occurred upstream at the Uvas Reservoir Outlet site (13.2ºC), while the 

lowest MIN consistently occurred at the most downstream site, Miller Avenue, which 

experienced the greatest range of temperatures among all sites.   

In 2006 MAX, MEAN, and MIN air temperatures peaked in July with the highest 

MAX temperatures recorded at Miller Avenue (35.3ºC) (Figure 16).  The MEAN 

temperatures were again similar at all sites (within 1.2ºC), and MIN temperatures were 

the lowest at Miller Avenue from June to October.   

Water Temperature 2005.—From the Uvas Outflow Release site downstream to 

the Little Arthur Creek confluence site MAX, MEAN, and MIN water temperatures 

peaked during September (Figure 17).  The Bodfish Creek confluence and Highway 152 

sites peaked in August, and downstream sites (Santa Teresa Boulevard and Miller 

Avenue) peaked during July and August with the highest MAX water temperature 

(22.9ºC) occurring at Miller Avenue.  The range of temperatures (difference between the 
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MAX and MIN) was consistently greater at Miller Avenue, reaching 6.2 degrees in July, 

while at the Uvas Reservoir Outflow site the average range never exceeded 0.6 degrees.   

 The Uvas Reservoir Outflow site remained the coolest of all upstream sites during 

the early part of summer.  Stream temperatures increased considerably between August 

and September as water temperatures increased on the bottom of Uvas Reservoir (Figures 

17 and 39).  In September through November the warmest MAX, MIN, and MEAN 

temperatures were those at the dam outlet.  Just downstream at the Uvas Road and Old 

Creek Road sites, water temperature increased slightly with distance downstream in June 

through August, but showed cooling with distance downstream in September through 

November (Figure 17).  At sites downstream of the Little Arthur Creek confluence, water 

temperatures increased downstream and within sites from June to August.  However, 

from September through October, the stream cooled between the Little Arthur Creek 

confluence and the Bodfish Creek confluence sites and MEAN temperatures changed 

little farther downstream (usually ≤ 1ºC).    

Water Temperature Daily Percent Exceedance 2005.—Water temperature at the 

Uvas Reservoir Outflow site remained below 16ºC consistently until early August, but 

was the warmest site in September after the reservoir turned over (Figures 19-22).  Sites 

just downstream exceeded 16ºC earlier and more frequently with increasing distance 

downstream.  From the Uvas Reservoir Outlet downstream to the Little Arthur Creek 

confluence site, temperatures exceeded 16ºC throughout much of August, September and 

October with extended periods of temperatures greater than 18 and 20ºC.  However, 
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temperatures at the Little Arthur Creek confluence site never exceeded 20ºC during 2005 

because of cooling effects downstream of the reservoir during warm September releases.  

 Downstream of the Little Arthur Creek confluence to below Highway 152, water 

temperatures exceeded 16ºC and 18ºC more frequently than upstream sites between June 

and August with the duration of these exceedances increasing downstream; however, 

exceedance duration for 18ºC was actually less than upstream sites in September 

(Figures 23-24).  Water temperatures exceeded 20ºC only briefly in July and August with 

greater frequency and duration at the downstream site (below Highway 152). 

 At Santa Teresa Boulevard, and especially at Miller Avenue, water temperatures 

exceeded 16ºC almost continuously throughout July and August, and daytime 

temperatures exceeded 18ºC and 20ºC for extended periods on most days (Figures 25-

26).  Water temperatures exceeded 22ºC and 23ºC for brief periods during July and 

August, although temperatures usually cooled to within 16ºC - 18ºC during night and 

early morning hours.  The frequency and duration of temperatures above 16ºC decreased 

into September and October at these sites. 

Water Temperature 2006.—In 2006 water temperature patterns were similar to 

those observed in 2005.  From the Uvas Reservoir Outflow downstream to the Little 

Arthur Creek confluence site, MAX, MEAN, and MIN temperatures again jumped 

sharply and peaked in September when temperatures of bottom waters in Uvas Reservoir 

rose (Figures 18 and 40).  However, upstream to downstream temperature differences 

were less than in 2005, and differences among all sites were relatively small in 

September.  The Bodfish Creek confluence and Highway 152 sites also peaked in 



 29

September (as opposed to August in 2005) at a time of higher stream flow at all sites 

compared to 2005 (Figure 18).    

At Santa Teresa Boulevard and Miller Avenue, MAX, MEAN, and MIN 

temperatures peaked in July with the highest temperatures again occurring at Miller 

Avenue.  The MAX and MEAN water temperatures during July and August were cooler 

(Figure 18) while stream flows were higher at these sites compared to 2005 (Figure 17). 

Water Temperature Daily Percent Exceedance 2006.—Water temperatures 

remained cool and consistently below 16ºC at the Uvas Reservoir outflow site through 

early August and then abruptly increased in late August as the reservoir turned over 

(Figure 27).  Water temperatures exceeded 21ºC continuously for nearly an entire week 

in early September which included a brief period where temperatures exceeded 22ºC 

continuously for a few days (Figure 27).  Water temperatures from Uvas Reservoir 

outflow downstream to Little Arthur Creek confluence exceeded the 16ºC and 18ºC 

thresholds for extended periods between August and October and exceeded the 20ºC and 

21ºC thresholds during daytime hours for brief periods in September (Figures 27-30).    

Unseasonably warm waters at the Uvas Road site during May and June were likely due to 

warm surface waters spilling from Uvas Reservoir.  These temperatures were not 

detected at the Uvas Reservoir outflow site, which is upstream from where the dam’s 

spillway enters Uvas Creek (Figures 27 and 28). 

Water temperatures at the sites at Bodfish Creek confluence and below Highway 

152 exceeded 16ºC continuously throughout much of August, September, and early 

October with brief periods also exceeding 18ºC continuously in early September (Figures 
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31-32).  In early September, water temperatures also exceeded 20ºC and 21ºC in the 

afternoon.  These sites were warmer than upstream through early August, but were cooler 

than upstream from mid August through October, at a time when reservoir releases were 

warm. 

Downstream at the Santa Teresa Boulevard and Miller Avenue sites, water 

temperatures exceeded 20ºC for shorter periods during 2006.  Water temperatures 

exceeded higher thresholds (21ºC and 22ºC) earlier in the summer than in 2005 but did 

not exceed the 23ºC threshold as had occurred in 2005 (Figures 33-34).  These daytime 

extremes were followed by cooler temperatures (16ºC - 18ºC) during night and early 

morning hours.  In September and October, temperatures remained above 16ºC more 

often compared to 2005.  

Turbidity 
 
Turbidity 2005.—Turbidity samples were collected from sites in Uvas Creek 

during the habitat assessment data collection period in July and August.  Chronic 

turbidity during late summer and fall was not anticipated for Uvas Creek below Uvas 

Dam, and therefore a more robust monitoring schedule was not initially planned.   

In July and August of 2005, turbidity levels were less than 5 NTU at all sites 

(Table 2 and Figure 35).  However, by early fall (7 October) turbidity levels had 

increased substantially at upstream sites (27 NTU at Uvas Road) and water column 

visibility (measured by a transparency tube) was down to 37 cm.  Downstream at 

Watsonville Road turbidity was estimated at ≤ 7 NTU, based on a transparency tube 

reading of > 120 cm.  The following week, (12 October) turbidity increased to 36 NTU at 
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Uvas Road and an estimated 17 NTU (55 cm transparency tube reading) at Watsonville 

Road (Figure 35 and Table 2).  

At downstream sites, turbidity levels remained lower than upstream sites 

throughout the summer and fall.  At Highway 152, water clarity remained greater than 

120 cm through 19 October (≤ 7 NTU), although turbidity levels had doubled from 3 

NTU on 2 August to 5 NTU on 19 October.  Downstream at Miller Avenue, water clarity 

was always greater than 120 cm (≤ 7 NTU). 

Turbidity 2006.—In 2006, periodic monitoring began in April and extended 

through October (Table 2).  The highest turbidity levels were recorded in October at sites 

closest to Uvas Dam but declined substantially with distance downstream (Figure 35).   

Spring turbidity levels (April and May) were elevated at all sites due to release of 

unsettled storm runoff from the reservoir.  In late June and early July, turbidity levels 

were at their lowest at all sites ranging from 5 NTU at Uvas Road to 2 NTU at Miller 

Avenue (Table 2 and Figure 35).   

On 1 August turbidity increased to 10 NTU at Uvas Road and by the end of the 

month it had reached 22 NTU (Table 2 and Figure 35).  During October, turbidity levels 

increased at all sites and remained above 28 NTU at Uvas Road, Old Creek Road, and 

Watsonville Road sites.   

In October, the decline in turbidity downstream was less pronounced than in 2005 

when reservoir releases were substantially lower (0.35 m3/s vs 0.6 m3/s).  At Highway 

152, water clarity in September and October of 2005 measured greater than 120 cm and 

turbidity readings in mid October of that year were low (Table 2).  However, during the 
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same period in 2006, water clarity (in cm visibility) was reduced by at least half and 

turbidity levels (NTUs) more than doubled from those measured in 2005. 

Uvas Reservoir Water Quality and Impacts on Downstream Turbidity 
 
 Water clarity in Uvas Reservoir declined (secchi depths decreased) from July to 

October during both 2005 and 2006 with a rapid substantial decline in late August into 

the first week of September despite only a small decrease in reservoir volume (Figures 36 

and 37).  A comparison of secchi depths from the reservoir with turbidity levels measured 

at Uvas Road shows a strong relationship between the two (Figures 36).  Turbidity in 

Uvas Creek below Uvas Reservoir also increased during late August and early September 

(Figure 38).      

 A comparison of depth profiles for water temperature, dissolved oxygen, and 

cholorphyll-a concentrations shows that the water column in Uvas Reservoir began to 

destratify by late August and early September of both years (Figures 39 and 40).   By 

mid-September, the water column was well mixed with warm (>20ºC) oxygenated water 

in the hypolimnion.  In addition, concentrations of chlorophyll-a increased on the bottom 

of the reservoir during the middle of August (Figure 40) as phytoplankton from the 

epilimnion was also mixed to the bottom.   

Macroinvertebrate Site Diversity, Abundance, and Drift Rates  
  

Multi-plate sampler (MPS) macroinvertebrate volumes among the seven samples 

were more than 2-3 times higher in the head of pool habitat at Miller Avenue (214.5) 

followed by run habitats at Watsonville Road (143.5) and Miller Avenue (136.6) than 

other samples (Figure 41 and Table 3).  Family taxa richness was highest in run habitat at 
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Miller Avenue (8 taxa) followed by glide habitat at Miller Avenue and head of pool and 

run habitats at Watsonville Road (5 taxa) (Table 3), but at all sites most of the biomass 

was from a few taxa.  Hydrosychidae was the most abundant taxon and made up the 

greatest percent biomass (63 - 83%) in all fast-water mesohabitats (head of pool, riffle-

run, and run) at all sites (Table 3).  In slower glide habitats, Planariidae (56%) had the 

highest percent biomass at Miller Avenue, and Chironmidae (57%) had the highest 

percent biomass at Uvas Road.  Of the two glide habitats sampled, Miller Avenue had the 

highest total biomass (17.0) and 5 taxa, compared to Uvas Road (1.8) represented by 3 

taxa. 

Invertebrate drift volume and taxa richness were greatest in fast-water habitat 

types (run and head of pool) at all sites (Table 4).  The highest volume and taxa richness 

were collected in head of pool and run habitats at Miller Avenue.    

Insect drift rates (insect volume hour-1) were greatest in mesohabitats with higher 

flow velocities at all sites (Figure 42).  However, drift rates were substantially greater at 

each velocity at Miller Avenue, while the velocity-related rates were much lower (2 - 3 

times) at Watsonville Road and Uvas Road.     

At Miller Avenue, Baetidae and Hydrosychidae made up 54 - 75% of the drifting 

insect biomass in run and head of pool habitats, and in the glide habitats Baetidae made 

up 83% (Table 4).  Baetidae (48 - 53%) and Simuliidae (3 - 15%) made up the majority 

of the drifting insect biomass in two mesohabitats types at Watsonville Road.  At Uvas 

Road Baetidae (54 - 96%) dominated the percent biomass for all habitat types followed 

by Chironomidae (2 - 6%).   
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 Although the data are temporally and spatially limited, there was a relatively 

strong positive relationship (R2 = 0.90) between insect drift rate and the volume of insects 

colonized on the MPS (Figure 43).  Drift samples had a wider variety of taxa (Tables 3 

and 4). 

Steelhead Microhabitat Utilization 
 

I conducted underwater observations of 58 juvenile steelhead during August and 

September 2005 and July 2006 at multiple sites in Uvas Creek.  Most were observed at 

Miller Avenue (n=9), Highway 152 (n=35), and Watsonville Road (n=11) during summer 

2005, with three additional fish from Old Creek Road in July 2006.  I attempted to 

observe fish at Old Creek Road and Uvas Road during fall of 2005 however these 

attempts were unsuccessful due to elevated turbidity levels. 

Although I sampled all habitats, all steelhead observed were in fast-water habitats 

(runs 53%, head of pool 45%, and riffles 2%).  In general, riffle habitats were too shallow 

to detect and observe steelhead with the underwater camera (or snorkeling).  Most (86%) 

juvenile steelhead were observed feeding in mesohabitats with mean water column 

velocities (measured at 0.6 depth) greater than 30 cm/s, and 36% were using habitats with 

mean velocities greater than 50 cm/s.   

Steelhead selected focal point depths near the stream bottom, with 95% of the 

observed fish using depths within 10 cm of the substrate and 66% within 5 cm of the 

substrate.  This resulted in focal point velocities that were substantially slower than mean 

water column velocities.  Although there was wide variation in focal point velocities 

selected, most fish (55 of 58) were observed at focal point velocities greater than 18 cm/s. 
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Larger juvenile steelhead generally tended to select focal point depths with faster water 

velocities (Figure 43).  

Juvenile steelhead usually intercepted, or struck at drifting prey in velocities equal 

to or greater than velocities at their focal point, with a majority occurring at velocities 

much greater than focal point velocities (Figure 45).  Prey was usually intercepted 

immediately upstream and higher in the water column than the focal point.   

Out of 58 juvenile steelhead observed, 36 (62%) were found beneath or directly 

adjacent to vegetative cover which included overhanging branches, woody debris or 

emergent aquatic vegetation such as hydrilla (Hydrilla verticillata), cattails, or arundo.  

Others used surface turbulence (i.e., bubble curtains) as cover, particularly in deeper 

heads of pools.  

Juvenile steelhead showed a high affinity for their focal point position, and if they 

left their focal point, they generally returned within seconds.  When different sized fish 

were present together, larger fish were usually positioned farthest upstream where they 

could take better advantage of insect drift.  Larger fish often exhibited aggression toward 

smaller fish, including smaller fish of other species (e.g., juvenile pikeminnow), when 

competing for prey and/or position. 

Steelhead Distribution, Densities, Growth, and Mesohabitat Use 
 

October 2005 – Distribution, Densities, and Growth.—Between 13 October and 8 

November 2005, I sampled a total of 2,631 m (8,633 ft) of stream at five sites on Uvas 

Creek and three sites in the Bodfish Creek watershed resulting in a total of 767 juvenile 

steelhead collected (Table 5).  Juvenile steelhead were present at all sites sampled.  
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Figures C-54-C-61 in Appendix C show the size frequencies and age classes for juvenile 

steelhead collected at each site.  Table 5 shows the number of steelhead collected, length 

of reach sampled, population estimates, and densities of fish (YOY and older fish) at each 

site. 

In Uvas Creek, juvenile steelhead densities (based on site multiple pass 

population estimates) ranged from 3.5 - 14.6 fish per 30.5 m (100 ft) with the highest 

densities (10.1 - 14.6 fish per 30.5 m) occurring at the two upstream most sites and the 

lowest density (3.5 fish per 30.5 m) occurring at Highway 152 (Figures 46 and 47 and 

Table 5).  At Watsonville Road, fish densities were slightly higher upstream of the 

confluence of Little Arthur Creek (5.6 fish per 30.5 m) than downstream (4.4 fish per 

30.5 m).    

Based on analysis of scales, the vast majority (93 - 100 %) of fish collected in 

Uvas Creek were YOY (Table 5 and Figure 8).  Yearlings (Age 1) and older cohorts (Age 

2 and Age 3) were rare in Uvas Creek, and densities of older fish ranged from 0 - 0.8 fish 

per 30.5 m with the highest densities occurring at the two upstream sites (Figure 47).  All 

fish captured at Miller Avenue were YOY. 

At two Bodfish Creek sites, steelhead densities were 55.3 and 23.4 fish per 30.5 m 

and in the Blackhawk Canyon Creek tributary fish density was 19.0 fish per 30.5 m 

(Figure 48 and Table 5).  Most of the fish caught at these sites were YOY (87 - 100%).  

Densities of yearlings and older cohorts were highest at the upstream site on Bodfish 

Creek (7.3 fish per 30.5 m), and all fish collected in Blackhawk Canyon Creek were 

YOY.   
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In Uvas Creek, size of YOY steelhead increased downstream with a very large 

increase at Miller Avenue (Figure 49 and Table 6).  Mean YOY sizes were 79 - 89 mm 

SL from Watsonville Road upstream, 101 mm at Highway 152, and 147 mm at Miller 

Avenue.   

In the Bodfish Creek watershed, average YOY sizes (57 - 71 mm SL) were 

smaller than all Uvas Creek sites, with the largest found at the downstream site on 

Bodfish Creek (Whitehurst Rd) and the smallest from Blackhawk Canyon Creek. 

Mesohabitat Use October 2005.—In October 2005, captured juvenile steelhead in 

Uvas Creek were most abundant in fast-water habitats (riffle, run, and head of pool) 

(Table 7).  Riffle mesohabitat was relatively scarce at all sites, but riffle depth was 

greater at the two upstream sites (where flows were higher and substrate was coarser); 

riffles had higher fish density than other habitats at these sites (Table 7).  For example, at 

Uvas Road, steelhead density in riffles was 39.9 fish per 30.5 m.  Although riffles 

comprised of only 8% of the sampled habitat, they supported 46% of captured fish.  Over 

all sites, head of pool habitat was relatively uncommon (9 - 22%) but accounted for 31% 

of captured fish (Table 7).  At Miller Avenue, head of pool comprised of only 9% of the 

total sampled reach, however juvenile steelhead densities there were four times as high 

(32.5 fish per 30.5 m) as in run (7.1 fish per 30.5 m) and substantially greater than in 

glide (3.6 fish per 30.5 m) and in pool (2.3 fish per 30.5 m) habitats.  The limited 

available riffle habitat at Miller Avenue was shallow, and no steelhead were captured.  

Run habitat was more common (12 - 34%) at all sites, and the moderate densities (2.2 -

14.9 fish per 30.5 m) accounted for 32% of the captured fish.  Over all sites, fish densities 
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in glides ranged from 1.9 - 6.9 fish per 30.5 m, and in pools (exclusive of head of pool) 

densities ranged from 0 - 4.6 fish per 30.5 m.  Pool and glide habitat ranged from 40 - 

60% of sampled habitat but accounted for only 25% of captured fish. 

Size at Annulus Formation 2005.—In Uvas Creek the size at first annulus 

formation for yearlings and older fish ranged from 77 - 137 mm SL and were mostly 

within the upper half of the range of YOY fish from each site (Table 8).  Figures D-62 - 

D-67 in Appendix D show a comparison of size at first annulus formation from yearlings 

and older fish compared with YOY fish sizes collected at each site during October 2005.   

In Bodfish Creek, fish size at first annulus formation ranged from 72 - 97 mm SL and, as 

in Uvas Creek, was within the upper half of the range of YOY fish sizes collected at these 

sites (Table 8). 

July/August 2006 – Distribution, Densities, and Growth.—Between 20 July and 

16 August 2006,  I sampled 1,653 m (5,424 ft) of stream at eight sites in the Uvas Creek 

watershed, resulting in 611 captured juvenile steelhead (Figure 7 and Tables 9 and 10).  

Due to the greater stream flow releases, I included an additional sampling site in Uvas 

Creek at Luchessa Avenue, approximately 1.6 km (1 mile) downstream of Miller 

Avenue.  This site is typically dry by mid-summer under normal stream flow releases and 

was dry by late August 2005 under slightly higher than normal stream flow releases.   

Juvenile steelhead were present at all sites sampled.  Table 9 shows the number of 

steelhead collected, length of reach sampled, population estimates, and densities of fish 

(YOY and older fish) at each site in Uvas Creek during both the July/August and October 
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sampling periods of 2006.  Figures E-68-E-76 in Appendix E show size frequencies and 

age classes for juvenile steelhead at all sites.   

In Uvas Creek, juvenile steelhead densities ranged from 5.4 - 19.5 fish per 30.5 m 

with the highest densities occurring at the upstream site, Uvas Road, and the lowest 

densities occurring at Watsonville Road (Figures 46 and 47 and Table 9).  Densities at 

Watsonville Road, as in 2005, were slightly greater above the Little Arthur Creek 

confluence (5.6 fish per 30.5 m) compared to downstream of the confluence (4.9 fish per 

30.5 m).  The densities of yearlings and older cohorts ranged from 0.5 - 2.4 fish per 30.5 

m in Uvas Creek with the greatest occurring at Uvas Road and the lowest occurring at 

Luchessa Avenue and Highway 152 (Figure 47).  Most (88 - 94%) fish collected at all 

sites in Uvas Creek were YOY.  

In the Bodfish Creek watershed, fish densities were greater than at all sites in 

Uvas Creek, and ranged from 25.0 - 79.5 fish per 30.5 m (Table 10).  The highest 

densities occurred at the upstream site on Bodfish Creek below Sprig Lake and the lowest 

densities at the downstream site (Whitehurst Rd, Table 10).  Densities of yearlings and 

older cohorts ranged from 2.4 - 17.0 fish per 30.5 m with the highest occurring at the 

upstream site on Bodfish Creek below Sprig Lake (Table 10).   

In Uvas Creek, mean SL for YOY fish was greatest at downstream sites (Figure 

49 and Table 6) with the largest size occurring at Luchessa Avenue (118 mm).  Sizes of 

YOY declined considerably between Miller Avenue (112 mm) and Highway 152 (81 

mm) and again between Highway 152 and Watsonville Road (66 mm).  Mean sizes at the 

two upstream sites, Old Creek Road and Uvas Road, were the same (72 mm).   
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Mean YOY fish size in the Bodfish Creek sub-watershed were smaller than most 

sites in Uvas Creek (48 - 66 mm SL) and increased with distance downstream (Figure 49 

and Table 6).  

Mesohabitat Use July/August 2006.—In late July and early August, juvenile 

steelhead densities were greatest in fast-water mesohabitats (run, head of pool and riffles, 

Table 7).  Run habitat was the most abundant habitat at nearly all sites (30 - 52% of 

sampled reaches) and accounted for 44% of the collected juvenile steelhead.  All fish 

collected at Luchessa Avenue were found in a single run habitat.  Although riffle habitat 

was again limited at all sites (≤ 13% of sample reaches), fish densities were again highest 

in this habitat type at Uvas Road and Old Creek Road (96.1 and 96.4 fish per 30.5 m, 

respectively, Table 7).  Overall, head of pool habitat was relatively uncommon (10 - 24% 

of sampled reaches) and accounted for 18% of the total collected steelhead.  However, at 

Miller Avenue where head of pool habitat comprised only 20% of the sampled reach, 

steelhead densities (16.3 fish per 30.5 m) were nearly four times greater in head of pool 

than in run habitat (4.3 fish per 30.5 m), which comprised 47% of the sampled reach, and 

nearly five times that of glide habitat (3.6 fish per 30.5 m) which was 27% of the sampled 

reach.  Despite higher flows in 2006, riffles were still shallow, and no steelhead were 

collected in this habitat type at Miller Avenue.  For all sites, glide and pool habitat 

(exclusive of head of pool) made up 20 - 39% of the sampled habitat but only accounted 

for 9% of the fish collected.  In glide habitats, fish densities ranged from 0 - 9.4 fish per 

30.5 m and in pool habitats densities ranged from 0 - 6.1 fish per 30.5 m.  The highest 
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fish densities for both of these habitat types occurred at the most upstream site, Uvas 

Road (Table 7).   

October 2006 – Distribution, Densities, and Growth.—Between 6 - 31 October, I 

sampled 2,718 m (8,916 ft) of stream at eight sites on Uvas Creek and three sites in the 

Bodfish Creek sub-watershed (Figure 7) which resulted in a total of 706 juvenile 

steelhead collected (Tables 9 and 10).  Limited sampling was also conducted at two 

additional sites on Uvas Creek downstream of Luchessa Avenue (Highway 101 and 

Bloomfield Rd).  Under normal flow releases, these sites typically went dry by early- to 

mid-summer.  During this survey, I sampled greater reach lengths at most sites compared 

to the July/August survey, and at most sites I re-sampled the same habitat units covered 

during the July/August survey for comparison.    

Juvenile steelhead were present at all sites sampled, including the two additional 

downstream sites on Uvas Creek.  Figures F-77-F-86 in Appendix F show size frequency 

and age classes for juvenile steelhead at all sites during the October 2006 survey.  

In Uvas Creek, densities ranged from 0.8 - 12.0 fish per 30.5 m with the highest 

density at Luchessa Avenue, followed by Uvas Road (10.8 fish per 30.5 m), and the 

lowest density at Bloomfield Road (Figures 46 and 47).  YOY fish comprised most (82 - 

100%) of the total catch at each site, except for Bloomfield Rd where only two yearling 

fish were captured (Table 9).  Densities for yearlings and older cohorts were low at all 

sites with the highest density at Luchessa Avenue (1.0 fish per 30.5 m) followed by the 

Old Creek and Uvas Road sites (0.8 fish per 30.5 m) (Figure 47 and Table 9).   
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Steelhead densities in the Bodfish Creek watershed (19.0, 54.2, and 43.8 fish per 

30.5 m) were again greater than at sites on Uvas Creek (Figure 48 and Table 10). The 

highest densities occurred at the upstream site on Bodfish Creek (below Sprig Lake) and 

the lowest density at the downstream site, Whitehurst Rd (Table 10).  The densities of 

yearlings and older fish were substantially greater at the two Bodfish Creek sites (8.0 and 

10.7 fish per 30.5 m) than sites on Uvas Creek, with the highest density occurring at the 

upstream site on Bodfish Creek (Table 10).  No yearling or older fish were collected in 

Blackhawk Canyon Creek. 

Densities declined at all sites sampled on Uvas Creek between the July/August 

and October surveys with the exception of Luchessa Avenue (Tables 9 and 10).  Density 

declines during this period were most pronounced at Highway 152 (7.4 to 1.1 fish per 

30.5 m, or -85 %) and Miller Avenue (6.8 to 2.9 fish per 30.5 m, or -57 %) while the 

lowest decline occurred at Watsonville Road (5.4 to 4.2 fish per 30.5 m, or -22 %).  

Highway 152 had the lowest densities among all sites sampled in October of both 2005 

and 2006.  At Luchessa Avenue densities actually increased by 46 % (6.5 to 12.0 fish per 

30.5m), with all of the fish in both months collected in one run habitat. 

In the Bodfish Creek watershed, declines in fish density were similar at the two 

upstream sites (-34 and -32 %) and somewhat lower at the downstream site (-24 %).  

Overall, the fish density decline was generally much lower than in Uvas Creek.  

I also compared fish densities at each site from habitat units sampled only during 

both the July/August and October surveys to see if the greater length of sampled habitat 

in October substantially altered density (see “Resampled Habitats” column in Tables 9 
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and 10).  There was no significant difference between the re-sampled densities and those 

of the expanded sample.   

In Uvas Creek, mean standard lengths for YOY steelhead in October 2006 were, 

as in July, greatest at downstream sites, Miller Avenue (169 mm) and Luchessa Avenue 

(145 mm).  Sizes at Uvas Road, Old Creek Road, and Watsonville Road were similar and 

notably smaller than at downstream sites, with mean sizes having a range of 75 - 81 mm 

(Figure 49 and Table 6).  There was a substantial decline in mean YOY fish size between 

Miller Avenue and Highway 152 (169 mm and 94 mm).  For Uvas Creek, the greatest 

growth rates between the July and October surveys occurred at Miller Avenue where 

mean sizes increased by 34% (Table 6).  At Luchessa Avenue, YOY fish grew faster 

earlier in the year than at other sites, but between sampling periods the change in size was 

less pronounced (19%).  At sites farther upstream (Highway 152 upstream to Uvas 

Road), late summer increases in mean YOY fish size were much lower (10 - 14%).  

At Miller Avenue, mean YOY steelhead sizes were 20 mm greater in October 

2006 than October 2005 (Figure 49 and Table 6).  However, at the Highway 152 and 

Watsonville Road sites, mean YOY sizes were somewhat lower in 2006, while at Old 

Creek Road and Uvas Road, there were similar between years.   

At sites in the Bodfish Creek watershed, mean October YOY fish sizes were 

similar in both 2005 and 2006.  July to October change in fish size was only 6 -14 %, 

with most of the change by growth of smaller fish (Figure 49 and Table 6). 

Mesohabitat Use October 2006.—Juvenile steelhead continued to show a 

preference for fast-water mesohabitats at all sites (Table 7).  Over all sites, run habitat 
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made up 28 - 52% of sampled habitat and accounted for 60% of the collected fish.  Fish 

densities in run habitats ranged from 1.5 - 19.1 fish per 30.5 m with the highest at 

Luchessa Avenue where all fish were collected in run habitat.  Riffle habitat was again 

rare (≤18% of sampled reaches) and accounted for only 11% of the collected steelhead at 

all sites.  However, Uvas Road, with deeper riffles, had the highest fish densities in riffle 

habitat (33.7 fish per 30.5 m).  Head of pool habitat ranged from 10 - 29% of sampled 

reaches and accounted for 20% of the collected fish at all sites (Table 7).  However, at 

Miller Avenue head of pool made up just 18% of the sampled habitat but accounted for 

45% of the collected fish and the highest fish densities (6.9 fish per 30.5 m) at that site.  

Overall, fish in glide and pool habitats were rare (<10 % of the total catch).  In glide 

habitats, densities ranged from 0 - 3.1 fish per 30.5 m, and in pool habitats (exclusive of 

head of pool) densities ranged from 0 - 2.8 fish per 30.5 m, with the highest occurring at 

upstream sites (Old Creek Road and Uvas Road).     

Size at Annulus Formation October 2006.—For the October 2006 collections, I 

compared size at first annulus formation of yearlings and older fish with YOY fish sizes 

collected at the same site during October 2005, with the exception of Luchessa Avenue 

which was dry in 2005 (Table 8 and Figures G-87-G-94 in Appendix G).  For sites in 

Uvas Creek, size at first annulus formation ranged from 67 - 142 mm SL, with most 

being greater than 77 mm SL and in the upper half of YOY sizes collected at each site 

(Table 8).  At Miller Avenue and Luchessa Avenue sizes at first annulus formation were 

mostly much smaller than the YOY present at these sites in 2005 and were similar to 

YOY fish sizes from Bodfish Creek in 2005.  The presence of yearlings at Luchessa 
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Avenue, which had dried in 2005, indicates that these fish migrated in from upstream 

sites.     

 In Bodfish Creek the size at first annulus formation ranged from 50 - 105 mm SL, 

with most being in the upper half of the 2005 YOY fish sizes; the largest sizes were from 

fish collected at the downstream site at Whitehurst Rd (Table 8 and Figures G-93-G-94).  



 46

Discussion 
 

The results of this study show that there are significant longitudinal differences in 

juvenile steelhead abundance, growth rates, and habitat use below Uvas Dam that are 

influenced by multiple environmental factors including water temperature, riparian 

canopy closure, substrate quality, and turbidity.  The results also indicate that habitat 

conditions and steelhead growth have declined considerably since the last extensive 

studies were conducted in the late 1970’s and early 1980’s (Smith 1982; Smith pers 

comm. 2008). 

Steelhead Distribution and Densities 

The increased stream flow releases from Uvas Reservoir during the summer and 

fall of 2005 and 2006 extended and maintained surface flows in Uvas Creek downstream 

to reaches that have usually been dry by the middle of summer under previous release 

volumes.  In 2005, an estimated 4.5 km of rearing habitat was gained by the increased 

flow releases, and in 2006, an estimated 12 km of habitat was gained.  In both years 

juvenile steelhead were collected at the downstream extent of surface flow indicating that 

suitable rearing habitat was extended due to the greater flow releases, although the 

quality of the increased rearing habitat varied.  Also, the extended rearing habitat in 2006 

produced a greater combined density of large YOY fish at the Miller Avenue and 

Luchessa Avenue sites, and summer stream flow, and presumably habitat quality, was 

greatly improved at Highway 152.   
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In Uvas Creek, steelhead densities were typically greatest at the two upstream 

sites (Uvas Road and Old Creek Road).  This is largely attributed to a combination of 

factors.  First, the greater stream flow volumes provided a greater abundance of fast-

water habitats (e.g., riffles, run, head of pool) which were more heavily used relative to 

slow-water pools and glides.  Second, fish growth was slower at these sites (discussed 

below), and therefore the smaller fish required less living space.  The higher flow 

volumes and increased abundance of larger substrate provided deeper and more complex 

riffle habitats for the smaller fish to use.  At downstream sites, steelhead densities were 

limited by the increasing scarcity of fast-water habitats with depths suitable for rearing 

the relatively large steelhead.  This was due to lower gradient and to progressive stream 

flow loss downstream due to percolation. 

Yearlings and older fish were generally scarce in Uvas Creek, and most (85 - 

100%) juvenile steelhead collected in both years were YOY.  By October a majority of 

YOY steelhead grew enough (≥80 mm SL) to smolt after a brief period of growth during 

the following spring.  At Miller Avenue and Luchessa Avenue most YOY were 

especially large (Miller Avenue YOY mean size = 147 mm in October 2005 and 169 mm 

in October 2006) and were capable of smolting as yearlings in early spring.  Large, deep, 

and complex pools for overwintering are common in Uvas Creek, and peak flows are 

attenuated by Uvas Dam.  Therefore, the scarcity of yearlings is likely because they 

smolted and emigrated, rather than poor overwintering survival.  At Miller Avenue and 

Luchessa Avenue, sizes at first annulus formation for the few yearlings present were 

much smaller than the YOY steelhead sizes collected at these sites in October 2005 and 
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2006.  This suggests that the few yearlings present at these sites were derived from 

smaller fish that moved downstream from either Bodfish or Little Arthur Creek 

watersheds or from less productive sites upstream in Uvas Creek.  

 Juvenile steelhead densities were highest at sites in the Bodfish Creek watershed.  

Despite the higher fish densities, fish were small with most measuring less than 75 mm 

SL.  They probably required two years to reach smolt size (Smith 1982; Hayes et al. 

2008; Satterthwaite et al. 2009; Sogard et al. 2009).  The scarcity of yearlings was likely 

because of low overwinter survival due to poor overwintering habitat (Smith 2007; 

Sogard et al. 2009).  Very few yearlings that might have moved from Bodfish Creek were 

found during summer sampling in Uvas Creek in this study, and past sampling (Smith 

2007) did not find steelhead rearing in the Pajaro River or in its lagoon in summer.  

Analysis of size at first annulus formation for the relatively scarce Age 1 and Age 2 fish 

collected in October 2005 and 2006 showed that nearly all grew to at least 70 mm SL 

during their first year (Table 8).  However a substantial proportion of the YOY from 

these sites were less than 70 mm in October of both years, indicating that the heavy 

overwinter mortality affected smaller fish most.  Because of their smaller size, the 

scarcity of yearlings, and the likelihood that fish would have to spend 2 years in the 

stream before reaching smolt size, the relative contribution of Bodfish Creek fish to smolt 

production and adult returns is probably substantially less than that of the much larger, 

faster-growing fish in Uvas Creek. 

In Uvas Creek, fish densities were lowest at the Highway 152 site in October of 

both years.  This was unexpected because stream flow volume and the amount of suitable 
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fast-water habitat were greater compared to sites farther downstream, and other habitat 

conditions (e.g., lower shade and turbidity levels) were superior to those upstream at 

Watsonville Road.  The low densities at Highway 152 may be due to localized water 

pollution or higher rates of competition and predation.  A series of agricultural drain 

pipes which originate from adjacent nurseries and a botanical theme park discharge into 

Uvas Creek at the Highway 152 site.  On multiple occasions I observed these pipes 

discharging highly turbid waters into Uvas Creek.  Recently an investigation by staff 

from the California Department of Fish and Game and the State Water Resources Control 

Board was conducted on the sources of these discharges (Bone 2007).  During the 

investigation an additional, larger pipe was found that discharges into the creek upstream 

of the Highway 152 site.  A neighbor adjacent to this location formally complained about 

the discharge, particularly the odor and foam associated with its effluent.  The fact that 

other fish species were relatively common and persistent at this site indicates that any 

potential toxicity effects associated with this effluent were not high enough to 

substantially affect all species but may have affected only steelhead or its prey. 

Another potential cause for the low steelhead abundance at Highway 152 is 

competition with sympatric juvenile Sacramento pikeminnow and predation by adult 

pikeminnow (Brown and Moyle 1997; Reese and Harvey 2002).  During both 

electrofishing efforts and underwater observations of microhabitat, I observed numerous 

juvenile and adult pikeminnow sharing fast-water habitats with juvenile steelhead at this 

site.  Farther upstream, pikeminnow were relatively scarce in 2005 and 2006, and at 

downstream sites, adult pikeminnow were scarce and juveniles were not as abundant as at 
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Highway 152 in both years.  Elevated turbidity levels may be limiting pikeminnow 

feeding efficiency upstream, causing them to congregate farther downstream where 

visibility is better for catching prey. 

 Steelhead Growth 

 Although juvenile steelhead were generally more abundant in tributaries and  

upstream sites in Uvas Creek, growth rates for YOY fish were much higher at 

downstream sites on Uvas Creek (Table 6).  The large discrepancy in growth rates 

between upstream (Uvas Road, Old Creek Road, and Watsonville Road) and downstream 

sites (Miller Avenue and Luchessa Avenue) was influenced by multiple interacting 

factors, including longitudinal differences in productivity, driven by differences in 

substrate conditions, canopy closure, water temperature, seasonal turbidity patterns, and 

possibly fish density.  Many of these factors also influenced steelhead abundance among 

sites. 

Role of Substrate Conditions.—Accumulation of fine sediments on the substrate 

surface and within the substrate is likely to be adversely affecting insect productivity and 

steelhead production at upstream sites.  In spring, the reservoir was still turbid with stored 

winter runoff, and reservoir releases had high suspended sediment concentrations (Figure 

37).  The fine sediments settled with distance downstream (Figure 35) and cleared 

entirely by mid June as the reservoir cleared.  The sediments were concentrated within 

the interstitial spaces of cobbles and gravels in fast water habitats, and thick 

accumulations were found on the bottoms of long pools and glides.  Accumulations of 

fine sediments became less apparent with distance downstream (Highway 152 to 
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Luchessa Avenue) indicating that the fine sediments had mostly settled farther upstream 

or were flushed due to higher winter and spring stream flows below unregulated 

tributaries (Little Arthur and Bodfish creeks). 

The filling of pore spaces within the substrate is probably contributing to reduced 

invertebrate production at upstream sites (Tables 3 and 4) (Gurtz and Wallace 1984; 

Erman and Erman 1984; Waters 1995; Kaller and Hartman 2004) as well as steelhead 

growth (Table 6) and abundance (Waters 1995; Suttle et al. 2004).  Suttle et al. (2004) 

found that when they increased the deposition of fine sediment to a section of stream 

channel in a northern California river, juvenile steelhead growth and survival declined.  

They attributed these declines to a decline in food availability caused by an increase in 

the amount of burrowing invertebrate taxa that were not available as prey, and to higher 

overall fish activity levels.   

Role of Canopy Closure.—Growth of juvenile steelhead was substantially greater 

in reaches with reduced canopy closure and higher invertebrate production (e.g., Miller 

Avenue) (Table 6).  Upstream of Miller Avenue the percent canopy closure and channel 

shading increased significantly (Figure 14); based on visual observations the abundance 

of algae on the substrate also declined considerably.  Total invertebrate biomass collected 

at the two more heavily-shaded upstream sites (Uvas Road and Watsonville Road) was 

considerably lower relative to the downstream, sunnier site (Miller Avenue) (Figure 41; 

Tables 3 and 4).  These findings are consistent with other studies that show lower canopy 

closure and increased light levels generally result in greater stream productivity (Murphy 

et al. 1981; Bilby and Bisson 1992; Hill et al. 1995; Quinn et al. 1997; Ambrose et al. 
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2004) and, in some cases, salmonid production (Wilzbach et al. 1986; Wilzbach et al. 

2005; Nislow and Lowe 2006).  For example, Wilzbach et al. (2005) found a strong 

growth response in juvenile rainbow trout and coastal cutthroat trout (Oncorhynchus 

clarki) to opening of the riparian canopy, which they attributed to greater stream 

productivity and increased trout feeding efficiency.  In Uvas Creek, the low ambient light 

conditions at upstream sites are likely reducing steelhead response time to drifting prey 

and overall feeding efficiency.  Wilzbach et al. (1986) found a logarithmic relationship 

between trout foraging efficiency and pool surface light levels (regulated by forest 

canopy), and they clearly demonstrated that the mean percentage of drifting prey 

captured by cutthroat trout was greater in more open, sunny pools compared to well-

forested, shady pools.     

Although my invertebrate sampling was limited, the results did show that 

invertebrate biomass (collected as drift and on multi-plate samplers) was substantially 

greater at Miller Avenue compared to the two shady upstream sites.  In six Oregon 

streams, Hawkins et al. (1982) found that overall invertebrate abundance was greater in 

streams with more open canopies, and that canopy condition had a greater influence 

compared to substrate type on both total invertebrate abundance and guild.  Further, 

Behmer and Hawkins (1986) compared abundance and production of invertebrates in 

open and shaded sites in a Utah mountain stream and found that mean biomass was 

greater in more open canopy sites for all taxa, with the exception of black fly 

(Simuliidae) which was more abundant in shadier sites.  Similarly, in Uvas Creek nearly 

all taxa collected from all sites were more abundant at Miller Avenue, with the exception 
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of filtering black fly larvae, which were absent from multi-plate samplers at this site but 

found in much greater abundance in shaded fast water habitats at the Watsonville Road 

and Uvas Road sites where stream flows were higher (Table 3). 

Role of Water Temperature.—Longitudinal differences in water temperature 

patterns also contributed to the large disparity in growth rates for YOY steelhead in Uvas 

Creek.  Growth rates were higher at downstream sites where water temperatures peaked 

earlier in summer and where the diel range of water temperatures was greatest.   

In early summer, sites downstream of Highway 152 experienced warm daytime 

water temperatures that often exceeded 20ºC for much of the day, but cooled during night 

and early morning hours.  The high daytime temperatures imposed greater metabolic 

costs and increased absolute food demands, but they also improved food conversion 

efficiency and digestive rate (Myrick and Cech 2005), which allowed the fish to feed 

more frequently throughout the day (Elliot 1973).  Growth is improved as long as food is 

abundant.  During night and early morning, the cooler water temperatures allowed for a 

metabolic reprieve when visibility for drift feeding was poor due to lower ambient light 

levels, and therefore fish likely moved to less energetically demanding microhabitats at 

those times (Metcalfe et al. 1997).    

Water temperature patterns at downstream sites were more influenced by diel air 

temperature patterns, canopy closure, and low stream flow volume relative to upstream 

sites.  Mean temperatures were slightly higher than they were upstream, but diurnal 

fluctuation was more pronounced.  The lower stream flow allowed for greater rate of heat 

exchange with the atmosphere (warming during the day and cooling at night), while the 
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less developed riparian canopy increased sun exposure and solar heating during the day 

(Poole and Berman 2001).  This was most evident at Miller Avenue where flow volumes 

were lower, riparian canopy was minimal and both the diurnal and seasonal ranges of air 

and water temperatures were greatest.   

At upstream sites, water temperatures were more heavily influenced by the 

temperature of bottom waters (hypolimnion) released from Uvas Reservoir, although this 

influence decreased with distance downstream.  The diurnal range of water temperatures 

was lower due to the thermal buffering of the reservoir’s water column and the higher 

flow volumes.  In early summer, Uvas Reservoir was stratified with cool temperatures on 

the bottom.  Water temperatures in Uvas Creek immediately downstream of the dam were 

cool in early summer but they increased with distance downstream due to exposure to 

warmer air temperatures (Poole and Berman 2001).  In late August and early September 

of 2005 and 2006, Uvas Reservoir became well mixed (Figures 19, 27, 39, 40).  This 

occurred with relatively little reduction in reservoir volume and apparently because of 

strong winds and longer nights.  Once the reservoir was well mixed, water temperatures 

in the hypolimnion peaked, and temperatures in Uvas Creek immediately downstream 

peaked.  Instead of stream flow warming with distance downstream, as occurred in early 

summer, temperatures cooled with distance downstream due to dense riparian shade and 

cooler air temperatures. 

 Growth for YOY steelhead during spring and early summer at upstream sites 

(Uvas Road, Old Creek Road, and Watsonville Road) was moderate, but much lower 

compared to downstream sites.  This was evident after comparing the large differences in 
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the mean YOY sizes among sites from July/August in 2006 (Table 6).  The slower 

growth, relative to downstream sites, may have been due in part to the diurnally cool 

waters released from Uvas Reservoir which maintained lower metabolic rates, food 

demand, and food conversion efficiency.   

Between July/August and the end of October, change in mean YOY fish sizes was 

minimal at these sites (Uvas Road, Old Creek Road, and Watsonville Road) indicating 

that conditions for continued growth had declined (Table 6).  By the end of August, Uvas 

Reservoir became well mixed and warm.  The warm waters released downstream resulted 

in increased metabolic demands and food conversion efficiency, however, low 

productivity caused by high canopy shading and degraded substrate conditions (discussed 

above) and poor visibility caused by elevated turbidity levels (discussed below), limited 

both food resources and the ability for fish to feed efficiently.  Also, the lower diurnal 

range of water temperatures exposed fish to elevated temperatures for longer periods; 

sometimes above 20ºC throughout day and night.  Under these conditions, elevated 

metabolic demands were maintained into the night when feeding was not possible.     

In Bodfish and Blackhawk Canyon creeks, juvenile steelhead growth rates were 

low and typical for small shaded, conifer-dominated streams with low summer stream 

flow.  Stream flow declined throughout summer and fall to just a trickle, which limited 

rearing habitat primarily to pools, and it also reduced invertebrate drift into pools (Smith, 

1982; Harvey et al. 2006; Hayes et al. 2008; Sogard et al. 2009; McCarthy et al. 2009).   

Studies have found that rapid growth of juvenile steelhead can be achieved in 

warm water environments when food resources are abundant.  A majority of these studies 
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pertain to controlled laboratory or hatchery settings (Hokanson et al. 1977; Wurtsbaugh 

and Davis 1977; Myrick and Cech 2005) or estuarine environments (Smith 1990; Bond 

2006; Hayes et al. 2008).  Using hatchery juvenile steelhead, Myrick and Cech (2005) 

tested the growth response, food conversion efficiency and food intake rates under three 

temperature treatments (11ºC, 15ºC and 19ºC).  They concluded that food conversion 

efficiency and growth rates were greatest under the 19ºC temperature treatment.  At 

Miller Avenue in Uvas Creek, monthly mean water temperatures peaked at 19.2ºC in July 

which indicates that these temperature conditions were in fact suitable for rearing 

juvenile steelhead and that rapid growth was possible, assuming food resources were 

abundant enough to meet satiation.  Hokanson et al. (1977) found that for constant 

temperature treatments, maximum growth rates for rainbow trout were achieved at 17.2ºC 

when fed excess rations.  In addition, they found that trout do not acclimate to mean 

temperature values, but more closely to a value between the mean and maximum daily 

temperatures. 

Studies that document rapid growth and first-year smolting by stream-reared 

steelhead experiencing warm summer temperatures are more limited.  Some studies have 

found that steelhead grow relatively large in downstream reaches of watersheds 

(Shapovalov and Taft 1954; Moore 1980; Smith 1982; Davis 1995; Alley and Associates 

2007), which they attributed to greater productivity, warmer temperatures, higher stream 

flows and earlier emergence time compared to cooler, shaded, low flow upstream reaches 

or tributaries.  In Uvas Creek and two other Santa Clara County streams, Smith (1982) 
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found that steelhead smolted as yearlings due to the augmented summer/fall stream flow 

below reservoirs.  

In a study on steelhead rearing in a warm, unshaded, but high flow and productive 

section of the Ventura River, Moore (1980) found that most YOY fish reached smolt size 

by the end of their first year.  Mean YOY fork lengths for fish measured in December 

were 120 mm in 1976 (drought year), 116 mm in 1977 (drought year), and 150 mm in 

1978 (wet year).  Moore found that in all three years steelhead growth rates were greatest 

in months with maximum mean water temperatures (July: 19.4, 18.9, 19.4ºC; August: 

20.0, 19.4, 20.0ºC) as opposed to spring months when flows were higher and cooler or 

fall and early winter months when stream flow, temperature, and riffle lengths were at 

their lowest.  Moore (1980) also concluded that juvenile steelhead grew better overall in 

1978 due to the higher stream flow during summer and fall which maintained greater 

riffle lengths and a higher abundance of drifting insects.  These results, along with others 

(Smith and Li 1983; Alley and Associates 2007; Harvey et al. 2006), highlight the 

importance of stream flow and microhabitat velocity for growth and survival of rearing 

juvenile steelhead, particularly when elevated water temperatures are of concern.   

The results of this study show that under specific environmental conditions 

steelhead are able to rear quite well in water temperatures considered to be above their 

preferred range.  Without the combination of higher augmented stream flows in summer 

and fall and high stream productivity, rearing at these temperatures would be less 

successful.  For example, summer water temperature patterns similar to those at Miller 



 58

Avenue would likely result in starvation for steelhead at upstream sites in Bodfish Creek, 

where summer habitat conditions are cool, well shaded, and flow is limited to a trickle.    

Role of Turbidity.—Turbidity levels increased throughout August to October at 

upstream sites (Uvas Road, Old Creek Road, and Watsonville Road) as Uvas Reservoir 

turned over.  Turbidity levels declined with distance downstream, although late summer 

increases were detected as far downstream as Highway 152 (Figures 35 and 36; Table 2).   

The decrease in turbidity with distance downstream was due to deposition in longer pools 

and glides, and filtering by algal mats and roots.  At upstream sites, algal mats (although 

rare) and root clumps released plumes of fine particles when disturbed.  Mean YOY sizes 

and relative growth rates (based on change in mean YOY fish sizes between July/August 

and October sampling) were significantly less than at downstream sites where turbidity 

levels were maintained at low levels (<10 NTU).  Although turbidity levels were not 

excessive (< 40 NTU) they were constant throughout much of September and all of 

October, and presumably into winter.  Such turbidity levels (10 - 40 NTU) can have 

adverse impacts on the feeding effectiveness, growth, and behavior of juvenile salmonids.  

Sigler et al. (1984) concluded that turbidity levels as low as 22 NTU reduced the growth 

in both length and weight of juvenile steelhead and coho salmon (O. kisutch).  Barrett et 

al. (1992) found that as turbidity gradually increased up to 15 and 30 NTU, reactive 

distances to prey were reduced by 20% and 55%, respectively, from those at background 

turbidity levels (4 - 6 NTU).  Berg (1982) concluded that at zero NTU prey capture 

success was 100% but that at relatively minor turbidity levels (10 NTU) juvenile coho 

salmon frequently missed prey items.   



 59

If the turbidity levels observed in Uvas Creek further reduce already limited 

visibility and feeding efficiency caused by dense shading, then perhaps this combination 

forced steelhead to switch feeding strategies, or to use less optimal habitats for feeding 

which would result in reduced growth compared to downstream sites.  Using 

experimental tanks, Swetka and Hartman (2001) found that the growth rates of brook 

trout decreased as turbidity levels increased between 0 and > 40 NTU, and they also 

found that the reduced visibility and prey recognition forced brook trout to switch to less 

energetically efficient feeding strategies at levels between 10 - 20 NTU.  In Uvas Creek, 

reduced feeding efficiency at upstream sites in September also coincides with increased 

metabolic cost due to elevated water temperatures of releases from the reservoir which 

likely resulted in substantially reduce growth rates. 

The cause of the seasonal turbidity increase is not clear, but there is evidence to 

suggest that the turbidity is organic and linked to seasonal water column dynamics in 

Uvas Reservoir.  The increased turbidity levels in Uvas Creek downstream of the dam are 

consistent with the timing of de-stratification in Uvas Reservoir in late August and early 

September (Figure 38).  Uvas Reservoir is oriented northwest to southeast in line with 

prevailing summer winds, and thus greater fetch and water column mixing occur near 

Uvas Dam.  In early- to mid-summer when the reservoir was nearly full, the water 

column remained stratified with a cool and relatively clear hypolimnion that provided 

clear water downstream into Uvas Creek.  Although the storage and depth gradually 

declined slowly warming the releases, the reservoir’s water column de-stratified quite 

rapidly and fully mixed in September (Figures 39 and 40).  Strong late summer winds and 
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longer nights were apparently able to mix warm, well oxygenated, and biologically turbid 

waters from the surface waters (epilimnion) to the bottom.  The color and clarity of the 

water in Uvas Creek from the reservoir downstream to below Watsonville Road turned 

from clear in early summer to an opaque and light grey-green color, which is consistent 

with biologically rich lake water. 

The seasonal turbidity increase also appears to be a relatively new phenomenon.  

This assumption is based largely on the fact that these higher turbidity levels were not 

observed in Uvas Creek during the 1970’s or early 1980’s.  In 1978, Smith and Li (1983) 

were able to easily make underwater observations of juvenile steelhead throughout 

September - November at Uvas Road, Old Creek Road, and Watsonville Road sites (J. 

Smith pers. comm. 2007).  In September and October of 2005 and 2006, similar attempts 

to observe juvenile steelhead at the same sites were unsuccessful due to extremely low 

visibility (less than 30 cm) caused by high turbidity.   

Factors explaining the change in turbidity in Uvas Reservoir and downstream in 

Uvas Creek are beyond the scope of this study but should be investigated further because 

of turbidity’s impact on steelhead growth.  Possible explanations may include changes in 

nutrient delivery into Uvas Reservoir following the 2002 Croy Fire in the upper 

watershed, a decline in algal abundance on the substrate in Uvas Creek (i.e., lower ability 

to filter particulate matter from stream flow) downstream of the reservoir caused by the 

recent increase riparian canopy closure, or a combination of both processes.   

Role of Fish Density and Competition.—Several studies have reported density-

dependent effects on salmonid growth (Jenkins et al. 1999; Keeley 2001; Boholin et al. 
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2002; Harvey et al. 2005).  Jenkins et al. (1999) found that average size (length and mass) 

for YOY brown trout in eastern California streams was negatively correlated with fish 

density and that larger fish were generally less affected by increases in fish density than 

smaller individuals.  Keeley (2001) studied the response to food and space competition in 

juvenile steelhead of different size classes and found that when emigration was not an 

option and competition for food increased, growth declined.  Fish mortality and the 

variance of size distribution increased, and smaller fish utilized less optimal feeding 

positions with greater frequency.  However, Keeley (2001) also found that when 

emigration was permitted (as was the case in Uvas Creek), overall mean size of fish that 

remained increased and that the fish that chose to emigrate were smaller and in worse 

physical condition.  Density-dependent effects similar to those found by Keeley (2001) 

may have occurred in Uvas Creek especially at downstream sites (e.g., Miller Avenue) 

where stream flow and the availability of fast-water habitat were lower.  Fish sizes were 

comparatively larger and competition for food and space increased as fish grew, possibly 

pushing smaller fish downstream.   

In addition to intra-specific competition, inter-specific competition with sympatric 

species such as juvenile Sacramento pikeminnow may also be limiting growth and 

survival of juvenile steelhead at some sites.  Based on underwater observations and fish 

sampling, pikeminnow (especially younger juveniles) were abundant and they shared 

fast-water habitats at downstream sites.  Reese and Harvey (2002) found that the growth 

of dominant juvenile steelhead in waters with 20 - 23ºC temperatures was reduced by 

more than 50% and the fish defended smaller territories in the presence of pikeminnow.   
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However, in waters with 15 - 18ºC temperatures the presence of pikeminnow had no 

effect on steelhead growth.  They also found that for sub-dominant steelhead, the effects 

of intra-specific competition exceeded the effects of inter-specific competition in all 

temperature treatments.   

Steelhead Mesohabitat and Microhabitat Use   

In Uvas Creek, juvenile steelhead showed a consistent preference for 

mesohabitats with higher stream flow velocities (Table 7), where they could take 

advantage of more abundant drifting invertebrates (Chapman and Bjornn 1969; Everest 

and Chapman 1972; Smith and Li 1983).   

There were differences in mesohabitat use between upstream sites and 

downstream sites that were presumably a result of longitudinal differences in stream flow 

and seasonal ontogenetic shifts (Everest and Chapman 1972; Bisson et al. 1988).  Use of 

riffle habitats was substantially higher at upstream sites.  This was due to the greater 

abundance of riffles at these sites, higher stream flow volumes, and coarser substrate, 

which created deeper and more useable riffles for the smaller fish.  Larger yearlings were 

more abundant in deeper water at the heads of pools.  At Miller Avenue lower stream 

flow made riffles too shallow by the middle of summer, especially for the larger YOY 

fish (≥150 mm SL), which explains their greater use of deeper head pool and run habitats 

during fall when sampling took place.   

Fish were collected in both glide and pool habitats; however, they were not 

detected in these habitats during underwater observations.  The use of glides occurred 

when there was sufficient cover present.  For example, at Miller Avenue juvenile 
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steelhead were collected in glides that had an abundance of Hydrilla or surface algal 

mats.  At other sites, some fish were collected in glides where dense accumulations of 

small and large woody debris were present.  Overall, use of pool habitat (excluding head 

of pool) was more uncommon.  In both 2005 and 2006, densities in pool habitat were 

greatest at sites upstream of Highway 152.  Older fish (Age 2 and Age 3) were almost 

exclusively found (or at least captured) in deeper complex pools.    

My data also show that steelhead utilize specific microhabitats that help them 

maximize net energy gains.  Steelhead used focal points, or normal swimming positions, 

with velocities much lower than the either mean water column or feeding loci velocities.  

Larger juvenile steelhead used focal points with faster velocities in order to satisfy 

greater absolute food demands.  These results are consistent with those of previous 

studies (Smith and Li 1983; Vondracek and Longanecker 1993).  More specifically, my 

results on microhabitat selection, along with my limited invertebrate drift data, are 

consistent with the results found by Smith and Li (1983) for the same stream, although 

they were able to observe steelhead at wider range of sites and water temperatures.   

Changes in Habitat Conditions, Fish Abundance, and Growth 

Since the construction of Uvas Dam and Reservoir in 1957, habitat conditions 

downstream have changed gradually and substantially over time due to a variety of 

factors.  In general, stream habitat conditions downstream of Uvas Dam are typical for 

most systems in Mediterranean climates where 50 years or more of regulated stream flow 

exist (Ligon et al. 1995; Collier et al. 1996; Gordon and Meentemeyer 2006).    
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Changes in Riparian Canopy Conditions.—Historic evidence indicates that much 

of Uvas Creek downstream of Watsonville Road was typical of the sycamore alluvial 

woodland community (Grossinger et al. 2008).  This community type is described as 

often having intermittent stream flow, braided channel morphology, and a sparsely 

vegetated riparian zone dominated by mature California sycamores.  Just upstream of 

Watsonville Road, the channel is naturally more entrenched and confined, due to the 

area’s geology.  Percolation, as described earlier, is limited between Uvas Dam and 

Watsonville Road, so stream flow, even prior to construction of Uvas Dam, usually 

persisted down to this area and thus supported a denser riparian forest (Grossinger et al. 

2008). 

As recently as the late 1970’s and early 1980’s (20 to 25 years of regulated flow), 

the riparian canopy downstream of Watsonville Road was still quite open (Figure 50).  

Summer stream flow releases were typically 0.28 m3/s (10 f 3/s), which maintained 

stream flow downstream to past Santa Teresa Boulevard (between Santa Teresa 

Boulevard and Miller Avenue) in most years.  At sites closer to the Uvas Dam (Uvas 

Road and Old Creek Road) the canopy, although naturally more dense than downstream 

sites, was also more open relative to current conditions (Figures 51 A and B).  These sites 

were also dominated by a mixture of mature sycamores, alders and willows which were 

set farther back from the wetted stream channel, while understory vegetation was usually 

scarce.  Recently, the density of the riparian forest has increased considerably at upstream 

sites such as Uvas Road and Old Creek Road (Figures 51 B and 52 B) but also at sites 

farther downstream between Watsonville Road and Highway 152.  Willow and alder 
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density has increased substantially downstream of Watsonville Road in a reach that was 

historically dominated by sycamores. 

Increases in riparian forest density, and canopy closure, in recent decades are 

attributable to reservoir effects on stream flow in Uvas Creek.  Average flood flows 

immediately downstream of the reservoir have been reduced substantially (Kondolf et al. 

2001) which has limited the intensity and frequency of major channel scouring events 

(Figure 52 A).  Originally, Uvas Reservoir was constructed for the purpose of water 

storage with little emphasis on flood protection.  However, continued development on the 

historic floodplain within the City of Gilroy and surrounding rural areas has increased the 

need for greater flood control prevention.  In recent years (since 1998), releases between 

storms have been maximized (up to 4.5 m3/s or 160 f 3/s) in order to provide flood storage 

and reduce peak flows downstream.  As a result, channel scouring downstream of the 

dam has been reduced and the survival of saplings has increased to create a denser 

riparian canopy (Figure 52 B).   

The continued availability of water during summer/fall has also contributed to the 

increase in tree density and change in species composition in reaches downstream of 

Watsonville Road.  The relatively wet years (1992 - 2006) since the last major drought 

(1987 - 1991) have provided sufficient water to meet the minimum base flow releases 

outlined in the original MOA (Anonymous 1956).  The perennial flows from upstream 

reservoir releases have substantially reduced the natural stream dry-back zone that would 

have killed and thinned riparian vegetation.  Dry-back in 1988 - 1991 thinned riparian 

vegetation, and a severe dry-back in 1977, when the reservoir dried below the outlet 
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valve, had more widespread effects (J. Smith pers. comm. 2007).  However those events 

happened almost 20 - 30 years ago.    

Change in Substrate Conditions.—The amount of fine sediment in the channel 

between Uvas Dam and Highway 152 has increased considerably since the 1970’s (J. 

Smith pers. comm. 2009).  Previously, sand was the dominant substrate in most large 

pools at upstream sites, but now many of these pools have large accumulations of silt and 

decomposing vegetation debris.  The coarse substrate in fast water habitats was generally 

free of fine sediments, however now the cobbles and gravels in these same habitats are 

infused with fine sediments, and when disturbed, sediment plumes are common.  

Downstream of Highway 152, substrate quality in 2005 and 2006 was similar to 

conditions in previous decades.  This is apparently due to greater frequency and 

magnitude of peak winter flows from Little Arthur and Bodfish creeks (Kondolf et al. 

2001) capable of periodically flushing fine sediments. The decline in substrate quality, 

coupled with increased shade, has resulted in a decline in stream primary productivity, 

invertebrate production, and fish growth and abundance in these reaches.           

Change in Steelhead Growth Rates.—Juvenile steelhead, on average, did not 

grow as large in most reaches of Uvas Creek as they did in the 1970’s.  The high growth 

that I observed in downstream reaches in 2005 and 2006 was found throughout Uvas 

Creek during the 1970’s (Table 11, J. Smith unpublished data).  For example, in October 

1978, mean standard lengths for YOY steelhead at Uvas Road, Old Creek Road, and 

Watsonville Road were 142 mm, 133 mm, and 115 mm, respectively.  In comparison, 

mean standard lengths at these same sites in October 2006 were, 80 mm, 81 mm, and 75 
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mm, respectively.  There has been little or no change in the density of the riparian canopy 

cover or other habitat conditions at the three sites in the Bodfish Creek watershed which 

continues to produce YOY fish sizes comparable to those of previous decades (Tables 6 

and 11). 

Management Recommendations 

The results of this study suggest several potential actions that could lead to 

improved rearing habitat and steelhead production in Uvas Creek downstream of Uvas 

Reservoir.  Uvas Creek is a heavily managed system and its riparian corridor has changed 

significantly from historic conditions (Grossinger et al. 2008).  The quality of rearing 

habitat has declined, based on the low fish densities and smaller fish sizes.  Returning 

portions of Uvas Creek downstream of Uvas Reservoir back to its pre-altered or natural 

condition as a largely braided intermittent system (Grossinger et al. 2008) is not a 

realistic option because it currently supports a substantial portion of the remaining rearing 

habitat in the stream and in the entire Pajaro watershed.  However improving some 

specific habitat attributes in Uvas Creek downstream of the dam, such that they resemble 

conditions that were previously more productive, is feasible and would likely result in 

improved steelhead growth and abundance.  Not only would an increase in juvenile 

abundance likely improve adult runs, but the production of a greater abundance of larger 

smolt-size YOY fish each year would ensure both better ocean survival and likelihood of 

the fish returning as adults (Bond 2006; Bond et al. 2008).  Some of these potential 

management actions are discussed below. 
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Summer and Fall Stream Flow Releases.—The increased stream flow volume 

released during the summer and fall of 2005 and 2006 provided additional rearing habitat 

for juvenile steelhead but had different outcomes with respect to water storage and 

quality.  In 2005, stream flows were maintained between 0.28 - 0.37 m3/s (10 - 14 f 3/s) 

which extended and maintained rearing habitat to just downstream of Miller Avenue 

throughout the dry season.  Apparently, all of this flow percolated into the deeper 

production aquifer.  Juvenile steelhead at Miller Avenue grew exceptionally well, but 

densities were low due to a limited amount of fast-water habitats.  In 2006, late spring 

storms provided sufficient water storage to test whether or not an additional increase in 

stream flows would result in additional benefits to steelhead, and therefore stream flows 

were maintained between 0.5 - 0.64 m3/s (17 and 22.5 f 3/s) during most of summer and 

fall.  The enhanced releases extended rearing habitat to downstream of U.S. Highway 

101.  However, with the exception of a single open canopy run habitat near Luchessa 

Avenue, fish densities were low in the expanded live stream.  In addition, fish densities 

were actually reduced at five of seven sites despite the increased flow in 2006 (Tables 5 

and 9).  Fish sizes in 2006 were also about the same at all sites except Miller Avenue, 

where higher flows in 2006 did increase the abundance of fast water habitat and mean 

YOY size by 15% (Table 6).  More fast-water habitat at Highway 152 might also have 

increased fish abundance, except for the effects of possible pollution. 

Much of the increased flow in 2006 was not percolated into the deeper production 

aquifer and instead was either lost to the Pajaro River or percolated in a shallow perched 

aquifer that is unusable for agricultural or municipal supplies (J. Abel pers. comm. 2008).  
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Also, the increased stream flow releases in 2006 reduced the reservoir volume at a 

slightly faster rate which meant that warm and more turbid water was released 

approximately 2 weeks earlier in summer than in 2005.  The lower reservoir volume also 

reduced the availability of water needed for smolt out-migration and other flows during 

the following spring, which turned out to be a dry year. 

  Based on the minimal gains in steelhead production between the two flow release 

strategies and the inability to percolate much of the extra flow, a flow release strategy 

more like that of 2005 (10 - 14 f 3/s) that continuously maintains flow throughout summer 

and fall to Luchessa Avenue appears to best for steelhead. The lower releases may reduce 

late summer temperatures and increase reservoir carryover.  

Addition of Habitat Forming Structures.—Even with the additional stream flow 

releases, juvenile steelhead densities at downstream sites, such as Miller Avenue, were 

limited due to the scarcity of suitable fast-water habitats, particularly head of pool or 

deep riffles.  In conjunction with the increased flow releases, strategic placement of 

boulders, anchored root wads, or other structures within these downstream reaches would 

create specific feeding habitats with the combination of cover, increased depth, and flow 

velocity.  In turn, a greater abundance of these habitats could produce more and larger 

smolt-size steelhead.  Normally, the addition of structures is used to create complex pools 

for overwintering habitat; however, overwintering habitat is not limited in Uvas Creek, 

but fast-water feeding habitat is limited, especially at downstream sites.  Ideal locations 

for these structures would be within or immediately downstream of exposed and sunny 

areas dominated by coarser substrate where invertebrate production would be high.  
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Much of Uvas Creek between Miller Avenue and Highway 152 is readily accessible 

through the adjacent linear parkway or service roads in the Eagle Ranch Community and 

therefore these areas are desirable locations for in-stream habitat improvement.   

Riparian Canopy Opening.—From Uvas Road downstream to Highway 152 

juvenile steelhead survival and growth is currently limited, in part, due to the high 

shading and low light levels caused by the dense riparian forest.  A plan to selectively 

girdle or remove trees at specific habitats within these reaches should be considered, as it 

would reduce shading, increase stream productivity, and likely produce larger YOY 

steelhead.  The increased light levels would also improve feeding efficiency for juvenile 

steelhead.  More abundant algal growth on the substrate would not only improve 

production of invertebrates in Uvas Creek but would also filter turbid waters released 

from Uvas Reservoir in late summer and fall.   

Using a selective approach at specific sites, or habitat units, while leaving the 

denser canopy intact over longer slow pools and glides, would minimize potential water 

temperature increases.  Girdling, as opposed to tree removal, would be more cost 

effective, less intrusive, and the standing snags within the riparian forest would provide 

habitat for species of cavity-nesting birds.  Specific species could be targeted.  At a 

minimum, the removal of non-native evergreen species, such as the highly invasive 

evergreen acacia, should be considered at upstream sites.  Sycamores should be left 

alone, but willows and alders in areas that would not normally support such high 

densities could be selected for girdling.   
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Increase Frequency and Intensity of Peak Flows.—Winter stream flow releases 

from Uvas Dam should be adjusted to increase the intensity, frequency and duration that 

Uvas Reservoir spills.  This would mean reducing or eliminating between-storm “flood 

protection” releases of up to 4.5 m3s (160 f 3/s, the outlet capacity)  from Uvas Dam, as 

long as flood risk is not increased.  The increase in large reservoir spills would benefit 

steelhead and other wildlife by scouring saplings and dense underbrush that are currently 

limiting light and stream productivity and by flushing fine sediments that have 

accumulated, particularly at sites closer to the dam.  In addition, more frequent spilling 

events and channel scouring could potentially limit the long-term need to girdle or 

remove trees. 
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FIGURE 1.—Uvas Creek watershed also showing the lower Pajaro River and surrounding areas. 
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FIGURE 2.—Mean annual precipitation for the Uvas Creek watershed and surrounding areas. Data Source: 
The PRISM Group, Oregon State University.  The data are mean annual precipitation for the climatological 
period 1971-2000. 
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FIGURE 3.—Mean annual maximum air temperature for the Uvas Creek watershed and surrounding areas.  
Data source: The PRISM Group, Oregon State University.  Mean annual maximum air temperature data are 
mean July maximums for the climatological period 1971-2000.  
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FIGURE 4.—Location of habitat assessment reaches in Uvas Creek July and August 2005. 
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FIGURE 5.—Location of water temperature data loggers in Uvas Creek. 
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FIGURE 6.—Location of reaches sampled for steelhead in the Uvas Creek watershed, October 2005. 
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FIGURE 7.—Location of reaches sampled for steelhead in the Uvas Creek watershed, July/August and October 2006.  Note: Reach lengths in map depict 
stream lengths sampled in October 2006; shorter distances were sampled in July 2006.  
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A.  
 

B. 
 
FIGURE 8.—Scales collected from:  A)  a 180 mm SL YOY (Age 0) at Miller Avenue and B) a 135 mm SL yearling (Age 1) steelhead at Watsonville 
Road, showing annulus and crossing over.  

annulus

crossing over 
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FIGURE 9.—Daily mean stream flow released from Uvas Dam recorded at the Uvas Dam release ALERT Gage (1 June - 10 Nov 2005 and 2006). 
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FIGURE 10.—Stream discharge measured at various sites by the SCVWD during percolation tests on Uvas Creek downstream of Uvas Dam.  River 
kilometer 0 is Uvas Dam and the Pajaro River confluence is at 27.5 river kilometers.  In summer there are no tributary surface water contributions. 
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FIGURE 11.—Percent by length of mesohabitat types in reaches of Uvas Creek.  Reaches are in order from 
upstream (left) to downstream (right). 
 
 
 
 

0%

10%

20%

30%

40%

50%

Uvas Rd Old Creek
Rd

Watsonville
Rd

Watsonville
Rd (us LAC

conf.)

Watsonville
Rd (ds LAC

conf.)

Highway 152 Miller Ave Luchessa
Ave

R
ea

ch
 M

ea
n 

P
er

ce
nt

ag
e

Fine sediments / detritus Sand Gravel Cobble Boulder Bedrock/Hardpan
 

 
FIGURE 12.—Reach mean substrate composition for sites in Uvas Creek.  Mean percentages are weighted 
by habitat unit length.  Reaches are in order from upstream (left) to downstream (right).  Area shaded in 
gray is a comparison of reaches at Watsonville Road upstream (us) and downstream (ds) of Little Arthur 
Creek confluence (LAC). 
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FIGURE 13.—Percent substrate composition per mesohabitat type at sites in Uvas Creek, summer 2005.
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FIGURE 14.—Reach mean percent canopy cover at sites in Uvas Creek and Bodfish Creek watershed.  
Reach average percentages are weighted by habitat unit length.  Reaches are in order from upstream (left) 
to downstream (right). 
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FIGURE 15.—Monthly average maximum (MAX), mean (MEAN), and minimum (MIN) air temperatures at 
three sites along Uvas Creek June - October, 2005.  Sites are in order from upstream (left) to downstream 
(right).  Data for June 2005 at Miller Avenue are based on data from June 10 - 30th Data values are listed in 
Table B-12 in Appendix B. 
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FIGURE 16.—Monthly average maximum (MAX), mean (MEAN), and minimum (MIN) air temperatures at 
three sites along Uvas Creek June - October, 2006.  Sites are in order from upstream (left) to downstream 
(right). Data values are listed in Table B-12 in Appendix B.
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FIGURE 17.—Monthly average maximum (MAX), mean (MEAN), and minimum (MIN) water 
temperatures at eight sites along Uvas Creek June - October, 2005.  In the figure, sites are in order from 
upstream (left) to downstream (right).  Data for June 2005 at Santa Teresa Boulevard and Miller Avenue 
are based on data from June 10 - 30th.  All data values are listed in Table B-13 in Appendix B. 
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FIGURE 18.—Monthly average maximum (MAX), mean (MEAN), and minimum (MIN) water 
temperatures at eight sites along Uvas Creek June - October, 2006.  In the figure, sites are in order from 
upstream (left) to downstream (right).  Data for the Little Arthur Creek confluence and below Highway 152 
sites are not available for June 2006.  All data values are listed in Table B-13 in Appendix B. 
 
 
 



 97

Uvas Reservoir Outflow

0%

20%

40%

60%

80%

100%

May 05 Jun 05 Jul 05 Aug 05 Sep 05 Oct 05 Nov 05

16 deg C
18 deg C
20 deg C
21 deg C

 
 
FIGURE 19.—Daily percent exceedance for selected water temperature thresholds at the Uvas Reservoir 
outflow below Uvas Dam, summer and fall 2005. Data records: 04 May 05 – 19 Nov 05. 
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FIGURE 20.—Daily percent exceedance for selected water temperature thresholds for Uvas Creek at Uvas 
Road, summer and fall 2005. Data records: 04 May 05 – 19 Nov 05. 
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FIGURE 21.—Daily percent exceedance for selected water temperature thresholds for Uvas Creek at Old 
Creek Road, summer and fall 2005. Data records: 04 May 06 – 19 Nov 05. 
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FIGURE 22.—Daily percent exceedance for selected water temperature thresholds for Uvas Creek near the 
Little Arthur Creek Confluence, summer and fall 2005. Data records: 04 May 05 – 19 Nov 05. 
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Uvas Creek near Bodfish Creek Confluence
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FIGURE 23.—Daily percent exceedance for selected water temperature thresholds for Uvas Creek near the 
Bodfish Creek confluence, summer and fall 2005. Data records: 04 May 05 – 19 Nov 05. 
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FIGURE 24.—Daily percent exceedance for selected water temperature thresholds for Uvas Creek below 
Highway 152, summer and fall 2005. Data records: 17 May 05 – 19 Nov 05. 
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FIGURE 25.—Daily percent exceedance for selected water temperature thresholds for Uvas Creek at Santa 
Teresa Boulevard, summer and fall 2005. Data records: 10 Jun 05 – 19 Nov 05. 
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FIGURE 26.—Daily percent exceedance for selected water temperature thresholds for Uvas Creek at Miller 
Avenue, summer and fall 2005. Data records: 10 Jun 05 – 19 Nov 05. 



 101

Uvas Reservoir Outflow

0%

20%

40%

60%

80%

100%

May 06 Jun 06 Jul 06 Aug 06 Sep 06 Oct 06 Nov 06

16 deg C

18 deg C
20 deg C

21 deg C
22 deg C

 
 
FIGURE 27.—Daily percent exceedance for selected water temperature thresholds at the Uvas Reservoir 
outflow below Uvas Dam, summer and fall 2006. Data records: 04 May 06 – 06 Nov 06. 
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FIGURE 28.—Daily percent exceedance for selected water temperature thresholds for Uvas Creek at Uvas 
Road, summer and fall 2006. Data records: 04 May 06 – 06 Nov 06. 
 
 
 
 



 102

Uvas Creek at Old Creek Rd
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FIGURE 29.—Daily percent exceedance for selected water temperature thresholds for Uvas Creek at Old 
Creek Road, summer and fall 2006. Data records: 04 May 06 – 06 Nov 06. 
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FIGURE 30.—Daily percent exceedance for selected water temperature thresholds for Uvas Creek near the 
Little Arthur Creek confluence, summer and fall 2006. Data records: 05 Jul 06 – 06 Nov 06. 
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Uvas Creek near Bodfish Creek Confluence
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FIGURE 31.—Daily percent exceedance for selected water temperature thresholds for Uvas Creek near the 
Bodfish Creek confluence, summer and fall 2006. Data records: 26 May 06 – 08 Nov 06. 
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FIGURE 32.—Daily percent exceedance for selected water temperature thresholds for Uvas Creek below 
Highway 152, summer and fall 2006.  Data records: 05 Jul 06 – 08 Nov 06. 
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Uvas Creek at Santa Teresa Blvd
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FIGURE 33.—Daily percent exceedance for selected water temperature thresholds for Uvas Creek at Santa 
Teresa Boulevard, summer and fall 2006. Data records: 12 May 06 – 08 Nov 06. 
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FIGURE 34.—Daily percent exceedance for selected water temperature thresholds for Uvas Creek at Miller 
Avenue, summer and fall 2006. Data records: 17 May 06 – 08 Nov 06. 
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FIGURE 35.—Turbidity in Uvas Creek by river kilometer downstream of Uvas Dam for dates in 2005 and 
2006 (river kilometer 0 is at Uvas Dam and river kilometer 14.3 is at Miller Avenue).  Note: Only two sites 
monitored “mid Aug 2005” over 11 day period 5 - 16 August. Only two sites monitored on Aug 31st 2006.  
The upper three sites in “mid Oct 2006” were monitored over a 10 day period 13 - 23 October.   
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FIGURE 36.—A 2006 seasonal comparison of secchi depth measured in Uvas Reservoir near Uvas Dam and 
in-stream turbidity measured in Uvas Creek at Uvas Road (1.7 kilometers downstream of Uvas Dam). 
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FIGURE 37.—A comparison of Uvas Reservoir water storage and secchi depth measured in Uvas Reservoir, 
2006. Note: 1.2E+07 m3 = 9,835 acre-feet. 
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FIGURE 38.—A comparison of Uvas Reservoir water storage and turbidity measured at Uvas Road 
approximately 1.7 kilometers (1 mile) downstream of Uvas Dam.  Note: 1.2E+07 m3 = 9,835 acre-feet. 
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FIGURE 39.—Surface to bottom water temperature and dissolved oxygen concentrations collected in Uvas Reservoir near Uvas Dam, July through 
October 2005.  
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FIGURE 40.—Surface to bottom water temperature, chlorophyll-a, and dissolved oxygen concentrations collected in Uvas Reservoir near Uvas Dam,  
April through October 2006. 
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FIGURE 41.—Macroinvertebrate volumes collected with multi-plate samplers at three sites and mesohabitat 
types in Uvas Creek, September 2006.  
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FIGURE 42.—Relative invertebrate drift rates for different habitat velocities at three sites and mesohabitat 
types in Uvas Creek, September 2006 (GL=glide; HP=Head of Pool; RN=Run). 
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FIGURE 43.—Comparison of insect (Planariidae and Physidae excluded) drift volume and the volume 
colonized on multi-plate samplers at different sites and mesohabitat types in Uvas Creek, September 2006. 
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FIGURE 44.—Velocities at focal points (stationary feeding position) versus juvenile steelhead standard 
lengths in Uvas Creek during August and September 2005 and July 2006.  
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FIGURE 45.—Velocities at focal points versus the feeding loci (position of food intercept) for juvenile 
steelhead in Uvas Creek during August and September 2005 and July 2006. 
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FIGURE 46.—Young of the year (YOY) juvenile steelhead densities (# fish per 30.5 m) collected at sites in 
Uvas Creek in October 2005, July/August 2006, and October 2006.   
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FIGURE 47.—Yearling and older steelhead densities (# fish per 30.5 m) collected at sites in Uvas Creek 
October 2005, July/August 2006, and October 2006. 
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FIGURE 48.— Young of the year (YOY) and yearling and older fish densities collected at sites in the 
Bodfish Creek Watershed October 2005 and October 2006. 
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FIGURE 49.—Mean standard length for YOY steelhead collected at sites in Uvas Creek and Bodfish Creek 
watersheds in 2005 and 2006. 
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Figure 50.—Uvas Creek looking upstream from the Highway 152 Bridge in the fall of 1979.  Note the 
mature California sycamores and sparse understory conditions. (Photo courtesy of Jerry Smith). 
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FIGURE 51.—Uvas Creek downstream of Old Creek Road during fall 1978 (A) and at approximately the 
same location on 29 July 2006 (B).  (Photo A, courtesy of Jerry Smith)   
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B. 
 
FIGURE 52.—Uvas Creek downstream from Watsonville Road, looking downstream, in January 1983 (A) 
and on 25 July 2006 (B).  (Photo A, courtesy of Jerry Smith)
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TABLE 1.—Stream flow volumes at various sites (kilometers below Uvas Dam) on Uvas Creek downstream of Uvas Dam as measured by the SCVWD 
during percolation tests.  Reach loss/gain and reach loss/gain per river kilometer are also provided. 
  

Date

Uvas Dam 
Release  

(0.0)
Uvas Rd 

(1.7)

Old Creek 
Rd         

(3.6)

Watsonville 
Rd          

(6.4)
Highway 152 

(9.8)

Santa 
Teresa 
Blvd      
(12.7)

Miller Ave 
(14.3)

Luchessa 
Ave      

(15.9)
U.S. 101 

(19.2)

Bolsa Rd 
Fish Ladder 

(21.1)
Highway 25 

(23.1)

Carnadero 
Preserve 
Vehicle 

Xing      
(25.4)

 stream flow  (m3/s) 0.70 0.66 0.47 0.37 0.18
reach loss / gain (m3/s) -0.04 -0.19 -0.10 -0.19

reach loss/gain (m3·sec-1·km-1) -0.01 -0.05 -0.04 -0.06
 stream flow  (m3/s) 0.41 0.41 0.39 0.37 0.28 0.16 0.07 0.02 2.832E-07

reach loss / gain (m3/s) 0.00 -0.02 -0.02 -0.09 -0.13 -0.09 -0.04 -0.02
reach loss/gain (m3·sec-1·km-1) 0.00 -0.01 -0.01 -0.03 -0.04 -0.05 -0.03 -0.01

 stream flow  (m3/s) 0.61 0.61 0.59 0.59 0.50 0.40 0.36 0.30 0.11
reach loss / gain (m3/s) 0.01 -0.02 -0.01 -0.08 -0.10 -0.04 -0.06 -0.18

reach loss/gain (m3·sec-1·km-1) 0.00 -0.01 0.00 -0.02 -0.04 -0.03 -0.04 -0.04
 stream flow  (m3/s) 0.69 0.66 0.62 0.65 0.54 0.38 0.30 0.27 0.07 0.02

reach loss / gain (m3/s) -0.03 -0.04 0.03 -0.11 -0.16 -0.08 -0.03 -0.20 -0.05
reach loss/gain (m3·sec-1·km-1) -0.02 -0.02 0.01 -0.03 -0.06 -0.05 -0.02 -0.04 -0.02

 stream flow  (m3/s) 0.58 0.59 0.58 0.61 0.51 0.39 0.33 0.29 0.14 0.15 0.21
reach loss / gain (m3/s) 0.01 -0.01 0.03 -0.10 -0.12 -0.06 -0.04 -0.15 0.01 0.06

reach loss/gain (m3·sec-1·km-1) 0.01 -0.01 0.01 -0.03 -0.04 -0.04 -0.03 -0.03 0.01 0.02

average reach loss / gain (m3s) 0.00 -0.02 0.01 -0.11 -0.12 -0.07 -0.04
average reach loss/gain (m3·sec-1·km-1) 0.00 -0.01 0.00 -0.03 -0.04 -0.04 -0.03

27 Oct 06

11 Sep 68

11 Sep 05

21 Jul 06

15 Sep 06
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TABLE 2.—Turbidity and transparency tube readings from five sites on Uvas Creek during summer and fall 
of 2005 and 2006.  Note:* indicates readings where 120 cm (detection limit of tube) was barely visible (i.e., 
at or near 120 cm).  Values in parentheses and bold are estimated based on a calibration of the two methods 
(R2 =0.90). 
 

Site Date/Time
Turbidity 

(NTU)
Transparency 

(cm) Site Date/Time
Turbidity 

(NTU)
Transparency 

(cm)
Uvas Rd 16 Aug 05 15:24 4 (>120) HWY 152 02 Aug 05 15:33 3 (>120)

07 Oct 05 15:09 27 37 07 Oct 05 16:00 (≤ 7) >120
11 Oct 05 10:33 (27) 29 11 Oct 05 11:14 (≤ 7) >120
14 Oct 05 10:45 37 23 14 Oct 05 10:30 5 >120
19 Oct 05 10:20 35 23 19 Oct 05 00:00 5 >120
26 Oct 05 10:35 10 72 08 Apr 06 14:00 (24) 33
22 Apr 06 13:52 19 38 22 Apr 06 14:40 14 70

05 May 06 14:41 9 75 05 May 06 15:17 5 >120
29 May 06 15:41 11 77 29 May 06 16:20 4 >120
23 Jun 06 13:43 5 >120 23 Jun 06 13:27 2 >120
12 Jul 06 14:19 6 120* 12 Jul 06 14:59 2 >120

01 Aug 06 09:15 10 77 22 Sep 06 11:25 11 68
01 Aug 06 16:15 9 75 04 Oct 06 11:55 12 51
31 Aug 06 12:57 22 36
22 Sep 06 10:52 30 30 Miller Ave 15 Jul 05 00:00 (≤ 7) >120
04 Oct 06 11:05 34 26 02 Aug 05 15:45 (≤ 7) >120
23 Oct 06 09:05 37 22 07 Oct 05 16:10 (≤ 7) >120

08 Apr 06 15:25 (26) 31
Old Creek Rd 05 Aug 05 16:05 2 (>120) 22 Apr 06 15:00 13 75

07 Oct 05 15:45 (11) 72 05 May 06 15:33 4 >120
11 Oct 05 10:43 (23) 37 29 May 06 16:33 3 >120
14 Oct 05 10:50 30 26 23 Jun 06 13:12 2 >120
19 Oct 05 10:27 19 31 12 Jul 06 15:28 2 >120
22 Apr 06 14:07 19 55 22 Sep 06 11:41 4 >120

05 May 06 14:50 8 97 04 Oct 06 09:45 4 >120
29 May 06 15:53 8 89
23 Jun 06 13:51 5 >120
12 Jul 06 14:29 4 >120
25 Jul 06 09:00 9 70
28 Jul 06 09:25 10 77
28 Jul 06 16:05 8 90

22 Sep 06 11:00 23 36
17 Oct 06 09:00 37 23

Watsonville Rd 19 Jul 05 17:01 6 (>120)
22 Jul 05 16:42 4 (>120)

07 Oct 05 15:54 (≤ 7) >120
11 Oct 05 11:01 (15) 55
14 Oct 05 12:00 17 39
19 Oct 05 10:40 12 57
08 Apr 06 15:00 (19) 44
22 Apr 06 14:20 17 56

05 May 06 14:58 7 120*
29 May 06 16:05 7 120*
23 Jun 06 14:00 3 >120
12 Jul 06 14:45 3 >120
26 Jul 06 09:00 9 68
26 Jul 06 16:00 6 110

31 Aug 06 11:57 14 48
22 Sep 06 11:12 17 38
04 Oct 06 10:35 28 29
13 Oct 06 10:55 27 31  
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TABLE 3.—Macroinvertebrate taxa, number, volume and percent biomass collected with multi-plate 
samplers at three sites and different mesohabitat types in Uvas Creek, September 2006. 
 

Site 
(Mesohabitat) Order Family Number Volume

Percent of 
Total 

Biomass
Uvas Rd Diptera Chironomidae 5 1.0 57%
(Glide) Tricoptera Hydropsychidae 3 0.6 36%

Ephmeroptera Baetidae 1 0.1 7%
Total Number of Taxa     3 Total 1.8

Uvas Rd Tricoptera Hydropsychidae 52 15.0 63%
(Riffle/Run) Diptera Simuliidae 12 3.0 13%

Ephmeroptera Baetidae 9 3.0 13%
Plecoptera Perlodidae 6 3.0 13%

Total Number of Taxa     4 Total 24.0

Watsonville Rd Tricoptera Hydropsychidae 301 119.0 83%
(Run) Diptera Simuliidae 119 18.0 13%

Plecoptera Perlodidae 13 4.5 3%
Coleoptera Dytisidae 1 1.0 1%
Ephmeroptera Baetidae 4 1.0 1%

Total Number of Taxa     5 Total 143.5

Watsonville Rd Tricoptera Hydropsychidae 72 37.0 70%
(Head of Pool) Tricladida Planariidae 16 8.0 15%

Diptera Simuliidae 32 4.0 8%
Coleoptera Elmidae 6 2.0 4%
Ephmeroptera Baetidae 7 2.0 4%

Total Number of Taxa     5 Total 53.0

Miller Ave Tricladida Planariidae 14 9.5 56%
(Glide) Tricoptera Lepidostomatidae 4 3.5 21%

Tricoptera Hydropsychidae 13 2.8 16%
Coleoptera Elmidae 7 1.3 7%
Basommatophora Physidae 21

Total Number of Taxa    5 Total 17.0

Miller Ave Tricoptera Hydropsychidae 306 90.0 66%
(Run) Tricladida Planariidae 86 26.0 19%

Ephmeroptera Baetidae 26 9.0 7%
Coleoptera Elmidae 28 6.0 4%
Tricoptera Lepidostomatidae 3 4.5 3%
Ephmeroptera Leptohyphidae 1 1.0 1%
Diptera Chironomidae 2 0.1 0%
Basommatophora Physidae 26

Total Number of Taxa     8 Total 136.6

Miller Ave Tricoptera Hydropsychidae 519 162.0 76%
(Head of Pool) Tricladida Planariidae 72 45.0 21%

Coleoptera Elmidae 24 4.5 2%
Ephmeroptera Baetidae 8 3.0 1%

Total Number of Taxa     4 Total 214.5
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TABLE 4.—Macroinvertebrate taxa, number, volume, and percent biomass collected with drift nets at three 
sites and different mesohabitat types in Uvas Creek, September 2006. 
   

Site 
(Mesohabitat) Order Family Number Volume

Percent of 
Total 

Biomass
Uvas Rd Ephemeroptera Baetidae 104 11.0 96%
(Glide) Diptera Chironomidae 4 0.3 2%

Diptera Simuliidae 2 0.3 2%
Total Number of Taxa     3 Total 11.5

Uvas Rd Ephmeroptera Baetidae 89 23.5 68%
(Run/Riffle) Tricladida Planariidae 3 2.5 7%

Diptera Simuliidae (adult) 2 2.0 6%
Ephmeroptera Baetidae (adult) 11 2.0 6%
Diptera Chironomidae 12 2.0 6%
Diptera Simuliidae 7 1.5 4%
Diptera Chironomidae (pupae) 2 0.8 2%
Coleoptera Elmidae 3 0.5 1%

Total Number of Taxa     7 Total 34.8

Uvas Rd Ephmeroptera Baetidae 182 14.0 54%
(Head of Pool) Diptera Chironomidae (pupae) 16 2.5 10%

Tricladida Planariidae 3 2.5 10%
Diptera Simuliidae (adult) 5 2.0 8%
Diptera unknown (adult) 1 1.5 6%
Diptera Simuliidae 7 1.3 5%
Tricoptera Hydropsychidae 2 1.0 4%
Diptera Chironomidae 6 0.8 3%
Coleoptera Elmidae 1 0.3 1%

Total Number of Taxa     7 Total 25.8

Watsonville Rd Ephemeroptera Baetidae 34 5.0 53%
(Glide) Diptera Chironomidae (pupae) 22 4.0 42%

Diptera Simuliidae 1 0.3 3%
Coleptera Elmidae 1 0.1 1%
Diptera Chironomidae 1 0.1 1%

Total Number of Taxa     5 Total 9.5

Watsonville Rd NO DATA; NET FAILED
(Run)

Watsonville Rd Ephemeroptera Baetidae 60 14.0 48%
(Head of Pool) Diptera Simuliidae 14 4.5 15%

Tricoptera Lepidostomatidae 6 3.5 12%
Diptera Chironomidae 8 1.8 6%
Diptera Chironomidae (pupae) 7 1.8 6%
Tricoptera Hydropsychidae 3 1.8 6%
Diptera Tipulidae 5 1.0 3%
Tricoptera Leptoceridae 1 1.0 3%

Total Number of Taxa     7 Total 29.3

Miller Ave Ephmeroptera Baetidae 56 15.0 83%
(Glide) Ephmeroptera Leptohyphidae 1 1.0 6%

Tricoptera Lepidostomatidae 1 1.0 6%
Diptera Chironomidae 2 0.5 3%
Diptera Simuliidae 1 0.5 3%
Basommatophora Physidae 1

Total Number of Taxa     6 Total 18.0
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TABLE 4.—Cont. 
 

Site 
(Mesohabitat) Order Family Number Volume

Percent of 
Total 

Biomass

Miller Ave Tricoptera Hydropsychidae 5 10.5 20%
(Run) Ephmeroptera Baetidae 40 10.0 19%

Ephmeroptera Baetidae (adult) 13 8.0 15%
Ephmeroptera Leptohyphidae 4 7.0 13%
Tricoptera Lepidostomatidae 3 5.5 11%
Hemiptera Corixidae 3 3.0 6%
Coleoptera Gyrinidae 1 2.0 4%
Ephmeroptera Ephemerellidae (adult) 1 2.0 4%
Diptera Chironomidae 3 1.0 2%
Tricoptera Leptoceridae 1 1.0 2%
Coleoptera Elmidae 3 0.8 1%
Diptera Chironomidae (pupae) 1 0.8 1%
Diptera Simuliidae 1 0.4 1%
Basommatophora Physidae 4

Total Number of Taxa     12 Total 51.9

Miller Ave Ephmeroptera Baetidae 97 21.0 37%
(Head of Pool) Tricoptera Hydropsychidae 12 21.5 38%

Ephmeroptera Ephemerellidae 3 3.5 6%
Ephmeroptera Leptohyphidae 2 3.5 6%
Tricladida Planariidae 3 2.0 4%
Diptera Chironomidae 7 1.5 3%
Diptera Simuliidae 4 1.3 2%
Tricoptera Lepidostomatidae 1 1.0 2%
Tricoptera Leptoceridae 1 1.0 2%
Coleoptera Elmidae 3 0.8 1%

Total Number of Taxa     9 Total 57.0
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TABLE 5.—Steelhead captured, population estimates (per site), and densities per 30.5 m (100 ft) for selected sites on Uvas Creek and in the Bodfish 
Creek watershed during October 2005. 
 

Site

Total 
Distance 
shocked 

(m)
Total # 
of Fish 

Total # of 
YOY      

(% of total)

Total # of 
Yearlings 
+ older 

fish
Total Pop. 
Estimate

Pop. 
Estimate 
of YOY 

Pop. 
Estimate of 
Yearlings + 
older fish

Density: fish 
/ 30.5 m 

Density:  
YOY / 
30.5 m

Density: 
Yearlings 
+ older 

fish / 30.5 
m

Uvas Creek Watershed
Uvas Creek at Uvas Rd. 345       138 130 (94) 8 165.3 155.7   9.6 14.6 13.8 0.8
Uvas Creek at Old Creek Rd. 346       100 93 (93) 7 114.4 106.4   8.0 10.1 9.4 0.7
Uvas Creek at Watsonville Rd. 618       90 84 (93) 6 103.2 96.3     6.9 5.1 4.8 0.3

above Little ArthurCreek Conf. 351          55 51 (93) 4 64.6 59.9     4.7 5.6 5.2 0.4
below Little Arthur Creek Conf. 266          35 33 (94) 2 38.6 36.4     2.2 4.4 4.2 0.3

Uvas Creek at Highway 152 558       42 39 (93) 3 64.8 60.2     4.6 3.5 3.3 0.3
Uvas Creek at Miller Ave. 452       98 98 (100) 0 105.6 105.6   0.0 7.1 7.1 0.0
Total 798       468 444 (95) 24

Bodfish Creek Sub-watershed
Blackhawk Canyon above Sprig Lake 113       61 61 (100) 0 70.2 70.2     0.0 19.0 19.0 0.0
Bodfish Creek below Sprig Lake 91         158 137 (87) 21 164.8 142.9   21.9 55.3 47.9 7.3
Bodfish Creek at Whitehurst Rd. 109       80 76 (95) 4 83.4 79.2     4.2 23.4 22.2 1.2
Total 109       299 274 (92) 25

Based On Population Estimates
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TABLE 6.—Mean standard length and range for YOY steelhead at all sites in the Uvas Creek watershed during sampling in October 2005, July/August 
2006 and October 2006.  The number in parentheses represents the percent change between July/August and October 2006. 
 

Uvas Rd.
Old Creek 

Rd.
Watsonville 

Rd.
Highway 

152 Miller Ave.
Luchessa 

Ave.

U.S. 
Highway 

101

Blackhawk 
above Sprig 

Lake

Bodfish 
below Sprig 

Lake

Bodfish at 
Whitehurst 

Rd.
October 2005

Average Size (mm) 79 82 89 101 147 NA NA 57 65 71
Range (mm) 58-118 58-133 58-153 68-148 93 - 193 38-83 48-93 53-98

Jul/Aug 2006
Average Size (mm) 72 72 66 81 112 118 NA 48 59 66

Range (mm) 43-113 48-108 48-103 53-128 78-148 88-143 33-68 33-88 38-98
October 2006

Average Size (mm) 80 (10) 81 (12) 75 (12) 94 (14) 169 (34) 145 (19) 111 (NA) 56 (14) 63 (6) 72 (8)
Range (mm) 53-118 58-118 48-103 73-128 138-208 103-168 103 - 123 38-98 43-88 48-98
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TABLE 7.—Distance (and %) sampled of each mesohabitat type and number of juvenile steelhead and their 
density in each mesohabitat type in Uvas Creek during sampling in October 2005, July/August 2006 and 
October of 2006.  
 
 

Site Habitat Type

Distance 
(m) 

Sampled 
(% of 
total) # Fish

Density  
# of Fish 
/ 30.5 m

Distance 
(m) 

Sampled 
(% of 
total) # Fish

Density  
# of Fish 
/ 30.5 m

Distance 
(m) 

Sampled 
(% of 
total) # Fish

Density  
# of Fish 
/ 30.5 m

Riffle 26 (8) 34 39.9 13 (8) 41 96.1 34 (10) 37 33.7
Run 43 (12) 34 24.2 76 (48) 30 12.1 90 (28) 44 14.9

Head of Pool 76 (22) 32 12.9 38 (24) 10 7.9 76 (23) 18 7.3
Glide 132 (38) 30 6.9 6 (4) 2 9.4 80 (25) 7 2.7
Pool 69 (20) 8 3.6 25 (16) 5 6.1 44 (14) 3 2.1

Riffle 41 (12) 16 12.0 16 (7) 49 96.4 25 (8) 2 2.4
Run 93 (27) 32 10.5 109 (49) 13 3.6 108 (32) 34 9.6

Head of Pool 74 (21) 30 12.4 46 (21) 2 1.3 85 (26) 14 5.0
Glide 85 (25) 14 5.0 18 (8) 0 0 59 (18) 6 3.1
Pool 53 (15) 8 4.6 32 (15) 2 1.9 55 (17) 5 2.8

Riffle 18 (3) 5 8.5 0 (0) 0 0 0 (0) 0 0
Run 213 (34) 36 5.2 206 (42) 42 6.2 213 (37) 45 6.4

Head of Pool 111 (18) 26 7.1 119 (24) 18 4.6 161 (28) 21 4.0
Glide 159 (26) 10 1.9 55 (11) 8 4.5 88 (15) 7 2.4
Pool 116 (19) 13 3.4 113 (23) 4 1.1 118 (20) 2 0.5

Riffle 41 (7) 3 2.2 29 (13) 14 15.0 23 (4) 0 0
Run 170 (30) 21 3.8 64 (30) 21 10.0 205 (39) 15 2.2

Head of Pool 59 (11) 11 5.7 36 (17) 9 7.6 74 (14) 2 0.8
Glide 129 (23) 8 1.9 67 (31) 3 1.4 93 (18) 0 0
Pool 159 (28) 0 0 18 (8) 0 0 133 (25) 0 0

Riffle 30 (7) 0 0 51 (6) 0 0 12 (3) 0 0
Run 107 (24) 25 7.1 119 (47) 17 4.3 159 (44) 17 3.3

Head of Pool 42 (9) 45 32.5 51 (20) 27 16.3 66 (18) 15 6.9
Glide 168 (37) 20 3.6 67 (27) 8 3.6 111 (31) 1 0.3
Pool 105 (23) 8 2.3 0 (0) 0 0 12 (3) 0 0

Riffle 0 (0) 0 0 0 (0) 0 0
Run 94 (52) 36 11.7 94 (52) 59 19.1

Head of Pool Not Sampled 19 (10) 0 0 19 (10) 0 0
Glide 15 (8) 0 0 15 (8) 0 0
Pool 53 (29) 0 0 53 (29) 0 0

Riffle 22 (18) 1 1.4
Run 41 (35) 2 1.5

Head of Pool Not Sampled Not Sampled 34 (29) 3 2.7
Glide 10 (8) 0 0
Pool 12 (10) 0 0

Bloomfield Rd / 
Highway 101

Luchessa Ave.

Miller Ave.

Highway 152

Watsonville Rd.

Old Creek Rd.

October-05 July / August-06 October-06

Uvas Rd.
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TABLE 8.—Mean standard length and range (mm) at first annulus formation for yearling and older juvenile 
steelhead collected in October 2005 and 2006 at sites in Uvas and Bodfish Creek watersheds.  Mean 
standard length and range (mm) for YOY steelhead collected in October 2005 are presented for 
comparison, except Luchessa Avenue which has 2006 data because it was not sampled in 2005.  
 

Site

2005 YOY Mean 
and (Range) Size 

(mm) 

2005 Mean and 
(Range) Size at 
First Annulus 

(mm) 

2006 Mean and 
(Range) Size at 
First Annulus 

(mm) 

Uvas Creek at Uvas Rd. 79 (58-118) 92 (77-102) 85 (72-97)

Uvas Creek at Old Creek Rd. 82 (58-133) 97 (77-117) 90 (72-112)

Uvas Creek at Watsonville Rd. 89 (58-153) 97 (87-122) 81 (67-97)

Uvas Creek at Highway 152 101 (93-193) 109 (87-137) 90 (87-97)

Uvas Creek at Miller Ave. 147 (93-193) No yearlings 95 (77-142)

Uvas Creek at Luchessa Ave. 145 (103-168) NA 77 (72-82)

Uvas Creek at Bloomfield Rd. NA NA 82 (77-87)

Blackhawk Canyon above Sprig Lake 57 (38-83) No yearlings No yearlings

Bodifsh below Sprig Lake 65 (48-93) 79 (72-92) 76 (62-87)

Bodfish at Whitehurst Rd. 71 (53-98) 76 (72-82) 82 (72-107)
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TABLE 9.—Steelhead captured, population estimates (per site), and densities per 30.5 m (100 ft) for sites in Uvas Creek, during July/August and October 
2006.  The third column from the right presents October 2006 density data based only on comparisons of habitat units resampled in both July and 
October 2006 surveys.   
 

Site

Total 
Distance 
shocked 

(m)
Total # 
of Fish

Total # of 
YOY       

(% of total)

Total # of 
Yearlings + 
older fish

Total 
Pop. 

Estimate

Pop. 
Estimate 
of YOY 

Pop 
Estimate of 
Yearlings + 
older fish

Density: 
fish/30.5 m 

Density:  
fish / 30.5 m 
(Resampled 

Habitats)

Density: 
YOY / 
30.5 m 

Density: 
Yearlings + 

older 
fish/30.5 m 

July / August 2006
Uvas Creek at Uvas Rd. 159     88 77 (88) 11 101 88.6 12.7 19.5 17.0 2.4
Uvas Creek at Old Creek Rd. 221     66 59 (89) 7 73 65.1 7.7 10.1 9.0 1.1
Uvas Creek at Watsonville Rd. 493     73 63 (86) 10 88 75.8 12.0 5.4 4.7 0.7

above Little ArthurCreek Conf. 269        42 38 (90) 4 49 44.3 4.7 5.6 5.0 0.5

below Little Arthur Creek Conf. 240        31 25 (81) 6 39 31.3 7.5 4.9 4.0 1.0

Uvas Creek at Highway 152 214     47 44 (94) 3 52 48.5 3.3 7.4 6.9 0.5
Uvas Creek at Miller Ave. 253     52 46 (88) 6 56 49.5 6.5 6.8 6.0 0.8
Uvas Creek at Luchessa Ave. 180     36 33 (92) 3 38 35.1 3.2 6.5 5.9 0.5
Total 1,518 362 322 (89) 40
October 2006
Uvas Creek at Uvas Rd. 323     109 101 (93) 8 115 106.1 8.4 10.8 13.2        10.0 0.8
Uvas Creek at Old Creek Rd. 332     61 53 (87) 8 64 55.3 8.3 5.8 5.6          5.1 0.8
Uvas Creek at Watsonville Rd. 581     74 64 (86) 10 81 69.8 10.9 4.2 5.1          3.7 0.6

above Little ArthurCreek Conf. 295        38 34 (89) 4 42 37.1 4.4 4.3 5.8          3.8 0.5

below Little Arthur Creek Conf. 286        36 30 (83) 6 39 32.6 6.5 4.2 4.1          3.5 0.7

Uvas Creek at Highway 152 528     17 14 (82) 3 19 15.4 3.3 1.1 1.7          0.9 0.2
Uvas Creek at Miller Ave. 359     33 27 (82) 6 34 27.8 6.1 2.9 4.0          2.4 0.5
Uvas Creek at Luchessa Ave. 180     59 54 (92) 5 71 65.0 6.0 12.0 12.0        11.0 1.0
Uvas Creek at Highway 101 42       4 4 (100) 0 4 4.0 0.0 2.9 2.9 0.0
Uvas Creek at Bloomfield Rd. 76       2 0 (0) 2 2 0.0 2.0 0.8 0.0 0.8
Total 2,421 359 318 (89) 41

Based on Population Estimates

 



 127

 
TABLE 10.—Steelhead captured, population estimates (per site), and densities per 30.5 m (100 ft) for sites in Bodfish and Blackhawk Canyon creeks in 
August and October 2006.  The third column from the right presents October 2006 density data based only on comparisons of habitat units sampled during both July 
and October 2006 surveys.   
 

Site

Total 
Distance 
shocked 

(m)

Total # 
of Fish

Total # of 
YOY       

(% of total)

Total # of 
Yearlings + 
older fish

Total 
Pop. 

Estimate

Pop. 
Estimate 
of YOY 

Pop 
Estimate of 
Yearlings + 
older fish

Density: 
fish/30.5 m 

Density:  
fish / 30.5 m 
(Resampled 

Habitats)

Density: 
YOY / 
30.5 m 

Density: 
Yearlings + 
older fish/ 

30.5 m 

August 2006
Blackhawk Canyon above Sprig Lake 37       83 80 (96) 3 82 79.2 3.0 67.0 64.6 2.4
Bodfish Creek below Sprig Lake 49       126 99 (79) 27 129 101.3 27.6 79.5 62.5 17.0
Bodfish Creek at Whitehurst Rd. 49       40 32 (80) 8 40 32.0 8.0 25.0 20.0 5.0
Total 136    249 211 (85) 38
October 2006
Blackhawk Canyon above Sprig Lake 95       137 137 (100) 0 137 137.0 0.0 43.8 62.3 43.8 0.0
Bodfish Creek below Sprig Lake 91       146 122 (84) 24 161 193.0 31.7 54.2 70.6** 64.9 10.7
Bodfish Creek at Whitehurst Rd. 102     64 45 (70) 19 64 91.0 27.0 19.0 16.4 27.1 8.0
Total 297    347 312 (80) 45

Based on Population Estimates

 
** Only two habitat units (a run and downstream complex pool) were sampled during both surveys. In both surveys, this complex pool had the highest concentrations of 
fish for the entire site. 
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TABLE 11.—Historical YOY steelhead standard lengths (mean and range) for various sites and dates in the 
Uvas Creek watershed (Smith unpublished data).   
 

Site Date n
Range SL 

(mm)
Mean SL 

(mm)
Uvas Creek at Uvas Rd 17-Aug-73 14 99-132 114

19-Nov-75 11 71-145 108
08-Oct-78 44 86-175 142
20-Dec-80 5 124-193 156

Uvas Creek at Old Creek Rd 08-Aug-73 17 71-112 89
15/21 Oct 1978 21 99-155 133

Uvas Creek at Watsonville Rd. (upstream) 15-Oct-78 60 69-175 101
30-Dec-80 6 94-173 118

Uvas Creek at Watsonville Rd. (downstream) 17-Dec-73 17 94-163 125
19-Nov-75 7 97-147 122
21-Oct-78 110 79-160 115
30-Dec-80 11 86-188 123

Uvas Creek at Highway 152 20-Aug-73 14 99-132 114
Nov-73 39 143

19-Nov-75 6 168-193 181
08-Oct-78 15 97-191 125
14-Dec-78 48 102-183 129

Blackhawk Canyon Creek above Sprig Lake 29-Nov-80 57 48-91 65

Bodfish Creek below Sprig Lake 08-Oct-78 29 56-86 72
15-Dec-79 40 48-79 62
29-Nov-80 94 51-86 67

Bodfish Creek at Whitehurst Rd 23-Oct-73 38 40-91 66
22-Dec-73 39 43-89 67
19-Nov-75 28 46-69 61
08-Oct-78 69 64-114 86

22-Nov-80 69 53-94 72
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Appendices 
 

Appendix A: Photos taken at each of the six sites in Uvas Creek where stream habitat 
assessment and fish sampling were conducted. 
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a. Uvas Road. 

 
b. Uvas Road. 

 
c. Old Creek Road. 

 
d. Old Creek Road. 

 
e. Watsonville Road 

 
f. Watsonville Road. 

FIGURE A-53.—Photos taken at sites in Uvas Creek where habitat assessment and fish sampling were 
conducted. The photos are representative of the general range of conditions at each site. 
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g. Highway 152 h. Highway 152 

 
i. Miller Avenue 

 
j. Miller Avenue 

 
k. Luchessa Avenue l. Luchessa Avenue 
FIGURE A-53.—Cont.
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Appendix B: 2005 and 2006 Monthly average maximum, mean, and minimum air and 
water temperature values at various sites in Uvas Creek.  
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TABLE B-12.—Monthly average maximum (MAX), mean (MEAN), and minimum (MIN) air temperatures at three sites along Uvas Creek from June 
through October 2005 and 2006.  Sites are in order from upstream (top) to downstream (bottom). Values for June 2005 at Miller Avenue are based on 
data available from June 10 - 30th.  NA – data not available. 
 
 

Site Jun-05 Jun-06 Jul-05 Jul-06 Aug-05 Aug-06 Sep-05 Sep-06 Oct-05 Oct-06
MAX 22.0 25.2 27.5 28.4 27.8 25.5 24.8 24.7 21.9 20.3

MEAN 15.9 18.1 19.3 20.6 19.4 18.2 16.8 17.1 14.6 13.7
MIN 10.5 12.0 13.2 13.7 12.8 12.3 10.6 11.0 8.8 8.3

MAX 23.2 NA 27.8 30.3 28.4 25.3 23.8 24.4 21.7 20.5
MEAN 16.3 NA 19.2 21.0 18.9 17.1 15.9 16.0 14.1 13.2
MIN 10.0 NA 12.1 13.2 11.6 10.6 9.7 9.5 7.9 7.3

MAX 29.5 30.1 33.9 35.3 33.8 30.7 30.9 30.2 32.4 25.8
MEAN 18.3 18.9 20.5 21.8 19.9 18.3 16.9 16.8 15.0 13.7
MIN 9.3 9.7 10.9 11.5 10.3 9.4 8.1 7.8 5.7 5.7

Uvas 
Reservoir 
Outflow

near Little 
Arthur Creek 
Confluence

Miller Ave.
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TABLE B-13.—Monthly average maximum, mean, and minimum water temperatures at various sites on Uvas Creek from June through October 2005 
and 2006.  Sites are in order from upstream (top) to downstream (bottom).  Values for June 2005 at Santa Teresa Boulevard and Miller Avenue are 
based on data from June 10 - 30th.  NA – data not available.   
 

Site Jun-05 Jun-06 Jul-05 Jul-06 Aug-05 Aug-06 Sep-05 Sep-06 Oct-05 Oct-06
MAX 13.8 13.2 14.8 13.9 17.1 16.7 20.7 20.7 18.5 18.3

MEAN 13.6 13.0 14.5 13.7 16.8 16.5 20.5 20.5 18.3 18.2
MIN 13.4 12.8 14.3 13.6 16.5 16.3 20.3 20.3 18.1 18.1

MAX 15.3 17.9 16.5 15.6 18.4 17.7 20.7 20.9 18.2 18.2
MEAN 14.0 14.7 15.1 14.3 17.0 16.6 19.5 19.9 17.3 17.6
MIN 13.0 12.6 14.0 13.4 15.9 15.8 18.6 19.2 16.5 17.2

MAX 16.2 16.0 17.6 16.6 18.7 18.1 19.7 20.8 17.4 18.2
MEAN 15.0 14.7 16.3 15.0 17.6 16.8 18.8 19.7 16.7 17.2
MIN 13.7 13.3 15.0 13.8 16.3 15.8 17.7 18.7 15.9 16.5

MAX 16.1 NA 17.5 16.9 18.5 17.8 19.2 19.8 17.0 17.2
MEAN 15.0 NA 16.4 15.6 17.5 16.6 18.2 18.7 16.2 16.4
MIN 13.7 NA 15.1 14.2 16.3 15.4 17.1 17.6 15.3 15.5

MAX 16.6 17.1 18.3 17.4 19.0 18.0 18.7 19.4 16.6 16.9
MEAN 15.9 16.3 17.5 16.6 18.2 17.1 17.9 18.5 15.9 16.2
MIN 15.0 15.3 16.6 15.5 17.2 16.0 16.9 17.5 15.0 15.4

MAX 17.5 NA 19.4 17.8 19.8 17.7 18.9 18.6 17.3 16.4
MEAN 16.1 NA 17.8 16.7 18.2 16.8 17.8 17.9 16.9 15.8
MIN 15.1 NA 16.6 15.7 17.1 15.9 17.0 17.0 16.5 15.1

MAX 19.0 19.1 21.0 19.5 20.9 19.0 19.0 19.3 16.5 16.7
MEAN 16.9 17.0 18.3 17.6 18.6 17.4 17.4 18.0 15.5 15.9
MIN 15.3 15.4 16.4 16.2 16.5 16.3 15.2 17.0 14.4 15.2

MAX 20.7 20.3 22.7 20.9 22.9 19.8 20.4 19.8 17.9 17.1
MEAN 17.6 17.7 19.2 18.4 19.5 17.9 17.9 18.1 15.9 15.9
MIN 15.3 15.5 16.5 16.4 16.8 16.4 15.8 16.8 14.2 14.9

Uvas Reservoir 
Outflow

Uvas Rd

Old Creek Rd

near Little Arthur 
Creek Confluence

near Bodfish 
Creek Confluence

near HWY 152

Santa Teresa 
Blvd.

Miller Ave.
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Appendix C:  October 2005 steelhead standard lengths (mm) and age distributions for 
sites in the Uvas Creek watershed. 
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Uvas Creek at Uvas Rd. (October 2005)
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FIGURE C-54.—Steelhead standard lengths (mm) for Uvas Creek at Uvas Road, October 2005. 
 

Uvas Creek at Old Creek Rd. (October 2005)
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FIGURE C-55.—Steelhead standard lengths (mm) for Uvas Creek at Old Creek Road, October 2005. 
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Uvas Creek at Watsonville Rd. (October 2005)
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FIGURE C-56.—Steelhead standard lengths (mm) for Uvas Creek at Watsonville Road, October 2005. 
 

Uvas Creek at Highway 152 (October 2005)
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FIGURE C-57.—Steelhead standard lengths (mm) for Uvas Creek at Highway 152, October 2005. 
 
 



 138

Uvas Creek at Miller Ave. (October 2005)
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FIGURE C-58.—Steelhead standard lengths (mm) for Uvas Creek at Miller Avenue, October 2005. 
 

Blackhawk Canyon Creek above Sprig Lake (October 2005)
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FIGURE C-59.—Steelhead standard lengths (mm) for Blackhawk Canyon Creek above Sprig Lake, October 
2005. 
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Bodfish Creek below Sprig Lake (October 2005)
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FIGURE C-60.—Steelhead standard lengths (mm) for Bodfish Creek below Sprig Lake, October 2005. 
 
 

Bodfish Creek at Whitehurst Rd. (October 2005)
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FIGURE C-61.—Steelhead standard lengths (mm) for Bodfish Creek at Whitehurst Road, October 2005. 
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Appendix D: 2005 yearling and older fish size (mm SL) at first annulus formation for 
sites in the Uvas Creek watershed. 
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Uvas Creek at Uvas Rd. (October 2005)
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FIGURE D-62.—A comparison of yearling and older fish size (mm SL) at first annulus formation with Age 
0 collected from Uvas Creek at Uvas Road, October 2005. 
 

Uvas Creek at Old Creek Rd. (October 2005)
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FIGURE D-63.—A comparison of yearling and older fish size (mm SL) at first annulus formation with 
Age 0 collected from Uvas Creek at Old Creek Road, October 2005. 
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Uvas Creek at Watsonville Rd. (October 2005)
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FIGURE D-64.—A comparison of yearling and older fish size (mm SL) at first annulus formation with 
Age 0 collected from Uvas Creek at Watsonville Road, October 2005. 
 

Uvas Creek at Highway 152 (October 2005)

0

5

10

15

20

25

55
-5

9

65
-6

9

75
-7

9

85
-8

9

95
-9

9

10
5-

10
9

11
5-

11
9

12
5-

12
9

13
5-

13
9

14
5-

14
9

15
5-

15
9

16
5-

16
9

17
5-

17
9

18
5-

18
9

19
5-

19
9

20
5-

20
9

21
5-

21
9

22
5-

22
9

23
5-

23
9

24
5-

24
9

Standard Length (mm)

Fr
eq

ue
nc

y

Age 0 October 2005
Size at First Annulus

 
FIGURE D-65.—A comparison of yearling and older fish size (mm SL) at first annulus formation with 
Age 0 collected from Uvas Creek at Highway 152, October 2005. 
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Bodfish Creek below Sprig Lake (October 2005)
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FIGURE D-66.—A comparison of yearling and older fish size (mm SL) at first annulus formation with 
Age 0 collected from Bodfish Creek below Sprig Lake, October 2005. 
 

Bodfish Creek at Whitehurst Rd. (October 2005)
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FIGURE D-67.—A comparison of yearling and older fish size (mm SL) at first annulus formation with 
Age 0 collected from Bodfish Creek at Whitehurst Rd, October 2005. 



 144

Appendix E:  July/August 2006 steelhead standard lengths (mm) for sites in the Uvas 
Creek watershed. 
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Uvas Creek at Uvas Rd (August 2006)
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FIGURE E-68.—Steelhead standard lengths (mm) for Uvas Creek at Uvas Road, August 2006. 
 

Uvas Creek at Old Creek Rd (July 2006)
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FIGURE E-69.—Steelhead standard lengths (mm) for Uvas Creek at Old Creek Road, July 2006. 
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Uvas Creek at Watsonville Rd ( July 2006)
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FIGURE E-70.—Steelhead standard lengths (mm) for Uvas Creek at Watsonville Road, July 2006. 
 

Uvas Creek at Highway 152 (July 2006)
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FIGURE E-71.—Steelhead standard lengths (mm) for Uvas Creek at Highway 152, July 2006. 
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Uvas Creek at Miller Ave (July 2006)
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FIGURE E-72.—Steelhead standard lengths (mm) for Uvas Creek at Miller Avenue, July 2006. 
 

 

Uvas Creek at Luchessa Ave (August 2006)
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FIGURE E-73.—Steelhead standard lengths (mm) for Uvas Creek at Luchessa Avenue, August 2006. 
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Blackhawk Canyon Creek above Sprig Lake (August 2006)
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FIGURE E-74.—Steelhead standard lengths (mm) for Blackhawk Canyon Creek above Sprig Lake, August 
2006. 
 

Bodfish Creek below Sprig Lake (August 2006)
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FIGURE E-75.—Steelhead standard lengths (mm) for Bodfish Creek below Sprig Lake, August 2006. 
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Bodfish Creek at Whitehurst Rd. (August 2006)
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FIGURE E-76.—Steelhead standard lengths (mm) for Bodfish Creek at Whitehurst Road, August 2006. 
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Appendix F:  October 2006 steelhead standard lengths (mm) for sites in the Uvas Creek 
watershed. 
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Uvas Creek at Uvas Rd. (October 2006)
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FIGURE F-77.—Steelhead standard lengths (mm) for Uvas Creek at Uvas Road, October 2006. 
 

Uvas Creek at Old Creek Rd. (October 2006)
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FIGURE F-78.—Steelhead standard lengths (mm) for Uvas Creek at Old Creek Road, October 2006. 
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Uvas Creek at Watsonville Rd. (October 2006)
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FIGURE F-79.—Steelhead standard lengths (mm) for Uvas Creek at Watsonville Road, October 2006. 
 
 

Uvas Creek at Highway 152 (October 2006)

0

5

10

15

20

25

50
-5

4
60

-6
4

70
-7

4
80

-8
4

90
-9

4
10

0-
10

4
11

0-
11

4
12

0-
12

4
13

0-
13

4
14

0-
14

4
15

0-
15

4
16

0-
16

4
17

0-
17

4
18

0-
18

4
19

0-
19

4
20

0-
20

4
21

0-
21

4
22

0-
22

4
23

0-
23

4
24

0-
24

4
25

0-
25

4
26

0-
26

4
27

0-
27

4
28

0-
28

4
29

0-
29

4
30

0-
30

4
31

0-
31

4
32

0-
32

4
33

0-
33

4
34

0-
34

4

Standard Length (mm)

Fr
eq

ue
nc

y

Age 0
Age 1

 
FIGURE F-80.—Steelhead standard lengths (mm) for Uvas Creek at Highway 152, October 2006. 
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Uvas Creek at Miller Ave. (October 2006)
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FIGURE F-81.—Steelhead standard lengths (mm) for Uvas Creek at Miller Avenue, October 2006. 
 
 

Uvas Creek at Luchessa Ave. (October 2006)
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FIGURE F-82.—Steelhead standard lengths (mm) for Uvas Creek at Luchessa Avenue, October 2006. 
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Uvas Creek at Bloomfield Rd. & U.S. Highway 101 (October 2006)

0

5

10

15

20

25

50
-5

4
60

-6
4

70
-7

4
80

-8
4

90
-9

4
10

0-
10

4
11

0-
11

4
12

0-
12

4
13

0-
13

4
14

0-
14

4
15

0-
15

4
16

0-
16

4
17

0-
17

4
18

0-
18

4
19

0-
19

4
20

0-
20

4
21

0-
21

4
22

0-
22

4
23

0-
23

4
24

0-
24

4
25

0-
25

4
26

0-
26

4
27

0-
27

4
28

0-
28

4
29

0-
29

4
30

0-
30

4
31

0-
31

4
32

0-
32

4
33

0-
33

4
34

0-
34

4

Standard Length (mm)

Fr
eq

ue
nc

y
Age 0
Age 1

 
FIGURE F-83.—Steelhead standard lengths (mm) for Uvas Creek at Bloomfield Road and U.S. Highway 
101, October 2006. 
 

Blackhawk Canyon Creek above Sprig Lake (October 2006)
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FIGURE F-84.—Steelhead standard lengths (mm) for Blackhawk Canyon Creek above Sprig Lake, October 
2006.   
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Bodfish Creek below Sprig Lake (October 2006)
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FIGURE F-85.—Steelhead standard lengths (mm) for Bodfish Creek below Sprig Lake, October 2006. 
 
 

Bodfish Creek at Whitehurst Rd. (October 2006)
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FIGURE F-86.—Steelhead standard lengths (mm) for Bodfish Creek at Whitehurst Road, October 2006. 
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Appendix G: 2006 yearling and older fish size (mm SL) at first annulus formation for 
sites in the Uvas Creek watershed. 
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Uvas Creek at Uvas Rd. (October 2006)
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FIGURE G-87.—A comparison of yearling and older fish size (mm SL) at first annulus formation with 
Age 0 collected from Uvas Creek at Uvas Road, October 2006. 
 

Uvas Creek at Old Creek Rd. (October 2006)
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FIGURE G-88.—A comparison of yearling and older fish size (mm SL) at first annulus formation with 
Age 0 collected from Uvas Creek at Old Creek Road, October 2006. 
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Uvas Creek at Watsonville Rd. (October 2006)
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FIGURE G-89.—A comparison of yearling and older fish size (mm SL) at first annulus formation with 
Age 0 collected from Uvas Creek at Watsonville Road, October 2006. 
 

Uvas Creek at Highway 152 (October 2006)
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FIGURE G-90.—A comparison of yearling and older fish size (mm SL) at first annulus formation with 
Age 0 collected from Uvas Creek at Highway 152, October 2006. 
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Uvas Creek at Miller Ave. (October 2006)
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FIGURE G-91.—A comparison of yearling and older fish size (mm SL) at first annulus formation with 
Age 0 collected from Uvas Creek at Miller Avenue, October 2006. 
 

Uvas Creek at Luchessa Ave. (October 2006)
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FIGURE G-92.—A comparison of yearling and older fish size (mm SL) at first annulus formation with 
Age 0 collected from Uvas Creek at Luchessa Avenue, October 2006.  Site not sampled in 2005. 
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Bodfish Creek below Sprig Lake (October 2006)

0

5

10

15

20

25

30

35
-3

9

45
-4

9

55
-5

9

65
-6

9

75
-7

9

85
-8

9

95
-9

9

10
5-

10
9

11
5-

11
9

12
5-

12
9

13
5-

13
9

14
5-

14
9

15
5-

15
9

16
5-

16
9

17
5-

17
9

18
5-

18
9

19
5-

19
9

20
5-

20
9

21
5-

21
9

22
5-

22
9

23
5-

23
9

24
5-

24
9

Standard Length (mm)

Fr
eq

ue
nc

y
Age 0 October 2005

Size at First Annulus

 
FIGURE G-93.—A comparison of yearling and older fish size (mm SL) at first annulus formation with 
Age 0 collected from Bodfish Creek below Sprig Lake, October 2006. 
 

Bodfish Creek at Whitehurst Rd. (October 2006)
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FIGURE G-94.—A comparison of yearling and older fish size (mm SL) at first annulus formation with 
Age 0 collected from Bodfish Creek at Whitehurst Road, October 2006. 
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