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ABSTRACT 

ANALYSIS AND APPLICATION OF TRANSMISSION LINE CONDUCTORS 

by Orin Laney 

Skin effect is usually a concern reserved for radio frequency design and for 

high current conductors used in utility power distribution. Proximity effect between 

adjacent conductors has traditionally been a concern for the design of magnetic 

windings and other applications involving wire bundles. The rise in the ubiquity of 

high speed bit streams and other signals of very wide bandwidth has broadened the 

range of applicable contexts and increased the need to account for such effects. This 

is especially true for transmission lines used to interconnect critical signal paths in 

applications ranging from microelectronic devices to the signal integrity of printed 

circuit traces and implementation of system cabling. 

Optimal conductor design is obviously fundamental to transmission line 

performance. Researchers have paid considerable attention to the topic but the 

results are scattered throughout the literature. This thesis collected information on 

extant conductor designs, and the theoretical considerations behind each solution. 

A detailed analysis of current flow in a conducting half-space was included as a 

foundation. 

The conductor types discussed were solid cylindrical, rectangular, ribbonoid, 

bimetallic, tubular, laminated, litz, and stranded constructions. Discussions of the 

performance of stranded shields and conductor roughness effects were included for 

completeness of understanding. 
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CHAPTER 1 

INTRODUCTION 

An ideal transmission line has zero loss, a fixed real impedance, constant 

propagation delay per unit length, and infinite bandwidth. For a coaxial 

configuration, the outer conductor acts as a perfect separator between the outside 

world and internal propagation. Ideal transmission lines are made of pure 

unobtainium. 

The performance of real cables is limited by available materials. The finite 

conductivity of metals adds a series loss term to the characteristic equations. 

Likewise, dielectrics have finite resistivities that add a shunt loss term. The more 

important consideration for real cables is that parameters change with frequency. 

The DC series loss term is readily swamped by skin effect contributions as frequency 

increases. Similarly, the DC shunt resistivity contribution is generally miniscule 

compared to AC dielectric losses [1]. 

The reactive components of cable characteristics are of equal importance. 

Skin effect reduces the contribution of internal inductance to total inductance. One 

result is a shift in characteristic impedance in the transition region between DC to 

low frequency operation and higher frequency characteristics [2]. 

Distributed capacitance is generally a reliable number only because stable 

materials are usually chosen. Inexpensive microstrip and stripline substrates are 

sometimes inconstant. For instance, lesser grades of FR-4 laminate are notorious 

for a shift to a lower dielectric constant in the UHF region [3] [4]. 

Above and beyond the effects of materials choices, real transmission lines are 
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creatures of their construction. A common scheme classifies coaxial cables 

according to the mechanical formability of their shields, describing them as flexible, 

semi-flexible, semi-rigid, or rigid types [5]. These differing constructions have 

implications for signal ingress/egress and ultimate attenuation. Center conductors 

likewise have construction choices that affect performance for better or for worse. 

Thus it is that the simple equations describing ideal transmission lines, though 

invaluable for conceptual purposes, are often insufficient descriptors of realizable 

designs. The purpose of this thesis is to bridge between the world described by 

ideal equations, and the realities of physical, non-ideal transmission lines. It 

augments the classic theory taught to undergraduates, and illuminates subtleties 

that can be variously detrimental or advantageous according to their treatment. 

Here, the term "transmission line" specifically refers toTEM mode1 lines 

(quasi-TEM for microstrip). The emphasis is coaxial construction, but mostly in 

the context that a coaxial current return path offers minimum complexity of 

analysis rather than the properties of coaxial transmission per se. 

The thesis first addresses the mathematical description of skin and proximity 

effects before considering the implications of eight types of physical center 

conductor construction. This is followed by discussion of braided shields and the 

effects of surface roughness. Each of these topics has its own body of literature, 

which is reviewed as each topic is addressed. 

Conclusions reached are generally applicable to any TEM transmission line. 

Microstrip and stripline constructions are covered where discussed effects are 

deemed significant to their application. Relevant microelectronic considerations are 

included. 

1 Transverse electromagnetic (TEM) modes are characterized by no electric or magnetic field in 
the direction of propagation. 
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CHAPTER 2 

SKIN EFFECT AND PROXIMITY EFFECT 

2.1 Skin Effect 

Around 1880, a worker isolated with respect to ground held a large iron bar in 

his hands with the intent of short circuiting the terminals of a high capacity dynamo 

used in electroplating. The instant contact was made, he dropped the bar and 

claimed it burned his hands. The bar was carefully picked up, but was nearly cold. 

What happened? Skin effect forced the rapidly changing current to flow in a thin 

surface layer that instantly heated enough to burn skin. Within seconds of being 

dropped, the surface heat diffused into the bulk, leaving the bar only lukewarm [6]. 

Skin effect and proximity effect are consequences of the minus sign in 

Faraday's law of induction. Simply put, a changing magnetic field induces 

circulating ("eddy") currents in conductors immersed in that field, including in 

current carrying conductors that are the source of the field. Eddy current 

circulation is always in the direction that creates a magnetic field opposing the 

change in the original one. Many consequences arise from this phenomenon, from 

eddy-current-driven heat loss in the core of a laminated transformer to the ability of 

a superconductor to levitate a permanent magnet. 

Skin effect is a well explicated phenomenon. The classic 1942 paper by 

Wheeler discussed the effect in detail [7]. Even today, researchers explore ways to 

describe the effect from novel viewpoints, specific approaches to modeling, and new 

solution methods [8], or for particular physical situations. 

Understanding skin effect in current carrying conductors and proximity effect 



4 

in nearby conductors is fundamental for the design of well-behaved electrical 

transmission lines. These effects increase the losses of such lines but, more 

importantly, the losses vary with frequency. It is the latter fact that prevents trivial 

compensation for their presence. These losses must be managed to attain 

maximum transmission line performance. 

2.2 Analysis of a Conductive Half-space 

A logical starting point for examination of skin effect is the case of a 

conductive half-space (a plane conductor of infinite depth). This configuration 

avoids geometric complications and allows further extension of results to cases where 

the physical situation represents a valid approximation to the infinite depth case. 

2.2.1 Mathematical Description of Current Flow 

Let the yz plane define the surface of a half space of infinite depth for x :;:. 0. 

Let surface current density be uniform and cosinusoidally excited. Classical EM 

theory predicts that current density in the slab will decay exponentially with depth 

with an associated phase retardation of 1 radian per neper [7]. The amplitude and 

phase describe a decaying spiral in the complex plane. 

Let the 1 neper distance ("skin depth") = b, and let peak surface current 

density Jz(x = 0) = 10 Amp/meter. Then current density at any point inside the 

half space is: 

Jz(x) = J0e -t cos(wt- f) (starting assumption) 

= loe=f (cos(wt)cos(f) +sin(wt)sin(X)) (trig identity) 

Summing current density in the x direction yields current referenced to the 

surface: 
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Iz (x) = j~ Jz(x)dx 

CXl CXl 

= 10 cos (wt) j e -/cos (J) dx + 10 sin (wt) j e 7 ' sin (-J) dx 

0 0 

lo~e 7 [cos (wt) (sin J -cos J) -sin (wt) (sin J +cos -J) J [ (2.1) 

J . 
= lo2, (coswt + smwt) amps / meter (summary result) (2.2) 

The time domain terms tell us that the spiral rotates w radians per second, 

but this is ignorable for present purposes. Here, the importance of w is that it 

determines skin depth. 

The proportionality between current magnitude and skin depth is a 

consequence of constraining surface current density to a fixed value. From this 

viewpoint, increased skin depth equals greater current flow for the same surface 

current density. In the alternative, if current was the fixed quantity, then increased 

skin depth would result in decreased current density at the surface. The two 

viewpoints are conceptually equivalent. 

After manipulation, equation 2.1 can be restated as: 

J -x ( X X ) Iz (x) = -J0 2,eT cos(wt- b)+ sin(wt- b) amps/meter for x ?: 0. (2.3) 

The leading minus sign is a consequence of the direction of integration. It is 

cancelled when the results at x = oo and x = 0 are subtracted to evaluate the 

integral. The minus sign is easily avoided by reversing the direction of integration 

when convenient, i.e. 
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JO b -x ( X X ) IO Iz (x) = Jz(x)dx = J02ea cos(wt- -g)+ sin(wt- -g) 
00 

amps/meter (2.4) 

00 

Although the answer simplifies to the summary result, inspection of the 

equation before evaluation yields a more nuanced picture of current flow. Taking 

the surface current density as phase reference, the cosine term represents real 

current flow and the sine term represents reactive current. Real current flow is 

forward wherever cos(t) > 0 and reversed where cos(J) < 0. Similarly, reactive 

current is inductive where sinG) > 0, and capacitive where sinG) < 0. 

Real and reactive currents overlap, but the relationship between phase and 

depth means the forward and reverse currents are spatially separated. Likewise, the 

inductive and capacitive currents are separate with respect to each other. Each 

current component is the sum of an infinite number of regions of similar flow but 

decaying amplitude in the depth of the half space. Normalized to a surface current 

density of 1A/m, detailed analysis (appendix A) shows that the magnitudes of the 

individual current components are: 

Table 2.1: Current Components 

Flow Magnitude 

Forward 608.6 rnA 

Reverse 108.6 rnA 

Inductive 522.6 rnA 

Capacitive 22.6 rnA 

The decay of amplitude with depth means that the sum of forward current 

flows dominates that of the deeper reverse flows. Therefore, net real current is 



necessarily forward. Similarly, the inductive fraction of reactive current dominates 

the capacitive contribution so that the net is always inductive. A good conductor 

applied below optical frequencies can have only a vanishingly small displacement 

current, therefore the "capacitive" current is solely an artifact of propagation delay 

of the evanescent wave into the conductor interior. By the same reasoning, so are 

the inductive and reverse real currents. 

2.2.2 Power Loss Calculation 

Spatial separation of opposing current flows means they do not cancel with 

respect to power loss. Power loss for forward and inductive flows is the price for 

sending current through the conductor. Reverse and capacitive flows are parasitic 

terms that dissipate power without any commensurate benefit. 

Let p equal material resistivity. Power loss density at any point in the bulk 

conductor is: 

pJ'f = p (Ioe-/ cos(wt ~ ~)r = pl'Je -gx ~(1 + cos(2wt ~ 2t)) 

= pJ6e -r ~(1 + sin(2wt) cosen ~ cos(2wt) sinen) wattsjm3 
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Let Iz equal the z-directed current flow referenced to the surface of the yz 

plane. Power referred to the surface is: P = p!'f. t; is found in turn by integrating 

J6e -;x throughout the depth of the half-space. Let ~ = ~. Then: 

( 

0 0 0 ) 

P = pJg~ J e-'2i;d~ + sin(2wt) J e- 2~ cos(20d~ ~ cos(2wt) J e- 2~ sin(2~)d~ 
00 00 00 

1 (1 1 1 ) pJ(;
2 2 + 4 sin(2wt) ~ 4 cos(2wt) (2.5) 

~16 (2 +sin 2wt ~cos 2wt) watts jm2 (2.6) 



Minimum power is ~ 16 ( 2 - v'2) , maximum power is ~ 16 ( 2 + v'2) , and 

average power is~16. Although Iz(t) passes through zero twice per cycle, at no 

instant of time does P (t) = 0. 

2.2.3 Applicable Metrics 

The decay of current amplitude with depth follows the same mathematics as 

decay with respect to time. Therefore, metrics applicable to either context can be 

used in the other. Starting from the definition of b, an amplitude decrement of 1 

neper over a phase change of 1 radian imputes a quality factor Q = ~· 

8 

(2.7) 

-~~ :::::::: 503.3 -meters 10
7 

p fli: 
47r f-Lr 7r f f f-Lr 

(2.8) 

107 1.678 * IQ-8 
1 1 

-
2 

:::::::: 0.0652f- 2meters = 65.2f-2mm 
47r f 

(2.9) 

Interior conduction can be modeled using cascaded L/ R time constants [9], for 

instance as illustrated in figure 2.1. 
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RM LM 
1Mf RM-1 L~o~ - I 

.,.. _ .. 

Figuro 2.1: Eo<ortQ>lo of o ooaoockd L/R m>dol (Yon) 

The distributed L/R Li~ conslonle Lhol choroclerizc the oondualor DOL os o 

low poss fi ller fOr signols prop ogot.ing normDI to the suxfocc, The 3 dB ro rner 

frequency is o funct.ion of depth. Given Lhot -3 dB equoles to o ireduclion in 

amplitude, solving 0 = j1i. fi>r hdlJ yidcls 

'"•as = o In /2"' 0. 34660 (2.10) 

( ) 
ln2 2 p _2 p Hz 

!3dB x,p, fA = -
4
-="' 3.&233 • 10 =::::; 
11 fAX fAX m 

(2.11) 

ln2 2 JOT p 4 p Hz 
f .,.s(x,p, p, ) = ------2 "' 3.0426< 10 --2 - 2 411 411 (A,Z (A,X n> 

(2.12) 

has(x Cu) = lOr ln
2 

2 1. 67S * 10 - • "' 5.105 3 * 1 o-• Hz = 510.53 Hz 
• 41r 41r x2 x2 m2 x2 mm2 (2.13) 
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For example, at a depth of 100,um in copper, hdB ~ 51.05kHz. As another 

example, given b for 60Hz in any good conductor, hdB ~ 7.2 Hz at the same depth. 

Radial velocity into the interior of a good conductor is orders of magnitude 

slower than longitudinal propagation at the conductor surface. The relationship of 

1 radian per skin depth b equates to a velocity 

j).. = wb = w{?i = (2.14) 

. ~ [i; 
veloczty(f, p, ,u) = v ----;;--,u- ~ 3.5449v;; (2.15) 

velocity(!, p, .Ur) = (2.16) 

velocity(!, Cu) = yf0.1678f ~ 0.40963y!j (2.17) 

The radial velocity in copper at 60Hz is ~ 3.2 meters per second. The 

Jl dependence of radial velocity means that the interior frequency response is 

dispersive. Although the highest signal frequencies arrive the fastest they are also 

the most highly attenuated. One consequence is that the velocity of a step function 

propagating into the interior, for instance measured as rise time to the 50% level, 

slows with increasing depth [10]. 

2.3 Case of Finite Depth 

The preceding analysis suggests that a planar conductor thickness not 

exceeding the depth of the boundary between forward and reverse real flows would 

avoid the associated reverse flow loss term. This proves to be the case, resulting in 

lower loss than for an infinitely deep conductor. 
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Dwight [11] and others have determined that the normalized resistance of a 

flat, finite thickness plane conductor is: 

R 

Rs 

sinh(~)+ sin(~) 

cosh( 2!) - cos( 2!) (2.18) 

which is plotted below in figure 2.2. 

Minimum normalized resistance c:J 0.91715, which occurs at J = ~ c:J 1.5708 

y 

4 

Figure 2.2: Normalized Resistance versus x/5 

There is an optimal thickness for any operating frequency and choice of 

conductor material. This is an important consideration for the design of, for 

instance, flat and tubular conductors. 

2.3.1 Wideband Applications 

Many applications involve bandwidths that extend considerably above and 

below the conductor optimum. Above fopt for the conductor, performance 
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increasingly approximates the infinite depth case. At lower frequencies current 

density becomes increasingly uniform and resistance is asymptotic to the DC value, 

which is not zero as it would be for the case of infinite depth. 

Below the transition region between low frequencies and the onset of skin 

effect, the flattened resistance versus frequency curve reduces phase and amplitude 

distortion, which improves signal fidelity. The ability to trade minimum loss for 

bandwidth flatness is a classic gain (loss )-bandwidth trade-off that can be used to 

optimize edge shape and pulse fidelity. 

2.3.2 Cavities and Waveguides 

The benefits of optimizing conductor thickness can be applied to resonant 

cavities and internal waveguide coatings (e.g. with gold or silver plating). For thin 

conductive coatings it should be noted that current flow on the far side of the 

conductive layer means that it is not of itself an effective shield. Backing with a 

material having low conductivity compared to the coating and adequate attenuation 

with depth is necessary to provide high levels of shielding. 

Magnetic alloys such as mild steels have ::::: 20X the resistivity of copper and 

minimum 11r ::::: 300 at low induction, with resulting attenuation at least 15 dB 

greater than copper of the same thickness at much lower cost. Transformer grade 

steel (3% Si) offers resistivity ::::: 28X that of copper and initial permeability 

::::: 2000f.1r, for attenuation at least 28 dB greater than the same thickness of copper. 

The outer walls of RF anechoic chambers are commonly fabricated from sheet steel. 

For applications requiring exceptional dimensional stability, invar alloy offers a 

resistivity ::::: 50X that of copper and minimum f.1r ::::: 1000 [12]. The resulting skin 

depth is ::::: 22% that of copper. Invar offers attenuation ::::: 30 dB greater than the 

same copper thickness. 
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2.4 Proximity Effect 

Just as skin effect causes AC currents to concentrate near the surface of a 

conductor, conductor t o conductor coupling causes an equivalent proximity effect 

between conductors. Skin effect itself can be described as a "self-proximity effect" 

in which the interacting conductors are coincident. There are two cases of proximity 

effect, depending on whether the proximal currents are parallel or anti-parallel. 

For parallel currents, proximity effect concentrates current density in regions 

of farthest proximity, exactly as skin effect does inside individual conductors. This 

applies, for example, to stranded conductors. Anti-parallel currents concentrate in 

regions of closest proximity, for instance in TEM transmission lines, which by 

definition have anti-parallel forward and return current paths. In either case, 

proximity effect raises apparent resistivity by channeling current through an 

effectively smaller cross section, above and beyond skin effect alone. 

Interestingly, although parallel currents concentrate at points of farthest 

proximity, the physical force between conductors is attractive. Although antiparallel 

currents concentrate at points of closest proximity, the mutual force is repulsive. 

Thus, coaxial cable and other TEM transmission lines experience an expansive force 

between the forward and return current paths, as illustrated in figure 2.3. 
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® 
F & 

F ~ 
0 

Figure 2.3: Current crowding and force direction 

The case of a simple solenoidal winding is instructive. Each traveling electron 

is influenced by parallel current in adjacent turns, and by the same current viewed 

across the diameter as antiparallel. Tlrus, the forces on a solenoid are axially 

compressive and radially expansive. By virtue of charges traveling in parallel 

through it, an isolated conductor experiences both skin effect (at high frequencies) 

and a radially compressive force (always). The radial force (z-pinch effect) is what 

confines lightning discharges into narrow, discrete channels1 [13] [14]. 

Arnold derived formulas for proximity effect in hollow conductors [15]. Solid 

conductors are included by setting the inner radius to zero. Smith analyzed 

proximity effect for an arbitrary number of paralleled conductors [16]. 

1 Typical channel diameters are in the range of 20 to 50 mm (Rakov). Odam cites a nominal 
lower diameter limit and a nominal upper peak =rent limit when he observes, 11 An isolated con
ductor carrying a current suffers a radially inward pinching effect. Where the =rent is of sufficient 
magnitude to produce a very high surface magnetic intensity (of the order of several MA/m) severe 
mechanical distortion may occur. For example, a conductor of 5 mm diameter carrying a peak 
current of 200kA would experience a pressure of 1000 atmospheres ( 108 N f m 2) u For comparison, 
pressure at the bottom of the Marianas Trench is~ 1086 atmospheres (bars). 
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CHAPTER 3 

CONDUCTOR CONSTRUCTION 

Most analyses of coaxial transmission lines assume that the center conductor 

is solid and cylindrical. This is, however, one of eight alternatives. In their order of 

discussion, solid cylindrical conductors are foundational. Bimetallic conductors are 

derivative from cylindrical ones, and tubular conductors are a limiting case of 

bimetallic that segue into laminated construction. Rectangular forms are 

considered next and have frequency responses distinct from circular constructions. 

Ribbonoid conductors follow as a distinct limiting case. Lastly, divided conductors 

are discussed. Litzendraht construction is the insulated case, while stranded 

construction lacks formal insulation but may exhibit similar behavior. 

3.1 Solid Cylindrical Conductors 

Solid circular conductors are ubiquitous and geometrically simple. In the DC 

to low frequency region (DC-LF), current density is substantially uniform 

throughout the cross section. Impedance is dominated by DC resistance (DCR). 

The region between the DC-LF and HF cases has current density that is 

concentrated at the surface although the interior carries a meaningful fraction of 

total current. In the high frequency (HF) region, skin effect is well developed and 

current flow is restricted essentially to a small depth starting at the conductor 

surface, which allows simplified analysis as a circular approximation of a planar 

conductor. 
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Figure 3.1: Normalized resistance vs b normalized wire diameter and layer count 
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Unlike a plane of finite thickness, a cylindrical conductor in isolation has no 

optimum frequency. It is instructive to expand the context. Figure 3.1 shows the 

effect of adding winding layers to a transformer [17]. A single layer has a 

monotonic response, but two or more layers show an optimum frequency that 

becomes more pronounced and shifts as layer count is increased. 

3.1.1 Copper Conductors 

Two discrepant sets of physical constants are available for electrical copper. 

Many works continue to reference the International Annealed Copper Standard 

(lACS) established by the International Electrotechnical Commission in 1913. A 

complete set of wire tables based on this standard were published in 1914 in the 

Bureau of Standards Circular 31 [18]. The lACS standard specifies a copper 

resistivity of 1. 7241 * 10-8 S1 · m and density of 8,890 kg/ m3 (20° C). It is 

customary to refer to conductor conductivity in terms of % lACS, with the standard 

value equaling 100%. For example, iron wire is ;::::; 18% lACS [19] . 

Commercial copper processing has improved considerably since 1913, with a 

consequent rise in copper purity. One result is that the conductivity of ordinary 

commercial copper typically ranges between 101% to 103% IACS1 
. The resistivity 

of annealed, high purity copper electrical wire is ;::::; 1.678 * 10-8 S1 · m (102.75% 

lACS, 20° C) [20]. 

Modern copper density likewise differs from the lACS value and is in the 

general range of 8920 to 8960 kg/ m3
. The variance arises because density is 

determined by thermomechanical history as well as purity. The density of 

soft-drawn, annealed copper wire is ;::::; 8924 kg/m3 (20° C) [21]. The modern values 

are used herein, since they most closely match purchasable annealed wire. 

1 The conductivity of pure copper (99.999% Cu) is 103.06% lACS. 
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3.1.2 Gauge Systems 

The American Wire Gauge (AWG) system was introduced by Brown & Sharpe 

in 1857. It is a simple but elegant system based on a geometric progression, and is 

specific to round copper wire and other nonferrous electrical conductors. Steels and 

other alloys have different drawing characteristics and use other gauge systems. 

The starting stock for copper electrical wire is a cast rod that is pulled 

through a series of drawing dies. Per conservation of volume, this progressively 

reduces diameter while increasing length. Gauge is proportional to the number of 

draws required to reduce diameter to the wanted result. Consequently, finer wires 

have correspondingly higher gauge numbers. 

Wire metallurgy and drawing technology have advanced over the years, and 

contemporary manufacturing may alter the number of draws to achieve a given 

diameter. This is transparent to the end user, for whom AWG tables remain an 

accurate guide. 

Because copper becomes work hardened by wire drawing, intermediate wire is 

periodically annealed during the drawing process to restore ductility. Note that a 

manufacturer may omit final annealing of the completed wire as a means of slightly 

lowering cost. This product is stiffer than the annealed variety, which increases the 

difficulty of creating tight bends and conformal windings, particularly for larger 

diameter conductors. The conductivity is also lower, somewhat increasing electrical 

losses. It is the purchaser's responsibility to select or specify final annealing when 

these differences are important. 

For reasons of economy and adequacy, many types of electrical wire are 

stocked only in even gauges. However, designers of transformers, inductors, motor 

windings, and the like specify magnet wire in single gauge, half gauge, or even third 
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gauge steps to optimize the performance of devices constrained by a limited winding 

cross section. 

Standard Wire Gauge (SWG, formerly British Standard) is a system similar 

to AWG but empirical and irregular. Table lookup is required to convert between 

SWG and diameter. ISO gauge is conductor diameter specified in tenths of a 

millimeter, which imposes an inverted sense compared to AWG and SWG. Many 

metric wire tables sidestep the artifice by simply using millimeters [22]. The AWG 

system is used herein for mathematical simplicity, because AWG parameters are 

readily translatable to SI units, and because electrotechnical professionals are widely 

familiar with it. 

3.1.3 Useful Formulas 

The gauges of the AWG system can be calculated by noting that 4/ 0 gauge2 

has a 0.460000 inch diameter, while AWG 36 has a diameter of 0.005000 inch. 

Given the diameter ratio = 92 and the gauge range = 39 steps, a step ratio 

::::o1.1229322 is readily calculated. Noting that the sixth power of this ratio :::::::; 2.005, 

a common rule of thumb is that a change of three gauge steps halves or doubles 

cross sectional area, and six steps halves or doubles diameter. The ratio to the 20th 

power is :::::::; 10.15, therefore a change of 10 gauge steps will increase or decrease cross 

sectional area by approximately a factor of ten, while 20 gauge steps does the same 

for diameter 3 
. 

Diameter Dn for any given AWG = n can be found using: 

2 4/ 0 (pronounced 'four aught') is equivalent to an AWG of negative three. This is a change of 
notation for gauges less than one. Zero gauge is 1/0, etc. This system ends at 7/0, beyond which 
diameters or cross sectional areas are used. 

3 These results are reminiscent of decibel calculations. 
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Dn :::::::; e-1.12436-0.11594ninch :::::::; e2.1104-0.11594nmm (3.1) 

Conversely, AWG can be calculated from diameter using: 

AWG ::::0 -8.6249ln(dinch) - 9.6975 ::::0 -8.6249ln (dmm) + 18.2019 (3.2) 

The frequency at which skin depth 6 = wire radius is the demarcation point 

between DC-LF conduction and skin-depth-limited conduction. Calculating the 

associated frequency is straightforward. The formula for skin depth is: 

6 = f2i = fL meters v w;; v 7rfJ1 

Setting wire radius r = 6 and manipulating terms, we obtain 

p 
!transition (p, p,, r) = --

2
-Hz 

7r7' /1 
(3.3) 

Noting that nr2 = cross sectional area a, and resistance R = p* +-------+ p = a¥, 

given ¥ in ohms per meter: 

1 n 
!transition ( R, l, /1) = -

p,m 

1o7 1 R 5 1 n 
!transition (R,l,p,r) = --- ::::0 7.9577 * 10 --

47r f1r l f1r m 

If ¥ is in ohms per kilometer: 

(3.4) 

(3.5) 



soo n 
!transition (R, l, 1--tr) ~ ---k 

l-tr m 

for any good conductor material. 

Substituting AWG = n for radius yields: 

f . . (p 11 n) ""' £. e0.23189n+9.8363 
transttwn , r, "-' 

I-t 

For copper, ! ""' 1.335 * 10~ 2 ~· Therefore, 

f . . (Cu n) ""' e0.23189n+5.5203 ""' 250eo.232n 
transttton , "-' "-' 
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(3.6) 

(3.7) 

(3.8) 

Appendix B contains a table of !transition and other selected parameters for 

round copper wire. 

3.2 Bimetallic Conductors 

Bimetallic conductors commonly place a lower resistivity outer material over a 

high resistivity inner material. The use of two metals offers some of the advantages 

of each, such as high frequency conductivity plus mechanical strength, or reduction 

of noble metal content. 

3.2.1 Copper Clad Conductors 

Copper-clad steel (CCS), also known as copper-covered steel and by the trade 

name Copperweld4 is a commercially important bimetallic conductor. Another is 

copper-clad aluminum (CCA) [23]. 

4 Trademark of Fushi Copperweld Inc. 
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CCS is often used for the center conductor of coaxial cables. It has lower cost 

compared to solid copper of equal cross section. At high frequencies skin effect 

restricts current essentially to the copper alone, resulting in no significant 

performance difference. 

A use consideration for exposed, larger diameter conductors such as for safety 

grounding in power utility distribution systems is the reduction of scrap value to 

essentially that of steel alone, which deters theft driven by high copper prices [24]. 

The copper jacket also confers superior corrosion resistance. 

The general industry standard for CCS conductors is ASTM B452 [25]. 

Commercial CCS offerings have DC conductivities ranging typically from 15% to 

70% of copper wire of the same diameter. Thin copper cladding is created using 

plating technology. A typical manufacturing process for high copper content casts 

molten copper around a steel rod. The resulting cylindrical billet is passed through 

a wire drawing process to the wanted diameter. The finished CCS retains the 

original copper-to-steel diameter ratio. 

3.2.2 Reliability Considerations 

The steel content of CCS provides much lower failure rates than copper alone. 

Solder or crimp termination of any conductor to a connector pin results in 

concentration of mechanical stress at the joint. Copper is a relatively soft metal 

with a tensile yield point around 70 MPa. Tension or dynamic flexure near the 

connector can result in breakage failure, especially for smaller wire diameters. 

Steels for MIL-DTH-17H compliant coaxial cable have minimum yield points 

:::::::: 345 MPa and are considerably more resistant to metal fatigue [26]. CCS 

fabricated per ASTM B869 (center conductors for CATV drop wire rated cable) has 

21% conductivity and a minimum tensile strength of 827 MPa [27]. CATV 
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connectors typically avoid soldered or crimped center pins by using the stiff CCS 

center conductor itself as the male mating element, eliminating breakage as a failure 

mode. For drop wire, another purpose of the steel content is support of cable runs 

suspended in air. 

3.2.3 Other Outside Metals 

Any copper surface may be silver plated to reduce high frequency attenuation. 

This is a de facto bimetallic construction at sufficiently high frequencies, but the 

conductivity of silver is only about 6% more than that of copper, and plating is 

typically quite thin (tens of microinches). Therefore, for most purposes the silver 

can be considered as one with the copper despite being distinct metals. 

G old plating is used where corrosive environments are at issue. Due to high 

cost, gold plating is generally limited to short distances and small surface areas, such 

as for component leads or connector pins [28][29]. It is sometimes used as a finish 

for printed circuit traces to improve shelf life. Excess gold in soldered connections 

can create brittle intermetallic compounds that reduce joint reliability [30]. 

Therefore, gold plating thickness is usually not more than a few tens of microinches. 

Nickel can be applied to copper to improve resistance to corrosion. It is also 

used as a barrier metal gold and copper or tin and copper, for instance in printed 

circuit finishing processes. Although far less expensive than gold, it has magnetic 

properties that can create slight nonlinearities in response to changing currents [31]. 

This is an issue in sensitive communication systems where the nonlinearity can 

create detrimental intermodulation products [32]. 

Wire manufacturers also offer pre-tinned copper wire. Tinning improves 

solderability during assembly and serves as a chemical barrier where direct contact 

between bare copper and certain types of covering insulation would cause an adverse 
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chemical reaction [33]. Tinned copper is an inverted bimetallic construction, in that 

the tinning alloy5 has lower conductivity (and a rougher surface) than the 

underlying copper. The use of tinned center conductors in transmission lines is 

generally restricted to shorter cables and/ or lower frequency uses, where the 

electrical performance degradation is minimal. 

Galvanized steel is sometimes used for safety grounding where the conductor 

is exposed to the environment. Such conductors are adequate for transient fault 

currents and lightning diversion but generally n ot for steady power conduction 

because of high losses. Electric fences often use this material on the basis of 

adequacy and low cost. Galvanized steel is also used for electrical conduit. 

3.2.4 Experimental Results 

The academic literature on bimetallic conductors is somewhat sparse. In 

1915, J. M. Miller published a study of the electrical resistance of CCS conductors 

for frequencies up to 3KHz using simplified assumptions [34]. Teare and Webb 

published a more thorough analysis in 1943 [35] that included the case of arbitrary 

resistivity and permeability in both conductor layers. They found that the steel 

content of CCS is relevant only for fairly low frequencies. 

Steel resistivities vary with alloy but are generally between 10-7 and 10-6 

0 · m, or :::::::; 6- 60 times that of copper. A general value of 20X serves as a rule of 

thumb. For CCS conductors with appreciable copper content, the steel carries only 

a small fraction of total current clear down to DC. 

For the particular specimens studied by Teare and Webb, the difference 

between CCS conductivity and that of a hollow copper tube was less than 4% at 10 

5 Tinning for electrical conductors is typically a tin and lead composition per specifications MIL
P-81728, MIS-41177, or ASTM B579. The inclusion of lead suppressess tin whisker formation. 
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kHz. At 20 kHz, the tube approximation was as good as the accurate calculation. 

The CCS conductor had lower resistance than a hollow copper tube up to 85 KHz. 

In the region between 85kHz and 160kHz (the highest frequency studied) , the 

copper tube approximation had lower resistance. This is consist ent with the 

literature on hollow, tubular conductors (section 3.5). 

More recently, Fei et al analyzed CCS performance in terms of reflection of the 

radial wave at the copper to st eel interface [36]. They determined that the 

resistivity minimum corresponds to normalized copper depth ~ = ~ wavelengths at 

the optimum frequency. Figure 3.2 illustrates the differing performance for two 

bimetallic conductors of equal outer dia meter but cha nged copper content. 

3.2.5 

\ .02 
a 

0.9~ 

0.92 

b 
frequency (.MI-Iz) 

70[) 2fi0 

a: d=l.Omm, t=0.014mm 
b: d=l.Omrn, t=O.OlOmm 

Figure 3.2: Minimum resistance curves for two CCS variants (Fei) 

CCS Magnetic Circuit 

Steel is used as the core for CCS because it is inexpensive and rugged, 

typically not for any magnetic properties. Miller noted that the magnetic field 
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associated with internal current travels through steel or copper alone only if each 

layer is perfectly round [34]. Figure 3.3 shows the cross section of an early 

specimen of CCS (contemporary processes are more tightly controlled). It is 

apparent that the crystal structure of the steel caused irregularities at the steel to 

copper interface. The effect of departure from circularity is to include some copper 

in the outermost portion of the magnetic circuit of the steel, which reduces the 

effective permeability of the steel in that region. 

Miller suggested a slotted CCS conductor cross section as shown at the right 

of figure 3.3. Copper fills the slots. This interruption of the magnetic path in the 

steel more completely approximates a nonmagnetic core. The reduction in low 

frequency inductance means that the internal inductance of the wire changes less 

between the low frequency and high frequency regions, and therefore the curve of 

impedance versus frequency is flatter at the low end. This improves pulse fidelity. 

Substitution of austenitic (non-magnetic) stainless steel or other alloys is 

another approach. Solder wettability of the core can be an issue if the copper layer 

is thin and therefore easily dissolved in solder. 

Figure 3.3: Example AWG8 cross section & Miller proposed 



3.3 Tubular Conductors 

A tubular conductor can be viewed as t he limiting case of arbitrarily 

increasing the inner bulk resistivity of a bimetallic conductor. The conductor 

interior might be literally hollow (air filled) or metal covered dielectric [37]. The 

cross section is not necessarily circular. 

Tubular construction is important for a number of compelling reasons. 

Obviously, it avoids the needless cost penalty of solid copper at high frequencies. 

Consistent with the discussion of bimetallic conductors, of equal or greater 

importance is that under the right conditions, hollow conductors offer lower loss 

than solid ones [38] [39]. 
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F igure 3.4: Example Rand L vs tube t hickness at fixed frequency. (Eglin) 

Carson patented a concentric t ubular t ransmission line (solid shield coaxial 
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cable) in 1931 on behalf of AT&T [40]. The pat ent document contains a reasonably 

complete exposition on the mathematics of the system. Arnold published formulas 

for the AC resistance of isolated and concentric tubular conductors in 1936 [41], and 

Coufal also analyzed t he case of concentric tubular conductors in 2007 [42], and 
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commented on skin effect in solitary tubular conductors. 

For wideband signals best characterized in the time domain, for instance high 

speed serial bit streams, bimetallic and tubular conductors offer an important 

advantage in terms of pulse fidelity. The higher initial resistivity at low frequencies 

leads to a flatter frequency response in this region and therefore reduced phase 

distortion [43]. For many applications the increased low frequency attenuation is 

not an issue. 

One example of tubular design is high power (tens to hundreds of kilowatts) 

coaxial transmission lines for broadcast use. These air dielectric lines use concentric 

copper tubes with outer diameters up to 9 inches or more [44]. The complete line is 

made by bolting flanged sections together. Individual section lengths are 

randomized by 10% or so to avoid additive effects from slight impedance 

discontinuities at the joints. 

The tubular inner conductor is selected for current carrying capacity, while 

the outer conductor is sized for correct impedance. The large diameters arise from 

two considerations. One is the necessary spacing for the voltages involved. The 

other is provision of adequate surface area for the current magnitude in order to 

keep losses low [45]. 

The use of gas dielectric allows the line to be pressurized with dry air or 

nitrogen so that minor leaks do not allow entrance of water and other contaminants. 

A flow gauge in series with the pressure source provides a check of the mechanical 

integrity of the line. 

On the electrical side, air or nitrogen has an Er :=::::: 1, which keeps propagation 

velocity as high as possible, further lowering losses. 
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3.4 Laminated Conductors 

Laminated conductors use nested tubular conductors with insulation between 

layers. The return conductor can be solid or also of laminated construction. 

Dwight studied current division in nested tubular conductors in 1942 [46] . By 

including dielectric effects, A. M . Clogston determined that skin effect losses could 

be greatly reduced, and articulated the laminated conductor concept in 1951 [47] as 

illustrated in figure 3.5. Among other experiments, the theory was verified with a 

coaxial resonant cavity having a 50 layer inner conductor [48]. Modern analytical 

tools such as computer based matrix techniques, have contributed to the recent 

study of laminated conductors [49] . Numerical optimization has established that 

efficient designs are possible using variable spacing and a more modest number of 

layers than otherwise [50]. 

Figure 3.5: Cross section of Clogston design 

The potential advantages of laminated construction are considerable. 

Laminated conductors offer a radical reduction in skin effect losses. Collective skin 



30 

depth can greatly exceed that of a solid conductor, with the result that the AC 

resistance of a laminated conductor can remain nearly equal to DC resistance over a 

considerable bandwidth. Thus, the advantage is not merely reduction of loss, but 

also flatness of response. Even a minimal design of two layers inside a coaxial 

return lowered attenuation by 20% from that of a solid inner conductor [51]. The 

lamination concept has also been studied in the context of shielding walls and 

resonant cavities [52]. 

It is not sufficient merely that layers are present and insulated from each 

other. Individual layers must be thin compared to the skin depth of a solid 

conductor, and therefore many layers are required to provide sufficient conductive 

cross section. A critical factor is that the internal and external velocities of 

propagation must be matched and uniform throughout the cross section. This 

requires proper attention to layer thickness and dielectric constants. Since internal 

propagation velocity is constrained by practical material choices, in general the 

external velocity must be slowed to match it. For this reason laminated conductors 

are generally studied in the context of coaxial construction, for which velocity can 

be manipulated through choice of dielectric constants. 

The velocity of propagation in run-of-the-mill polyethylene dielectric coaxial 

cables is around 66% of free space. Experimental Clogston designs using 

polyethylene dielectric had velocities around 38%. Impedance was also lower than 

for commercial cables of the same outer diameter [53]. 

If the Clogston conductor can characterized as a parallel architecture, an 

interesting but apparently untested proposal is series lamination, in which the 

center conductor is implemented as a series stack of alternating metal and dielectric 

disks. The skin effect of the metal disks is countered by an opposing "bone effect" 

in the dielectric [54], which is the same principle used in the nested tube and 



dielectric architecture of the Clogston design. 

Laminated conductors remain an area for development. Clearly, it is 

infeasible to connectorize high layer counts. Connection to discrete parts such as 

resistors or semiconductor devices requires collapsing the layered structure into a 

solid termination. Such considerations plus difficulties of manufacture have kept 

laminated conductors largely experimental, with no catalog products found in a 

search of commercial suppliers of other conductor products. 

3.5 Rectangular Conductors 

Square and rectangular cross sections are often used to improve the packing 

density of stacked conductors. In larger sizes, they offer improved mechanical 

strength and ease of termination compared to round conductors. At high 

frequencies, they provide a higher ratio of surface area to cross section, reducing 

skin effect losses. Distribution of high current utility power is often based on 

rectangular busbars, making this a well studied case with results translatable to 

higher frequencies. 
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An often used assumption for determining the internal impedance of a 

conductor is the use of Wheeler's rule, which asserts that at high frequency the 

contributions from resistance and inductive reactance are of equal magnitude. This 

is easily shown to be the case for a conductive half-space, as recited in section 2.2.1, 

and also applies to the common case of cylindrical wire when skin effect is well 

developed. 

Wheeler stated that his rule is valid only when the local radius of curvature is 

much greater than a skin depth. For a rectangular conductor, this caveat applies to 

corner curvature rather than overall dimensions. The result is greatly delayed 
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convergence to validity for Wheeler's rule as frequency is increased, even if corners 

are beveled or rounded. 

Medina [55] critiqued the study of Antonini et al of the impedance of 

rectangular conductors [56], asserting that Wheeler's rule was adequate even for this 

case. In reply, Antonini et al noted that for a square conductor of half-width 

= 3506, the resistance to reactance ratio is 1.314:1. After increasing frequency by a 

factor of five to make half-width= 7826, the ratio is still 1.248:1 [57]. Clearly, the 

presence of 90 degree corners is problematic for Wheeler's rule despite skin effect 

being "well developed". 

Other studies of rectangular cross sections corroborate this conclusion and 

reveal that, in general, resistive and inductive contributions of rectangular and 

ribbonoid conductors are not equal and must be determined numerically [58]. 

Shlepnev studied microstrip conductors and found convergence to Wheeler's rule at 

microwave frequencies ~ 1 GHz [59]. Heinrich extended the Antonini results to the 

case of monolithic-microwave integrated-circuit coplanar waveguide [60]. 

Inductance formulas for rectangular and other conductors often use 

assumptions and approximations that can be problematic unless the assumed 

conditions are met [61]. Piatek and Baron [62] derived an exact formulation of the 

DC self-inductance of a straight rectangular conductor, but it is less numerically 

stable than formulations provided by Weeks et al [63], or Chen and Fang [64]. 

3.6 Ribbonoid Conductors 

Ribbonoid conductors (also called strap or tape conductors and by other 

terms) are the limiting case of rectangular geometry. For purposes of analysis, 

theoretical thickness is often set to zero but the results apply to any rectangular 
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Figure 3.6: Extra akin lass va frequency parameter for rectangular conductors 

conductor with a width to thickneea ratio » 1. Figure 3.6 shows the loaa advantage 

of ribbonoid ("thin band") construction [65] . 

The foil conduc tors of printed circui try are ribbonoid, aa are thin film or 

evaporated metal conductors such aa for metal-on-ceramic hybrid circuits or 

microelectronic devices [66] . In these applications thickness is usually fixed while 

width ia determined by transmission line impedance for high frequency USE!! or by 

current carrying capacity for power transmission. 

At low frequencies, both the width and thickness of a ribbonoid conductor are 

small compared to akin depth . In this instance, resistance per unit length ia a 

simple matter of resistivity and crass sectional area, j uat aa for any other conductor 

at a sufficiently low frequency. 

For frequencies high enough to make akin depth smaller than the width 

dimension, a planar version of akin effect causes current crowding along the 

conductor edges. However, the entire crass section of the conductor remains 

available to carry the current distribution up to the limit where half thickness ia 
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comparable to a skin depth. Because only the width dimension participates in skin 

depth limited conduction below the second limit, the difference between skin depth 

limiting in one dimension versus two dimensions creates a bandwidth advantage. 

For ribbonoid ("thin tape") construction, Piatek and Baron [62] obtained a 

simplification of the general case formula for DC self-inductance: 

This is the same as the formula derived by Hoer [67]. It has been noted that 

for certain geometries, this formula is not numerically well behaved. Ruehli [68] 

and Zhong [69] have each derived alternative exact solutions with improved 

numerical stability. 

3. 7 Litzendraht Conductors 

The word "Litzendraht" is German for "braided wire". The essence of 

litzendraht ( "litz") construction is conductive cross section built from multiple 

insulated wire strands. The purpose of braiding is to ensure that individual strands 

spend an equal fraction of the total length adjacent to the surface and to every 

other strand in the braid. Because all strands are alike in this respect, the result is 

equal current sharing among strands in defiance of skin effect. Note that it is not 

sufficient to simply twist multiple insulated strands together. Adequate 

transposition of the strands throughout the cross section is necessary to achieve the 

desired effect [70]. 

Individual strands must have diameters small enough to keep the current 

density in the cross section nearly uniform at the operating frequency. The result is 
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that the aggregate conducting cross sectional area is nearly equal to that of a single 

strand multiplied by the number of strands. Litz construction combines the current 

carrying capacity of a large (in terms of skin depth) conductor with the efficient use 

of cross sectional area offered by small conductors [71]. 

3.7.1 Cross Section Optimization 

Determination of optimal strand diameter and number of strands is important 

for the case of litz based magnetic windings such as for power inductors and 

transformers [72]. Ferreira published methods for analytical computation of the AC 

resistance of round and rectangular litz construction [73]. The causes of loss and 

the effects of imperfect construction have also been studied [74]. 

The density of the working cross section is reduced by breaking it into 

multiple circular conductors, i.e. the areal coverage of a plane tiled with identical 

circles is ~90.7%. Strand transposition reduces density compared to that 

achievable if strands maintained a fixed relationship. The need to insulate the 

strands further diminishes working density. Insulation coating processes for fine 

and ultrafine gauges typically add 5% to 10% to the diameter of the conductor. 

This sets a limit on the improvement possible for a fixed cross sectional area on the 

basis of diameter related loss reduction being offset by the insulation related 

decrease in total area [75]. 

End to end resistance is somewhat increased by the additional length required 

for the porpoised path each strand follows through the braid. This also mildly 

reduces the end to end velocity of propagation. 

Attaining the litz advantage becomes increasingly difficult as operating 

frequency is increased. Specifically, diameter reduction to accommodate higher 

frequencies drives the strand count upward as the inverse square of strand diameter, 
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which rapidly increases cost. Achievable wire diameter has a practical lower limit. 

Venturing into hyperfine gauge territory is doubly problematic because cost per unit 

length zooms astronomically as this limit is approached. The simultaneous increase 

in required length and cost per unit length (see Appendix C) results in a formidable 

cost barrier. 

The rapid increase in wire count associated with fine gauges has consequences 

for production handling. This is because each individual wire must be properly 

terminated if it is to participate in the totallitz conductor. Ordinary commercial 

products subject to moderate temperature rises often rely upon "solderable" 

insulation [76] which melts at soldering temperatures, allowing soldering without 

insulation stripping. This allows dipping fluxed litz wire into a solder pot to 

simultaneously tin all wires into a solid termination. However, the finished state of 

individual strands at the center of the wire bundle cannot be ascertained, therefore 

it must be accepted that some small fraction might fail to connect properly 

High reliability products generally require individually inspectable strand 

terminations. It is also common to require rugged, high temperature capable 

insulation that must be chemically or mechanically stripped. These requirements 

rapidly become infeasible for high wire counts. 

Despite these considerations, litz wire can offer more efficient use of cross 

sectional area than a solid conductor dominated by skin effect, resulting in lower 

loss by comparison. However, the advantage of litz wire over solid wire of the same 

diameter is a sensitive function of operating frequency, strand diameter, and other 

parameters. Litz construction is most commonly applied to fixed frequency or 

narrowband situations where the loss advantage can be optimized by an application 

specific design. 

It was noted that laminated conductors require many thin layers to provide 



37 

sufficient conductive cross section. In this sense, a laminated conductor is similar to 

litz wire, for which multiple small conductors provide aggregated conducting area. 

This suggests that litz conductors embedded in dielectric per Clogston doctrine may 

be an alternative route to the benefits of the Clogston design. 

The costs and handling difficulties associated with fine and ultrafine wire 

limits the practical use of litz construction to frequencies typically not higher than 

the low MHz region. Some performance extension is possible through the obvious 

substitution of hollow or bimetallic conductors, but at higher frequencies low loss 

designs more typically rely upon simple conductors of sufficient surface area, such as 

bimetallic, tubular, rectangular, or ribbonoid constructions. 

Consequently, although there are commercial offerings of coaxial cables with 

litz-based center conductors, such products are primarily application specific designs 

intended for high power audio, induction heating, and other high current uses 

involving modest frequencies. No litz-based coaxial cable products for general 

purpose use are found. 

3.8 Stranded Conductors 

Conductors built from multiple uninsulated strands are a staple of flexible 

conductor design. For a modest cost premium, they offer superior flexibility and 

bend life. The conductors distributing utility power in the walls of a home may be 

solid, but the cords of appliances plugged into receptacles will be stranded. 

Microphone cables are subject to severe dynamic flexure and internal conductors 

may parallellOO or more fine gauge strands (e.g. AWG 44) to ensure adequate 

service life. 

Strand counts generally adhere to numbers that optimally fill a circular cross 
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section. The first count that improves on a single conductor is seven, in which a 

central conductor is surrounded by six identical conductors in a second layer. For 

three layers, the optimal total is 19, for four layers it is 37, and for five, 61. In 

practice, counts higher than 19 may be arbitrary with conductors simply paralleled 

("bunched") together for low cost. Structured designs achieve high counts by 

twisting stranded conductors into further optimal bundles, for example 7 bundles of 

19 strands each for a total of 133. 

Stranded conductors are not simply the subdivided equivalent of solid 

conductors. For example, the twist imparted to the strand bundle to keep it 

organized imparts an associated spirality effect that increases high frequency AC 

resistance [77]. It is also more difficult to quantify skin effect [78]. Consequently, 

the formulas used for solid conductors must be reinterpreted for stranded designs. 

There are various techniques to do this, such as a subdivision method for calculating 

frequency dependent resistance [79]. 

3.8.1 Strand Independence 

It is widely supposed that uninsulated strands are well shorted to each other. 

Notwithstanding lack of insulation, adjacent strands may exhibit a surprising degree 

of independence [80]. Various considerations apply. 

A geometric consideration is that parallel, touching cylinders contact each 

other along a one dimensional line of theoretically zero surface area. In practice, 

metallic conductors flatten somewhat along the line of contact, but resistive or 

insulative surface films, and bumps, ridges, and other asperities keep adjacent 

surfaces from fully intimate contact in the narrow shared width. 

Some multilayered strand constructions alternate the handedness of twist for 

successive layers or use differing lay lengths on each layer. In this instance, layer to 
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layer strand contact occurs at discrete points rather than continuously along their 

lengths, further reducing the area of mutual contact. Appendix D discusses 

commonly available industry stranding styles. 

Soldered contacts rely upon an alloyed bond. Pressure contacts such as 

between a wire and a screw head are able to achieve intimate, air excluded contact 

area through scouring and friction welding. However, parallel wires touching each 

other lack these mechanisms. There is a possibility that dust or other insulating 

contaminants might be present as a barrier. Thin oxide films might be present. 

These are easily broken by mechanical pressure, but even broken films may leave 

nanoparticles of oxide residue between lightly touching metal surfaces. Given the 

conductivity ratios between oxides and their respective metals, this may suffice to 

channel current primarily through individual conductors. 

3.8.2 The Four Most Conductive Elements 

Considering the four most conductive elements, silver oxide (Ag2 0) is a black 

conductor with resistivity around 3 x 10-3 Sl· c:m [81]. This is higher than that of 

silver metal by over 3 orders of magnitude. 

Cuprous oxide (Cu20) is a red to brown p-type semiconductor with a 

temperature dependent resistivity. The resistivity also depends on the method of 

formation, but a range of 25 Sl· c:m to 104 S1 ·em is representative [82]. Suffice to 

say that copper oxide resistivity is greater than that of metallic copper by a factor 

exceeding at least a million. Thin films might have relatively low resistance 

through the thickness, but this cannot be relied upon as conductors age or corrode. 

G old does not tarnish in response to oxygen or ordinary environmental 

contaminants. 

Aluminum is an excellent electrical conductor and is routinely used in many 
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applications where proper attention to joint implementation is observed. However, 

aluminum oxide (Ab03 ) is an excellent insulator, and forms on the metal surface 

more or less immediately upon exposure t o air. It reaches a thickness ;:::::; 1.5 nm in 

a few hours. Growth of thickness continues as the logarithm of exposure time [83]. 

On one hand, the resistivity of aluminum oxide is generally quoted as > 1014 

s.1 · c:m. This means that a 1 c:m2 layer 1.5 nm thick still presents a formidable 15 

megohms of resistance. On the other hand, the dielectric strength, though an 

impressive 16.7 kVjmm (nominal), equates to a breakdown of only 25 millivolts 

across the same thickness. Distances of this order of magnitude also allow the 

possibility of electron tunneling. Suffice to say that the interstrand properties of 

paralleled aluminum conductors that are only loosely packed against each other lack 

definitive rules. 

3.8.3 Inter-strand Currents 

Strand-to-strand currents will not flow between points of contact where 

voltages are equal. Theoretically identical adjacent strands carrying equal currents 

will lack an inter-strand potential difference at any point along the distributed 

voltage drop of the wire. Real conductors have slight differences along their 

lengths, but the resulting potential differences and associated interstrand currents 

are commensurately small. Some or all of the mentioned effects may be found in 

stranded conductors, making them to some degree a low cost substitute for litz wire 

[84]. 

Proximity effect in the conductor bundle will cause current differentials at 

sufficiently high frequencies. If high conductive intimacy is present, it allows the 

strand bundle to act as if it were electrically solid, supporting eddy currents more or 

less comparable to solid wire, albeit with many small air channels in the cross 
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section. 

This discussion has deliberately pursued a maximal argument for 

independence of adjacent conductors. Casual experimentation with a length of 

stranded wire and an ohmmeter may readily suggest otherwise. The best available 

counsel is probably "caveat emptor" unless the specifics of a material choice and 

conductor implementation are known. 

3.9 Stranded Shields 

There are two fundamental theoretical models for coaxial shields. Solid 

shields are well understood but their rigidity limits their sphere of application. 

Stranded shields are an important resource for the design of flexible cables. Single 

layer stranded shields are discussed here, inasmuch as they are popular and are 

foundational for more complex constructions that include multiple braid layers, 

conductive foil, etc. 

There are various ways to create a single layer shield from wire strands. A 

simple, inexpensive approach is a served shield, which applies a covering layer of 

strands in a lazy spiral around the dielectric surface. The spiraling keeps the shield 

conductors organized and coverage can be essentially 100%, but served shields 

buckle when flexed, and therefore are not reliably constant impedance. At higher 

frequencies, the spiraling causes inductive effects. Served shields are typically 

intended only to provide electrostatic shielding at low frequencies, such as the audio 

range. Hill and Wait [85] analyzed served design for deliberately leaky RF cables. 

A strand layer may be applied in strictly axial fashion (no spiraling), which 

results in acceptable or even superior high frequency performance [86]. A tight 

wrap of material over the shield layer is necessary to maintain the shield against the 
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dielectric surface. This prevents strand migration during flexure and ensures 

constant impedance. 

A common flexible shield construction uses tubular braid woven from flat 

groups of wire strands. Half of the weave spirals in a left-hand sense and half in a 

right-hand sense. This keeps the shield intimate with the dielectric during flexure. 

Non-zero strand thickness precludes complete closure of the weave at crossover 

points, resulting in interstices ("eyes") in the braid. The effect is usually described 

in terms of "optical coverage," meaning the fraction of the dielectric surface covered 

by strands. Single layer coverage can be as high as 98%. A typical value is 95%. 

3.9.1 Modeling Single Braided Shields 

Braided shield performance continues to be an unsettled topic. The 

parameters of concern are the degree of shielding between inner and outer 

environments and also between cables [87]. Both theoretical and empirical 

approaches have been tried with mixed results. 

Braided shields are often modeled as hollow metallic tubes, with or without 

periodic apertures to represent the eyes. Vance modeled braided shields as 

perforated tubes [88], as did Lee and Baum [89]. Kley [90] compared a perforated 

tube model against cable samples with single-braided shields and stated: 

"The known approaches for the calculation of the coupling 
parameters of single-braided shields do not compare well against the 
measured values.", 

and 

" ... no significant dependence ... on the contact resistance between 
the braids could be stated." 
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Zhou and Gong [91] asserted that Schelkunoff's formulas for a cylindrical shell 

[92] were not applicable to cable braids, and derived an analytical model consistent 

with Vance's work but assuming braided shield construction. 

Tyni proposed a twin inductance model for transfer impedance calculation 

based on braid inductance and leakage inductance [93]. He asserted that braid 

inductance results from the textile nature of the braid, while leakage inductance is 

caused by the eyes in the braid. 

Tyni's parameters were: 

0:: : Braid angle 

Dm : Mean braid diameter 

b : Hole width 

d : Braid-wire diameter 

h : Radial spindle separation 

1.1 : Permeability 

N : Number of folding 

Kirschvink and Vroomen [94] stated: 

"The design of cable braids is still based on experience and 
experiments because a correct modelization of the transfer 
impedance is not showing correct results if all the construction 
parameters of a braid are taken into account." 

Their parameter set was: 

D : Diameter under braid 

m : Number of foldings 

n : Number of wires per folding 

d : Diameter of the wires 

h : Length of lay 
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Schippers et al [95] studied braid samples and compared their model against 

those of Vance and Kley. They asserted that a braided shield has six parameters: 

D : Diameter of braid 

C : Number of carriers (i.e. belts of wires) 

N : Number of wires in a carrier 

d : Diameter of a single wire 

cr : Conductivity of the wires 

o: : Weave angle of the braid 

Sali created a refined model for braided coaxial cables after comparing the 

work of Vance and Tyni to measurements of experimental cables [96]. He concluded: 

"These studies have confirmed that the agreement between the 
measured and the theoretical results were largely dependent on the 
braid designs. Tyni's approach has produced the highest accuracy 
for the leaky and overbraided cables but failed to produce any 
sensible agreement for cables with optimized braid designs." 

Rahmann et al [97] combined Tyni's work with that of Vance to achieve a 

better fit to measured data. Xiaoling et al [98] studied the results from Tyni, Sali, 

and Kley, and set forth another model, stating: 

"The predictions of the existing approaches have excellent accuracy 
at low frequencies, but have poor accuracy at high frequencies." 

Tiedemann and Gonschorek experimented with RG 213/U cables and 

discovered that hole coupling and braid porpoising effects are counteracting, 

corroborating the work of Vance and Rahmann et al. They achieved a 20 dB 

improvement in shielding by removing wires from the braid [99]. Cook and Wilson 

verified the "over-braiding" phenomena [100]. 
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Badr et al compared wire braids with tape braids to better understand the 

mechanism of current conduction, and concluded that construction tolerances were 

critical [101]. Tiedemann experimented with current flow in the braided shields of 

commercial coaxial cables, and concluded that braid current follows individual 

conductor paths without substantive current sharing. He explicitly rejected the 

perforated tube model [102]. 

For other than gold or gold-plated braids, a more realistic model of braided 

shields seems to be one of interwoven, axially counter-wound, lazy pitch inductors 

with magnetic field cancellation as the basis of high frequency performance 

[103][104]. The slightly increased distance along the spiral paths(~ 5%) also 

implies a modest slow wave effect [105] similar to that mentioned for litz 

conductors. In fact, a larger implication is that braided shields may be a de facto 

litz derivative subject to similar considerations and optimization strategies. 

3.10 Roughness Effects 

Conductor roughness is not often considered in high frequency design. 

Industry standard insertion loss estimation techniques assume smooth surfaces 

[106]. However, standard printed circuit foils have roughnesses that can be 

significant at frequencies as low as the VHF region. 

3.10.1 Surface Roughness 

When skin depth becomes comparable to the magnitude of surface deviations 

the effective current path length approximately doubles with a commensurate 

increase in loss [107]. This is shown graphically in figure 3. 7. 
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An RMS surface roughness equivalent to one skin depth increases power loss 

by approximately 60% [108]. Dispersion also increases substantially in this region 

[109]. Beyond the obvious effect of surface roughness on inductance in this region, a 

related effect is an increase in capacitance contribution from the tips of the surface 

asperities. This effect was first noted for the case of thin insulating film [110] and 

later for the case of printed circuit laminate [111]. This makes the effective 

dielectric constant dependent upon strip width for thin dielectrics, in the same sense 

that roughness makes insertion loss dependent upon strip width. A practical 

methodology for measuring roughness effects to 50 GHz is discussed in [112]. 

3.10.2 Foil Surface Roughness 

Printed circuit foils are commonly etched on one side to improve adhesion to 

the base laminate. Printed circuit based microstrip transmission lines concentrate 

the anti-parallel currents at the facing surfaces, precisely where the etching is 

applied. Although some loss reduction strategies buff the outward conductor faces 

and burnish via-hole interiors, these are the least efficacious places to apply it, with 

only limited potential for loss mitigation. 

The flexibility of printed circuit processes make it possible to design buried 

microstrip that has smooth foil surfaces facing each other. The resulting microstrip 

will have reduced surface roughness losses but higher dielectric losses compared to 

surface implementation. There will also be less impedance control since the 

dielectric thickness between facing smooth foils will be created by manual insertion 

of prepreg6 between the foil layers rather than the tightly controlled thickness of 

6 Prepreg is a layer of uncured epoxy-glass material that is manually inserted into the multilayer 
stack as a dielectric spacer. It becomes part of the finished board when the stack is cured in a 
heated press. Prepreg thickness might diminish somewhat in the process. Since the minimum 
thickness of a sheet of prepreg is that of a single layer of woven glass fibers, the final thickness has 
granularity of approximately that amount, typically around 3.5 mils. 
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prefabricated laminate. 

In response to demand for higher electrical performance, some laminate 

vendors offer products with smoother inner surfaces, although users must accept 

somewhat reduced foil robustness against peeling [113]. Figure 3.8 shows cross 

sectional roughness examples for external (surface trace), internal trace, and smooth 

foils [114]. 

3.10.3 Foil Edge Roughness 

The chemical etching processes typically used to create foil conductors 

interact with the grain structure of the copper with the result of an uneven edge. 

Etching also proceeds faster with increasing distance from the laminate surface. 

This creates a trapezoidal cross section that multiplies width uncertainty as a 

matter of geometry. Conductors etched from typical printed circuit foils have width 

roughness on the order of a thousandth of an inch. 

Roughness amplitude is proportional to foil thickness and independent of 

conductor width. Narrower conductors are more vulnerable than wider ones. A 

trace only 0.004" wide with .001 11 uncertainty on each edge looks ragged under a 

microscope. 

Similarly, the line edge roughness of metallization used in microelectronics is 

on the order of a few nanometers and does not decrease as devices shrink. For 

features below 45 nm, this can result in device parameter fluctuations and impose 

design limits [115]. Figure 3.9 shows representative roughness for a 45 nm process. 
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Figure 3.8: Top: surface trace, Middle: internal trace, Bottom: smooth foil 

Figure 3.9: SEM image line edge roughness (Ban) 
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3.10.4 Roughness Modes 

Edge roughness can be divided into two modes. The sum of the profiles of 

both edges divided by two is common mode roughness, while the difference divided 

by two represents differential mode roughness. Common mode roughness represents 

a conductor of average width wandering from side to side about the nominal center 

line. Differential mode roughness equals width deviations that represent impedance 

changes. Those of high spatial frequency compared to the wavelength of the signal 

are essentially invisible, while those that are comparable affect return loss. 

If conductor width is comparable to skin depth or less, common and 

differential roughnesses are meaningful concepts. If the width is large compared to 

skin depth, current will be concentrated at the edges and each edge will act more or 

less independently. Thus, the entire roughness of each will contribute to high 

frequency losses. However, the edge contributions will be of less significance 

compared to the total conducting area. 

Mechanical removal processes such as milling and routing or laser ablation7 

create foil edges that are more smooth and vertical than those of etching processes 

[116]. These are preferred when precise high frequency performance is wanted8 . 

7 An example of a commercial laser ablation product is the LPKF Protolaser U3. 
8 11 The center frequencies in the milled circuits were closer to the computer-predicted value, while 

those for ... etched circuits were a little higher. ... microscopic examination revealed deviations from 
exact design dimensions of +0.5 to + 1.0 mil in the mechanically milled filter and +2.0 to +5.0 mil 
in the chemically etched version. The milled circuits ... provided a more precise mechanical match 
to the original filter-design pattern because their traces were square and sharp, just as they were 
defined by electromagnetic (EM) CAD images. The etching process produced softer, more rounded 
edges. 11 (Schmidt) 
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CHAPTER 4 

COMPARATIVE PERFORMANCE 

For a fixed conductor cross sectional area, which shape of conductor is 

superior? The answer is the nearly universal, "It depends." The conductor choices 

compared in figure 4.1 are based on equal cross sectional area [11]. As frequency 

rises, obvious differences emerge. Thin wall tubular conductors exhibit the same 

characteristic shape as solid wire, which is simply the zero internal diameter limiting 

case. Although thin walled tubular conductors offer superior characteristics, at a 

sufficiently high frequency skin effect sets an upper bound for information capacity 

(e.g. bit rate), for any given conductor material and type of transmission line 

[117][118]. 

Rectangular and ribbonoid conductors likewise differ only in degree1 
. The 

contrasting response shapes between circular and rectangular conductors invariably 

cross over at sufficiently high frequency. Thus, planar conductor information 

capacity is limited by maximum tolerable attenuation rather than geometry per se. 

Above TEM cutoff, higher order modes can contribute to the usable spectrum for 

short pulse, fast risetime signals if certain effects are ignorable or controlled for [119]. 

The general characteristics of tubular and rectangular conductors govern the 

nominal performance of bimetallic, laminated, litz, or stranded constructions, 

although these cannot be compared directly because they depend on many 

additional parameters. 

1 The curve for a 16:1 aspect ratio strap is approximately that for a nominal 0.012" wide trace im
plemented in 1/ 2 oz. (0.0007" thick) foil, albeit without accounting for dielectric effects or proximity 
to other conductors. 
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CHAPTER 5 

CONCLUSIONS AND FUTURE WORK 

Current flow in a conductor is shown to have both in-phase (real) and 

quadrature phase (reactive) components with associated counter flows. The 

consequent loss terms have characteristic spatial distances that allow loss 

minimization through choice of appropriate conductor dimensions. An important 

conclusion is that dimensional choices can be used to flatten frequency response 

with beneficial results for wideband signals. 
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Solid wire is indicated for low frequency applications because it is low cost 

and adequate. Solid wire is used for the center conductors of low cost transmission 

cables for applications where flatness and loss are of lesser concern. 

Tubular or bimetallic conductors offer flatter response at low frequencies and 

lower loss at high frequencies. They are well suited for low loss transmission of 

signals of limited bandwidth (although that bandwidth can be considerable) such as 

cable television signals, or high frequency narrowband signals for which the change 

in slope across the bandwidth is negligible, such as radio and television broadcast. 

Rectangular or square conductors are often specified for mechanical 

considerations, such as strength or packing density. In the instance of bulk power, 

such as for utilities, this choice also offers larger surface area for heat dissipation, 

and avoidance of dimensions that are excessive compared to skin depth. 

The flatter, wider frequency response of ribbonoid conductors suggests that 

they are superior to circular geometries for fast rise time digital signaling and other 

wideband applications. They also offer compact, low cost form factors for 
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microwave transmission lines and high speed digital signaling. 

Laminated conductors potentially offer very low loss coaxial cables, but have 

yet to attain commercial importance due to their complexity. 

Litz wire offers low loss at modest RF frequencies, for instance to minimize 

eddy current losses in the copper of transformer or inductor windings. 

Stranded wire is used primarily to offer mechanical flexibility and long service 

life. It may also offer litz-like characteristics. 

It is noted that braided shield characteristics are rather more complex than 

basic analyses suggest. 

The present work emphasizes the frequency domain. A future task is to 

further extend analyses in time domain terms. Extension to cylindrical and other 

form factors is already found in the literature, but the perspective of multiple 

current flows developed in chapter 2 should be further pursued for these contexts. 

Current metrics for surface and edge roughness effects are not well developed and 

can be further explored. 

Thus far, experimental confirmation of conductor theory has been largely 

confined to exterior measurements. Direct experimental confirmation of conductor 

interior effects is possible and would be a contribution. 

Given their importance, further inquiry into the physics of braided shields is 

still a fruitful area for investigation. Further investigation of laminated and litz 

conductor architectures may be productive as well. 
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APPENDIX A 

CURRENT FLOW IN A CONDUCTIVE HALF-SPACE 

Let Jz(x) = J0e 7 ' cos(wt- -3') (starting assumption) 

=Joe 7 (cos(wt)cos (~) +sin(wt)sin(~))(apply identity) 

= JoeT (cos (wt) "real part"+ sin (wt) "reactive part") 

Let -3' = ~. Then, Iz (~) = J~ Jz(~)d~ 

= J0 cos (wt) J~ e-.; cos(~) d~ + J0 sin (wt) J~ e-.; sin(~) d~ 
=~Joe-.; [cos(wt) (sin~- cos~)- sin(wt) (sin~+ cos~)Ji; 

= ~J0 (coswt + sinwt) amps/meter (summary result) 
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The summary result is recalculated in terms of individual components. Each 

is the sum of all regions of similar flow. Let fz = lp + IR + h + Ic, where: 

lp =sum of forward real currents: cos~> 0 

I R = sum of reverse real currents: cos ( ~) < 0 

h = sum of inductive currents: sin (0 > 0 

Ic = sum of capacitive currents: sin(~) < 0 

lp = (0.603 94 + 0.004 69) J0 cos (wt) = 0.608 63J0 cos (wt) 

The first term contributes ~:~~~~i = 99.23% of lp. 



IR = locos (wt) C~o Ji(~~:1~) e~~ cos (0 d~) 
1 ~ ( ~ . 12!.( 4n+3)) = 2 Io cos (wt) ~0 e~ (sm~ -cos~) %(4n+l) 

00 00 

= -~locos (wt) L ( e~'5;(4n+3) + e~'5;(4n+l)) = -~locos (wt) L e~'5;(2n+l) 
n~ n~ 

= -~ ~:
2

" 1" = -0.108 63Jo COS (wt) 
e ~e 

!REAL = lp + IR = (0.608 63 - 0.108 63) locos (wt) = ~Jo cos (wt) 

h = lo sin (wt) (fo J;2~n+l) e~~ sin(~) d~) 
= -~losin(wt) C~o e~~ (sin~+ cos~)J:;~n+l)) 

00 00 

= ~losin(wt) L (e~1r(2n+l) + e~1r2n) = ~losin(wt) L e~1rn 
n=O n=O 

= ~losin(wt) e2;~e" = 0.5225831osin(wt) 

Ic = lo sin (wt) C~o J;~2::1~) e~~ sin(~) d~) 

= -~J0 sin(wt) C~o e~~ (sin~+ cos~)J:~~~:~~) 
00 00 

= -~lo sin (wt) L ( e~1r(2n+2) + e~1r(2n+l)) = -~lo sin (wt) L e~1r(n+l) 
n=O n=O 

= -~Josin(wt) e 3"e:"e2" = -0.022583Josin(wt) 

!REACTIVE = h + Ic = (0.522 583- 0.02 258 3) lo sin (wt) = ~Jo sin (wt) 

Net total current (that which an instantaneous reading ammeter would 

indicate) is 

lz = JREAL +/REACTIVE= ~Jo (cos (wt) +sin (wt)) 

This is the same as the summary result. 
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APPENDIX B 

TABLE OF SELECT COPPER WIRE ATTRIBUTES 

This table is based on modern data for electrical grade copper (i.e. not the 

lACS constants published in 1913). The resistivity of annealed, high purity copper 

electrical wire is~ 1.678 * w-s S1 · m (102.75% lACS, 20° C). The density of 

soft-drawn, annealed copper wire is ~ 8924 kg/m3 (20° C). 

Table entries are for single, round, bare wires in isolation. The presence of 

insulation will increase kg/ km. 

Transition frequency is calculated by setting radius = b. This is the 

demarcation point between low frequency conduction and higher frequencies where 

skin effect becomes significant. 

Note that excessive tension will cause wire elongation. Example tensioning 

guidelines are found in [120][121]. 
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Table B. l : Select Copper Wire Attributes 

AWG D inch Dmm mm2 kg/km 0/km Ftrans 
4/0 0.460000 11.68 1.072E+02 9.569E+02 1.565E-01 1.25E+02 
3/0 0.409642 10.40 8.503E+01 7.588E+02 1.973E-01 1.57E+02 
2/0 0.364797 9.266 6.743E+01 6.018E+02 2.488E-01 1.98E+02 
1/0 0.324861 8.251 5.348E+01 4.772E+02 3.138E-01 2.50E+02 
1 0.289297 7.348 4.241 E+01 3.785E+02 3.957E-01 3.15E+02 
2 0.257626 6.544 3.363E+01 3.001 E+02 4.989E-01 3.97E+02 
3 0.229423 5.827 2.667E+01 2.380E+02 6.292E-01 5.01E+02 
4 0.204307 5.189 2.115E+01 1.888E+02 7.934E-01 6.31 E+02 
5 0.181941 4.621 1.677E+01 1.497E+02 1.000E+OO 7.96E+02 
6 0.162023 4.115 1.330E+01 1.187E+02 1.261 E+OO 1.00E+03 
7 0.144285 3.665 1.055E+01 9.414E+01 1.591 E+OO 1.27E+03 
8 0.128490 3.264 8.366E+OO 7.466E+01 2.006E+OO 1.60E+03 
9 0.114424 2.906 6.634E+OO 5.921 E+01 2.529E+OO 2.01E+03 
10 0.101897 2.588 5.261 E+OO 4.695E+01 3.189E+OO 2.54E+03 
11 0.090742 2.305 4.172E+OO 3.723E+01 4.022E+OO 3.20E+03 
12 0.080808 2.053 3.309E+OO 2.953E+01 5.071 E+OO 4.04E+03 
13 0.071962 1.828 2.624E+OO 2.342E+01 6.395E+OO 5.09E+03 
14 0.064084 1.628 2.081 E+OO 1.857E+01 8.064E+OO 6.42E+03 
15 0.057068 1.450 1.650E+OO 1.473E+01 1.017E+01 8.09E+03 
16 0.050821 1.291 1.309E+OO 1.168E+01 1.282E+01 1.02E+04 
17 0.045257 1.150 1.038E+OO 9.262E+OO 1.617E+01 1.29E+04 
18 0.040303 1.024 8.231 E-01 7.345E+OO 2.039E+01 1.62E+04 
19 0.035891 0.9116 6.527E-01 5.825E+OO 2.571 E+01 2.05E+04 
20 0.031961 0.8118 5.176E-01 4.619E+OO 3.242E+01 2.58E+04 
21 0.028462 0.7229 4.1 05E-01 3.663E+OO 4.088E+01 3.25E+04 
22 0.025347 0.6438 3.255E-01 2.905E+OO 5.154E+01 4.10E+04 
23 0.022572 0.5733 2.582E-01 2.304E+OO 6.500E+01 5.17E+04 
24 0.020101 0.5106 2.047E-01 1.827E+OO 8.196E+01 6.52E+04 
25 0.017900 0.4547 1.624E-01 1.449E+OO 1.034E+02 8.22E+04 
26 0.015941 0.4049 1.288E-01 1.149E+OO 1.303E+02 1.04E+05 
27 0.014196 0.3606 1.021 E-01 9.113E-01 1.643E+02 1.31E+05 
28 0.012641 0.3211 8.097E-02 7.226E-01 2.072E+02 1.65E+05 
29 0.011258 0.2860 6.422E-02 5.731E-01 2.613E+02 2.08E+05 
30 0.010025 0.2546 5.092E-02 4.545E-01 3.295E+02 2.62E+05 
31 0.008928 0.2268 4.039E-02 3.604E-01 4.155E+02 3.31 E+05 
32 0.007950 0.2019 3.203E-02 2.858E-01 5.240E+02 4.17E+05 
33 0.007080 0.1798 2.540E-02 2.267E-01 6.606E+02 5.26E+05 
34 0.006305 0.1601 2.01 4E-02 1.798E-01 8.330E+02 6.63E+05 
35 0.005615 0.1426 1.598E-02 1.426E-01 1.050E+03 8.36E+05 
36 0.005000 0.1270 1.267E-02 1.130E-01 1.325E+03 1.05E+06 
37 0.004453 0.1131 1.005E-02 8.967E-02 1.670E+03 1.33E+06 
38 0.003965 0.1007 7.966E-03 7.109E-02 2.106E+03 1.68E+06 
39 0.003531 0.08969 6.318E-03 5.638E-02 2.656E+03 2.11E+06 
40 0.003145 0.07988 5.01 2E-03 4.473E-02 3.348E+03 2.66E+06 
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APPENDIX C 

ECONOMICS OF COPPER WIRE MANUFACTURING 

Of many styles of copper wire that differ mostly in insulation details, magnet 

wire was chosen for study b ecause t he simple film insulation system is a minor cost 

adder. Magnet wire is also an important commodity product whose price is kept 

close to marginal cost by market forces. Thus, market pricing for this product 

category closely reflects the economics for production of the wire itself. 

Figure C.l: Magnet Wire Cost per Pound and per Foot (2008 market data) 

2008 market pricing for commercial magnet wire shows distinct cost regions 

versus wire gauge. The data p redates later disruptions of t he copper wire market 

caused by heavy demand for copper products of all kinds and abrupt price 
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fluctuations for the raw material. 

7/0 to 16 AWG: Cost per unit weight is nearly constant. Purchase of wire in 

these gauges amounts to sale of bulk copper, the only difference being the diameter 

and length per pound for each gauge in this range. Only "heavy" (double) 

insulation is offered, which is needed to withstand the mechanical forces associated 

with winding thick, stiff conductors. The heaviest gauges are often purchased in 

stranded form (not charted here) for reasons of mechanical flexibility. In addition 

to round wire, square and rectangular form factors are readily available (not charted 

here). 

16-30 medium gauge: Single and heavy insulation weights are available, with a 

modest cost slope for each. Cost per unit length continues to drop, but cost per unit 

weight begins to rise slightly as insulation costs increase. The most popular sizes of 

general purpose wire are in this region. 

30-36 light gauge: Cost per unit length continues downward. Single insulated 

wire continues the upward cost per pound trend, but heavy insulation assumes a 

steeper slope. Triple and quad insulations are available with commensurate cost 

Increases. 

36-40 transition to fine gauges: The cost per unit length for single insulated 

wire assumes a more modest slope. There is a mild kink in the cost per unit weight 

curve for heavy insulation. Quad insulated wire has a distinct low cost dip 

associated with popular gauges for high turn count, high voltage windings. The cost 

per unit weight for single insulation begins a fast rise. 

40-48 fine wire: Copper cost is essentially irrelevant compared to processing, 

therefore cost per unit length is relatively constant in this region. Cost per pound is 

therefore proportional to feet per pound and rises aggressively. Heavy and quad 

insulation are not offered from stock. 



48 - 52 extra fine: Cost per foot begins to rise aggressively, and cost per 

pound skyrockets. 
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52 -60 ultra fine: The cost skyrocket enters the stratosphere, reaching $8,000 

per pound for AWG 56. This is low demand specialty wire that is truly difficult to 

manufacture. Pull lengths are extraordinary and the wire is exceedingly delicate 

and easily broken. Production handling requires finger cots for protection from 

corrosive skin oils, and microscopes and tweezers are essential tools. Insulation 

becomes an increasing fraction of winding volume and weight. 

54 gauge (859,100 feet per pound, bare) and 56 gauge (1,366,000 feet per 

pound, bare) conductors are offered in spools not exceeding .25 and .156 pounds 

respectively. This is more than 40 miles (64 km) of wire in each instance. 



APPENDIX D 

STRANDED WI RE CONSTRUCTION 

There are lour concentric stranded constructions offered by wire and cable 

manufacturers. Manufacturers also offer low coat bunched stranding and 

high-strand-count rope stranding. 
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The industry normally refers to ''Concentric" as "True Concentric" and uses 

the terms interchangeably. Concentric or True Concentric is characterized by a 

central wire surrounded by one or more layers of helically laid wires in a geometric 

pattern, with alternately reversed lay direction and increasing lay length. 

Figure 0.1: Concentric Stranding 

Equilay or Equilay Concentric is characterized by a central wire surrounded 

by one or more layers of helically laid wires in a geomet ric pa ttern, with alterna tely 

reversed lay direc tion and the same lay leng th. 

Figure 0 .2: Equilay Stranding 
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Unidirectional or Unidirectional Concentric is characterized by a central wire 

surrounded by one or more layers of helically laid wires in a geometric pattern, with 

the same lay direction and an increasing lay length . 

Figure 0 .3: Unidirectional Stranding 

Unilay or Unidirectional Equilay Concentric stranding is characterized by a 

central wire surrounded by one or more layers of helically laid wires in a geometric 

pattern, with the same lay direction and the same lay length. This is the only 

concentric construction in which strand layers remain in parallel contact throughout 

the length of the conductor. 

Figure 0.4: Unilay Stranding 

Bunched Stranding parallels any number of strands in a random pattern and 

twists them in one opera tion, giving all strands the same lay direction and lay 

leng th . The result is a rougher sur face and lower dimensional tolerance than 

concentric constructions. The number of strands is determined by the size of the 

individual s trands and the total cross-sectional area required. 
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Figure 0 .5: Bunched Stranding 

Rope cons truction consis ts of concentric or bunched members s tranded 

toge ther into the final concentric or bunched configuration. Rope s tranding haa the 

advantage of increased mechanical flexibility through use of a larger number of finer 

s trands while offering tighter diameter tolerance than a simple bunched 

cons truction. Ropes are more common for larger diameters, but applications often 

require the flexibility of rope cons truction in smaller sizes. Constructions vary and 

may contain hundreds or thousands of s trands . 

• 
Figure 0 .6: Rope Stranding 

Figures and information courtesy of Calmant Wire, Santa Ana, CA, USA. 
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APPENDIX E 

COPYRIGHTS AND PERMISSIONS 

Tables: Laney 2013 (CC BY-NC-ND 3.0) 

Figures: as shown 

Figure Author Year Status 

2.1 Yen et al 1982 @ IEEE 

2.2 Laney 2013 (CC BY-NC-ND 3.0) 

2.3 Ducluzaux 2002 Extracted Schneider Cahier Technique no. 83 

3.1 Hurley et al 2000 @ IEEE 

3.2 Fei et al 1999 @ IEEE 

3.3 Miller 1915 public domain (issued by U .S. gov't agency) 

3.4 Eglin 1934 public domain (issued by U .S. gov't agency) 

3.5 Clogston 1951 @ IEEE 

3.6 Ducluzaux 2002 Extracted Schneider Cahier Technique no. 83 

3.7 Polar staff 2011 used by permission 

3.8 Liang et al 2006 @ IEEE 

3.9 Banet al 2009 SPIE (CC BY 3.0) 

4.1 Dwight 1918 @expired 

App. C Laney 2013 (CC BY-NC-ND 3.0) 

App. D Calmont used by permission 
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