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ABSTRACT 

 
 

SYNTHESIS AND EVALUATION OF SILICA HYDRIDE-BASED 
FLUORINATED STATIONARY PHASES 

 
by Kavita Vipool Prajapati 

 
 
       Silica-based fluorinated bonded stationary phases have shown enhanced selectivity  
 
with altered elution orders for molecules differing in hydrophobicity and hydrophilicity  
 
in comparison with C8 and C18 reversed phase columns.  Hence, two novel silica  
 
hydride-based fluorinated bonded phases have been synthesized using a hydrosilation  
 
procedure to exploit fluorine-based unique selectivity for polar basic metabolites.   
 
Bonded moieties have been characterized by elemental and spectral analyses.  Silica  
 
hydride-based aqueous normal phase (ANP) chromatography has retention behavior  
 
similar to normal phase chromatography, except for the use of water as a part of the  
 
binary solvent (>60 % acetonitrile : water).  In ANP, a higher percentile of nonpolar  
 
mobile phase shows increased retention for acids and bases, and nonpolar solutes can also  
 
be retained as in reversed phase chromatography (RPC).  The synergistic effects of  
 
fluorinated phases’ altered selectivity and aqueous normal phase retentivity have been  
 
explored for small polar metabolites using high performance liquid chromatography  
 
(HPLC) coupled with several detectors.  Hydride-based fluorinated stationary phases  
 
showed good stability and remarkable reproducibility in retention time with %RSD < 1.
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I.          INTRODUCTION 
 
A.          Chromatography 
 
       Chromatography encompasses very important scientific methods to accomplish  

separation of closely related components of complex mixtures.  Its discovery around  

1903 is credited to a Russian scientist Mikhail Twsett, for his work in separating plant  

pigments on a chalk column using ether.  Separated components appeared as color bands  

on the column that justifies the meaning of chromatography as a process of “color 

writing” in Greek.  Since this initial work, large numbers of systems and techniques have 

been developed to make chromatography a powerful tool for analytical separations [1, 2]. 

       The basic concept of chromatography involves the use of a stationary phase and a 

mobile phase.  The sample to be separated is transported in the mobile phase which may  

be a gas, a liquid, or a supercritical fluid.  The stationary phase may be a support material  

fixed in the column.  Once transported, the sample components distribute themselves  

between the stationary phase and the mobile phase with varying degrees of interactions.   

The components attracted by the stationary phase, retain more and move slowly with the  

flow of mobile phase, whereas, those with lower interaction move faster eluting earlier.   

Hence, this difference in mobility separates the components of sample into discrete bands  

or zones that can be confirmed for individual identity. 

       The stationary phase is either held in a narrow tube (column) as in column  

chromatography or is supported on a flat plate as in planar chromatography, and the  

mobile phase is forced through column in the direction of gravity or it migrates by  

capillary action against gravity respectively.  The majority of applications incorporate  
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column chromatography.  On the basis of the physical state of the mobile phases being  

used, chromatography can be further classified as gas chromatography (GC), liquid  

chromatography (LC), and supercritical-fluid chromatography (SFC).  Only liquid  

chromatography can be performed on column as well as on flat surfaces [1]. 

       In liquid chromatography, the mobile phase is a liquid that is in contact with a solid  

or liquid stationary phase.  The advances in column technology and fabrication of 

packing materials demanded use of reliable pumps to produce high pressure flow rates  

for better and faster separation in liquid chromatography.  Therefore, the term HPLC has  

been appropriately introduced for high pressure or high performance liquid 

chromatography that uses sophisticated instrumentation for achieving higher performance  

in separation analysis [1].  

B.          High Performance Liquid Chromatography (HPLC) 
 
       High performance liquid chromatography specifies separation analysis that uses a  

column containing small diameter particles (≤ 10 µm), a pump capable of pushing 

solvent through such columns and a detector that can measure the compounds separated  

with good sensitivity.  In industries like biotechnology and pharmaceuticals, HPLC has  

been recognized as a powerful tool for the purpose of identification, characterization,  

purification, and separation of biomolecules [2].  

       Modern HPLC instruments include a solvent delivery system, a sample introduction  

system, a separation system (column), and a detection system.  The primary component  

of the solvent delivery system is the pump; however, it also consists of solvent  

reservoirs, degassers, mixers, gradient formers, and pulse dampers.  The dissolved gases  
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like oxygen and nitrogen may interfere in the analysis if not removed from the mobile  

phases.  Procedures like helium sparging and online degassing can remedy this problem.  

A constant composition of one or more solvents (isocratic) can be used to analyze the 

samples, and one can also achieve higher separation efficiency using gradients run with 

varying mobile phase composition per time.  The pumping system can generate constant 

pressure up to 6000 psi to adjust the mobile phase flow rates ranging from 0.1 to 10 

mL/min.  For injecting the sample, a manual injector or an autosampler can be used.  The 

manual ones are loop injectors that deliver the sample into the column in a smooth and 

continuous form by a single switch valve.  On the other hand, autosamplers use an 

automated sample injector to introduce varying sample volumes as frequently as several 

per minute from the same vial.   

       Once the sample is injected into the column, the constant flow of mobile phase  

pushes the sample down the column to separate its components between itself and  

the stationary phase.  The columns are made up of a stainless steel body or a polymeric  

tube containing 1.5-10 µm sized silica particles of varying porosity.  Since the 

characteristics of these particles play an important role in HPLC based separation, the  

column is considered the “heart” of the HPLC separation system [1, 2].   

       Finally, the detection system attached to the column produces an electrical signal  

proportional to the concentration of the separated components.  This signal is plotted as  

a chromatogram measuring concentration against elution time or elution volume.  An  

ideal detection system should provide adequate sensitivity for tracking a particular 

component.  Not only better sensitivity, but lower noise, faster response, lower dead 
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volume and lower temperature sensitivities are also some of the important factors that 

need to be evaluated when deciding on HPLC detectors.  Since different detectors operate 

on different physical or chemical principles, further classification can be made with 

respect to its ability to identify the analyte molecules.  For example, ultraviolet-visible, 

fluorescence, and radioactive detectors are selective detectors as they respond to specific 

analytes only, whereas refractive index (RI) and mass spectrometers (MS) are universal 

detectors detecting virtually every type of analyte [1, 2]. 

C.          Background of Detectors Used 
 
1.          Ultraviolet (UV) Detector 
 
       UV detectors are the most commonly used HPLC detectors; they quantify the  

compounds on the basis of Beer’s Law: the absorbance of an analyte, at a particular UV  

wavelength, is directly proportional to its concentration.  For selecting a characteristic 

UV wavelength, the detector is constructed to use different filters or a monochromator.  

More sophisticated detectors allow scanning of multiple UV wavelengths with multiple 

filters, a prism or a grating.  Along with its apparent advantages of high sensitivity and 

easy operation; it is important to note that the analyte must absorb in a UV wavelength 

range.  Many molecules do not carry the chromophores required for making them UV- 

active and that limits the applicability of UV detection system [1, 2]. 

2.          Evaporative Light Scattering Detector (ELSD) 
 
       The evaporative light scattering detector is a near universal HPLC detector as it can  

detect almost any analyte that is less volatile than the mobile phase.  Besides liquid  

chromatography, its compatibility with countercurrent chromatography and supercritical  
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fluid chromatography has also been reported.  ELSD was first reported in 1966 by Union  

Carbide’s Australian research lab.  Later on, it became available commercially around  

1980 [3].     

       Due to its potential advantages over other detectors, ELSD has become a supplement  

to or substitute for many other HPLC detectors.  Unlike UV, it can detect the analytes  

with or without chromophores, and will not give any negative peaks.  The gradient profile  

will be stable during the change of mobile phase composition as it does not respond to  

solvent concentration.  Consequently, it does not give solvent front peaks at the void  

volume unlike UV and refractive index (RI) detectors making it a superior choice for  

detection of early eluting analytes.  In contrast to a mass spectrometer (MS) detector, it is  

less complex and has a low cost of operation which is a plus for its use in method 

development analysis.  The only drawback to point out would be its destructive mode of  

operation; therefore, the sample can not be collected at the end of the analysis for  

preparative scale applications [4]. 

       Provided that the analyte is less volatile than mobile phase, any unknown analyte can  

be tested using following three successive steps of nebulization, evaporation and  

detection.  The schematic representation of ELSD’s operation is outlined in the Figure 1.  

       Nebulization transforms the HPLC effluents into an aerosol cloud that is made up of  

fine droplets.  The constant flow of inert gas helps to form uniform droplets in the aerosol 

cloud.  This uniformity of droplets ensures sensitivity and reproducibility of the analysis.  

Afterwards, the aerosol cloud is carried into the heated evaporation chamber (drift tube) 

by the carrier gas where the mobile phase evaporates leaving behind the droplets or 
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particles of pure analyte.  The temperature of the drift tube has to be selected carefully for 

the purpose of the solvent evaporation.  When the analyte cloud enters the detection cell, 

it passes through the beam of laser light where it scatters some of the light.  The scattered 

light is detected by the silicon photodiode which is located at an appropriate angle.  The 

output signal is proportional to the size and the size distribution of the incoming analytes 

[3, 4].  

 

 
 
Figure 1.    Schematic diagram of Evaporative Light Scattering Detector.  
                     
                    (Adapted from [3], Megoulas, N. C.; Koupparis, M. A. Critical Reviews 
 
                    in Analytical Chemistry, 35, 301-316, 2005). 
 

       It is worthwhile to mention briefly that the ELSD detection is mainly based on elastic 

light scattering in which the scattered light possesses the same frequency as the incident 

light.  The elastic scattering phenomena is observed in the form of Rayleigh, Debye, and 
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Mie –scattering.  In general, these scattering phenomena depend on different interactions 

between the light and the size, shape, and surface properties of the particles [3]. 

       In ELSD, the light scattering is proportional to the size of the particle rather than its  

concentration.  Hence, the correlation between the chromatographic peak area (A) and the  

analytes’ mass (m) can be presented as described in the following equation.  

                                               log A   =   b  log m  +  log a 
 
where a and b are coefficients depending on the ELSD’s instrumentation parameters and  

its operation variables [2, 3]. 

       One more interesting feature of ELSD is its ability to split the aerosol cloud.  When  

it is necessary to generate higher HPLC flow rates, ELSD needs a way to divert a part  

of the aerosol cloud to the waste.  Introduction of a sharp turn or a plate impactor in the  

nebulization chamber have shown the splitting of the unnecessary amount of aerosol  

cloud.  However, SofTA Corporation’s new patent pending thermo-split technology has  

resulted in improved solvent splitting technology that can handle lower, moderate, and  

higher flow rates of various mobile phases. 

       As shown in the Figure 2, a thermo-split based nebulization chamber (spray chamber)  

has walls that can be heated or cooled down to assist gentle temperature variations.   

When an easily evaporated mobile phase or lower flow rates are encountered, these walls  

are maintained at ambient or slightly elevated temperatures.  As aerosol traverses the  

spray chamber, its partial evaporation which has already been started, leaves behind a  

lower amount of aerosol cloud that can easily negotiate the spray chamber band.  When  
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hard to evaporate mobile phases or higher flow rates are used, the walls are cooled down 

to condense the extra load of aerosol down the drain.  Thus, heated walls or cooled walls 

of the spray chamber can smoothly divert the unnecessary aerosol cloud to achieve 

optimum selectivity and sensitivity [4]. 

 
 

 
Figure 2.    Schematic diagram of Thermo-Split technology.  Nebulization chamber  
 
                   walls A. heated for easy to evaporate mobile phases  B. cooled down for 
 
                   hard to evaporate mobile phases.  (Adapted from [4]:  Model 400 ELSD  
 
                   manual, v. 1.2, 2006, http://www.softacorportion.com, accessed  
 
                   November 2009). 
 
       The effluents eluting from the column require splitting into tiny fractions for the  
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purpose of detection by mass spectrometer (MS) as well.  However, newly available  

interface technologies have made LC-MS coupling viable [1]. 

3.          Mass Spectrometric Detector (LC-MS) 
 
       Mass spectrometry has been recognized as an ideal detector for its universality and 

unique selectivity.  Its ability to identify each of the analyte species with high resolution 

can be credited to the solvent-assisted ionization type of interface with the LC system.  

Examples include thermospray, electrospray, and atmospheric chemical ionization 

interfaces.  This general set up removes the bulk of the mobile phase from the sample, 

and transforms the analyte molecules into gaseous ions.  These gaseous ions are an 

appropriate form of the analytes to be introduced into the high vacuum mass analyzers [2].  

Figure 3 represents a basic diagram of an MS detector coupled with an HPLC system via 

electrospray (ESI) or atmospheric pressure chemical ionization (APCI) interfaces.  

 
 
Figure 3.    Basic design of mass spectrometer detector interfaced with  
 
                    liquid chromatography system.  
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       Compared to other ionization sources, an electrospray probe has been a popular  

choice of ionization in biopolymer analysis.  Since it is based on the soft ionization  

principle, biomolecules can be detected in the form of singly charged molecular ions at  

atmospheric pressure.  The combination of nebulization and ionization in ESI results in  

the attachment or removal of one or more protons, from the solvents to the analytes thus 

forming the molecular ions.  The inert carrier gas draws these molecular ions to the mass  

analyzer for the separation based on their mass to charge (m/z) ratio [2].  The quadrupole  

mass analyzer is a commonly used ion separator because of its ruggedness and lower cost  

compared to the time of flight (TOF). 

       Generally, the quadruple mass analyzer consists of four cylindrical rods mounted  

in a ceramic collar, forming an ion path.  By choosing an appropriate ratio of radio  

frequency and DC voltage applied to these rods, desired molecular ions can be focused to  

pass through the vacuumed quadrupoles towards a photomultiplier detector.  These  

detected molecular ions are plotted as ion counts versus ion mass in the form of mass  

spectra.  The sensitivity of an analyte ion can be plotted against the function of time in  

the form of total ion current (TIC) or single ion monitoring (SIM) in the case of a specific  

separation study [5]. 

       With these choices of detectors, one can selectively analyze different types of 

molecules.  Furthermore, the mechanistic understanding of the separation process is 

equally essential for adequate analysis.  The definition of liquid chromatography can be 

further classified into adsorption chromatography and partition chromatography 
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according to the mechanism involved in the separation process.  The solute is retained on 

the basis of its distribution among two or more phases, which is defined as a partition, 

and its retention due to attractive forces between itself and solid surface is defined as an 

adsorption [1, 6].   

       The widely used partition chromatography can be classified into either liquid-liquid 

or bonded-phase chromatography depending on how the stationary phase is held on the 

support surface.  Since the first mode has a major disadvantage of dissolution in the 

mobile phase over time, the bonded-phase has become a generally adapted approach.  

The success in the chemical bonding of different organic moieties (bonded-phases) onto 

the support material has opened the door for performing highly selective partition liquid 

chromatography [1].    

       Partition chromatography can be subcategorized into normal phase and reversed- 

phase chromatography.  Normal phase (NP) chromatography utilizes polar stationary 

phases like cyano, amino or triethyleneglycol bonded on bare silica or alumina, and 

nonpolar mobile phases like hexane or ether (with methylene chloride, propanol, or  

methanol as a modifier) to elute polar solutes.  Conversely, reversed phase (RP) 

chromatography employs nonpolar stationary phases like octadecyl (C18/ODS), octyl 

(C8), butyl (C4), phenyl or biphenyl; and polar mobile phases like water (with methanol 

or acetonitrile as a modifier) to elute nonpolar solutes [1, 2].  Normal phase  

chromatography retains polar molecules and reversed-phase chromatography retains 

nonpolar molecules.  However, the majority of biomolecules and drugs possess multiple 

polar sites, and are hard to separate solely based on NP or RP chromatography.  Two 
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dimensional chromatography (one can use RP and NP chromatography successively) is 

one of the options to separate multiple polarity biomolecules.  In HPLC, the use of 

extreme pH and higher temperature might be other solutions for the separation of these 

compounds.  These steps are time consuming and damaging to HPLC instruments and the 

columns [2].   

D.          Aqueous Normal Phase Chromatography (ANP) 
 
       Aqueous normal phase chromatography is a novel separation mechanism introduced 

by Pesek et al. as a third type of chromatography that can retain both polar as well as 

nonpolar analytes on the same column [6].  Hence, aqueous normal phase 

chromatography can address the separation of multiple polarity biomolecules with a 

simpler approach. 

       Aqueous normal phase chromatography (ANP) can be defined as a normal phase  

chromatography that employs water (polar) as a part of binary solvent system.  When the 

less polar part of the binary solvent (mainly acetonitrile) is increased to 60% or more, 

polar solutes like acids and bases show retention as in the normal phase mode.  When the 

aqueous component increases, nonpolar molecules are retained as in the reversed-phase 

mode.  This unique dual retention capability of ANP is observed due to silica-hydride or 

silica-hydride based stationary phases synthesized using silanization/hydrosilation 

procedures [6].  The ANP behavior of an individual solute is described as solute’s 

characteristic retention map by plotting its retention time versus concentration of mobile 

phase composition. 
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       Because of the fact that the silica hydride based stationary phases are highly stable, a 

wide range of binary solvent compositions can be tried -from 100% aqueous to 100% 

organic- to retain and separate particular polar-nonpolar pairs.  When the hydride column 

has higher water, it operates in the RP mode; at high organic with some water the ANP 

mode is dominant; and pure organic mobile phases provide organic normal phase (ONP) 

retention.  Interestingly, the RP and ANP modes are complimentary to each other due to 

the common binary solvent system, and therefore can operate on the same column in a 

single isocratic run [7].  As an addition to the nonpolar solvent based ANP retention, the 

use of additives like formic acid (FA), acetic acid, ammonium formate and ammonium 

acetate improves the retention of polar acids and bases.  The use of a fairly low 

concentration of these additives has shown compatibility with MS detection and the 

pumping system of an HPLC instrument [6, 8].  Aqueous normal phase chromatography 

is observed specially for the silica hydride-based materials.  The synthesis and 

advantages of silica hydride-based support materials are illustrated as follows.   

E.          Silica Surface 
 
       Silica is the most widely used separation medium in column chromatography due to 

its ever evolving practical applications.  Originally, silica particles with irregular shape  

and wide pore size distribution were used as a support material in normal phase 

chromatography.  This type of silica based stationary phase showed limited 

reproducibility and flexibility towards the use of normal phase solvents, hence it has been 

replaced by an enhanced version.  Newer fabrication technologies have produced 

mechanically stable silica particles with uniform diameters and specific pore sizes.  This 



 14

type of carefully manufactured silica results in spherical shaped particles with higher 

surface area, which can be packed uniformly in columns to yield better efficiency and 

higher resolution [9].   

       Because silica is a condensation product of silicic acid, its polymeric surface  

carries exposed siloxane linkages (Si-O-Si) and silanols (Si-OH) on the outer layer.    

These silanols are in the form of isolated, vicinal, and geminal –type of free hydroxyl  

groups acting as polar acidic sites.  These sites can readily interact with polar basic  

solutes resulting in poor separation performance and pH instability of the column  

material.  This matter becomes serious when silica-based HPLC stationary phases are  

utilized for RP and NP separations.  To minimize the surface silanols, endcapping with 

small organic molecules has been reported.  However, this process does not replace all 

silanols and the endcapped version of silica showed limited pH stability [10, 11].  The 

other options available for chemical modification of silica surface are discussed in the 

following section. 

F.          Surface Modification 
 
       Surface modification of silica is a well studied area of surface chemistry that  

mainly involves the conversion of silanols into bonded organic moieties using 

esterification, chlorination/Grignard reactions, or organosilanization [12].  This research 

utilizes a unique silanization procedure that has been shown to remove almost 95 % of 

the total silanols on the surface of silica into silica hydride which has unique separation 

capabilities.  Hydrosilation of silica hydride material introduces desired organic moiety 

on to the surface.  Such hydride surface-based stationary phases have not only overcome 
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the limitations of the silanols but also have resulted in interesting aqueous normal phase 

separations [13].  

1.          Silanization/Hydrosilation 
 
       Silanization and hydrosilation are two successive step syntheses producing silica  

hydride based stationary phases that have shown hydrophobic, hydrophilic, ion-exchange,  

chiral, etc. types of separation capabilities.  The scheme of silanization/hydrosilation is  

presented in Figure 4. 

 
 
 
Figure 4.    Schematic diagram of silanization and hydrosilaiton syntheses.  
 
 
       In the silanization step, polar silanols are converted into hydrophobic silica hydride,  

under controlled reaction conditions of triethoxysilane (TES) concentration, water,  acid,  
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reaction temperature and time.  This monolayer of newly formed silica hydride acts as a  

stable intermediate for the next step of hydrosilation.   

       In the second step of hydrosilation, the characteristic organic moiety can be attached  

in the form of a terminal olefin to the hydride intermediate by catalytic addition using  

hexachloroplatinic acid (Speier’s catalyst) or free radical initiator.  Other forms of 

organic moieties like non-terminal olefins, alkynes and cyano compounds have also been 

attached successfully to silica hydride intermediates.  It is important to note that not all of 

the silica hydrides are being replaced by the organic moiety due to steric factors.  The 

underlying silica surface still contains hydrides that influence the separation capabilities 

[12, 13].  In this research, a perfluoro-octene and a perfluoro-decene (terminal olefins) 

were attached to silica hydride using the hydrosilation synthesis to make hydride based  

fluorinated stationary phases. 

G.          Fluorinated Stationary Phases 
 
       The unique chemical and physical properties of the fluorocarbons have been  

exploited in the development of a novel category of fluorinated LC stationary phases.   

The alkyl- and phenyl- based fluorinated and perfluorinated bonded moieties on the silica  

surface have shown selective and complimentary retention from the traditional C8 and  

C18 reversed phase materials.  The majority of separation analyses of proteins and 

similar biomolecules with multiple polar sites require the use of complex mobile phase 

preparations and high pH conditions in the octadecylsilica (ODS) type reversed phase 

columns.  However, replacing the C-H portion of hydrocarbons in reversed phase 
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materials with a C-F functionality as in fluorinated stationary phases introduces an 

apparent polar character that may enhance the retention of the biomolecules [14, 15]. 

       In 1980, the de Galan group reported the very first preparation of alkyl fluorine  

bonded phases and their capability in separating the fluorinated compounds from their 

non-fluorinated analogs in LC [16].  Later on, Xindu and Carr reported the potential  

advantages of separating proteins on a C8F17 fluorinated bonded phase using higher  

concentrations of the organic solvent (isopropanol) in the mobile phase [17].  They noted 

that the use of an organic solvent instead of the ion-paring additives for retention was less 

denaturing and easy to evaporate for preparative separations.  They have also suggested 

that the fluorocarbons are less adsorptive than the hydrocarbonaceous materials; perhaps 

this fact explains the fluorinated phases’ unique selectivity.  

       The separations of fluorinated and other halogenated solutes have shown higher 

selectivity on the fluorinated bonded phases than their non-fluorinated counter parts.  The 

presence of fluorine-fluorine interaction has led to further studies using fluorous tagging 

on the solutes, and the use of the fluorinated alcohols as mobile phase modifiers to obtain  

desired separations of the biomolecules on fluorinated phases [16].  

       In general, the possible retention mechanisms that have been proposed are as follows:  

the alkyl- based fluorinated phases may possess dipole-dipole (dispersive) interactions in 

the case of fluoro/halo- or polar metabolite- types of solutes; the phenyl- based 

fluorinated phases may exhibit pi-pi interactions for the phenyl based solutes; even 

charge transfer and ion exchange mechanisms have been postulated for the ionic  
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Figure 5.    (A)  Phenyl- and (B) Alkyl- based fluorinated stationary phases. 
 
                    (Adapted from reference 15, Przybyciel, M. LCGC Europe. 2006, 19, 1,   
 
                     1-10; and reference 18, Jinno, K.; Nakamura, H. Chromatographia.  
 
                     1994, 39, 5/6, 285-293, respectively).           
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biological solutes.  Many large and small, planar and nonplanar solute separations have 

been reported on the basis of the size and shape selectivity of the fluorinated phases [14, 

16, and 18].  Hass and Kohler tried to explain the orthogonal selectivity of the fluorinated 

phases over respective hydrocarbon reversed phases [19].  Based on their proposal, the 

hydrocarbon chains have a high degree of association, exposing many adsorption sites for 

solute interaction, whereas the fluorinated moieties behave as isolated brushes for solute 

interactions.  This prediction has provided an insightful theoretical point of view for 

further studies.          

       Various types of fluorinated phases have been reported:  fluorinated or perfluorinated; 

alkyl- based or phenyl- based; straight chains or branched chains; on silica gels or on 

polymer supported fluorinated beads.  When the fluorinated moiety is attached to silica, it 

requires the use of the spacers containing hydrogen e.g., methylene, ethylene or 

propylene. Silica based fluorinated stationary phases have exhibited high stability, and 

therefore high reproducibility in separation studies.  Pentafluoro- phenyl (PFP) and 

branched C6F13 (also called Fluofix) are some of the extensively studied silica based 

fluorinated phases with unique selectivity for polar as well as nonpolar solutes.  Figure 5 

shows the structures of two silica based fluorinated phases: (A) a phenyl- based 

fluorinated phase and (B) an alkyl-based fluorinated phase with its chemical model drawn 

using an MM2 calculation [15, 16, 18, and 19]. 

       According to recent studies, the alternate selectivity of the fluorinated phases  

compared to the hydrocarbon reversed phases has become significantly evident for the  

retention of the polar and basic solutes when higher percentage of organic solvents like  
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methanol and acetonitrile are used.  Zhang [16] postulates that fluorinated phases could 

have different separation mechanisms depending on the type of analyte. For the polar 

basic solutes, the fluorinated phases show a “U-shape” retention profile (a plot of 

retention time versus percentage mobile phase composition) as the concentration of the 

organic content (e.g., methanol or acetonitrile) of the mobile phase increases.  In this  

 
 
 
Figure 6.    Synthesis of perfluoro hydride-based stationary phases using  
 
                    silanization and hydrosilation procedures.  
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profile, the left side resembles reversed phase behavior and the right side resembles 

normal phase behavior [16].  This phenomenon of the fluorinated stationary phases 

resembles the silica hydride based aqueous normal phase mechanism used for polar basic 

retention.  The notable difference between the fluorinated silica hydride phases in this 

study and those reported earlier in the literature would be the backbone of the silica, 

where to date the fluorinated phases studied are bonded to the silica with a significant 

number of silanols remaining on the surface.  The hydride based columns have 

approximately 95% of the silanols replaced by the silica hydride compared to bare silica 

[13].  Therefore, this research has been designed to study the similar polar retentive 

mechanisms of fluorinated stationary phases on the hydrophobic silica hydride backbone 

using ANP chromatography with the hope of a synergistic outcome. 

       Figure 6 illustrates the silanization and hydrosilation procedures forming  

tridecafluoro-1-octene silica hydride and heptadecafluoro-1-decene silica hydride from  

the respective olefins.  These phases are abbreviated as TDF C8 and HDF C10  

respectively in the following sections. 

H.          Characterization Techniques 
 
        The silica hydride and hydride-based bonded stationary phases can be characterized  

using elemental analysis, Infrared (IR) and Nuclear Magnetic Resonance (NMR) 

spectroscopic techniques.  The following sections describe the methods used in this 

investigation.  

1.          Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFT) 
 
       Diffuse reflectance infrared Fourier transform spectroscopy (DRIFT) is the semi- 
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quantitative spectral analysis method that confirms the presence of the functional groups  

of the hydride and hydride based bonded phases.  Nevertheless, the completion of the  

silanization and hydrosilation as well as the presence of adsorbed/bonded raw materials  

or final products can be explained qualitatively using DRIFT.   

       For solid, IR spectroscopy is a useful technique to characterize higher surface area 

materials.  However, as the surface area decreases, it requires the Fourier transform 

method to improve the absorption sensitivity by signal averaging.  Diffuse reflectance is 

another way of increasing the sensitivity of solid analyte absorption bands.  In this study, 

DRIFT analysis is performed by irradiating the analytes mixed with KBr that is put in a 

small cup.  The reflected light from the surface of the analytes is collected by a mirror 

and focused on to the detectors like mercury cadmium telluride (MCT) or deuterated 

triglycine sulfate (DTGS).  The enhanced signal contains the fingerprint information of 

the analyte-bonded or adsorbed onto the surface [10].  

2.          Carbon Elemental Analysis 
 
       Elemental analysis is the combustion method that is used to determine the chemical 

composition of organic compounds.  The silica-based bonded surfaces can be 

characterized quantitatively using the carbon elemental analysis.  The fact that the silica 

moiety does not contain any traces of carbon means that if there is any carbon, it must be 

from the bonded moiety.  Besides carbon, the other elements if present in the bonded 

organic moieties like nitrogen or fluorine can also be estimated using elemental analysis.  

In carbon elemental analysis, the amount of bonded moiety on the silica surface is 
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calculated as the surface coverage (α) in the form of μmol/m2 using the following 

Berendsen and de Galan equation: 

α (μmol/m2) = 106 pc/(102 MC  nC  - pC  MR) SBET 
 
 pC     - carbon % of the bonded material 
 
 nC     - number of carbon atoms in the bonded organic group 
 
 MC   - atomic weight of the carbon 
 
 MR    - molecular weight of the organic compound 
 
SBET  - specific surface area of the silica material 
 
It is a common trend to get lower surface coverage values as the size of the bonded  

organic moiety increases [12, 20].  

3.          Nuclear Magnetic Resonance Spectroscopy (NMR) 
 
       Nuclear Magnetic Resonance Spectroscopy (NMR) is a powerful spectroscopic tool 

that is mainly used for determining the structure of the organic compounds and for  

characterizing newly synthesized compounds.  For the study of surfaces, solid state NMR 

is an accepted and frequently used method.  

       In general, solid state NMR gives a broad band for each NMR active nucleus of the 

same type due to its fixed magnetic orientations in the solid state in comparison with that 

in the liquid state.  This broad range continuous chemical shift effect is known as 

chemical shift anisotropy (CSA) which can be overcome by utilization of magic angle 

spinning (MAS).  Spinning the solid material very rapidly (1-5 kHz) in the orientation of 

the diagonal of the cube (i.e., 550, the magic angle), averages out the chemical shift 

variations; and the solid simulates as if it is a liquid, resulting in narrower bands.  To 
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study 29Si and 13C NMR active nuclei, the cross-polarization (CP) criteria is required as 

well, which can transfer the NMR sensitivity from highly sensitive proton nuclei to 29Si 

or 13C nuclei that have lower sensitivity [10, 12].  This research includes solid state CP-

MAS NMR study of carbon-13 as well as silicon-29 nuclei, the liquid state NMR of 

fluorine-19, and the slurry state NMR of H-1 to understand the changes occurring on the 

silica surface during the silanization and hydrosilation procedures.    

I.          Types of Samples Used in the Evaluation of Columns 
 
       In this research, small polar molecules are targeted as test probes because they exist  

in biomolecules and pharmaceutical compounds.  Studying smaller molecules provides a 

better understanding of retention mechanisms which eventually may be applied to 

biological macromolecules [2].   Therefore, to study the ANP and RP dual retention 

behavior of the hydride based fluorinated columns, small polar molecules were selected 

that are described as follows. 

       First, amino acids were studied because they make up peptides and proteins.  Amino 

acids exist as zwitterions at normal physiological pH (6-8) due to their one or more 

amino and carboxyl groups at the terminal positions.  Due to this multiple polarity, they 

are hard to separate by reversed phase columns; pre-column or post-column 

derivatization are sometimes used to separate them on reversed phase columns.  However, 

ANP’s ability of separating polar and nonpolar molecules makes the amino acids an ideal 

choice of solute to study.  On the basis of their net charge at neutral pH, they can be 

categorized as acidic, basic or neutral amino acids [2].  In this study, basic arginine and 
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histidine, acidic aspartic acid and glutamic acid, and neutral phenylalanine and tyrosine 

were analyzed using ELSD and MS detectors. 

       The other classes of compounds in this study include nucleobases, nucleosides and a 

nucleotide that are the main part of DNA and RNA.  They have been reported to be 

separated by ion-exchange or reversed phase chromatography.  However, the reversed 

phase mode gives very low retention and an ion-exchange mode utilizes aggressive 

buffers and salts in the mobile phase that are not suitable for using an MS detector [21].  

Hence, they are very well suited solutes to try using ANP chromatography.  These solutes 

were studied on ELSD and UV detectors. 

       The very polar and hard to separate creatine and creatinine were analyzed using 

ELSD.  Creatinine is the breakdown product of creatine, mainly seen in the energy 

producing cycle of a human body.  Creatine is known as an ergogenic acid -a nutritional 

supplement popular among athletes.  They are the main components of human urine.  

Their levels in urine are commonly checked to evaluate human kidney function.  Hence, 

they are good target solutes for ANP study [22, 23]. 

       Another class of metabolites investigated is the small polar organic acids like maleic  

acid, fumaric acid, succinic acid and citric acid.  They are highly polar and an essential 

part of biological metabolites.  Since they are also challenging to separate, they are 

selected as a probe for ANP analysis using an MS system. 

       The final class of compounds tested is the carbohydrates.  Monosaccharides (e.g., 

glucose, fructose, and ribose) and disaccharides (e.g., sucrose, lactose, maltose, trehalose, 

and turanose) were tested for ANP retention, and nonpolar disaccharide cellobiose 
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octaacetate was tested for RP retention.  Sugars are a difficult class of analytes to retain 

and to separate due to their high polarity and chemical structure similarities [2].  They are 

also a troublesome class of compounds to detect, due to lack of chromophores, and 

therefore they were detected with an MS system.  

J.          Research Goals 
 
       One objective of this research is to synthesize silica hydride based fluorinated 

stationary phases.  Silanization synthesis was used to convert the silanols of silica to 

silica hydride.  Subsequent hydrosilation of the silica hydride using perfluorinated C8 and 

C10 olefins introduced the fluorinated moieties on to it.  Not all the hydrides were 

replaced by the fluorinated moieties due to steric reasons, and therefore these phases 

carry an underlying hydride monolayer contributing to the retention mechanisms.   

       Another goal includes the characterization of the bonded phases using spectral and  
 
elemental analyses.  DRIFT spectral analysis validated the presence of hydride on the 
 
Astrosil silica surface after silanization.  When the fluorinated moieties were attached,  

the intensity of the silica hydride band decreased and new bands appeared for C-H 

stretching confirming the attachment of the fluorinated phases.  Further, carbon elemental 

analysis estimated the amount of TDF C8 and HDF C10 attached to the silica hydride 

material.  Finally, the attachment of hydride and fluorinated moieties on the silica matrix 

were confirmed qualitatively using proton-1, carbon-13, silicon-29, and fluorine-19 NMR 

studies.  For the carbon and silicon spectra, 29Si and 13C CP-MAS solid state NMR were 

performed by our collaborator in Germany (Professor Klaus Albert, University of 

Tubingen). 



 27

      A third objective is the evaluation of the silica hydride based fluorinated bonded 

phases using ANP and RP dual modes using HPLC for polar basic analytes.  The small 

polar molecules like amino acids, nucleobases, nucleotide, nucleosides, small polar 

organic acids, and carbohydrates were targeted to investigate their retention on these 

columns.  Considering the detection requirements of these compounds and the 

availability of systems in the laboratory; ELSD, UV and MS detectors were used. 

Generally, ANP retention is demonstrated as the retention map of an individual solute by 

plotting its retention time versus concentration of mobile phase composition.  Likewise, 

the retention of analytes on both columns (packed with TDF C8 and HDF C10) were 

studied and compared to predict whether the fluorine moiety or the hydride surface 

contributes to the retention.  A reproducibility study was also performed to evaluate the 

column performance. 
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II.          EXPERIMENTAL 
 
A.          Materials 
 
       The chemicals used in the preparation of stationary phases and mobile phases  
 
utilized in this research are tabulated in this section.  The small polar metabolites  
 
used in the evaluation of columns are also listed in the following tables.  
 
 
Table 1.  Chemicals used in the synthesis of stationary phases 
 

 
 

Chemical Name 
 
 

 
 

Manufacturing Company 

 
Tridecafluoro-1-octene 
(CAS#  25291-17-2) 

 

 
Aldrich Chemical Co. 

St. Louis, MO 

 
Heptadecafluoro-1-decene 

(CAS# 21652-58-4) 
 

 
Aldrich Chemical Co. 

St. Louis, MO 
 

Astrosil Silica 
 

Stellar Phases Inc. 
Langhorne, PA 

Hexachloroplatinic acid 
 

Aldrich Chemical Co.  
St. Louis, MO 

Dioxane 
 

Fisher Chemicals  
Fair Lawn, NJ 

Triethoxysilane Aldrich Chemical Co. 
 Milwaukee, WI 

Toluene Fisher Chemicals  
Fair Lawn, NJ 

Diethyl ether Fisher Chemicals  
Fair Lawn, NJ 
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Table 2.  Chemicals used in the preparation of the mobile phases 
 

Chemical Name Manufacturing Company 

Acetonitrile 
 

Fisher Chemicals  
Fair Lawn, NJ 

Formic acid Spectrum Mfg. Corp. 
Gardena, CA 

Ammonium formate Matheson Coleman & Bell, 
Rutherford, NJ 

 
 
Table 3.  Samples analyzed for the aqueous normal phase HPLC retention studies 
 
 
         3.1.    Nucleobases, nucleosides, nucleotide, and ergogenic acids                                   
 

 
 
 
        

Chemical Name Manufacturing Company 

Cytosine Nutritional Biochemical Corp.  
Cleveland, OH 

Uracil Sigma Chemical Co. 
St. Louis, MO 

Guanine NBC National Biochemical Corp. 
Twinsburg, OH 

Adenosine CALBIOCHEM Co. 
 LA 

Thymidine Nutritional Biochemical Corp.  
Cleveland, OH 

Adenosino-5’-
triphosphate 

Sigma Chemical Co. 
St. Louis, MO 

Creatine hydrate California Corp.  
Biochemical Research, CA 

Creatinine Sigma Chemical Co. 
St. Louis, MO 
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         3.2.    Amino acids  
 

Chemical Name Manufacturing Company 

Arginine Matheson Coleman & Bell 
Cincinnati, Ohio 

Histidine Sigma Chemical Co. 
St. Louis, MO 

Aspartic acid Mallinckrodt Inc. 
Paris, KY 

 
Glutamic acid Sigma Chemical Co. 

St. Louis, MO 

Phenylalanine J.T. Baker Chemical Co. 
Phillipsburg, NJ 

Tyrosine Pierce chemical Co. 
 Rockford, IL 

 
 
        3.3.    Organic acids 
 

Chemical Manufacturing Company 

Maleic acid Sigma Chemical Co. 
St. Louis, MO 

Fumaric acid Matheson Coleman & Bell 
Cincinnati, Ohio 

Succinic acid Mallinckrodt chemical works  
St. Louis, MO 

Citric acid Mallinckrodt chemical works  
St. Louis, MO 
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        3.4.    Carbohydrates 
 

Chemical Name Manufacturing Company 

Glucose Matheson Coleman & Bell 
Cincinnati, OH 

Fructose ICN Pharmaceuticals Inc. 
Cleveland, OH 

Sucrose J.T. Baker Chemical Co. 
Phillipsburg, NJ 

Lactose Pfanstiehl Laboratories Inc. 
Waukegan, IL 

Maltose J.T. Baker Chemical Co. 
Phillipsburg, NJ 

d-Ribose Nutritional Biochemical Corp.  
Cleveland, OH 

Turanose ICN Pharmaceuticals Inc. 
Cleveland, OH 

d-Trehalose dehydrate Matheson Coleman & Bell 
Cincinnati, OH 

Cellobiose octaacetate ICN Pharmaceuticals Inc. 
Cleveland, OH 
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B.          Synthetic Procedures 
 
1.          Silanization 
 
       The silanization synthesis was carried out to prepare silica hydride from silica.  First, 

the required glassware was washed and dried in an oven overnight before the synthesis.   

Around the same time, 15.00 g of Astrosil silica was dried in the vacuum oven at 120 0 C  

overnight.  On the day of the synthesis, a 1000 mL three necked round bottom (RB) flask 

was fitted with a condenser with a drying tube, an addition funnel with a stopper, and a  

thermometer.  This apparatus was put into the heating mantle which had been placed on  

a stir plate.  The magnetic stir bar was put inside the RB flask.  Later on, the dried silica  

was transferred to this RB flask, followed by an addition of 600 mL of dioxane and 19.44 

mL of 2.3 M HCl solution, and lastly this reaction mixture was heated to 70 0 C. 

Meanwhile, 90.09 mL of dioxane was added into the addition funnel equipped with a 

stopper followed by addition of 20.91 mL of triethoxysilane (TES) in the presence of 

argon.  Once the temperature remained constant at 70 0 C, the TES-dioxane mixture was 

added drop by drop into RB flask with constant stirring.  After all the TES mixture was 

added, the temperature was raised to 90 0 C and the reaction mixture was refluxed for 90 

minutes.   

       Afterwards, this reaction product was allowed to cool down and transferred carefully  

into a medium size filter crucible attached to a filtering flask.  The product was filtered 

using vacuum.  This filtered product was washed two times with dioxane (50 mL each 

time), three times with toluene (50 mL each time), and three times with diethyl ether (50 

mL each time) using the same vacuum.  Once washing was done, the final silica hydride 
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product was dried at room temperature overnight to evaporate the ether.  Finally, it was 

transferred into a beaker for drying in a vacuum oven at 110 0 C overnight. 

2.          Hydrosilation 
 
       The hydrosilation procedure was used to bond fluorinated moieties onto the silica  

hydride surface.  All the required glassware for the synthesis was dried in the oven 

overnight.  Then 2.00 g of silica hydride synthesized as described above was weighed and 

put in the vacuum oven at 110 0 C overnight.  A 250 mL three necked round bottom flask 

was attached to a condenser with a drying tube, a thermometer, and a stopper.  This 

apparatus was put in a heating mantle which was placed on the magnetic stirrer in exactly 

the same way as discussed in the silanization procedure above.  The magnetic stir bar was 

put inside the RB flask.  Afterwards, 2.27 mL of tridecafluoro-1-octene (1H, 1H, 2H-

perfluoro-1-octene) was dissolved in 80 mL of toluene and transferred into the RB flask.  

Subsequently, 1 mL of 10 mM hexachloroplatinic acid in isopropanol was added to the 

reaction mixture into the RB flask and heated to 60 0 C for 1 hour with constant stirring.  

Later on, the vacuum dried 2.00 g of silica hydride was added to the reaction mixture 

very slowly and the temperature was raised to 100 0 C.  This temperature was maintained 

at 100 0 C for 100 hours along with constant stirring.  Once the reaction mixture was 

cooled down, it was filtered through a 40 M size filter crucible using vacuum suction.  

The filtered solid was washed successively with 50 mL of toluene, 50 mL of 

dichloromethane and 50 mL of diethyl ether.  This washed material (tridecafluoro-1-

octene silica hydride bonded phase) was kept at room temperature overnight to dry and 

later it was dried further in a vacuum oven at 110 0 C for 24 hours.    
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       Similarly, 2.66 mL heptadecafluoro-1-decene (1H, 1H, 2H-perfluoro-1-decene) was 

mixed with 80 mL toluene and transferred to a 250 mL RB flask with exactly the same 

equipment described above.  First, 1 mL of 10 mM hexachloroplatinic acid in 

isopropanol was added into the reaction mixture and heated to 60 0 C for 1 hour.  

Afterwards, 2.00 g of vacuum dried silica hydride was added carefully to it and the 

temperature was raised to 100 0 C as described above.  This reaction mixture was 

refluxed at 100 0 C for 100 hours with constant stirring and later filtered and washed in a 

similar fashion.  This heptadecafluoro-1-decene silica hydride bonded phase was kept at 

room temperature overnight to dry followed by vacuum oven drying at 100 0 C for 

overnight. 

C.          Instrumental Procedures 
 
1.          Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFT) 
 
       To obtain DRIFT spectra, silica, silica hydride, and silica hydride based bonded 

phases as well as the reference material, KBr, were first dried overnight in a vacuum 

oven at 110 0 C prior to the analysis.  The reference material KBr (5 mg) was mixed with 

the sample (95 mg) by finely grinding them with a mortar and pestle.  This mixture was 

transferred into a sample cup (3 mm diameter and 2 mm depth) which is a part of the 

diffuse reflectance accessory.  The upper surface was smoothed with a spatula. 

Afterwards, this sample cup was placed inside the ATI Mattson Infinity Series FTIRTM 

spectrometer that is equipped with a deuterated triglycine sulfate (DTGS) detector.  

Before starting the analysis, the sample compartment was purged with nitrogen for 15 

minutes to remove carbon dioxide and water.  All the spectra were recorded using the 
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WinFIRSTTM application software in the range of 4000-450 cm-1 and averaging 112 

scans for each spectrum.  First, KBr was scanned as a background reference.   Then the 

spectra of Astrosil silica, silica hydride, tridecafluoro-1-octene silica hydride (TDF C8) 

and heptadecafluoro-1-decene silica hydride (HDF C10) were obtained.     

2.          Carbon Elemental Analysis 
 
       Small amounts (~100 mg) of both fluorinated bonded phases, TDF C8 and HDF C10, 

obtained from the hydrosilation step, were sent to Columbia Analytical Services Inc., 

(Tucson, AZ) for carbon elemental analysis.  A combustion method in the presence of a 

WO3 catalyst was used to determine the % carbon in the bonded phases.  These values 

of % C were used to calculate the surface coverage of the bonded phases on the silica 

material.  

3.          Nuclear Magnetic Resonance Spectroscopy (NMR) 
 
       Solid state CP-MAS 29Si NMR and 13C NMR for the synthesized tridecafluoro-1- 

octene silica hydride (TDF C8) and heptadecafluoro-1-decene silica hydride (HDF C10)  

were performed by our collaborator in Germany (Professor Klaus Albert, University of 

Tubingen).  Slurry state 1H NMR and 19F NMR spectra were recorded on a Varian  

INOVA 400 MHz NMR spectrometer system (with Glide software) to characterize  

AstrosilTM silica, silica hydride, TDF C8 and HDF C10.  For slurry state analysis, ~40 mg 

of sample was mixed with deuterated methanol (CD4OD) and transferred to a 5 mm o.d. 

glass tube (Wilmad Glass Co., Inc.).  This mixture was sonicated for 5 minutes to make 

the slurry.  The glass tube holding the NMR sample slurry was carefully fixed in the 

sample spinner and was placed in the spectrometer to spin overnight before acquiring the 
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data.  The solvent, deuterated methanol-D4 (D 99.8%, catalog number = DLM-24) was 

obtained from Cambridge Isotope Laboratories Inc. (CIL, Andover, MA).  Solution state 

19F NMR was performed to check the purity of the substrate olefins: tridecafluoro-1-

octene and heptadecafluoro-1-decene, using deuterated methanol-D4 (D 99.8%, catalog 

number = DLM-24, CIL- Cambridge Isotope Laboratories Inc., Andover, MA).  For each 

measurement, the NMR instrument was locked using the deuterium solvent signal for 

these qualitative studies.  

4.          High Performance Liquid Chromatography (HPLC) 
 
       The HPLC instrument used in this research consisted of a Hewlett Packard  

Interface 35900- a multichannel interface, a Waters In-Line degasser, an LCD/Milton  

Roy CM4000 multiple solvent delivery system, a Rheodyne model 7126 manual injector  

(with 20 µL injection loop), and a SofTA Corporation model 400 evaporative light  

scattering detector (ELSD with Thermo-Split technology).  The ELSD detection system 

used a continuous stream of nitrogen gas (65 psi pressure) as a nebulization gas to form 

an aerosol cloud of the HPLC effluents.  The ELSD had a 670 nm laser diode source and 

hermetically sealed photodiode detection equipment.  All of the samples that utilized the 

ELSD detector were analyzed using a 0.5 mL/min flow rate.  The nebulization chamber 

temperature was optimized to 25 0 C and the evaporative zone temperature was optimized 

to 55 0 C. 

       This same HPLC system attached to a Shimadzu SPD-6A UV spectrophotometer 

detector was utilized for UV absorbing samples.  For the purpose of instrument control 

and data collection, Chemstation software was used.  An HP Deskjet 932C printer was 
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used to print the chromatograms.  The deionized water used for mobile phases, was 

prepared on a Milli-QTM purification system (Millipore Corp., Bedford, MA).  For a  

majority of the samples analyzed by HPLC-UV, the mobile phase flow rate was 0.5  

mL/min.   

       The second HPLC instrument used was an HP Series II 1090 mainframe liquid  

chromatograph interfaced with an LC/MS/MS PE SCIEX/API 300 (Applied Biosystem /  

MDS Sciex) mass spectrometer.  This mass spectrometer was equipped with a TURBO  

IONSPRAY electrospray ionization (ESI) source.  Although this PE SCIEX API Triple  

Quadrupole series instrument was capable of performing complex MS/MS analysis, only 

a single LC-MS i.e., [Q1 MS (Q1)]  or [Q3 MS (Q3)]  scan type  was used to detect the  

analytes on the basis of mass to charge ratio.  The constant flow of LN2 Dewar nitrogen 

gas (100 psi) was used for ESI nebulization and nitrogen gas with 70 psi pressure was 

used for the purpose of degassing the mobile phase.  The Turbolon Ion Spray gas flow 

rate was adjusted to 5000 cc/min.  The gas source related parameters were set as follows 

using a manual tuning mode:  the nebulizer gas (NEB) 13, curtain gas (CUR) 10, ion 

spray voltage (IS) 5000, temperature (TEM) 350.  The API system was calibrated  

using a poly(propylene)glycol tuning solution for both quadrupole analyzers Q1 and Q3 

in both the positive and negative ionization modes.  The Analyst 1.3 software was used to  

control the LC-MS unit and the Chemstation software was used to control HPLC unit.  In  

LC-MS, the Analyst 1.3 software controlled the successive modes of operations of tuning 

the instrument, calibrating it, optimizing it for the analyte compound, running the 

samples, manipulating the data and saving them as projects.  The flow rate used for this 
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study was 0.4 mL/min for all of the samples.  The results of mass analysis were printed 

using an HP LaserJet 4050N printer.  The mobile phases used for all the samples, were 

vacuum filtered using a 0.45 µm Nylon 47 mm membrane filter (catalog # 2024, Alltech, 

Deerfield, IL).  Both fluorinated stationary phases were packed into 100 cm × 4.6 mm i.d. 

stainless steel columns (catalog: 9449 C) at SJSU using Alltech hardware (Alltech, 

Waukegan Road, Deerfield, IL).  
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III.          RESULTS AND DISCUSSION 
 
A.          DRIFT Spectroscopic Characterization 
 
       The success of silanization and hydrosilation synthetic procedures can be confirmed  

using DRIFT spectroscopy.  Figure 7 shows the DRIFT spectrum of the silica hydride  

intermediate.  The presence of the sharp peak at 2250 cm-1 frequency is due to the 

stretching vibrations of the newly formed Si-H functional group.  This intense Si-H band  

confirms the success of the silanization procedure on the Astrosil silica .  The broad peak  

from 3800 cm-1 to 3000 cm-1 is due to the combined contribution of adsorbed water and  

hydrogen bonded silanols.  The sharper band around 3750 cm-1 is due to non hydrogen 

bonding silanols.  The other noticeable bands of the spectrum are attributed to the various 

fundamental vibrations of the silica matrix.                 

       The DRIFT spectrum of the tridecafluoro-1-octene silica hydride bonded phase is  

shown in Figure 8.  This spectrum shows the presence of an aliphatic C-H stretching band  

around 3000-2800 cm-1 that is evidence of the introduction of the fluorinated carbon  

moiety onto the silica hydride material.  The intensity of the characteristic Si-H stretching  

band at 2250 cm-1 has diminished.  This loss of Si-H signal provides a good indication of 

the attachment of the fluoro organic bonded moiety onto the silica hydride surface.  Here, 

one can expect C-F stretching bands somewhere in the range of 1150-950 cm-1 for the 

fluorinated bonded moiety, but unfortunately, this frequency range is dominated by very 

intense siloxane bending absorption of the silica matrix.  Therefore, it was not possible to 

observe any peak for C-F functional group. 
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       Similar results are observed for heptadecafluoro-1-decene silica hydride bonded 

phase as shown in the Figure 9.  The reduced intensity of the Si-H peak at 2250 cm-1 and 

the appearance of 3000-2800 cm-1 C-H aliphatic peaks are indicative of the attachment of 

the heptadecafluoro-1-decene moiety to the silica hydride surface.              

 

 
 
Figure 7.    DRIFT spectrum of Astrosil silica hydride. 
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Figure 8.    DRIFT spectrum of tridecafluoro-1-octene silica hydride. 
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Figure 9.    DRIFT spectrum of heptadecafluoro-1-decene silica hydride. 
 
 
 
 
 



 43

 
B.          Carbon Elemental Analysis Predictions 
 
       Carbon elemental analysis has been used to confirm the attachment of organic  

moieties as well as to estimate the amount of these bonded groups quantitatively.  Table 4  

shows the specific surface area value for Astrosil silica, the molecular formulas of the  

fluorinated olefins that have been attached to silica hydride, the percentage of carbon 

loading, and the surface coverage values in µmol/m2 for tridecafluoro-1-octene silica 

hydride (TDF C8) and heptadecafluoro-1-decene silica hydride (HDF C10) fluorinated 

bonded phases.  These surface coverage values were calculated using the previously 

described Berendsen and de Galan equation.  The molecular weights of tridecafluoro-1-

octene and heptadecafluoro-1-decene used were 346.09 g/mol and 446.11 g/mol 

respectively.   

Table 4.  Surface coverage values of bonded organic moieties   
 

 
Silica 

 
SBET 

(m2/g) 

 
Bonding moiety 

 
Molecular formula 

 
%C 

 
Surface 
coverage 
µmol/m2 

 
Astrosil 

 
350 

      
Tridecafluoro- 

1-octene 
 

 
CF3-(CF2)5-CH=CH2 

 
1.9 

 
0.606 

 
Astrosil 

 
350 

 
Heptadecafluoro- 

1-decene 
 

 
CF3-(CF2)7-CH=CH2 

 
1.9 

 
0.486 

 
 
       Under the applied reaction conditions, the surface coverage values calculated for  

TDF C8 and HDF C10 bonded moieties are 0.606 µmol/m2 and 0.486 µmol/m2 

respectively.  The higher surface coverage value of TDF C8 than that of HDF C10  
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supports previous results indicating that smaller olefins have higher bonding density than 

larger molecules.  Because tridecafluoro-1-octene is smaller in size when compared with 

the heptadecafluoro-1-decene, it has relatively lower steric hindrance mainly due to the 

fluorine atoms resulting in higher amount of bonding on the silica hydride surface.  

Consequently, due to the fact that TDF C8 has a higher amount of organic fluoro moiety 

attached, it will have a lower amount of hydride contributing for possible interaction/ 

retention compared to HDF C10 bonded phase.  Therefore, it is likely that the underlying 

silica hydride plays a greater role in the retention mechanism for the HDF C10 bonded  

phase than the TDF C8 bonded phase.   

C.          Nuclear Magnetic Resonance Spectroscopic Confirmations 
 
1.          29Si NMR 
 
       The solid state NMR spectra of chemically modified silica surfaces have provided  

very useful information about the linkages formed between the modifying group and the  

silicon oxide surface.  Figure 10 represents the silicon-29 CP-MAS NMR spectrum of the  

tridecafluoro-1-octene silica hydride bonded phase material.  The readily observable 

peaks represent the silica matrix and the silica hydride layer.  As shown in the spectrum, 

the highest field peak Q4 at -110 ppm is due to silicon with four siloxane linkages (i.e., 

the silica backbone).  The Q3 peak at -101 ppm can be attributed to the isolated silanol 

moieties.  The very intense peak around -85 ppm is due to the silicon atom attached to the 

hydride and three inner siloxane backbone linkages.  This apparently intense peak of Si-H 

supports the formation of the silica hydride intermediate after the silanization procedure.  

Hence, it also confirms the DRIFT result of silica hydride formation.  The peak at -75 
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ppm is due to silicon atom attached to the hydride, a silanol and the siloxane linkages.  

However, the most interesting peak at -16 ppm indicates the presence of fluorinated 

carbon organic moiety as Si-C linkage.  

 
 

 
 
 
 
 
Figure 10.    Silicon-29 CP-MAS NMR spectrum of TDF C8. 
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       Similar silicon-29 CP-MAS NMR chemical shifts have been observed for  

heptadecafluoro-1-decene silica hydride bonded phase material as shown in Figure 11.   

These results also collectively confirm the linkages of the siloxane backbone, the silanol,  

the hydride and the fluorinated carbon moiety attached to the silicon atoms of fluorinated  

bonded phases. 

 

 
 
 
Figure 11.    Silicon-29 CP-MAS NMR spectrum of HDF C10. 
                                                                                                                                                                        



 47

   2.           13C NMR 
 
       The carbon-13 CP-MAS NMR spectra of tridecafluoro-1-octene silica hydride and  

heptadecafluoro-1-decene silica hydride as shown in Figure 12 and Figure 13 

respectively represent the resonances of individual carbon atoms of the hydrogenated part 

of the fluorinated organic bonded moiety.  Although the peak widths are not quite as  

 
Figure 12.    Carbon-13 CP-MAS NMR spectrum of TDF C8. 
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Figure 13.    Carbon-13 CP-MAS NMR spectrum of HDF C10. 
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narrow as those found in the solution spectra, the observed peaks are useful to identify 

the correct carbon environment confirming the hydrosilation bonding of the fluorinated 

carbon moiety on the silica hydride intermediate.  Since the structures of TDF C8 and 

HDF C10 bonded moieties carry only two carbons with protons (they are the spacer 

carbons of the fluorinated bonded phases), only two obvious peaks are observed.  The 

upfield peak 1 is due to the carbon atom C1 which is directly bonded to a silicon atom, 

and peak 2 is due to a carbon atom C2 positioned next to C1.  The carbon-13 NMR can 

observe only proton bearing carbon atoms because the low abundance carbon nuclei have 

been irradiated with proton frequencies.  Therefore Figure 12 of TDF C8 and Figure 13 

of HDF C10 do not show any C-F chemical shifts.  The additional comparatively small 

downfield peaks can be attributed to the residual ethoxy moiety of TES used in the 

silanization and the olefin substrate used in the hydrosilation.  Thus, these carbon-13 

NMR spectra also qualitatively confirm the bonding of the TDF C8 and the HDF C10 

onto the silica hydride material.  

3.          1H NMR 
 
       Due to the fact that proton-1 nucleus has higher sensitivity, a very dilute solution  

should be sufficient to reveal the structural information of organic compounds.  The solid  

state proton-1 NMR on the other hand is more difficult to obtain as it requires application  

of different methods to remove the proton dipole-dipole interactions and the chemical  

shift anisotropy effects.  However, this research has tried slurry state proton-1 NMR of 

silica, silica hydride, and the fluorinated organic bonded moiety for the first time.  It 
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should qualitatively confirm the success of the silanization and hydrosilation procedures 

on silica material.  

 

 
Figure 14.    Proton-1 slurry state NMR spectra of Astrosil silica and silica hydride. 
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       Figure 14 represents the overlay of slurry state proton-1 NMR spectra of the Astrosil  

silica (on the top) and the silica hydride (on the bottom).  The broad intense band at 4.82  

ppm is due to the proton of  water adsorbed onto the silica surface.  The slurry was 

prepared in deuterated methanol that might have other solvent impurities like methanol, 

water or other proton carrying solvents.  Hence the peak at 1.10 ppm can be attributed to 

the proton of the impurity solvents.  The middle peak at 2.05 ppm can be assigned to the 

isolated silanol groups.  The most important peak to note is a peak at 3.49 ppm on the 

bottom part which is the peak of silica hydride group.  As can be seen from the spectra, 

this peak is absent on the top spectrum of Astrosil silica, its appearance in the bottom 

spectrum confirms the attachment of hydride on the silica after the silanization step.  

The small peak at 3-4 ppm in the silica spectrum might be due to some solvent impurities.  

       Figure 15 represents the slurry state proton NMR spectra of bonded material TDF C8  

(on the top) and silica hydride (on the bottom).  Both spectra show the bands for the silica 

hydride proton at around 3.30 ppm, adsorbed water proton at 4.80 ppm, and an impurity 

methanol proton at 1.20 ppm as discussed earlier.  The interesting new peak to monitor 

here is the peak at 2.13 ppm which is absent in the hydride spectra.  This new peak can be 

attributed to the protons of the spacer carbons of the tridecafluoro-1-octene olefin 

attached to silica hydride after the hydrosilation step.  A similar fluoro bonded moiety 

proton band can be observed at 2.14 ppm in the slurry state proton NMR of HDF C10 

(Figure 16).  One more point to observe is the intensity of the silica hydride band in 

Figure 15; it decreases in the top spectrum of TDF C8 when compared to the bottom 

silica hydride spectrum.  This fact is indicative of the utilization of the silica hydride  
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Figure 15.    Proton-1 slurry state NMR spectra of TDF C8 and silica hydride. 
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Figure 16.    Proton-1 slurry state NMR spectrum of HDF C10. 
 
 
layer for the formation of TDF C8 bonded phase.  These slurry state proton NMR data 

collectively validates the fact that hydride as well as fluorinated organic functional 

groups have been bonded to the silica surface.   
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4.          19F NMR 
 

       For the hydrosilation step, tridecafluoro-1-octene and heptadecafluoro-1-decene were  

obtained from Sigma Aldrich.  These fluorinated olefins were subjected to solution-state  

fluorine-19 NMR analysis and very narrow bands were obtained as shown in Figure 17.   

The upper spectrum is of heptadecafluoro-1-decene and the lower spectrum is of  

tridecafluoro-1-octene.  The chemical shifts are not exact as the bands were not  

referenced in this analysis; however one can qualitatively predict the purity of starting  

substrate.  The upper spectrum has eight peaks representing the eight carbon atoms  

carrying fluorine in heptadecafluoro-1-decene and the lower spectrum has six narrow 

peaks for the six carbon atoms carrying fluorine in the tridecafluoro-1-octene.  Hence, the 

fluorine -19 solution-state spectra ensures the purity of the olefins before its utilization in 

the hydrosilation procedure.  

       Afterwards, slurry state fluorine-19 NMR analyses were performed for silica  

hydride, TDF C8 and HDF C10 materials to check for any indication of fluorine related  

peaks.  Figure 18 shows the slurry state fluorine-19 NMR spectrum of silica hydride  

material.  There is no peak observed for silica hydride which is an expected result as  

silica hydride does not have any fluorine moiety.  However, the slurry state fluorine-19  

NMR spectra of tridecafluoro-1-octene as shown in Figure 19 and heptadecafluoro-1- 

decene as shown in Figure 20 give one small but identifiable peak individually.  Along  

with the reasoning that the fluorine-19 NMR can give a peak only if the sample material  

does possess any fluorine-containing moiety, it can be concluded that the TDF C8 and 

HDF C10 bonded phases do have fluorinated moieties attached to silica hydride 
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stationary phases.  These spectra further establish the success of the hydrosilation 

procedure confirmed by DRIFT spectroscopic and carbon elemental analyses. 

 

 

 

 
 
Figure 17.    Fluorine-19 solution state NMR of heptadecafluoro-1-decene and  
 
                      tridecafluoro-1-octene olefins. 
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Figure 18.    Fluorine-19 slurry state NMR of Astrosil silica hydride. 
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Figure 19.    Fluorine-19 slurry state NMR of TDF C8. 
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Figure 20.    Fluorine-19 slurry state NMR of HDF C10. 
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D.          HPLC Chromatographic Evaluation of Columns 
 
       The main goal of the research was to establish the ANP retention behavior of the  

novel fluorinated stationary phases.  The stainless steel columns with 100 cm × 4.6 mm  

i.d. dimensions were packed with tridecafluoro-1-octene silica hydride (TDF C8) and  

heptadecafluoro-1-decene silica hydride (HDF C10) bonded phases.  Since ANP  

retention is mainly observed for the polar or ionic molecules, different small polar   

compounds were analyzed on TDF C8 and HDF C10 columns using HPLC connected  

to ELSD, UV and MS detectors.  Duplicates of each HPLC run were performed and  

documented for reference.  The retention performance of these columns is discussed  

in the following sections.  

1.          Retention Studies Using ELSD Detection 
 
       First, the newly packed TDF C8 and HDF C10 columns were conditioned using  

binary solvents 100:0 acetonitrile:water for 1 hour followed by 90:10, 80:20, 70:30,  

60:40, 50:50 acetonirtile:water for a half an hour each.  During the optimization of the 

HPLC-ELSD experimental conditions mode, the flow rate of the HPLC runs was 

carefully selected to maintain the pressure of the pump between 500-800 psi.  A few trials 

using higher sample concentrations than 1 mg/mL resulted in significant peak tailing and 

shorter retention times; hence a 1 mg/mL concentration was selected to make sample  

solutions for all amino acids, nucleobases, nucleosides, and ergogenic acids analyzed  

by ELSD.  The flow rate was optimized to 0.5 mL/min and the injection volume was set  

to 20 µL for all of these solutes.  For the ELSD detector, the flow rate of the nebulization 

gas (nitrogen gas) was set to 65 psi as described in the instrument specifications.    
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       Since the model 400 ELSD specifies a lower spray chamber temperature for  

aqueous mobile phases and higher drift tube temperature for a volatile mobile phase, the  

spray chamber temperature was kept at 25 0 C and the drift tube temperature was  

optimized to 55 0 C for ANP retention studies.  When the temperature of the drift tube 

was increased above 65 0 C, reduced intensity chromatographic peaks with splitting as the 

acetonitrile concentration increased was observed.  However, in the drift tube  

temperature range of 55 ± 5 0 C,  no noticeable change in the peak shape or in the  

retention times was seen. 

1.1.          Amino Acids 
 
       To understand the ANP retention of different polarity amino acids; a pair of acidic,  

basic and neutral amino acids were selected for the retention analysis as shown in Table 5.  

The sample solutions were prepared at 1 mg/mL using 50:50 acetonitrile:water premixed 

with 0.1% Formic acid (FA).  The arginine and histidine amino acids were readily 

dissolved, whereas the aspartic acid and tyrosine were hard to dissolve to make 1 mg/mL 

sample solutions.  Before starting each run, columns were conditioned for 15-20 minutes 

using 50:50 acetonitrile:water premixed with 0.1% FA mobile phases.  Six different 

polarity amino acids were run on both columns at different concentrations of  

acetonitirle.   

       Table 5 shows the retention times of amino acids and the percentage composition of  

acetonitirle:water which is the ANP binary solvent system for polar solutes analyzed on  

HDF C10 column.  As the concentration of acetonitrile increases from 50% to 90 %, the  

retention times for all the amino acids increases gradually.  The graphical representation  
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of ANP retention is plotted as % acetonitirle vs. retention time for each amino acid which  

is referred to as  a retention map.  Figure 21 shows the retention maps of all the amino 

acids analyzed on HDF C10 column along with their chemical structures.  The basic 

arginine and histidine amino acids are the most retained; followed by neutral polar 

tyrosine and phenylalanine, and acidic glutamic acid and aspartic acid.  As the 

concentration of acetonitrile increases from 50% to 90%, the amino acids show 

significant ANP retention on the HDF C10 column.  The arginine and aspartic acid amino 

acids were also run to check their retention for reversed phase conditions of 10:90, 20:80, 

30:70 and 40:60 acetonitrile:water mobile phases but for each combination they eluted at 

the void volume and showed no retention with acetonitrile lower than 50 %.  They start 

retaining as the % of acetonitrile increases from 50% and above.  This result establishes 

the ANP behavior of the HDF C10 column.  

       Table 6 shows the ANP retention time data of the amino acids run on the TDF C8 

column.  Similar ANP retention for each amino acid has been observed on this column as 

well.   Figure 22 shows the retention maps of amino acids analyzed on the TDF C8.  The 

amino acids are retained on the TDF C8 as the concentration of acetonitrile increased 

from 50 % to 90 % showing the ANP behavior of the column.  This column also has 

shown similar higher retention for basic amino acids followed by neutral and acidic 

amino acids.  The comparison of retention maps of polar neutral tyrosine and 

phenylalanine amino acids on TDF C8 is plotted in Figure 23.   Since the tyrosine has an 

additional –OH polar functional group it shows higher ANP retention compared to 
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phenylalanine as the acetonitrile concentration increases.  Thus, this data supports the 

idea that as the polarity of the solute increases, greater ANP retention is obtained.  

 
Table 5.  Retention times of amino acids on the HDF C10 column using ELSD 
 

Concentration 
(%) 

Retention time  
 (min) 

Acetonitrile 
with  

0.1% FA 

DI water 
with  

0.1% FA 
 

 
ARG 
(basic) 

 
HIS 

(basic) 

 
ASP 

(acidic) 

 
GLU 
(acidic) 

 
PHE 

 (neutral) 
 

 
TYR 

(neutral) 
(polar) 

 
50 

 
50 

 
  3.384 

 
3.214 

 
2.544 

 
2.626 

 
3.043 

 
2.841 

 
60 

 
40 

 
4.213 

 
4.006 

 
2.763 

 
2.916 

 
3.183 

 
3.205 

 
70 

 
30 

 
6.430 

 
6.646 

 
3.385 

 
3.666 

 
3.848 

 
4.143 

 
75 

 
25 

 
9.484 

 
10.020

 
4.094 

 
4.431 

 
4.480 

 
5.094 

 
80 

 
20 

 
17.50 

 
18.367

 
5.232 

 
5.825 

 
5.898 

 
6.995 

 
85 

 
15 

 
- 

 
- 

 
8.183 

 
8.937 

 
9.020 

 
11.482 

 
90 

 
10 

 
- 

 
- 

 
16.315 

 
21.773 

 
19.680 

 
25.916 

                                                              
 
 
 
 
 
 
 
 
 
 

ARG = Arginine 
 

GLU = Glutamic acid 
 

HIS  = Histidine 
 

PHE = Phenylalanine 
 

ASP = Aspartic acid 
 

TYR = Tyrosine 
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Figure 21.    Retention map of amino acids on the HDF C10 column using ELSD.            
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Table 6.  Retention times of amino acids on the TDF C8 column using ELSD 
 

Concentration 
(%) 

Retention time  
 (min) 

Acetonitrile 
with  

0.1% FA 

DI water 
with  

0.1% FA 
 

 
ARG 
(basic) 

 
HIS 

(basic) 

 
ASP 

(acidic) 

 
GLU 
(acidic) 

 
PHE 

 (neutral) 
 

 
TYR 

(neutral) 
(polar) 

 
50 

 
50 

 
3.276 

 
3.261 

 
2.456 

 
2.539 

 
2.940 

 
2.964 

 
60 

 
40 

 
4.170 

 
4.362 

 
2.685 

 
2.814 

 
3.209 

 
3.456 

 
70 

 
30 

 
6.940 

 
7.416 

 
3.366 

 
3.578 

 
3.885 

 
4.531 

 
75 

 
25 

 
10.057 

 
11.012

 
3.986 

 
4.458 

 
4.796 

 
5.676 

 
80 

 
20 

 
18.186 

 
21.884

 
5.208 

 
5.856 

 
6.344 

 
8.022 

 
85 

 
15 

 
- 

 
- 

 
8.121 

 
10.027 

 
9.765 

 
13.301 

 
90 

 
10 

 
- 

 
- 

 
16.688 

 
21.556 

 
16.963 

 
28.961 
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Figure 22.    Retention map of amino acids on the TDF C8 column using ELSD.  
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Figure 23.    Comparison of retention maps of tyrosine and phenylalanine on the  
 
                      TDF C8 using ELSD.  
 

       When the ANP retention of these amino acids on two columns (TDF C8 and HDF 

C10) is compared, several interesting observations can be made.  One can easily 

distinguish the retention time differences of the strongly basic arginine and histidine, and 

neutral polar tyrosine and phenylalanine on TDF C8 and HDF C10 as shown in Table 5 

and Table 6.  The TDF C8 column retained arginine, histidine and tyrosine more than the 

HDF C10 column because as determined in the carbon elemental analysis, the TDF C8 
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column has somewhat more of the fluorinated stationary phase responsible for retention 

of the polar amino acids.  Phenylalanine being less polar, retains more on the HDF C10 

which has more nonpolar silica hydride layer exposed which is responsible for 

hydrophobic retention.  The graphical presentation of this fact can be seen as a 

comparison of retention maps on the two columns as shown in Figures 24a, b, c, and d for 

arginine, histidine, tyrosine, and phenylalanine respectively. 
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Figure 24a.    Comparison of retention maps of arginine analyzed on two columns. 
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HIS on TDF C8 and HDF C10 using ELSD
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Figure 24b.    Comparison of retention maps of histidine analyzed on two columns. 
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Figure 24c.    Comparison of retention maps of tyrosine analyzed on two columns. 
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      PHE on TDF C8 and HDF C10 using ELSD
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Figure 24d.    Comparison of retention maps of phenylalanine on two columns. 
 
 
       In general, as for each mobile phase composition, different amino acids show 

different retention times on a single column, they could be separated from one another 

using gradient development.  Since many proteins and peptides have amino acids in their 
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building block units, it is possible that they can be separated on these columns based on 

the retention data of amino acids reported here.                             

1.1.1.          Reproducibility Study (% RSD) 

       The reproducibility study was conducted on both columns for arginine and tyrosine   

 using 70:30 acetonitrile:water mobile phase combination premixed with 0.1 % FA.  As 

shown in Table 7, ten consecutive injections of arginine and tyrosine were performed  

and the retention times of each on both TDF C8 and HDF C10 columns were recorded to  

calculate % RSD values.  The range of % RSD values obtained is 0.19-0.77 which is  

remarkable since values  less than 1 are difficult to obtain even for reversed-phase 

retention.  Hence, these columns promise a very high degree of precision for ANP 

retention data. 

1.2.          Nucleobases 
 
       The nucleobases cytosine, guanine and uracil were analyzed under ANP solvent  

conditions on both columns.  Table 8 and Table 9 show the retention times at various %  

concentrations of acetonitrile:water with 0.1 % FA.  Cytosine was retained very strongly 

as the concentration of the acetonitrile increased. Guanine and uracil also had 

considerable retention thus confirming the ANP behavior of this class of compounds. 

Guanine was difficult to dissolve.  It could only be dissolved in a 200 µL HCl solution 

containing 50:50 acetonitrile:water premixed with 0.1% FA to make 1 mg/mL sample 

solution.  It is important to note that uracil is a highly polar compound and is generally 

used to determine the void volume in reversed phase chromatography.  However, in the 
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ANP mode, it was retained on both the TDF C8 and HDF C10 columns with 

distinguishable retention time differences as the % acetonitrile increases. 

 

Table 7.  Reproducibility for 10 injections of two amino acids using ELSD 
 

  
Retention Time (min.) 

 
Number of 
Injections 

 
Arginine 

 
70:30 

Acetonitrile : DI Water 
(premixed with 0.1% FA) 

 

 
Tyrosine 

 
70:30 

Acetonitrile : DI Water 
(premixed with 0.1% FA) 

  
TDF C8 

 

 
HDF C10 

 
TDF C8 

 
HDF C10 

 
1 

 
6.93 

 
6.39 

 
4.38 

 
4.15 

 
2 

 
7.04 

 
6.38 

 
4.38 

 
4.14 

 
3 

 
6.93 

 
6.42 

 
4.36 

 
4.14 

 
4 

 
6.94 

 
6.45 

 
4.37 

 
4.13 

 
5 

 
6.86 

 
6.44 

 
4.36 

 
4.14 

 
6 

 
6.94 

 
6.48 

 
4.33 

 
4.14 

 
7 

 
6.84 

 
6.46 

 
4.33 

 
4.15 

 
8 

 
6.94 

 
6.36 

 
4.38 

 
4.14 

 
9 

 
6.94 

 
6.38 

 
4.35 

 
4.16 

 
10 

 
6.91 

 
6.46 

 
4.32 

 
4.15 

 
% RSD 

 
0.77 

 
0.66 

 
0.49 

 
0.19 
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Table 8.  Retention times of nucleobases on the TDF C8 column using ELSD 
 

 
Concentration 

(%) 
 

 
Retention time  

 (min) 

 
Acetonitrile 

with  
0.1% FA 

 
DI Water 

with  
0.1% FA 

 

 
Cytosine 

 

 
Guanine 

 
 

 
Uracil 

 
50 

 
50 

 
3.30 

 
2.24 

 
2.42 

 
60 

 
40 

 
4.01 

 
2.33 

 
2.45 

 
70 

 
30 

 
5.50 

 
2.44 

 
2.55 

 
75 

 
25 

 
6.86 

 
- 

 
- 

 
80 

 
20 

 
9.24 

 
2.85 

 
2.74 

 
85 

 
15 

 
14.48 

 
3.30 

 
2.87 

 
90 

 
10 

 
- 

 
4.50 

 
3.07 

 
95 

 
05 

 
- 

 
- 

 
3.22 

 
 
 
       Figure 25 and Figure 26 represent the characteristic ANP retention maps of these  

three nucleobases on the TDF C8 and HDF C10 columns respectively showing very good 

ANP retention.  Although cytosine was retained on both columns, the combination of  
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70:30 and 75:25 acetonitrile:water on HDF C10 column resulted in unusually similar  

retention times of 6.10 minutes and 6.13 minutes respectively.  This partly constant  

retention of cytosine is observed only on the HDF C10 column which may be the result 

of the characteristic behavior  for the fluorinated C10 type of stationary phase.  It is 

worthwhile to state that the retention times for 70 % and 75 % acetonitrile were 

reproducible and cytosine in general showed highly efficient symmetric chromatographic 

peaks on both columns. 
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Figure 25.    Retention map of nucleobases on the TDF C8 column using ELSD. 
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Table 9.  Retention times of nucleobases on the HDF C10 column using ELSD 
 

 
Concentration 

(%) 
 

 
Retention time  

 (min) 

 
Acetonitrile 

with  
0.1% FA 

 
DI Water 

with  
0.1% FA 

 

 
Cytosine 

 

 
Guanine 

 
 

 
Uracil 

 
50 

 
50 

 
3.27 

 
2.33 

 
2.46 

 
60 

 
40 

 
3.83 

 
2.44 

 
2.51 

 
70 

 
30 

 
6.10 

 
2.70 

 
2.61 

 
75 

 
25 

 
6.13 

 
- 

 
- 

 
80 

 
20 

 
8.00 

 
3.24 

 
2.79 

 
85 

 
15 

 
12.07 

 
3.89 

 
2.86 

 
90 

 
10 

 
23.03 

 
5.58 

 
3.05 

 
95 

 
05 

 
- 

 
- 

 
3.26 
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Nucleobases on HDF C10 using ELSD
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Figure 26.    Retention map of nucleobases on HDF C10 column using ELSD.    
 
 
1.3.          Nucleosides 
 
       Table 10 and Table 11 report the retention times of adenosine and thymidine  

nucleosides as the concentration of acetonitrile increases from 50% to 90%.  In 

comparing nucleoside ANP retention on the TDF C8 and HDF C10 columns, similar 

retention maps of these compounds are obtained on both columns as presented in Figure 

27 and Figure 28 respectively.  Therefore, in the case of nucleosides one can estimate 

comparable contributions of the fluorinated moiety and the silica hydride surface for 

retaining these compounds.  However, when comparing the two nucleosides, adenosine 
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with a purine ring shows higher ANP retention than thymidine with a pyrimidine ring.  

Hence, this observation also supports the fact that a higher polarity of the solute results in 

stronger ANP retention.  

 
 
Table 10.  Retention times of nucleosides on the TDF C8 column using ELSD 
 

 
Concentration 

(%) 
 

 
Retention time  

 (min) 

 
Acetonitrile 

with  
0.1% FA 

 
DI Water 

with  
0.1% FA 

 

 
 

Adenosine 

 
 

Thymidine 

 
50 

 
50 

 
2.99 

 
2.35 

 
60 

 
40 

 
3.26 

 
2.37 

 
70 

 
30 

 
3.72 

 
2.50 

 
80 

 
20 

 
4.93 

 
2.70 

 
85 

 
15 

 
6.34 

 
2.88 

 
90 

 
10 

 
8.97 

 
3.12 

 
95 

 
05 

 
- 

 
- 
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Figure 27.    Retention maps of nucleosides on the TDF C8 column using ELSD.           
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Table 11.  Retention times of nucleosides on the HDF C10 column using ELSD 
 

 
Concentration 

(%) 
 

 
Retention time  

 (min) 

 
Acetonitrile 

with  
0.1% FA 

 
DI Water 

with  
0.1% FA 

 

 
Adenosine 

 
Thymidine 

 
50 

 
50 

 
3.23 

 
2.41 

 
60 

 
40 

 
3.34 

 
2.42 

 
70 

 
30 

 
3.92 

 
2.56 

 
80 

 
20 

 
5.04 

 
2.74 

 
85 

 
15 

 
6.22 

 
2.89 

 
90 

 
10 

 
8.60 

 
3.06 

 
95 

 
05 

 
- 

 
- 
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Figure 28.    Retention maps of nucleosides on the HDF C10 column using ELSD. 
 
 
1.4.          Ergogenic Acids 
  
       Table 12 and Table 13 show retention times of creatine and creatinine ergogenic  

acids respectively with the  increasing concentration of acetonitrile solvent from 50% to  

90%.  Figure 29 and Figure 30 are the characteristic ANP retention maps of creatine and  
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creatinine respectively.  Both analytes display typical ANP retention on the two columns.  

Creatinine is a cyclic form of creatine which is mainly found in skeletal muscles.  As 

creatine has an open structure with its hydrophilic groups exposed, it exhibits more 

polarity and shows stronger ANP retention on both columns when compared with  

the retention of cyclic creatinine.   

 

Table 12.  Retention times of ergogenic metabolites on the TDF C8 column using   
                  ELSD 
 

 
Concentration 

(%) 
 

 
Retention time  

 (min) 

 
Acetonitrile 

with  
0.1% FA 

 
DI Water 

with  
0.1% FA 

 

 
 

Creatine hydrate 

 
 

Creatinine 

 
50 

 
50 

 
3.16 

 
3.22 

 
60 

 
40 

 
3.86 

 
3.87 

 
70 

 
30 

 
5.22 

 
5.14 

 
75 

 
25 

 
6.35 

 
6.39 

 
80 

 
20 

 
8.32 

 
8.35 

 
85 

 
15 

 
15.02 

 
12.90 

 
90 

 
10 

 
26.97 

 
24.65 
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Figure 29.    Retention maps of ergogenic metabolites on the TDF C8 column using  
 
                      ELSD. 
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Table 13.  Retention times of ergogenic metabolites on the HDF C10 column using   
                  ELSD 
 

 
Concentration 

(%) 
 

 
Retention time  

 (min) 

 
Acetonitrile 

with  
0.1% FA 

 
DI Water 

with  
0.1% FA 

 

 
Creatine hydrate 

 
Creatinine 

 
50 

 
50 

 
3.12 

 
3.09 

 
60 

 
40 

 
3.67 

 
3.52 

 
70 

 
30 

 
4.87 

 
4.43 

 
75 

 
25 

 
6.16 

 
5.36 

 
80 

 
20 

 
8.95 

 
7.03 

 
85 

 
15 

 
13.93 

 
10.57 

 
90 

 
10 

 
- 

 
19.02 

 
 
 
       Furthermore, Figure 31 compares the retention of creatinine on the TDF C8 and HDF 

C10 columns.  Creatinine displays comparatively higher retention on the TDF C8 which 

has somewhat more of the fluorine moiety influence for retention mechanism than that of 

HDF C10 column.  Hence, it can be postulated that may be the molecules like creatinine 

show ANP retention due to the polarity of fluorinated moiety. 
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Figure 30.    Retention maps of ergogenic metabolites on the HDF C10 column using  
 
                      ELSD. 
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Creatinine on two columns using ELSD
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Figure 31.    Comparison of retention maps of creatinine on the TDF C8 and  
 
                      HDF C10 columns. 
 
 
1.5.          Organic Acids 
 
     The small polar fumaric acid and citric acid were tested in order to check their ANP  

retention using 0.1% FA on the HDF C10 and TDF C8 columns respectively as shown in  

Table 14.  For organic acids, the addition of 0.1 % FA did not result in significant ANP  

retention although the solutes are highly polar compounds.  However, their minute but  

measurable retention should not be overlooked and can be attributed due to the ANP  
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behavior of the columns as shown in Figure 32.   

       Besides these two organic acids, maleic acid was also analyzed using 0.1% FA in the  

similar fashion, but it did not retain at all on both columns eluting at the void volume for 

all the increasing acetonitrile concentrations.  The insignificant or zero ANP retention of 

these organic acids in the presence of 0.1% FA is likely  due to the fact that the additive 

formic acid protonates the organic acids and lowers its ionic character for possible ANP 

retention.  Subsequently, ammonium formate was added to form anions of the organic 

acids and checked for their possible ANP retention using UV detection.  Hence, it is 

important to choose the proper additive when formulating the ANP binary mobile phase 

system.  

Table 14.  Retention times of organic acids for 0.1%FA additive using ELSD 
 

Concentration 
(%) 

Retention time  
(min) 

 
Acetonitrile 

 
(0.1% 

Formic acid) 
 

 
DI Water 

 
(0.1% 

Formic acid) 

 
Fumaric acid

(HDF C10        
column) 

 
Citric acid 

 
(TDF C8        
column) 

 
50 

 
50 

 
2.34 

 
2.14 

 
60 

 
40 

 
2.39 

 
2.20 

 
70 

 
30 

 
2.42 

 
2.33 

 
80 

 
20 

 
2.48 

 
2.41 

 
85 

 
15 

 
2.58 

 
2.47 

 
90 

 
10 

 
2.59 

 
2.59 
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Figure 32.    ANP retention of fumaric acid and citric acid with 0.1 % FA additive  
 
                      on HDF C10 column and TDF C8 column respectively using ELSD. 
 
 
2.          Retention Studies Using UV Detection 
         
       Due to the unavailability of the ELSD, further ANP retention evaluation of the TDF 

C8 and HDF C10 columns was performed using a UV detector.  Different classes of 

compounds e.g., nucleotide, organic acids and carbohydrates were analyzed to establish 

their characteristic ANP retention on the fluorinated columns.  When fumaric acid, citric  

acid and maleic acid were analyzed  using the ELSD, they were not retained to any extent  

using 0.1% FA as an additive.  Therefore, another goal using UV detection was to test  
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different types and concentration of additives to achieve higher ANP retention of these 

solutes.   

       The use of a higher pH buffer would deprotonate the organic acids and provide 

anions for possible ANP retention as the acetonitrile concentration increases.  With this 

consideration, various solvent formulations were made to achieve an appropriate organic 

acid sample solution and corresponding mobile phase solution with a pH around 6 and 

not more than 7 using 10 to 15 mM ammonium formate.  Whenever the ammonium 

formate was used, the sample solution and the mobile phase solution were filtered using 

0.45 µm nylon membrane filter.  After checking different concentrations, 15mM   

ammonium formate was optimized to make the water mobile phase with a pH~6.  For 

making a pH~6 acetonitrile mobile phase, it was necessary to use 10 % water for 

dissolving the ammonium formate first and then adding the remainder of the acetonitrile 

solvent.  The dissolution of ammonium formate in lower than 10 % water content 

recrystalizes it when making the pH 6 acetonitrile mobile phase.  Hence, 15mM 

ammonium formate was always dissolved in 10 % milliQ water and 90 % acetonitrile to 

get a pH~6 acetonitrile mobile phase.  This water and acetonitrile binary mobile phase 

system with a pH ~6 was used in the following sections for the ANP retention studies of 

acidic polar molecules.    

       The organic acids analyzed using UV detection were maleic acid, fumaric acid  

and succinic acid.  They were analyzed using a wavelength of 220 nm for detection and 

0.5 mL/min mobile phase flow rate.  A 1:40 dilution of the 1mg/mL solution made in 
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50:50 acetonitrile:water at pH~6 mobile phase condition was used as a sample solution.  

This sample solution was manually injected to evaluate both the TDF C8 and HDF C10  

columns using 50:50, 60:40, 70:30, 80:20, 85:15, 90:10, and 95:05 acetonitrile:water at  

pH~6 mobile phase compositions.  However, surprisingly all three organic acids did  

not show retention more than 2.5 minutes.  As they were injected manually, the run time  

was kept between 5-8 minutes only, which might be one of the possible reasons for not  

being able to observe the real sample peak that might have retained longer and have  

eluted a lot later on.  The second possibility is that only the solvent front peaks might  

have been noted in each case and the HPLC run was stopped for the next injection before  

the real sample peak appears.  The third possibility of not being able to locate the sample  

peak is that the organic acids might not be absorbing at 220 nm.  The fourth possibility is  

that the absorbance of the additive ammonium formate might be masking the organic  

acid’s sample peaks.  So, to overcome the first possibility, all three organic acids were  

analyzed a second time with 10 minutes or longer run time on both columns.  For this  

set of conditions as well, the same solvent front peak was apparent with the retention time  

not higher than 2.50 minutes even for 95:05 acetonitrile:water at pH~6 composition.   

Therefore the conclusion was made that they either were not retained on these columns  

using the stated experimental conditions or may not be visible using UV detection.   

       The availability of an MS detection system has provided another choice to check for 

the retention behavior of the organic acids as in this case the detection is solely based on 

the molecular weight recognition as determined by the mass/charge ratio.  Hence, the 
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HPLC-MS analyses of organic acids, subsequently performed, are discussed in the MS 

detection part of the thesis. 

2.1          Nucleotide 
 
       ATP, a nucleotide, displayed good ANP retention on both the TDF C8 and HDF C10 

columns.  However, the optimized conditions were obtained after many trials as follows.  

First, 1 mg/mL sample solution of adenosine-5`- triphosphate (ATP) was made in 50:50 

acetonitrile:water pH~6 solution.  Samples at 1:10, 1:20, 1:30, and 1:40 dilution were 

tested in order to obtain a good chromatographic peak for the 50:50 acetonitrile:water 

pH~6 mobile phase condition.  The 1:20 dilution of a 1 mg/mL sample solution was 

optimized and used for the retention studies.  A UV wavelength of 254 nm was selected 

to monitor the peaks.  The mobile phase flow rate was set to 0.5 mL/min.  When this 

sample solution was run on the TDF C8 and HDF C10 columns with increasing 

acetonitrile:water from 50:50 to 95:05 compositions, it had a retention time no longer 

than 2.54 minutes.  Later on it was realized that the run time of each injection was not 

sufficient enough to track the real sample peak that had been retained much longer.  So as 

described earlier in the case of organic acids, the retention times of solvent front peak 

were monitored.  Therefore, further analyses were carried out having a run time of at 

least 15 minutes or longer in order to check for highly retained peaks when the 

acetonitrile concentration increases.   

       In the second trial, a 1:20 dilution of the 1 mg/mL ATP sample solution made in 

50:50 acetonitrile:water at pH~6, was analyzed for 50:50, 60:40, 70:30, and 80:20 mobile  

phase compositions on both columns with run time up to 15 minutes.  The resultant  
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peaks were confusing, as the sample peak was being obscured by the solvent front in  

each trial.  It has also been observed that as the concentration of acetonitrile increases, the  

intensity of the solvent front peak increased 2-3 fold in comparison with the intensity of  

the retained sample peak.   

       Finally, a 1:20 dilution of the 1mg/mL ATP dissolved in 80:20 acetonitrile:water at 

pH~6 sample solution provided very symmetric peaks.  Whenever the sample peaks 

displayed shoulders or split, they were confirmed by analyzing the sample for that  

mobile phase condition with a different UV wavelength of 220 nm instead of 254 nm.  

For 220 nm, the absence of ATP absorption was exhibited as a negative peak  

which was the sample peak and it continues to retain as the acetonitrile concentration  

increases.  Accordingly the confirmed positive sample peaks were studied for ATP using 

a wavelength of 254 nm on both the TDF C8 and HDF C10 columns.  

       Table 15 gives the retention times of ATP as the concentration of acetonitrile  

increases.  ATP displayed very high ANP retention up to approximately 42 minutes for  

90 % acetonitrile on the HDF C10 column.  The right hand side part of Table 15 

represents the analysis of ATP on the HDF C10 column using 1:5 dilution of a 1 mg/mL 

sample solution.  In this case, a very sharp ANP retention was observed for the short 

range of 70 % to 88 % acetonitrile, and is plotted in Figure 33.               

       The left hand side part of Table 15 represents the analysis of ATP using a 1:20 

dilution of the 1 mg/mL sample solution on both columns.  Figure 34 shows the 

characteristic retention maps of ATP on both columns as the amount of acetonitrile 
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increases.  The aqueous normal phase retention maps of ATP analyzed on TDF C8 and 

HDF C10 are completely overlapping.  This fact confirms the comparable contribution of  

the fluorinated moiety and the silica hydride layer in the aqueous normal phase retention 

mechanism of ATP. 

Table 15.  Retention times of ATP on both TDF C8 and HDF C10 columns using UV   
                  detection 
 
 

Concentration 
(%) 

 
Retention time 

(min.)  

 
Concentration 

% 

 
Retention 

time 
 (min) 

 
 
 

Acetonitrile 
+ 

(15mM 
Ammonium- 

formate) 
 

 
 

DI Water 
+ 

(15mM 
Ammonim- 

formate) 

 
 

TDF C8
 
 

(50 ppm 
ATP 

solution) 
 

 
 

HDF 
C10 

 
(50 ppm 

ATP 
solution) 

 
 

Acetonitrile 
+ 

(15mM 
Ammonium -

formate) 

 

 
 

DI water 
+ 

(15mM 
Ammonium 

formate) 

 
 

HDF 
C10 

 
(200 ppm 

ATP 
solution) 

 
50 

 
50 

 
1.69 

 
1.67 

 
70 

 
30 

 
2.11 

 
60 

 
40 

 
1.76 

 
1.78 

 
75 

 
25 

 
2.39 

 
70 

 
30 

 
1.96 

 
2.03 

 
80 

 
20 

 
3.65 

 
75 

 
25 

 
2.40 

 
2.45 

 
82 

 
18 

 
4.78 

 
80 

 
20 

 
3.25 

 
3.19 

 
84 

 
16 

 
6.86 

 
83 

 
17 

 
5.75 

 
6.38 

 
86 

 
14 

 
11.42 

 
85 

 
15 

 
8.81 

 
9.61 

 
88 

 
12 

 
23.44 

 
87 

 
13 

 
15.51 

 
16.55 

 
- 

 
- 

 
- 

 
90 

 
10 

 
38.91 

 
42.40 

- - - 
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Figure 33.    ANP retention of ATP on the HDF C10 column using UV detection. 
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ATP on TDF C8 and HDF C10 using UV
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Figure 34.    Comparison of ANP retention of ATP on the HDF C10 and TDF C8  
 
                      columns using UV detection. 
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2.2.          Carbohydrates 
 
       Carbohydrates were another class of compounds analyzed to check their possible  

ANP retention on the fluorinated columns.  Specially, the monosaccharides glucose and  

fructose were run to optimize the experimental conditions using UV detection.  First, they  

were run using a 0.1% FA additive and afterwards 15mM ammonium formate buffered  

(pH~6) mobile phase conditions.   

       As shown in Table 16, under the conditions of pH~6, glucose and fructose both have  

 ANP retention as the concentration of acetonitrile increases on the TDF C8 column.  A 

similar trend of ANP retention was obtained on the HDF C10 column as well.  For 

analyzing glucose and fructose, a 220 nm UV wavelength was used.  Since carbohydrates 

do not carry UV active chromophores, the lack of absorption as a negative peak was 

monitored as a chromatogram where the background mobile phase was absorbing in this 

region.  The monitoring of the negative sample peaks showed some ANP retention in the 

case of 0.1% FA and very high ANP retention when the pH~6 mobile phase was used on 

both columns.  The mobile phase flow rate was set to 0.5 mL/min and 20 µL of the 

sample was injected for each run in this analysis.  For the studies with the 0.1% FA 

additive, glucose and fructose were dissolved to make a 1 mg/mL sample solution in 

50:50 acetonitrile:water premixed with 0.1% FA.  In the case of the pH~6 conditions, 

glucose and fructose were dissolved to make a 1 mg/mL sample solution using 50:50 

acetonitrile:water pH~6 mobile phase.  

       Table 16 presents the retention times for ANP retention on the TDF C8 column using  

0.1% FA and 15mM ammonium formate additives and Figure 35 illustrates the  
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increasing ANP retention of glucose and fructose when 15mM ammonium formate  

was used instead of 0.1% FA. 

 
Table 16.  Retention times of glucose and fructose on the TDF C8 column with 0.1%   
                  FA and 15mM ammonium formate additives using UV detection 
 

Concentration 
(%) 

Retention time 
(min)  

Concentration 
(%) 

Retention time 
(min) 

 
 

Acetonitrile 
 
 

(0.1% FA) 
 

 
 

DI 
Water 

 
(0.1% 
FA) 

 
 

Glucose 
 

 
 
Fructose 

 
 

Acetonitrile 
 
 

(15mM 
Ammonium 

formate) 
 

 
 

DI Water 
 
 

(15mM 
ammonium 

formate) 

 
 

Glucose 

 
 

Fructose 

 
50 

 
50 

 
2.21 

 
2.21 

 
50 

 
50 

 
2.33 

 
2.25 

 
60 

 
40 

 
2.23 

 
2.13 

 
60 

 
40 

 
2.34 

 
2.38 

 
70 

 
30 

 
2.18 

 
2.16 

 
70 

 
30 

 
2.48 

 
2.52 

 
80 

 
20 

 
2.50 

 
2.52 

 
80 

 
20 

 
2.97 

 
3.02 

 
85 

 
15 

 
2.58 

 
2.57 

 
85 

 
15 

 
3.54 

 
3.58 

 
90 

 
10 

 
2.72 

 
2.68 

 
90 

 
10 

 
4.59 

 
4.62 

 
95 

 
05 

 
2.85 

 
2.81 

 
95 

 
05 

 
6.88 

 
6.96 
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Monosaccharides on TDF C8 Column using UV 
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Figure 35.    Retention maps of glucose and fructose with 0.1% FA and 15mM  
 
                      ammonium formate additives using UV detection.   
 
 

       Table 17 lists the retention times and Figure 36 demonstrates the corresponding  

characteristic retention maps of glucose and fructose observed on the TDF C8 and HDF 

C10 columns using the 15 mM ammonium formate mobile phase conditions.  As can be 

seen, both monosaccharides retain slightly more on the HDF C10 column which might be 

due to more of the underlying silica hydride contribution to the ANP retention 

mechanism of glucose and fructose than the attached fluorinated moiety. 
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Table 17.  Retention times of glucose and fructose on both the TDF C8 and HDF 
C10 columns with 15 mM ammonium formate additive using UV detection 
 

 
 

Concentration 
(%) 

 
Retention time 

(min)  

 
TDF C8 

 
HDF C10 

 
 

Acetonitrile 
 

(15mM 
Ammonium 

formate) 
 

 
 

DI Water 
 

(15mM 
Ammonium 

formate) 

 
 

Glucose 

 
 

Fructose 

 
 

Glucose 

 
 

Fructose 

 
50 

 
50 

 
2.33 

 
2.25 

 
2.22 

 
2.19 

 
60 

 
40 

 
2.34 

 
2.38 

 
2.35 

 
2.36 

 
70 

 
30 

 
2.48 

 
2.52 

 
2.61 

 
2.60 

 
80 

 
20 

 
2.97 

 
3.02 

 
3.24 

 
3.25 

 
90 

 
10 

 
4.59 

 
4.62 

 
5.37 

 
5.36 
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Monosaccharides on two columns using UV 
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Figure 36.    Comparison of retention maps of glucose and fructose on the TDF C8  
 
                      and HDF C10 columns using UV detection. 
 
 
 
       The disaccharides turanose and trehalose were also analyzed on the TDF C8 column  

using UV detection.  The flow rate was set to 0.5 mL/min, and a UV absorption 

wavelength of 220 nm was used.  A sample solution at a concentration of 3 mg/mL was 

made using 50:50 acetonitrile:water pH~6 mobile phase composition.  The injection 

volume was 20 µL.  The negative peaks were measured to record the ANP retention 

times as shown in Table 18.  Both turanose and trehalose displayed good ANP retention 
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on the TDF C8 column and the same trend would occur on the HDF C10 column as well.  

The retention maps using the UV detection are plotted along with the retention maps  

obtained using MS detection in a subsequent section of the thesis.  The ANP retention 

data of turanose and trehalose obtained using UV detection were validated by comparing 

them against the ANP retention data obtained by MS detection discussed in the later 

section. 

 
Table 18.  Retention times of disaccharides on the TDF C8 column using UV   
                  detection 
 

 
Concentration 

(%) 

 
Retention time  

(min) 
 

 
Acetonitrile 

 
 

(15mM 
Ammonium 

formate) 
 

 
DI Water 

 
 

(15mM 
Ammonium 

formate) 

 
UV 

(0.5 mL/min) 
 

Turanose Trehalose 

 
50 

 
50 

 
2.23 

 
2.21 

 
60 

 
40 

 
2.32 

 
2.33 

 
70 

 
30 

 
2.54 

 
2.54 

 
80 

 
20 

 
3.15 

 
3.15 

 
90 
 

 
10 

 
5.24 

 
5.29 
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3.          Retention Studies Using LC-MS Detection 
 
       The main purpose of using a mass spectrometer was to check the ANP retention of 

organic acids and carbohydrates in the evaluation of the TDF C8 and HDF C10 columns.  

Since these solutes showed longer retention under the pH~6 condition of the mobile 

phase, they were analyzed using 15mM ammonium formate.  In parallel, these solutes  

were also  analyzed to establish ANP retention using acetone as the organic solvent 

component of the ANP binary mobile phase.  Finally, some of the ANP retention data of 

amino acids and carbohydrates obtained using ELSD and UV detectors were  verified 

using the more sensitive and universal MS detector. 

       In the mass spectrometer, the retained analytes from the HPLC were ionized using  

an electrospray ionization (ESI) source and the molecular ions were scanned by a 

quadrupole mass analyzer for detection.  The quadrupole mass analyzer was set to scan 

over a mass range from 40 amu to 400 amu for all solutes except for cellobiose octa-  

acetate for which scanning was set from 40 amu to 1000 amu as it has higher molecular  

weight.  The Q1 MS scan mode was used for the negative ion polarity scanning and Q3  

MS scan mode was used for the positive ion polarity scanning.  The data acquisition  

time interval was set to 10 minutes (it was extended for longer retaining solutes) and the  

flow rate of the mobile phase was set to 0.4 mL/min.  Lower flow rates of 0.2 mL/min 

and 0.3 mL/min gave poor signal to noise ratio with peak broadening, hence 0.4 mL/min 

was the optimized condition.  Q1 and Q3 analyzers were set to provide unit resolution for 

the analysis.   
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Table 19.  Molecular weights and molecular ions monitored for ANP retention study   
                  of (A) organic acids (B) amino acids, and (C) carbohydrates                                                 
 
                                                                  
(A) 
                                                              (C)     
  

 
Organic 

acids 
 

 
M.Wt. 
g/mol 

 

[M-1]
 -

 
focused 

Maleic acid 116.10 115.0 

Fumaric acid 116.07 115.0 

Succinic acid 118.09 117.1 

Citric acid 192.12 190.9 

 
 
 
(B) 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
Carbohydrates

 
M. Wt. 
g/mol 

 

[M+Na]
+
 

Na=23g/mol
 

Fructose 180.16 203.00 

Glucose 180.16 203.00 

Ribose 150.13 173.13 

   

Sucrose 342.30 365.30 

Lactose 342.30 365.30 

Maltose 342.30 365.30 

Turanose 342.30 365.30 

Trehalose 
anhydrous 

342.30 365.30 

   

Cellobiose 
octaacetate 

678.20 701.2 

 
Amino acids 

 
 

 
M.Wt. 
g/mol 

 

[M+1]
+
 

focused 

ARG 174.20 175.70 

ASP 133.10 134.10 

PHE 165.19 166.80 

TYR 181.19 182.60 
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       Sample solution concentrations of 0.1 mg/mL to 1 mg/mL were tried for each class 

of solutes; however, lower concentrations than 1 mg/mL with higher injection volumes 

varying from 5 µL to 20 µL resulted in peak splitting and lower signal to noise ratio.  

Hence, a concentration of 1 mg/mL was optimized for all the samples and the injection 

volume was varied from 0.5 µL to 5 µL with the desired value of the threshold being 

from 50 to 80 to achieve symmetric high efficiency peaks.  The acquired data were 

monitored as total ion current versus time (TIC chromatogram), from which the full mass 

spectrum displaying different molecular ions was obtained.  Once the parent molecular 

ion or related adduct ion m/z (mass to charge) ratio was determined, that mass could be 

selected to get single ion monitoring versus time (SIM chromatogram) in order to track 

the ANP retention of that particular solute on both the fluorinated columns.  The width of 

SIM window was set to 0.5 amu with a value of 3 cycles per second (CPS) monitoring 

frequency for all the results discussed in the following sections.  The SIM gave better 

signal to noise ratio for the selected molecular ion than the TIC. 

       Table 19 presents the molecular weights and the molecular ions monitored to study  

ANP and reversed phase (RP) behavior of the TDF C8 and HDF C10 columns using 

isocratic mobile phase conditions.  For the analysis of organic acids, their [M-1]-1 

molecular ions were monitored using the Q1 MS negative ion mode; and for the analysis 

of amino acids, their [M+1]+1 molecular ions were detected using the Q3 MS  positive ion 

mode.  In the case of carbohydrates, their sodium adducts as [M+Na]+1 ions were 

monitored using the Q3 MS  positive ion mode.  In the case of amino acids and organic 

acids, the use of 0.1% FA and 15 mM ammonium formate additives respectively 



 103

provided the required protons for the formation of the molecular ions.  However, in the 

case of carbohydrates, the glassware used or the solvent being used were believed to be 

able to provide sufficient sodium ions to produce sodium adducts of monosaccharide and 

disaccharide solutes monitored as the [M+Na] +1 adduct.  Secondly, it is necessary to 

point out that during the MS analysis of carbohydrates and amino acids, the Q3 MS  

positive polarity mode was off calibrated by 3 to 4 amu, and hence the mass spectra of 

these molecules were obtained as [M+1] +1 + 4 amu for amino acids and [M+Na] +1 + 3 

amu for carbohydrates.  This off calibration was overcome later on by recalibrating this 

scan mode.  Therefore, for the purpose of the ease of illustration, some of the  recorded 

values of m/z mass units describing amino acids’ and carbohydrates’ molecular ions are 

edited by subtracting from them  4 and 3 mass units respectively and these values are 

placed  in the tables and in the figures of the following sections.   

3.1.          Organic Acids 
 
       The small polar organic acids were analyzed using 15mM ammonium formate  

 to determine their ANP retention on both the TDF C8 and HDF C10 columns.  The  

sample solution was made as 1 mg/mL using 50:50 acetonitrile:water with 15mM  

ammonium formate to achieve a pH between 6-7.  The flow rate of the mobile phase was  

kept at 0.4 mL/min and the injection volume was set to 1.0 µL.  The threshold value was  

set from 50 to 80 to achieve sharp and symmetric peaks appropriate to study ANP 

retention.  For the binary mobile phase system, acetonitrile was made by dissolving 15  
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mM ammonium formate in 10% water which was then brought to the correct volume by 

adding acetonitrile and water was made by dissolving 15 mM ammonium formate in 

milliQ water.   

       First, the total ion chromatogram was recorded for each organic acid using a higher  

concentration; this sample gives a low intensity broad peak indicating the presence of the 

solute.  From this TIC chromatogram, the mass spectrum was collected to find the m/z 

value of [M-1]-1 molecular ion.  Table 19 (A) lists the molecular weight values of the 

organic acids and the m/z values of their [M-1]-1 molecular ions.  The Q1 MS negative 

ion mode was accurately calibrated and hence gave very close values to the expected [M-

1]-1 molecular ions.  

       Figure 37 shows the mass spectra of maleic acid, fumaric acid, succinic acid, and  

citric acid with m/z values of 115.0 amu, 115.0 amu, 117.1 amu, and 190.9 amu  

respectively for their [M-1]-1 molecular ions collected in the ESI negative polarity scan  

mode.  On the basis of these m/z values of molecular ions, single ion monitoring (SIM)  

chromatograms were obtained to study the ANP retention of the organic acids.  Figure  

38 shows an example of the mass spectroscopic data reporting format for succinic acid at  

50:50 acetonitrile:water pH ~6 ANP mobile phase condition.  The top plot represents the 

TIC chromatogram, the middle one is the mass spectrum of succinic acid identifying the 

117.0 m/z value, and the last plot is the SIM chromatographic peak that is used to 

monitor the solute as the % of acetonitrile increases in the mobile phase composition.  

Similarly, a TIC chromatogram, a mass spectrum and a SIM chromatogram for the ANP 

retention study were obtained for all the solutes analyzed using the MS detector. 
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Figure 37.    ESI mass spectra of maleic acid, fumaric acid, succinic acid, and citric  
 
                     acid as [M-1]-1 molecular ion recorded using negative polarity mode. 
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Figure 38.    Succinic acid: total ion current, ESI (-) mass spectrum of molecular   
 
                      ion (M-1)-1 = 117 amu, and SIM chromatogram on TDF C8 for 50 : 50   
   
                      acetonitrile : water (at pH~6).  
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Table 20.  Retention times of organic acids on the TDF C8 column using LCMS  
 

Concentration 
(%) 

Retention time 
(min) 

 
Acetonitrile 

 
(15mM 

Ammonium- 
formate) 

 

 
DI Water 

 
(15mM 

Ammonim- 
formate) 

 
 

Maleic acid
 

 
 

Fumaric 
acid 

 
 

Succinic 
acid 

 
 

Citric acid 

 
50 

 
50 

 
2.41 

 
2.24 

 
2.41 

 
2.22 

 
60 

 
40 

 
2.48 

 
2.36 

 
2.55 

 
2.32 

 
70 

 
30 

 
2.57 

 
2.62 

 
2.86 

 
2.61 

 
80 

 
20 

 
2.73 

 
3.66 

 
3.82 

 
3.89 

 
85 

 
15 

 
2.87 

 
5.05 

 
5.07 

 
6.62 

 
90 

 
10 

 
3.00 

 
9.97 

 
8.78 

 
19.15 

 
 

       As given in Table 20, all the organic acids show good ANP retention as the 

acetonitrile concentration increases in the mobile phase compositions 50:50, 60:40, 70:30, 

80:20, 85:15, and 90:10 acetonitrile:water pH~6 analyzed on the TDF C8 column.  Citric  

acid is retained the most and maleic acid is retained the least which is explained by the 

fact that the higher the molecule polarity, the higher is the ANP retention when greater  
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Figure 39.    Retention map of organic acids on the TDF C8 column using LCMS. 
 
 
amount of nonpolar solvent is run in the mobile phase.  Figure 39 shows the characteristic 

retention maps on the TDF C8 column of all four organic acids as a function of the 

concentration of acetonitrile.  These retention maps demonstrate excellent ANP retention 
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of organic acids on the fluorinated TDF C8 column.  Moreover, the distinct retention 

maps seen in the range of 80 % to 90 % acetonitrile concentration show the ability to 

provide a high degree of separation from one another if the analysis using a gradient is 

considered.  Table 21 shows the retention time data of organic acids as the concentration 

of acetonitrile increases on the HDF C10 column and Figure 40 presents the related 

retention maps of the four organic acids.  The trend of the ANP retention on HDF C10 is 

similar to that found on the TDF C8 column. 

Table 21.  Retention times of organic acids on the HDF C10 column using LCMS 
 

Concentration 
(%) 

Retention time 
(min) 

 
Acetonitrile 

+ 
(15mM 

Ammonium- 
formate) 

 

 
DI Water 

+ 
(15mM 

Ammonim- 
formate) 

 
 

Maleic acid
 

 
 

Fumaric 
acid 

 
 

Succinic 
acid 

 
 

Citric acid 

 
50 

 
50 

 
2.37 

 
2.18 

 
2.35 

 
2.15 

 
60 

 
40 

 
2.41 

 
2.26 

 
2.42 

 
2.24 

 
70 

 
30 

 
2.52 

 
2.56 

 
2.77 

 
2.50 

 
80 

 
20 

 
2.69 

 
3.38 

 
3.69 

 
3.66 

 
85 

 
15 

 
2.79 

 
4.97 

 
5.02 

 
6.70 

 
90 

 
10 

 
3.00 

 
9.98 

 
8.67 

 
18.94 
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Figure 40.    Retention map of organic acids on the HDF C10 column using LCMS. 
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Figure 41.    Retention map of isobaric fumaric acid and maleic acid on the TDF C8  
 
                      column using LCMS. 
 
 
       Figure 41 shows the retention map of isobaric maleic acid and fumaric acid analyzed 

on the TDF C8 column.  The only difference between these two conformers is their 

spatial arrangements which make fumaric acid more polar contributing to higher ANP 

retention than that of maleic acid as the % of acetonitrile increases.  
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Figure 42.    Comparison of retention maps of citric acid on the TDF C8 and HDF  
 
                      C10 columns. 
 

       Figure 42 is the comparison of the retention maps of citric acid on the TDF C8  

and HDF C10 columns.  The exact overlap of the retention maps implies that in this case 

both the underlying silica hydride layer and the chemically attached fluorinated bonded 

moiety play an equal role in the ANP retention of citric acid.    
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3.2.          Carbohydrates 
 
       The ANP behavior of the TDF C8 and HDF C10 columns using LC-MS was further  

assessed for glucose, fructose and ribose as monosaccharide probes and sucrose, lactose,  

maltose, trehalose and turanose as disaccharide probes.  All these carbohydrate solutes 

are highly polar and not easy to retain using classic reversed phase chromatography.  LC-

MS is the most suitable detector for these compounds and this system is compatible with 

the use of 15 mM ammonium formate that gives higher ANP retention on the columns.   

In parallel, the nonpolar cellobiose octaacetate disaccharide was also analyzed to check  

the reversed phase retention behavior of the columns. 

       Table 19 (C) lists the molecular weight of the carbohydrates that have been  

analyzed and the m/z values of their sodium adduct used for obtaining the SIM  

chromatograms.  The [M+Na]+1 adducts of carbohydrates were scanned using the ESI  

positive ion mode of detection.  The mobile phase flow rate was set to 0.4 mL/min for all  

the carbohydrate solutes analyzed using LC-MS.  

3.2.1.          Monosaccharides 

       The monosaccharides glucose, fructose, and ribose were analyzed on both the  

TDF C8 and HDF C10 columns and they displayed ANP behavior with an increase  

of acetonitrile concentration.  For the retention analysis of glucose and fructose, the  

sample was dissolved to make a 1mg/mL solution using 50:50 acetonitrile:water at  

pH~6 using 15mM ammonium formate.  The injection volume was optimized to 0.5 µL 

and the threshold was set to 50 for both columns.   
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       Figure 43 is an example of MS plots of D-glucose analyzed on the TDF C8 column.  

The top frame is the TIC chromatogram of glucose obtained for 70:30 acetonitrile:water 

(pH~6).  The middle frame is the mass spectrum of glucose showing the m/z 203.1 amu 

of [M+Na]+1 sodium adduct ion.  The last frame is the SIM chromatogram of the glucose 

sodium adduct ion with a mobile phase consisting of 95:05 acetonitrile:water  (pH~6).  

The SIM chromatogram shows a very symmetrical ANP retention peak for glucose at 

6.55 minutes on the TDF C8 column.  Similarly, retention times for glucose were 

recorded using 50:50, 60:40, 70:30, 80:20, 90:10, and 95:05 acetonitrile:water pH~6 

mobile phase system and tabulated as shown in Table 22.   

       D-Fructose has the same molecular weight as D-glucose, hence the same value of the 

sodium adduct ion (m/z 203.1 amu) was observable and used to scan for the SIM 

chromatograms.  However, in the case of D-ribose, the sodium adduct ion of 173.13 amu 

was scanned to get the SIM peaks.  Table 22 also lists the SIM retention data monitored 

for fructose and ribose as the acetonitrile concentration increases.  

       For the retention analysis of ribose, the sample solution was made as a 1mg/mL 

solution in 50:50 acetonitrile:water pH~6 mobile phase and  an injection volume of 5.0 

µL was used to get sharp symmetric peaks with the threshold set to 50.  Peak splitting 

was observed at 70:30 and 80:20 acetonitrile:water pH~6 mobile phase compositions for  

ribose on both columns.  This splitting might be overcome if the sample solution is made  

in the same composition as the mobile phase running.  However, it is worthwhile to 

mention that for 90:10 and 95:05 acetonitrile:water pH~6, very sharp peaks with good 

signal to noise were observed for d-ribose. 
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Figure 43.    Glucose: total ion current, ESI (+) mass spectrum of sodium adduct 
 
                      (M+Na)+1 = 203.1 amu, and SIM chromatogram on TDF C8 for 95: 05   
   
                      acetonitrile : water (at pH~6).  
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Table 22.  Retention times of monosaccharides on the TDF C8 column using LCMS 
 

Concentration 
(%) 

Retention time 
(min) 

 
Acetonitrile 

+ 
(15mM 

Ammonium- 
formate) 

 

 
DI Water 

+ 
(15mM 

Ammonim- 
formate) 

 
 
 

D-Ribose 

 
 
 

D-Glucose 

 
 
 

D-Fructose 

 
50 

 
50 

 
3.07 

 
2.92 

 
2.96 

 
60 

 
40 

 
3.16 

 
2.96 

 
3.02 

 
70 

 
30 

 
3.35 

 
3.15 

 
3.22 

 
80 

 
20 

 
3.60 

 
3.65 

 
3.70 

 
90 

 
10 

 
4.20 

 
4.83 

 
4.76 

 
95 

 
05 

 
4.70 

 
6.55 

 
6.25 

 
 

       As depicted in Table 22, all three monosaccharide solutes show very good ANP 

retention with increasing acetonitrile concentration on the TDF C8 column.  The 

retention of ribose is somewhat less than that of glucose and fructose.  Figure 44, Figure  

45, and Figure 46 show an individual ANP retention map of d-glucose, d-fructose, and d-

ribose respectively on the TDF C8 column.  They are plotted together in a single graph 

for comparative purposes as shown in Figure 47.   
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Figure 44.    ANP retention of D-glucose on the TDF C8 column.  
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Figure 45.    ANP retention of D-fructose on the TDF C8 column.  
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D-Ribose on TDF C8 Column
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Figure 46.    ANP retention of D-ribose on the TDF C8 column. 
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Monosaccharides on TDF C8 Column
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Figure 47.    Retention map of monosaccharides on the TDF C8 column. 
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Table 23.  Retention times of monosaccharides on the HDF C10 column using   
                  LCMS  

 
Concentration 

(%) 
Retention time 

(min) 

 
Acetonitrile 

+ 
(15mM 

Ammonium- 
formate) 

 

 
DI Water 

+ 
(15mM 

Ammonim- 
formate) 

 
 
 

D-Ribose 

 
 
 

D-Glucose 

 
 
 

D-Fructose 

 
50 

 
50 

 
2.99 

 
2..86 

 
2.92 

 
60 

 
40 

 
3.16 

 
2.95 

 
3.00 

 
70 

 
30 

 
3.16 

 
3.17 

 
3.20 

 
80 

 
20 

 
3.47 

 
3.56 

 
3.65 

 
90 

 
10 

 
4.05 

 
4.75 

 
4.70 

 
95 

 
05 

 
4.61 

 
6.38 

 
6.12 

 
 
       Table 23 lists their retention times and in Figure 48 are plots of their ANP retention 

maps on the HDF C10 column under similar conditions.  If one compares the ANP 

retention on the TDF C8 and HDF C10 columns, the plots of each individual analyte 

would completely overlap indicating equal contribution of the hydride layer and 

fluorinated moieties in the retention mechanism. 
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Figure 48.    Retention map of monosaccharides on the HDF C10 column. 
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3.2.2.          Disaccharides 
 
       The disaccharides sucrose, lactose, maltose, trehalose, and turanose are polar  

molecules and each one has the same  molecular weight i.e., 342.30 amu.  Their mass  

spectra yielded the exact same value of m/z 365.30 amu for their respective sodium  

 

Table 24.  Retention times of disaccharides on the TDF C8 column using LCMS 
 

Concentration 
(%) 

Retention time 
(min) 

 
Acetonitrile 

+ 
(15mM 

Ammonium- 
formate) 

 

 
DI Water 

+ 
(15mM 

Ammonim- 
formate) 

 
 
 

Sucrose 

 
 
 

Lactose 

 
 
 

Maltose 

 
50 

 
50 

 
2.86 

 
2.91 

 
2.85 

 
60 

 
40 

 
2.93 

 
2.91 

 
2.94 

 
70 

 
30 

 
3.15 

 
3.20 

 
3.19 

 
80 

 
20 

 
3.70 

 
3.90 

 
3.78 

 
90 

 
10 

 
5.54 

 
6.19 

 
5.62 

 
95 

 
05 

 
8.85 

 
9.27 

 
10.67 
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adduct ions.  Hence, m/z of 365.30 amu was monitored to obtain the SIM of all these  

disaccharides using  the compositions of 50:50, 60:40, 70:30, 80:20, 90:10, and 95:05  

acetonitrile:water at pH~6 mobile phase conditions and their ANP retention times  

were tabulated for both columns.  
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Figure 49.    ANP retention of sucrose on the TDF C8 column.  
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Lactose on TDF C8 Column
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Figure 50.    ANP retention of lactose on the TDF C8 column. 
 

       For the MS analysis of sucrose and lactose, a 0.5 µL injection volume of a 1mg/mL  

sample solution was used on both of the columns to produce sharp symmetric  

peaks.  Whereas for maltose, the use of a 2.0 µL injection volume of a 1 mg/mL sample 

solution resulted in good efficiency symmetric peaks.  The threshold value was adjusted 

to 50 for all the analyses.  Table 24 lists the retention times observed on the TDF C8 

column and Table 25 gives the retention times observed on the HDF C10 column for 

sucrose, lactose, and maltose with increasing concentration of acetonitrile at pH~6 

mobile phase conditions.  Figure 49, Figure 50, and Figure 51 show the individual ANP 
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retention maps of sucrose, lactose, and maltose respectively on the TDF C8 column.  All 

of the retention maps are overlaid on the same plot as shown in Figure 52 for comparative 

understanding of the ANP retention of these solutes on the TDF C8 column.  In parallel, 

the retention maps of sucrose, lactose, and maltose analyzed on the HDF C10 column are 

plotted all together as shown in Figure 53. 
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Figure 51.    ANP retention of maltose on the TDF C8 column. 
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Figure 52.    Retention map of disaccharides on the TDF C8 column. 
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Table 25.  Retention times of disaccharides on the HDF C10 column using LCMS 
 

Concentration 
(%) 

Retention time 
(min) 

 
Acetonitrile 

+ 
(15mM 

Ammonium- 
formate) 

 

 
DI Water 

+ 
(15mM 

Ammonim
- formate) 

 
 
 

Sucrose 

 
 
 

Lactose 

 
 
 

Maltose 

 
50 

 
50 

 
2.77 

 
2.82 

 
2.80 

 
60 

 
40 

 
2.86 

 
2.88 

 
2.91 

 
70 

 
30 

 
3.10 

 
3.12 

 
3.10 

 
80 

 
20 

 
3.66 

 
3.87 

 
3.67 

 
90 

 
10 

 
5.32 

 
6.09 

 
5.57 

 
95 

 
05 

 
8.48 

 
10.62 

 
9.15 
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Figure 53.    Retention map of disaccharides on the HDF C10 column. 
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Figure 54.    Aqueous normal phase chromatographic retention of sucrose as   
 
                      acetonitrile part of mobile phase increases from 50 % to 95 % on the    
 
                      HDF C10 column. 
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       Figure 54 shows the chromatographic peak for the ANP retention of sucrose on the 

HDF C10 column as the acetonitrile concentration increases from 50 % to 95 %.  As the 

retention time increases, the peak gets broader and the intensity of the peak decreases 

with increasing acetonitrile concentration.  The observed tailing could be reduced by 

using a lower concentration sample solutions on the LC-MS system.  This 

chromatographic peak shape could be improved through the use of gradient methods.  

The use of a gradient can easily overcome the problem of peak tailing due to the slow 

mass transfer kinetics of the ANP mechanism. 

       Furthermore, the polar disaccharides trehalose and turanose were analyzed by LC-

MS in parallel with the nonpolar disaccharide cellobiose octaacetate to study 

simultaneous ANP and reversed phase behavior of the TDF C8 and HDF C10 columns.  

Due to the fact that trehalose and turanose also have the exact same molecular weight  

as sucrose, lactose, and maltose [as shown in Table 19 (C)], the exact same m/z of 365.30  

amu sodium adduct ions were obtained using the ESI positive ion mode scanning.  This 

m/z was scanned to record the SIM chromatogram for trehalose and turanose on both 

columns.  For cellobiose octaacetate which has molecular weight 678.3 amu, the m/z 

701.2 amu of its sodium adduct ion was observed, and this ion was scanned to obtain the 

SIM chromatogram for the study of reversed phase retention on the TDF C8 and HDF 

C10 columns. 

       For trehalose and turanose, a 0.5 µL injection volume of a 1 mg/mL sample solution 

was used for the retention analysis on the TDF C8 and HDF C10 columns.  For 

dissolving the samples of trehalose and turanose to 1 mg/mL, a 50:50 acetonitrile:water  
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at pH~6 was used.  The cellobiose octaacetate was undissolved in 50:50 

acetonitrile:water at pH~6.  After several trials with different mobile phase compositions,  

a 90:10 acetonitrile:water with pH~6 was used to dissolve  the cellobiose octaacetate to 

make the 1 mg/mL sample solution.  A 0.5 µL injection volume was used which resulted 

in very sharp peaks. 

       Table 26 presents the retention time data of trehalose, turanose and cellobiose octa  

acetate analyzed on the TDF C8 column.  It is a very interesting set of retention data 

obtained using an isocratic run under same experimental conditions on the same column.  

Both trehalose and turanose being polar disaccharides, start retaining from 50:50 

acetonitrile:water pH~6 mobile phase condition up to a very high ANP retention of 10.66 

minutes and 9.25 minutes respectively for 95% acetonitrile.  However, cellobiose 

octaacetate is a nonpolar disaccharide which shows a decrease in retention as the 

concentration of the acetonitrile increases.  When cellobiose octaacetate was run using 

20:80 acetonitrile:water pH~6 reversed phase mobile phase condition, it showed a  

significant retention of 10.33 minutes on the TDF C8 column.  These analyses 

successfully elucidate that the TDF C8 column can retain both polar as well nonpolar 

saccharides showing ANP and reversed phase behavior.  

       Figure 55 shows the SIM chromatographic peak shape for the ANP retention of 

turanose at 50:50, 60:40, 70:30, 80:20, 95:05 acetonitrile:water pH~6 mobile phase 

compositions.  Figure 56 and Figure 57 are the individual ANP retention maps of 

trehalose and turanose respectively.  All the peaks obtained in the retention study of 
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trehalose, turanose and cellobiose octaacetate were highly symmetric and sharp with very 

good signal to noise ratio.   

 

Table 26.  Retention times of polar and nonpolar disaccharides on the TDF C8   
                  column using LCMS 
 

Concentration 
(%) 

Retention time 
(min) 

 
Acetonitrile 

+ 
(15mM 

Ammonium- 
formate) 

 

 
DI Water 

+ 
(15mM 

Ammonim- 
formate) 

 
 

Trehalose 
anhydrous 

 
 

Turanose 

 
 

Cellobiose 
octaacetate 

 
(nonpolar) 

 
50 

 
50 

 
2.87 

 
2.95 

 
3.61 

 
60 

 
40 

 
2.97 

 
2.96 

 
3.24 

 
70 

 
30 

 
3.22 

 
3.17 

 
2.96 

 
80 

 
20 

 
3.86 

 
3.83 

 
2.78 

 
90 

 
10 

 
6.07 

 
5.71 

 
2.76 

 
95 

 
05 

 
10.66 

 
9.25 

 
2.76 

 
20 

 
80 

 
- 

 
- 

 
10.30 
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Figure 55.    Aqueous normal phase chromatographic retention of trehalose as  
 
                      acetonitrile part of mobile phase increases from 50 % to 95 % on the  
 
                      TDF C8 column. 
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Figure 56.    ANP retention of trehalose dehydrate on the TDF C8 column. 
 

 
Figure 57.    ANP retention of turanose on the TDF C8 column. 
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Figure 58.    Reversed phase retention of nonpolar cellobiose octaacetate on the 
 
                     TDF C8 column in the form of SIM of (M+Na)+ adduct = 701.2 amu  
 
                     using ESI (+) mode MS analysis. 
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       The first four panels of Figure 58  show the SIM chromatograms demonstrating the  

RP retention time of cellobiose octaacetate for 50:50, 60:40, 80:20, and 90:10 

acetonitrile:water pH~6 mobile phase compositions on the TDF C8 column.  The last 

panel represents the SIM chromatogram of the reversed phase retained chromatographic 

peak of cellobiose octaacetate at 20:80 acetonitrile:water pH~6 mobile phase condition.  

As the concentration of acetonitrile increases from 50 % to 90 %, the retention time 

decreases from 3.61 minutes to 2.76 minutes and it elutes faster with the higher amount 

of nonpolar acetonitrile which is evidence of the RP behavior of the column.  At the 

composition of 20:80 acetonitrile:water pH~6 mobile phase condition, the higher amount 

of water in the mobile phase system  retains the nonpolar solute cellobiose octaacetate on 

the TDF C8 column for 10.66 minutes.  This retention is further evidence for the reversed 

phase retention of this compound. 

        The exact same reversed phase retention behavior was also observed for the 

nonpolar cellobiose octaacetate on the HDF C10 column under similar experimental 

conditions.  Table 27 lists the retention times for polar trehalose and turanose 

disaccharides along with the nonpolar cellobiose octaacetate disaccharide analyzed on 

HDF C10 column using similar mobile phase conditions.  On the HDF C10 column, 

cellobiose octaacetate was retained up to 7.49 minutes using reversed phase conditions.  

The higher reversed phase retention of this nonpolar solute observed on the TDF C8 

column (10.66 minutes) than the HDF C10 column (7.49 minutes) is due to the fact that 

the TDF C8 has a higher surface coverage than the HDF C10. 
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Table 27.  Retention times of polar and nonpolar disaccharides on the HDF C10  
                  column using LCMS 
 

Concentration 
(%) 

Retention time 
(min) 

 
Acetonitrile 

+ 
(15mM 

Ammonium- 
formate) 

 

 
DI Water 

+ 
(15mM 

Ammonim- 
formate) 

 
 

Trehalose 
anhydrous 

 
 

Turanose 

 
 

Cellobiose 
octaacetate 

 
(nonpolar) 

 
50 

 
50 

 
2.76 

 
2.85 

 
3.53 

 
60 

 
40 

 
2.82 

 
2.91 

 
3.12 

 
70 

 
30 

 
3.12 

 
3.13 

 
2.81 

 
80 

 
20 

 
3.80 

 
3.77 

 
2.71 

 
90 

 
10 

 
6.10 

 
5.67 

 
2.66 

 
95 

 
05 

 
10.74 

 
9.35 

 
2.65 

 
20 

 
80 

 
- 

 
- 

 
7.49 
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Figure 59.    Retention map of polar and nonpolar disaccharides on the TDF C8  
 
                      column using isocratic run. 
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Figure 60.    Retention map of polar and nonpolar disaccharides on the HDF C10  
 
                      column using isocratic run. 
 

       Figure 59 and Figure 60 represent the ANP retention maps of polar trehalose and  

turanose along with the reversed phase retention map of nonpolar cellobiose octaacetate 

for the TDF C8 column and the HDF C10 column respectively with varying acetonitrile  
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concentration.  As already pointed out earlier in the ANP reference literature, both of  

these plots indicate points at which polar and nonpolar solutes could be expected to be 

retained if that particular mobile phase condition is tried.  This ability of the silica 

hydride based columns to be able to have both aqueous normal phase and reversed phase 

behavior can be very useful for the retention of multipolarity biomolecules.                 

3.3.          Amino Acids 
 
       The amino acids were analyzed on LC-MS for the purpose of validating the  

retention data obtained on ELSD detector.  The same amino acids, arginine, aspartic acid, 

phenylalanine, and tyrosine, were analyzed on the TDF C8 and HDF C10 columns.  The 

experimental conditions and results obtained are discussed in the following section. 

4.          Verification of Retention Data Using Different Detectors  
 
       An interesting comparison of two modes of detection was conducted by overlaying  

the ANP retention data obtained using different detectors.  A set of amino acids analyzed  

previously using ELSD were analyzed again on both the TDF C8 and HDF C10 columns 

using the LC-MS system.  Similarly, the ANP retention data of fructose obtained on UV 

were compared with the results obtained using LC-MS for the TDF C8 column. 

Furthermore, the ANP retention data of trehalose and turanose analyzed previously using 

UV were compared with the results obtained using LC-MS on the TDF C8 column.   

4.1.          Amino Acids on ELSD and LCMS 
 
       The experimental conditions for the amino acids were reported in the section above 

describing the analysis using the ELSD detector.  For analyzing amino acids using the 

LC-MS system, a 0.4 mL/min flow rate was used.  For each amino acid, the sample 
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solution of 1 mg/mL was prepared using 50:50 acetonitarile:water premixed with 0.1 % 

FA.  The injection volume for arginine, aspartic acid, phenylalanine, and tyrosine was 0.5 

µL on both columns.  The [M+1]+1 molecular ions of the amino acids were recorded 

using the Q3 MS  positive polarity scan mode.  As presented in Table 19 (B), the m/z 

values of the [M+1]+1 molecular ions of arginine, aspartic acid, phenylalanine, and 

tyrosine were 175.20 amu, 134.10 amu, 166.19 amu, and 182.19 amu respectively.  For 

the molecular ions to record the SIM chromatograms, the SIM window width was kept at 

0.5 amu for all the amino acids except for the arginine for which the width was kept at 

0.3 amu in order to receive sharp peaks.  

       Table 28 and Table 29 list the retention times of these amino acids observed on the 

TDF C8 and the HDF C10 columns for the mobile phase compositions of 50:50, 60:40, 

70:30, and 80:20 acetonitrile:water premixed with 0.1 % FA.  The strong basic 

characteristic of arginine results in very high ANP retention as the concentration of 

acetonitirle increases from 50 % to 70 %.  To accommodate the ANP retention time data 

obtained using ELSD and LC-MS on the same plot, the retention times of only aspartic 

acid, phenylalanine, and tyrosine were plotted as shown in Figure 63 and Figure 64 for 

the TDF C8 and HDF C10 columns respectively.  The results for arginine were not 

plotted due to its very high ANP retention at a 0.4 mL/min flow rate. 

       The retention maps of the amino acids analyzed using ELSD and LC-MS are 

comparable.  Although the flow rates and other experimental factors might be different 

for each analysis, the trend of ANP retention for phenylalanine, aspartic acid and tyrosine 
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on both columns are comparable.  Hence, the readings taken on LC-MS validate all the 

ELSD data recorded for both columns. 

 

Table 28.  Retention times of amino acids on the TDF C8 column using LCMS 
 

 
 

Concentration 
(%) 

 
Retention time  

 (min) 
 

(for 0.4 mL/min flow rate) 
 

 
Acetonitrile 

with  
0.1% FA 

DI water 
with  

0.1% FA 
 

 
PHE 

 
ASP 

 
TYR 

 
ARG 

 
50 

 
50 

 
4.57 

 
3.63 

 
4.31 

 
8.47 

 
60 

 
40 

 
5.22 

 
4.16 

 
5.11 

 
12.68 

 
70 

 
30 

 
6.46 

 
5.35 

 
6.42 

 
24.90 

 
80 

 
20 

 
9.83 

 
8.21 

 
10.52 

 
- 

 
85 

 
15 

 
13.73 

 
12.37 

 
13.77 

 
- 
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Table 29.  Retention times of amino acids on the HDF C10 column using LCMS 
 
 

 
 

Concentration 
(%) 

 
Retention time  

 (min) 
 

(for 0.4 mL/min flow rate) 
 
 

Acetonitrile 
with  

0.1% FA 

DI water 
with  

0.1% FA 
 

 
PHE 

 
ASP 

 
TYR 

 
ARG 

 
50 

 
50 

 
4.46 

 
3.56 

 
4.21 

 
8.32 

 
60 

 
40 

 
5.06 

 
4.10 

 
4.88 

 
12.81 

 
70 

 
30 

 
6.31 

 
5.21 

 
6.45 

 
25.08 

 
80 

 
20 

 
9.75 

 
8.32 

 
9.44 

 
- 

 
85 

 
15 

 
13.21 

 
11.77 

 
14.28 

 
- 
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Figure 61.    Verification of the retention maps of amino acids on the TDF C8  
 
                      column using ELSD and MS detectors: 0.4 mL/min flow rate was used             
 
                      in HPLC-MS analysis and 0.5 mL/min flow rate was used in  
                       
                      HPLC/ELSD analysis. 
                     
 
 



 145

 
 

Retention of Amino acids on HDF C10 column
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Figure 62.    Verification of the retention maps of amino acids on the HDF C10  
 
                      column using ELSD and MS detectors: 0.4 mL/min flow rate was           
 
                      used in HPLC-MS analysis and 0.5 mL/min flow rate was used in  
 
                      HPLC/ELSD analysis. 
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4.2.          Monosaccharide and disaccharides on UV and LC-MS 
              
       The ANP retention data of D-fructose analyzed by UV using a 0.3 mL/min flow rate 

are plotted with the data analyzed on LC-MS using a 0.4 mL/min flow rate.  Table 30 

gives the retention times of fructose analyzed on the TDF C8 column using both UV and 

LC-MS modes of detection.  Figure 69 shows the ANP retention maps obtained using UV 

and LC-MS detectors.  Although the retention times are different along with the other 

experimental conditions, the shapes of the retention maps obtained on both the detectors 

are comparable to validate the retention data of fructose obtained on UV.  

 
Table 30.  Retention times of monosaccharide on the TDF C8 column using LCMS   
                  and UV 
 

Concentration 
(%) 

Retention time of Fructose 
(min) 

 
Acetonitrile 

 
(15mM 

Ammonium 
formate) 

 

 
DI Water 

 
(15mM 

Ammonium 
formate) 

LCMS 

(0.4 mL/min) 

 
UV 

 
(0.3 mL/min) 

 
50 

 
50 

 
2.92 

 
4.01 

 
60 

 
40 

 
3.00 

 
3.98 

 
70 

 
30 

 
3.20 

 
4.40 

 
80 

 
20 

 
3.65 

 
5.21 

 
90 

 
10 

 
4.70 

 
7.88 
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Monosaccharide on TDF C8 column using UV and LC/MS 
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Figure 63.    Verifying ANP retention of monosaccharide on UV by LCMS.  
 
 
       The disaccharides turanose and trehalose analyzed on the TDF C8 column using UV  

were also used for a verification study.  The experimental conditions for UV analysis  

are as follows.  The flow rate was set to 0.5 mL/min, and the UV absorption wavelength  

was 220 nm.  The sample solution at a concentration of 3 mg/mL was made using 50:50  

acetonitrile:water pH~6.  An injection volume of 20 µL was used.  The negative peaks 

were measured to record the ANP retention times and they are tabulated in Table 31 

along with the comparable retention time data obtained using LC-MS.  Figure 62 shows 
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the retention maps of turanose and trehalose demonstrating the comparable shapes 

analyzed on UV and LC-MS.  These similar shaped retention maps validate the retention 

data analyzed on UV. 

 

Table 31.  Retention times of disaccharides on the TDF C8 column using LCMS and    
                  UV 
 

 
Concentration 

(%) 

 
Retention time  

 
(min) 

 
Acetonitrile 

 
 

(15mM Ammonium 
formate) 

 

 
DI Water 

 
 

(15mM 
Ammonium 

formate) 

LCMS 

(0.4 mL/min) 

 
 

 
UV 

 
(0.5 mL/min) 

Turanose 

 

Trehalose Turanose Trehalose 

 
50 

 
50 

 
2.95 

 
2.87 

 
2.23 

 
2.21 

 
60 

 
40 

 
2.96 

 
2.97 

 
2.32 

 
2.33 

 
70 

 
30 

 
3.17 

 
3.22 

 
2.54 

 
2.54 

 
80 

 
20 

 
3.83 

 
3.86 

 
3.15 

 
3.15 

 
90 
 

 
10 

 
5.71 

 
6.07 

 
5.24 

 
5.29 
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Disaccharides on TDF C8 column using UV and LC/MS 

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

45 50 55 60 65 70 75 80 85 90 95

%   Acetonitrile

R
et

en
ti

o
n

 t
im

e 
  (

m
in

.)

Turanose on UV: Flow  rate = 0.5 mL/min.

Trehalose on UV: Flow  rate= 0.5 mL/min.

Turanose on LC/MS: Flow  rate= 0.4 mL/min.

Trehalose on LC/MS: Flow  rate= 0.4 mL/min.

LC/MS

UV

 
 
 
Figure 64.    Verifying ANP retention of disaccharides on UV by LCMS.  
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5.          Acetone Based ANP Retention 
 
       An effort was made to analyze some well retained polar solutes using acetone as the  

nonpolar part of the ANP binary solvent system.  Since acetonitrile can be difficult to 

handle, difficult to dispose, and expensive to get (due to global shortage of acetonitrile 

observed in 2009), establishing ANP retention using acetone would be worthwhile. 

       Fumaric acid and citric acid were analyzed on the TDF C8 column using 15 mM  

ammonium formate.  A 2 mg/mL sample solution was made by dissolving these organic 

acids into 50:50 acetone:water at pH~7.20.  To achieve a pH in the range of 6 to 7, a 15 

mM ammonium formate was dissolved in 10% of water and then acetone was added to 

make the desired volume.  A pH ~7 water mobile phase was made by dissolving 

ammonium formate to get a concentration of 15 mM.  An injection volume of 2.0 µL was 

used for the analysis on the TDF C8 column.  SIM peaks were monitored using a 

threshold value of 50, and the SIM window width was kept to 0.5 amu.  In the case of 

fumaric acid and citric acid, m/z 114.95 amu and 190.9 amu respectively for the [M-1]-1 

molecular ion were selected using ESI negative polarity scanning.  Both had good peaks 

with a high signal to noise ratio.  The appearance of some tailing as the acetone 

concentration increases can be overcome by developing gradient methods.  In the case of 

citric acid, minor peak splitting was apparent for 90:10 acetone:water pH~7 mobile phase 

condition.  In the case of peak splitting, the use of a lower injection volume for that 

particular mobile phase composition helped achieve single symmetric peak. 

       At the same time, the nonpolar cellobiose octaacetate was also analyzed using 

acetone as part of the ANP solvent system on the TDF C8 column.  A 1 mg/mL sample 
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solution was made in 90:10 acetone:water at pH ~7.0  and a 2.0 µL injection volume was 

used with a threshold value set to 50.  A m/z value of 701.0 amu for the [M+Na]+1 

sodium adduct was monitored for SIM chromatograms using different acetone-water 

mobile phase conditions.   

       Table 32 lists the retention time data for fumaric acid, citric acid, and nonpolar  

cellobiose octaacetate for 20:80, 50:50, 60:40, 70:30, 80:20, 85:15, 90:10, 95:05  

acetone:water at pH~7 mobile phase compositions on the TDF C8 column.  The increase 

in concentration from 50 % to 95 % acetone shows an increase in retention times for 

organic acids and a decrease in retention times for cellobiose octaacetate which is 

expected ANP behavior of the TDF C8 column for the polar analytes.  Another 

interesting data is the retention time at 20:80 acetone:water pH~7.  For this condition, 

cellobiose octaacetate has a retention time of 7.33 minutes showing TDF C8’s 

complimentary reversed phase behavior for the same run.  Fumaric acid and citric acid 

show the exact same retention time for 20 % and 50 % acetone concentrations.  This 

proves that like acetonitrile, acetone as well could not retain polar compound up to 50 % 

concentration and starts retaining from 60 % or greater concentration.  Figure 65 shows 

the ANP retention maps of fumaric acid and citric acid on the TDF C8 column using 

acetone.  The ANP and reversed phase dual retention behavior of the TDF C8 column 

using acetone can be seen in Figure 66.   

       Another interesting comparison of acetone- and acetonitrile- based retention of 

organic acids is presented in Table 33.  Figure 67 shows ANP retention maps for fumaric 

acid and citric acid analyzed using acetonitrile and acetone nonpolar solvents on the TDF 
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C8 column.  Regardless of differences in the retention time data and other experimental 

conditions, the retention maps in both the cases of ANP solvents are comparable. 

 
 
Table 32.  Retention times for polar and nonpolar solutes using acetone as a binary     
                  organic mobile phase solvent on the TDF C8 column using LCMS 
 

Concentration 
(%) 

Retention time  
 (min) 

 
Acetone 

+ 
(15mM 

Ammonium- 
formate) 

 

 
DI Water 

+ 
(15mM 

Ammonim- 
formate) 

 
 

Fumaric acid 

 
 

Citric acid 

 
 

Cellobiose 
octaaacetate 

 
20 

 
80 

 
2.46 

 
2.43 

 
7.33 

 
50 

 
50 

 
2.46 

 
2.43 

 
3.64 

 
60 

 
40 

 
2.59 

 
2.49 

 
3.40 

 
70 

 
30 

 
2.73 

 
2.61 

 
3.09 

 
80 

 
20 

 
3.00 

 
2.92 

 
2.96 

 
85 

 
15 

 
3.22 

 
3.24 

 
2.91 

 
90 

 
10 

 
4.73 

 
6.15 

 
2.83 

 
95 

 
05 

 
8.07 

 
14.44 

 
2.80 
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Acetone retained organic acids on TDF C8 Column
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Figure 65.    Acetone based ANP retention of organic acids on the TDF C8 column  
 
                      using MS. 
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Acetone retained ANP and RP behavior on TDF C8 Column
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Figure 66.    Acetone based ANP behavior of fumaric acid and RP behavior of  
 
                      cellobiose octaacetate on the same column TDF C8.      
 
 
 
 
 



 155

Table 33.  Comparison of acetonitrile- and acetone- based aqueous normal phase   
                  retention of organic acids on the TDF C8 column using LCMS 
 

 
Concentration 

(%) 

 
Retention time  

(min) 

  
Concentration 
          (%) 
 

 
Retention time 

(min) 

 
Acetonitrile 

+ 
(15mM 

Ammonium- 
formate) 

 

 
Fumaric 

acid 

 
Citric 
acid 

 
Acetone 

+ 
(15mM 

Ammonium 
formate) 

 
Fumaric 

acid 

 
Citric  
acid 

 
50 

 
2.24 

 
2.22 

 
50 

 
2.46 

 
2.43 

 
60 

 
2.36 

 
2.32 

 
60 

 
2.59 

 
2.49 

 
70 

 
2.62 

 
2.61 

 
70 

 
2.73 

 
2.61 

 
80 

 
3.66 

 
3.89 

 
80 

 
3.00 

 
2.92 

 
85 

 
5.05 

 
6.62 

 
85 

 
3.22 

 
3.24 

 
90 

 
9.97 

 
19.15 

 
90 

 
4.73 

 
6.15 

 
95 
 

 
- 

 
- 

 
95 

 
8.07 

 
14.44 
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Comarision of M.Ph. on TDF C8 Column using LCMS
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Figure 67.    Comparable acetonitrile- based and acetone- based ANP retention  
 
                      maps of organic acids on the TDF C8 column.   
                    
 
 
       Using acetone as the ANP solvent, glucose, fructose, ribose and sucrose were also 

analyzed on the TDF C8 column for 50:50 to 95:05 acetone:water pH~7 mobile phase 

composition.  However, their SIM chromatograms had very poor signal/noise ratio.  
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Concentrations from 0.5 to 3 mg/mL with varying injection volumes and threshold values 

were also tried.  The nebulization temperature as well as ionization temperature was 

varied to check for good shaped peaks.  Regardless of all the conditions performed on the 

TDF C8 column, the experimental conditions were not optimized enough to study their 

ANP retention using acetone. 
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IV.          CONCLUSIONS 
 
 
       The synthetic procedures of silanization and hydrosilation have successfully 

produced silica hydride based fluorinated stationary phases: tridecafluoro-1-octene silica 

hydride (TDF C8) and heptadecafluoro-1-decene silica hydride (HDF C10).  The DIRFT 

and NMR spectroscopic results have qualitatively confirmed the bonding of the hydride 

on silica material and the bonding of the carbonaceous fluorinated moiety onto the silicon 

hydride.  The novel slurry state proton-NMR confirmed the replacement of the silanols, 

the formation of the silica hydride, and the bonding of the fluorocarbonaceous moiety of 

the TDF C8 and HDF C10 stationary phase materials.  The slurry state proton-NMR 

peaks are consistent with the characteristic predictions for the Si-H and C-H groups and 

thus further substantiated the successful bonding of the fluorinated moieties.  In addition, 

these results confirm the results obtained in the DRIFT spectra.   

       The fluorine-19 slurry state NMR spectra showed a small fluorine peak indicative for 

both the TDF C8 and HDF C10 materials.  This result provides the primary confirmation 

of the attachment of the fluorinated moiety on to the silica hydride stationary phases. 

       The carbon elemental analyses of the TDF C8 and HDF C10 materials confirmed the 

bonding of the fluorocarbonaceous moiety on to the silica hydride quantitatively.  On the 

basis of this result, a hypothesis was made that the higher amount of fluorine moiety on 

to the TDF C8 will result in greater fluorine based interactions and the comparatively 

lower amount of fluorine moiety on to the HDF C10 will provide more interaction with 

the silica hydride layer for solute interaction.  This hypothesis, made for the purpose of 
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comparison, was supported by the aqueous normal phase (ANP) retention data obtained 

on the TDF C8 and HDF C10 columns.    

       The TDF C8 and HDF C10 columns have shown good ANP behavior for amino 

acids, nucleobases, nucleosides, nucleotides, ergogenic acids, organic acids, and 

carbohydrates analyzed using HPLC with ELSD, UV, and MS detectors.  The organic 

solvent acetonitrile (> 60%) has become the primary component of the ANP binary 

solvent mobile phase system.  However, the nonpolar solvent acetone also resulted in 

ANP retention for the polar solutes on both columns.  Additionally, success in the 

reversed phase (RP) retention observed in the case of nonpolar cellobiose octaacetate 

disaccharide, proves the suitability of these fluorinated bonded phases for RP retention.     

       The trend for the ANP retention of all these solutes has been observed as follows on 

both columns.  For the amino acids: the basic amino acids were retained the most, 

followed by the neutral, and the acidic amino acids (the polar neutral tyrosine was 

retained more than neutral phenylalanine).  For nucleobases, cytosine was retained the 

most, followed by guanine and uracil.  In the case of nucleosides, adenosine was retained 

more than thymidine.  Whereas, when organic acids were analyzed, citric acid retained 

the most, followed by fumaric acid, succinic acid, and maleic acid.  This general trend of 

ANP retention deduces that the higher polarity solutes are retained the most on the 

fluorinated columns.   

       The use of 0.1 % FA could retain amino acids, nucleobases, nucleosides and 

ergogenic acids.  However, for the retention of a nucleotide, organic acids, and 
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carbohydrates, the use of 15 mM ammonium formate provided better ANP retention.  

Thus, a careful use of additive can increase the ANP retention on the fluorinated columns.   

        To understand the plausible retention mechanism exhibited by the TDF C8 and HDF 

C10 columns for different polarity analytes, their ANP retention maps were compared.  

The solute molecules like histidine, arginine, and tyrosine amino acids were retained 

more on the TDF C8 column indicating the ANP retention due to fluorinated moiety’s 

hydrophilic interaction.  Whereas, phenylalanine and monosaccharides like glucose and 

fructose were retained more on the HDF C10 column which has more of hydride 

influence for comparative hydrophobic interaction.  However, the nucleotide ATP and 

citric acid were retained equally on both columns.  If we compare the RP retention of 

cellobiose octaacetate at 80% water and 20% acetonitrile mobile phase composition, it 

retains more on the TDF C8 suggesting that the fluorinated moiety of TDF C8 is acting as 

nonpolar stationary phase (exhibiting hydrophobic interaction) to the nonpolar solute.  

Hence, a fluorinated moiety can provide hydrophilic as well as hydrophobic interaction 

for different solutes.  Further comparison of ANP retention data analyzed on the TDF C8 

and HDF C10 columns against that analyzed on pure silica hydride columns of equal 

dimensions and similar experimental conditions, can afford further insight toward the 

understanding of the hydride based and fluorine based synergistic retention mechanisms.  

       The carbohydrates have shown very good ANP retention on both columns.  

Furthermore, it has been seen that the disaccharides retain more than the 

monosaccharides on both columns as they have more polar hydroxyl groups.  Since these 

columns provide reproducibility of less than 1% RSD values, higher precision in data 
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obtained for real analyses can be expected.  These columns have handled many analyses 

over a long period of time which confirms its long time stability due to the Si-C bonding 

of the fluorocarbon moieties.  Due to the high stability and reproducibility of these 

columns, the comparison of the shapes of the retention maps obtained using different 

detectors was possible.  The similarities in the shapes of the retention maps have proved 

the validity of the retention data obtained using UV and ELSD.  Finally, on the basis of 

the retention maps of the small polar biomolecules, gradient methods can be developed to 

separate these metabolites and/or to study larger biomolecules.   
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