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ABSTRACT

MODELING PARTICLE TRANSPORT DISTANCES AS A FUNCTION OF

SLOPE AND SURFACE ROUGHNESS

by Morgan Kelly Mendoza

Significant effort has been put into modeling the evolution of hillslope

profiles through time. The models use a continuum approach and are commonly

deterministic. Early models assumed a linear relationship between hillslope angle

and sediment flux. This relationship produces hillslope profiles that increase in

steepness from crest to base. However, hillslopes observed in the field are commonly

planar downslope of their convex crests. Recently, non-linear sediment transport

equations have been developed that produce hillslope profiles closer to those which

are observed in nature, yet the mid-slope sections are not entirely planar. Currently,

there is interest in using a non-deterministic approach where transport distances

follow probability distributions that depend on hillslope angle. In order to

qualitatively and quantitatively characterize this probabilistic relationship, the

transport distances of individual particles released into a dry ravel flume with a

rough surface were measured as a function of flume angle. Using the inputs of flume

angle and surface roughness, the results of the experiments were replicated with a

discrete element model in which the motion of the particles was modeled with the

momentum equation. The implication of this study is that this method can be used

with inputs measured from the field to model the evolution of entire hillslopes.
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INTRODUCTION

Culling (1960) hypothesized that the mass movement of weathered material

on a hillslope takes place at a rate proportional to the surface gradient. Culling

(1963) was subsequently able to show that when soil particles are assumed to move

according to a random walk process, the overall behavior of soil on a hillslope

follows a linear diffusion-like equation. By coupling this linear diffusion equation

with the continuity equations, hillslope profiles at steady-state can be determined.

This approach avoids the need to consider each particle of soil individually and,

instead, assumes that soil is a continuum.

The type of linear continuum model proposed by Culling (1963) predicts

hillslopes with constant curvature; however, hillslopes found in nature are commonly

convex near their crests with planar mid-slope sections. To reconcile this field

observation with linear models, some (Kirkby, 1985; Anderson, 1994) have suggested

that the angle associated with the planar mid-slope section represents the transition

to landslide-dominated hillslopes. Others have appealed to a non-linear approach

(e.g., Roering et al., 1999; Gabet, 2000) in which sediment flux increases rapidly at

steep slopes toward a critical gradient at which the sediment flux becomes infinite.

Sharp increases in the sediment flux at higher slopes may be the result of greater

amounts of sediment transported, greater average transport distances, or both. The

latter has been observed in sediment transported by gopher bioturbation (Gabet,

2000), dry ravel (Gabet, 2003), and raindrop impact (Furbish et al., 2009). Roering

et al. (2001) developed a non-linear equation for sediment flux and used it as the

basis for a hillslope evolution model. The model produces hillslope profiles that

agree with field observations, though it is not able to produce perfectly planar

hillslopes.
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Continuum models, such as the ones introduced by Culling (1960, 1963),

depend on two main assumptions: (1) the average sediment mass flow rate can be

approximated using hillslope gradient without the need to account for the exact

movement of each individual particle, and (2) the gradient need be known only at a

single point in order to generate an accurate prediction of the mass flow at that

point (Tucker and Bradley, 2010). These are locality assumptions, which are not

unique to hillslope transport, and are used whenever it is assumed that particles on

a hillslope move only short distances relative to the length of the hillslope (Schumer

et al., 2009). In contrast, nonlocal sediment transport occurs when the distance that

a particle travels is large relative to the length of the hillslope. Specifically,

nonlocality occurs when the mean distance traveled by a particle tends toward

infinity and, as a result, the probability distribution associated with the transport

distance develops a heavy tail that is right-skewed (Tucker and Bradley, 2010). If

nonlocal behavior is observed, then the concentration and momentum of particles at

a point cannot be accurately estimated based solely on the hillslope gradient at that

point (Tucker and Bradley, 2010).

Recently, there has been a shift away from approaches that are deterministic

and that assume particles on a hillslope form a continuum, in favor of gaining a

more detailed understanding of hillslope sediment transport processes (e.g., Tucker

and Bradley, 2010). If the position and momentum of each particle on a hillslope

were known, along with the rules that governed the interactions between grains, the

magnitude and direction of the volumetric sediment flux could be calculated at any

given point. This technique is known as the discrete element approach; however,

because it is computationally prohibitive to model the grain-to-grain interactions of

every particle on an entire hillslope, the motion of the particles can instead be

modeled in a statistical fashion (Tucker and Bradley, 2010).
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To characterize the individual motion of sand grains, Roering (2004)

performed a series of experiments in which sand was piled into an open-ended box

with Plexiglass sides and then perturbed by acoustic vibrations. By placing clumps

of colored tracer grains into the pile at various depths, Roering (2004) was able to

measure the displacement of the grains after they had been perturbed. The distance

traveled by buried particles could be modeled deterministically because the grains

remained clumped, whereas grains that had been buried less than 1 cm dispersed

and traveled large and variable distances, suggesting that the travel distance of

particles near the surface is better characterized probabilistically (Roering, 2004).

Recognizing that transport distances are not deterministic, Furbish and Haff

(2010) used a probabilistic approach to model continuity of mass at a point, given

random arrivals and departures to and from the point. This model was incorporated

into a master equation that describes geomorphic systems. Furbish and Haff (2010)

assumed an exponential distribution for transport distances of particles, and the

model results are in agreement with field observations, but are not able to produce

perfectly planar hillslopes. Some of the key parametric quantities in the model of

Furbish and Haff (2010) are well constrained for certain transport processes but not

for others. For example, in the case of rain splash, the use of an exponential

distribution for transport distances is justified (Furbish et al., 2007), but other

processes may give rise to different distributions. Furbish and Haff (2010)

conjectured that hillslope gradient would be a main factor in the formulation of

such distributions but that surface roughness and sediment characteristics would

likely be involved.

Sediment transport laws can be developed that are based not on random

walks, but on the type of motion that is actually observed for individual particles

(Tucker and Bradley, 2010). In order to develop such sediment transport laws,
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experiments would need to be performed that measure the frequency with which

particles travel certain distances, and their mean and variance. In addition, it would

need to be established that the results of such experiments could be tied to the

physical characteristics of a hillslope (e.g., gradient and roughness). Tucker and

Bradley (2010) developed a computer model in which one particle out of a large

mound of individual particles is randomly selected to make a “hop.” However,

whether the particle will actually make a hop is dependent on its position relative to

its neighbors and on a probability distribution. This model has the advantage of

being discrete, nondeterministic, and computationally efficient; however, the

probability distribution was chosen arbitrarily and was not based on experimental

results.

Although there has been interest in gaining a more detailed understanding of

hillslope sediment transport processes with an increasing emphasis on discrete and

probabilistic approaches, data on transport distances of actual particles are limited.

This study examines the simplest hillslope transport process, dry ravel, defined as

the rolling, sliding, and bouncing of particles down a rough surface. The purpose of

this study is twofold: (1) to develop an approach to model transport distances of

particles that depends on roughness and slope, preserves the essential physics of the

process, and is parsimonious; and (2) to mathematically describe the probability

distribution of transport distances as a function of flume angle.

MATERIALS AND METHODS

The main piece of equipment used was a 3-m-long, 0.3-m-wide, 0.1-m-deep

wooden box. The floor of the box consisted of a layer of concrete into which pebbles

with diameters ranging from 1-5 cm had been embedded to simulate the rough
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surface of a hillslope. This box is hereafter referred to as “the dry ravel flume” (Fig.

1).

To characterize the roughness of the flume surface, its elevation was

measured along width-parallel transects at 1 cm intervals. The surface relief along

each transect was calculated by subtracting the mode of the transect elevations

from each measurement and then taking the absolute value of the result. Transects

were taken along the entire length of the flume at 10 cm intervals, for a total of 28

width parallel transects. Twenty-nine measurements were taken for each transect,

for a total of 812 calculated values of the surface relief, to form a distribution that

characterizes the roughness of the flume surface.

A hopper was used to impart an initial velocity to the 1-cm pebbles used in

the flume experiments. The hopper quickly released a pebble from rest at a

controlled height onto a short (5 cm) wooden ramp inclined at 11° (Fig. 2). This

method was adopted to ensure that the initial velocity of the pebbles in the

down-flume direction was as uniform as possible (Gabet, 2003). The velocity

initially directed down-flume is proportional to the sine of the flume angle. Because

sine is an increasing function of flume angle, the release height of the pebbles was

decreased with increasing flume angle, such that the initial velocity, vo, remained

constant (0.7 m/s) throughout the experiments. Release height, h, was adjusted

according to:

vo =
√

2ghsin(θ + 11), (1)

where g is acceleration due to gravity, and θ is flume angle.

The experiments consisted of releasing a pebble into the flume, measuring its

travel distance, and then removing it. This was repeated 100 times at each angle

setting. The angle of the flume was varied in increments of 3° , starting from 0° . As
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Figure 1. Dry ravel flume used in experiments.
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the experiments progressed to steeper flume angles, some of the pebbles did not stop

and instead rolled to the end of the flume. If this occurred, the distance traveled

was recorded as “infinity.” Eventually the flume reached an angle, 30°, where all 100

pebbles rolled to the end. At this point the experiment was terminated.

RESULTS

The average distance traveled by the pebbles increased nonlinearly with

angle (Fig. 3). At 3° there is an anomalous dip in the average transport distance;

however, given the variance of the data it is not significantly less than the average

transport distance at 0° (p-value=0.149, see Appendix II for details). The

proportion of pebbles that rolled to the end of the flume increased as the flume

angle increased (Fig. 4). The distributions of transport distances are skewed, and as

the slope steepens, the peak occurs at higher values and the range increases (Fig.

5). For the flume angles where a significant proportion of pebbles rolled to the end

(18°- 24°) the distributions flatten out and become quasi-uniform. At 27°, only four

pebbles stopped on the ramp, making it difficult to draw conclusions about the

shape of the distribution.

To mathematically describe the probability distribution of the transport

distances as a function of flume angle, let X be a random variable which takes on

the values 1 and 0, associated with success and failure respectively. The event in

which a particle stops on the flume is defined to be a success and the event in which

a particle rolls to the end of the flume is defined to be a failure. X ∼ Bernoulli(p),

with probability mass function:
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Figure 3. Average transport distance (±1σ) as a function
of slope obtained from flume experiments. Beyond 15° ,
some pebbles reached the end of the flume and therefore
an average distance could not be calculated.
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f(x | p) =


p, x = 1,

1− p, x = 0,

0, otherwise,

(2)

where p is a function of flume angle, θ, given by the logistic equation:

p(θ) =
eβ0+β1θ

1 + eβ0+β1θ
, (3)

where β0 and β1 were obtained by performing a logistic regression on the flume data

(Table 1).

Let Y be a random variable that represents the distance traveled by a

particle on the flume, given that it did not fall off the end. If the outcome of the

above Bernoulli trial is a success, Y ∼ Beta(α, β, 0, L). If the outcome of the above

Bernoulli trial is a failure, the distance traveled is “infinity.” The conditional

density function of Y is given by:

f(y | x) =


Beta(α, β, 0, L), x = 1,

“infinity,” x = 0,

0, otherwise,

(4)

where the probability density function for Beta(α, β, 0, L) is given by:

f(y | α, β, 0, L) =


[

1

L
· Γ(α + β)

Γ(α) · Γ(β)

]( y
L

)α−1(
1− y

L

)β−1

, 0 < y < L,

0, otherwise,

(5)

where L is the length of the flume and α and β are each nonlinear functions of
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Table 1. Regression Coefficients.

!0 13.511

!1 -0.614

a1 1.0E-04

a2 -0.005

a3 0.051

a4 -0.002

a5 1.428

b1 -4.0E-04

b2 0.028

b3 -0.660

b4 4.526

b5 13.193

!0 13.511 a1 1.0E-04 b1 -4.0E-04

!1 -0.614 a2 -0.005 b2 0.028

a3 0.051 b3 -0.660

a4 -0.002 b4 4.526

a5 1.428 b5 13.193

Regression coefficients, βn, for logarithmic regression on p and θ
(r2 = 0.836); an, for polynomial regression on α and θ (r2 = 0.908);
bn, for polynomial regression on β and θ (r2 = 0.979).
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flume angle, θ, of the form:

α(θ) = a1θ
4 + a2θ

3 + a3θ
2 + a4θ + a5, (6)

β(θ) = b1θ
4 + b2θ

3 + b3θ
2 + b4θ + b5, (7)

where an and bn are the coefficients of polynomial regression (Table 1). Beta

distributions were fit to the results at each flume angle setting via maximum

likelihood estimation, from which an estimate of α and β were obtained for each

flume angle (Table 2; Fig. 6). These were then plotted against flume angle and 4th

order polynomial regressions were performed to obtain estimates of the constants in

equations 6 and 7.

DISCUSSION

Model

The motion of particles down a rough surface can be characterized by the

equation for a body sliding down an inclined plane:

x =
v2
o

2g(µcosθ − sinθ)
, (8)

where x is the distance traveled and µ is the coefficient of kinetic friction (Gabet,

2003). If the roughness of the flume surface were uniform, a single value of µ could

be used to calculate transport distances according to equation 8. However, because

the surface was irregular, a spatial distribution of roughness values was needed to

model transport distances. Equation 8 can be rearranged to yield:

15



Table 2. Shape Parameters for Fitted Distributions.

Measured Fitted Measured Fitted

Mean Mean Stdv Stdv

0˚ 28.466 28.469 22.144 23.927

3˚ 23.333 32.434 14.660 16.174

6˚ 32.435 32.434 17.952 19.350

9˚ 34.606 34.604 19.403 22.474

12˚ 48.009 48.010 27.168 28.006

15˚ 62.703 62.690 35.178 35.171

Fitted Fitted Measured Fitted Measured Fitted

! " Mean Mean Stdv Stdv

0˚ 1.315 12.593 28.47 28.37 22.14 22.73

3˚ 1.962 23.346 23.33 23.26 14.66 15.64

6˚ 2.565 21.210 32.44 32.36 17.95 18.70

9˚ 2.182 16.844 34.61 34.41 19.40 21.36

12˚ 2.514 13.196 48.01 48.01 27.17 26.91

15˚ 2.594 9.742 62.70 63.09 35.18 33.48

18˚ 1.339 2.358 107.42 108.66 67.50 66.53

21˚ 1.036 1.292 135.12 133.48 83.43 81.72

24˚ 1.283 2.011 116.81 116.85 73.37 70.60

27˚ 4.054 1.816 203.38 207.17 53.09 52.91

Shape parameters α and β for beta distributions fit to experimental results via
maximum likelihood estimation.
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Figure 6. Example of a beta distribution fit to experimental results.
The solid line represents the empirical density function for flume
results at 15° and the dashed line represents the density function of
the beta distribution fitted to 15° via maximum likelihood
estimation.
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µ̄ =
v2
o

2gxcosθ
+ tanθ, (9)

where µ̄ , a friction coefficient spatially averaged over the distance x, can be

calculated from each measured transport distance to create a distribution of µ̄

values.

The 812 measurements of the flume relief characterize the roughness of the

surface in the experiments; however, these values are not necessarily transferable to

other situations. To create a general approach that can be used in future studies,

and to make the measured roughness of the flume unitless (and thus dimensionally

equivalent to a coefficient of friction), the values of surface roughness of the flume

were divided by the diameter of the transported pebbles (1 cm) to create a

distribution of relative roughness values. Because both the relative roughness values

and the µ̄ values from the 0°-angle experiments follow exponential distributions

(Fig. 7), the distribution of the former could be mapped onto the latter. The

transport distances from the experiments at 0° were used because, at this low angle,

the pebbles bounced the least and therefore spent the most time in contact with the

floor of the flume, making it the best distribution to characterize the flume surface.

Converting the relative roughness values to µ values was accomplished by

transforming the mean value of the relative roughness distribution into that of the

coefficient of kinetic friction distribution by multiplying by the ratio of the mean of

the coefficients of kinetic friction at 0° and the mean of the relative roughness

values. The minimum of the coefficient of kinetic friction values was then added to

the result. The result of this transformation is a distribution of µ values that

characterizes the roughness of the flume and that can be used in a numerical model

to simulate particle transport down a rough surface.
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A computer model was developed (see Appendix I) to approximate the

physics of a particle sliding and bouncing down a rough surface. If the experimental

results are reproduced, then this method can be used to model the evolution of

entire hillslopes. The model simulates a particle with an initial velocity of 0.7 m/s

traveling down a rough surface that is 3-m-long. The distance traveled, x, is

calculated according to:

x = v∆t, (10)

where v is velocity and ∆t is the time step (s). The length of the time step was

adjusted down until the model fit the experimental results. The velocity is updated

at each time step according to:

v = c(vo + a∆t), (11)

where c is a coefficient of restitution, with values between 0 and 1, that accounts for

energy lost during collisions of the particle with the surface. The acceleration, a, is

calculated with:

a = g(sinθ − µcosθ). (12)

At each time step, a value for µ is randomly chosen from the probability

distribution derived earlier (Fig. 7) based on its location. The particle is advanced,

according to equations 10-12, until its velocity is calculated to be a non-positive

number or its total transport distance exceeds 3 m (Fig. 8).

Comparisons

Model results are compared to the results from the flume experiments in

20



Figure 8. Example run of model output for 3° , 12° , 21° , and 30° slopes.
Diagonal lines represent modeled flume surface. Shaded circles represent
particles that have stopped on the modeled flume surface and X’s
represent particles that reached the end.
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Table 3 and Figure 5. At a significance level of α = 0.05, there was a difference

between 6 of the means of measured transport distances and their corresponding

means of modeled transport distances. The difference in mean transport distances

ranged from 18% to 63% at the slopes of 0°, 3°, 6°, 15°, 18°, and 24°. At a

significance level of α = 0.05, none of the differences in sample proportions of the

number of particles that rolled to the end of the flume are significant.

The model is scale-independent. It currently runs for a particle size of 1 cm,

but by scaling the distribution of coefficients of kinetic friction values by the

appropriate factor, smaller or larger particles could be modeled. A smaller particle

would experience more resistance from the flume surface and would therefore travel

shorter distances, on average. A larger particle would experience less resistance from

the flume surface and would therefore travel farther, on average.

Currently the model selects from a roughly exponential distribution of

coefficient of kinetic friction values (Fig. 7), thus, on average, smaller values of µ are

chosen over larger ones. If a small value for the coefficient of kinetic friction is

selected, the particle will travel farther compared to when a larger value for the

coefficient of kinetic friction is chosen. If the model were instead selecting from a

different distribution of coefficient of kinetic friction values, the results would likely

be different. For example, if the model were selecting from a normal distribution,

larger values of µ would be selected more often, and thus, on the average, the

particles would not travel as far.

The results of the experiments of Roering (2004) suggested that the travel

distance of particles near the surface is best characterized probabilistically, which

was the case in this study (Fig. 5). Given the probabilistic nature of travel

distances of particles on an inclined surface, one would not expect the modeled

results to match the experimental results perfectly. Nevertheless, the model is able
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Table 3. Comparison of Experimental and Modeled Results.

Flume angle (˚) Sample mean
± s.e. (cm)

P-value from
Mann-Whitney
U test †

Proportion
rolled to end
± s.e. (%)

P-value from
Fisher's exact
test †

0 Measured 28.5 ± 2.2 2.36e-09 * 0 1

Modeled 10.7 ± 0.6 0

3 Measured 23.3 ± 1.5 1.75 e-04 * 0 1

Modeled 15.4 ± 0.7 0

6 Measured 32.4 ± 1.8 1.39 e-03 * 0 1

Modeled 24.0 ± 0.7 0

9 Measured 34.6 ± 1.9 0.589 0 1

Modeled 32.4 ± 1.4 0

12 Measured 48.0 ± 2.7 0.755 0 1

Modeled 48.5 ± 3.1 0

15 Measured 62.7 ± 3.5 0.0155 * 0 1

Modeled 87.1 ± 5.4 1 ± 1

18 Measured 107.4 ± 7.0 0.0125 * 8 ± 3 0.126

Modeled 126.2 ± 6.0 16 ± 4

21 Measured 135.1 ± 11.0 0.371 42 ± 5 0.669

Modeled 149.2 ± 8.5 46 ± 5

24 Measured 116.8 ± 13.9 0.0116* 72 ± 5 0.874

Modeled 159.0 ± 7.6 74 ± 4

27 Measured 203.4 ± 26.5 0.179 96 ± 2 0.164

Modeled 155.0 ± 19.9 90 ± 3

30 Measured N/A § 100 0.246

Modeled 163.7 ± 15.6 97 ± 2

Summary table of measured and modeled transport distances for 0 through 30 degrees.
Average distances traveled at each slope are given along with their standard deviation.
The p-values from the Mann-Whitney U test for detecting a location shift are reported
for each slope. The sample proportions of particles that rolled to the end of the flume,
or past 3 m in the case of the model, are given along with their standard deviations.
P-values are also reported for Fisher’s exact test for difference in population proportions.
* There is a difference in sample means at significance level α = 0.05.
§ All 100 pebbles rolled to the end of the flume.
† See Appendix II for details.
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to reproduce the general shapes of the distributions of transport distances (Fig. 5),

some of the means perfectly (Table 3), and others with a percent difference that

ranges from 18-63%. The model is also able to reproduce the proportion of pebbles

that roll to the end of the flume perfectly (Table 3). Thus, the model is able to

reproduce the experimental results reasonably well, and it fulfills the other goals of

the study in that it (1) depends on roughness and slope, (2) is based on the

essential physics of the problem, and (3) is parsimonious.

The results of the experiments show that the transport distances of particles

due to dry ravel do not have an exponential distribution (Fig. 5), as was used in the

model of Furbish and Haff (2010) as a general starting point for all types of particle

transport on hillslopes. The data confirm the hypothesis of Furbish and Haff (2010)

that different transport processes and environments exhibit different types of

characteristic distributions that depend on both gradient and surface roughness.

Furbish and Haff (2010) proposed that sediment characteristics were also likely to

be involved. The current model takes the size of the particles into account by

scaling the roughness values according to the particle size, which were subsequently

trasformed into µ values, but the kinematic equations 10-12 used to model the

motion of particles in this experiment are independent of particle mass and shape.

A promising starting point for future study would be to incorporate additional

parameters for particle characteristics, such as sphericity and roundness, into the

model that was developed for this study.

CONCLUSIONS

Experiments were performed in which the travel distance of pebbles released

into a dry ravel flume was measured. The results were used to create probability
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distributions that characterize the travel distance of particles down a rough surface.

A numerical model for particles traveling down a rough surface was then created,

and the results produced by the model were compared with the results of the flume

experiments. Since the model was able to successfully reproduce the experimental

results, it has the potential to be used with inputs measured from the field to model

the evolution of entire hillslopes. The sediment flux produced by the model could be

calculated and the parameters adjusted to bring the sediment flux rate into

agreement with rates observed in nature in an attempt to produce hillslopes with

planar mid-slope sections.
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APPENDIX I: MATLAB CODE

% Discrete element model for tracking one particle
% Created by Morgan Mendoza
% Last modified June 2, 2010

clear all
close all

% Assign constants
TS = 0.1; % Time step (sec)
g = 9.81; % Acceleration due to gravity (m/s2)
length = 3; % Length of the ramp (m)

% Initialize vectors and matrices
results = zeros(100,11); % Results storage
sin theta previous = zeros(max angle index,1); % Used for graphics
cos theta previous = zeros(max angle index,1); % Used for graphics
max angle index = 10;

% Load matrix with mu values and calculate dimensions
load -ascii roughness new 0.txt
mymodelmunew = roughness new 0;
[nrow,ncol] = size(mymodelmunew);

% *******************MAIN LOOP*******************

for angle index = 0 : max angle index

% Ramp angle in increments of 3 degrees
theta = 3 ∗ angle index;

% Convert to radians, used in calculations
sin theta = sin(theta ∗ pi/180);
cos theta = cos(theta ∗ pi/180);

% Used for graphics
sin theta previous(angle index+1, 1) = sin theta;
cos theta previous(angle index+1, 1) = cos theta;

% Initialize the figure
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% Plot the ramp
figure(1);
xlabel(‘X (m)’);
ylabel(‘Elevation (m)’);
x patch = [0 length ∗ cos theta 0];
y patch = [length ∗ sin theta 0 0];
f = patch(x patch, y patch, ‘b’);
axis([0 3 0 2.5]);

% Keep lines from old slope setting present on current slope setting
for next slope = 1 : angle index

x patch = [0 length ∗ cos theta previous(next slope)];
y patch = [length ∗ sin theta previous(next slope) 0];
h = patch(x patch, y patch,‘b’);

end

hold on

% 100 pebble runs
for run index = 1:100

old velocity = 0.7;
x position = 0; % This is where the rock starts
z position = length ∗ sin theta; % This is the top of the ramp
ramp position = 0; % Start at top of ramp
p = plot(x position, length ∗ sin theta, ‘o’, ‘markeredgecolor’, ‘k’, ...

‘markerfacecolor’, ‘r’, ‘erasemode’, ‘xor’);
pause(.05)
x = 1; % Initially mu is selected from the values at the top of the ramp

% Keep going while the rock is still moving
while old velocity > 0

% Select mu for new time step
if x <= 0

x = 1;
end

temp = ceil(nrow ∗ rand); % Randomly selects an index value
mu = mymodelmunew(temp, x);

% Calculate velocity and distance travelled
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new velocity = g ∗ TS ∗ (sin theta - mu ∗ cos theta) + old velocity;
if new velocity < 0

new velocity = 0;
break

end

distance = new velocity ∗ TS;

% Calculate x and z components of distance
x distance = cos theta ∗ distance;
z distance = sin theta ∗ distance;

% Add distance travelled in this time interval to present location
x position = x position + x distance;
z position = z position - z distance;

% Keep track of distance traveled and select from appropriate mu
ramp position = ramp position + distance;
x = ceil(ramp position/.10);
if x >= 29

x = ceil(rand ∗ 28);
end

% Change the slope and z position when the rock leaves the ramp
if ramp position > length

ramp position = -1; % Infinity indicator
new velocity = 0;
set(p, ‘Xdata’, min(300, x position), ‘Ydata’, 0);
set(p, ‘Marker’, ‘x’,‘MarkerSize’, 15, ‘markerfacecolor’, ‘g’,...

‘markeredgecolor’, ‘k’);
pause(.05)

else % Plot the position of the rock
set(p, ‘Xdata’, x position, ‘Ydata’, z position);
pause(0.1)

end

% Assign starting velocity for next time step
old velocity = c ∗ new velocity;

end % End while old velocity > 0

% Record results
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results(run index, angle index+1) = ramp position;

end % End run index

end % End angle index

31



APPENDIX II: STATISTICAL NOTES

The statistical computing program, R, was used for all statistical

calculations. Wackerly et al. (2008) was used for interpretations and explanations of

p-values and the Mann-Whitney U test, and Fisher (1922) was used for Fisher’s

exact test.

Interpreting P-Values

P-values are the probability of observing an event similar to what was

observed, or more extreme, given that the null hypothesis is true. In the case of

comparing the sample means of the distance traveled, the p-value represents the

probability of observing a difference in the sample means as great as or greater than

what was observed, given that the samples were taken from an identical population.

In the case of comparing the sample proportions, the p-value represents the

probability of observing a difference in the sample proportions as great as or greater

than what was observed, given that the two samples are coming from the same

population. A small p-value would indicate that it is unlikely that the two samples

are coming from the same population. In the instances where the difference in the

sample proportions are zero, the p-values are 1 because there is nothing less extreme

than seeing no difference in the sample proportions, and thus, the probability of

seeing a difference as great as was observed, or greater, would have to be 1.

Mann-Whitney U Test

The Mann-Whitney U test is a non-parametric test that can be performed
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when there is reason to believe that the data in question are not normally

distributed. Both the Z-test and t-test require that normality assumptions be made.

However, if these assumptions are violated, then the resultant p-value will not be

accurate. The data from the flume experiments are not normally distributed (Fig.

5) and thus neither a Z-test, nor a t-test can be used to test for a difference in

population means. The Mann-Whitney U test is commonly applied when there is

doubt surrounding the validity of assuming normality because it does not require

that any normality assumptions be made, only that the data are independent and

identically distributed. The null hypothesis is that the data are coming from the

same distribution with no location shift. No assumptions are made about the type

or shape of the distribution. The alternative hypothesis is that the data are coming

from the same distribution, but that the distributions are shifted in location. Even

in cases where a Z-test or t-test is valid, the efficiency of the Mann-Whitney U test

is almost as good as the Z-test and t-test. The efficiency of the Mann-Whitney U

test may be much higher in cases where the Z-test or t-test cannot be performed.

Fisher’s Exact Test

Fisher’s exact test uses exact binomial probabilities to test whether two

populations have the same probability of an event occurring. The null hypothesis is

that the odds ratio is 1, implying that the chance of observing an event in

population 1 is the same as in population 2. Fisher’s exact test was used rather

than the simpler Z-test or Pearson’s χ2 test because neither test would have been

valid in this instance. The Z-test is not valid when n1p1, n1(1− p1), n2p2, or

n2(1− p2) is less than 5, where n1 and n2 are the sizes of samples 1 and 2 and p1

and p2 are the probability of success in populations 1 and 2. These calculations are
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less than 5 in the instances where the observed sample proportions are close to zero

or one. Pearson’s χ2 test breaks down when any of the expected cell counts in a 2x2

contingency table are less than 5, which occurs when the sample proportions are

close to 0 or 1. Fisher’s exact test avoids these issues by calculating exact binomial

probabilities and can be used regardless of sample characteristics. Fisher’s exact

test is more computationally intensive than either the Z-test or Pearson’s χ2 test,

but with modern computers, Fisher’s exact test can be performed quickly. Fisher’s

exact test does require fixed margins, which are not achieved in this case and indeed

are rarely achieved in practice. However the fact that the margins are not fixed

mainly affects the calculations of the power of the test and not the p-value.

Therefore, even though all of the assumptions of Fisher’s exact test are not met, it

can still be used and its resultant p-value can be trusted.
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