
San Jose State University
SJSU ScholarWorks

Master's Theses Master's Theses and Graduate Research

Fall 2009

Design and implementation of embedded adaptive
controller using ARM processor.
Hoan The Nguyen
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_theses

This Thesis is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU ScholarWorks. It has been accepted for
inclusion in Master's Theses by an authorized administrator of SJSU ScholarWorks. For more information, please contact scholarworks@sjsu.edu.

Recommended Citation
Nguyen, Hoan The, "Design and implementation of embedded adaptive controller using ARM processor." (2009). Master's Theses.
3991.
DOI: https://doi.org/10.31979/etd.uff7-zkwd
https://scholarworks.sjsu.edu/etd_theses/3991

https://scholarworks.sjsu.edu?utm_source=scholarworks.sjsu.edu%2Fetd_theses%2F3991&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_theses?utm_source=scholarworks.sjsu.edu%2Fetd_theses%2F3991&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd?utm_source=scholarworks.sjsu.edu%2Fetd_theses%2F3991&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_theses?utm_source=scholarworks.sjsu.edu%2Fetd_theses%2F3991&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_theses/3991?utm_source=scholarworks.sjsu.edu%2Fetd_theses%2F3991&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

DESIGN AND IMPLEMENTATION OF EMBEDDED ADAPTIVE CONTROLLER

USING ARM PROCESSOR

A Thesis

Presented to

The Faculty of the Department of Computer Engineering

San Jose State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

by

Hoan The Nguyen

December 2009

UMI Number: 1484326

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

UMT
Dissertation Publishing

UMI 1484326
Copyright 2010 by ProQuest LLC.

All rights reserved. This edition of the work is protected against
unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

©2009

Hoan The Nguyen

ALL RIGHTS RESERVED

SAN JOSE STATE UNIVERSITY

The Undersigned Thesis Committee Approves the Thesis Titled

DESIGN AND IMPLEMENTATION OF EMBEDDED ADAPTIVE
CONTROLLER USING ARM PROCESSOR

by
Hoan The Nguyen

APPROVED FOR THE DEPARTMENT OF COMPUTER ENGINEERING

—r ' "~ '—^ yy '

Dr. Donald Hungry Department of Computer Engineering Date

Dr. Lee Chang, Department of Computer Engineering Date

Dr. Xiao Su, Department of Computer Engineering Date

APPROVED FOR THE UNIVERSITY
C

. ft

Associate Dean Office of Graduate Studies and Research Date

ABSTRACT

DESIGN AND IMPLEMENTATION OF EMBEDDED ADAPTIVE
CONTROLLER USING ARM PROCESSOR

by Hoan The Nguyen

This thesis is concerned with development of embedded adaptive controllers for

industrial applications. Many industrial processes present challenging control problems

such as high nonlinearity, time-varying dynamic behaviors, and unpredictable external

disturbances. Conventional controllers are too limited to successfully resolve these

problems. Therefore, the adaptive control strategy, an advanced control theory, is applied

to overcome deficiencies of the conventional controllers.

Through the thesis, an embedded adaptive controller is designed and implemented

for the specific case study, a gasoline-refining plant. The adaptive controller design is

initially achieved in continuous-time space and then converted to discrete-time space by

using z- transform. It is finally implemented on an advanced reduced instruction set

computer machine (ARM) processor. A plant simulator written in C++ executes

functions of the gasoline-refining plant. Therefore, an integrated testing environment is

developed in order that the embedded adaptive controller can interact in real-time fashion

with the plant simulator located in a remote computer. In all system tests, the embedded

adaptive controller successfully controlled the remote plant simulator and fully satisfied

all control objectives.

ACKNOWLEDGMENTS

I wish to express my gratitude to my advisor Dr. Donald Hung. I am most

grateful for his invaluable advice and for the freedom he allowed me in conducting my

research. I admire the illuminating inspiration of his ideas and his ability to motivate

people.

I would like to thank Dr. Lee Chang and Dr. Xiao Su for serving as the members

of my thesis committee.

v

TABLE OF CONTENTS

Page

List of Tables xiv

List of Figures xvi

List of Abbreviations xxi

List of Symbols xxii

Chapter 1 Introduction 1

1.1. Background 1

1.2. Statement of the Problem 2

1.3. Objectives of the Study 3

1.4. Scope of the Study 4

1.5. Methodology 5

Chapter 2 Literature Review 7

2.1. Gasoline Refinery 7

2.2. Distillation Equipment 7

2.3. Distillation Operation Principles 9

2.4. Methods of Distillation Column Control 10

2.5. Principles of Adaptive Control 11

2.6. Adaptive Schemes 13

2.6.1. Gain Scheduling 13

2.6.2. Model Reference Adaptive Control Systems 14

2.7. Lyapunov Stability Theory 14

vi

2.7.1. Definition of Lyapunov Stability 15

2.7.2. Lyapunov Stability Theorem 16

2.7.3. Lyapunov Function 16

2.8. ARM Processor 16

2.8.1. System Architecture of ARM Development Board 17

2.8.2. Memory Organization 19

Chapter 3 Plant Modeling and Simulation 20

3.1. Introduction 20

3.2. Process Description 20

3.3. Process Calculation 21

3.4. Process Description and Control Scheme 22

3.5. Plant Modeling 22

3.6. Plant Simulation 24

Chapter 4 Analog Controller Design 26

4.1. Introduction 26

4.2. System Architecture 26

4.3. Construction of the Reference Model 27

4.3.1. Stability Test 30

4.3.2. Controllability and Observability Test 30

4.4. Analog Controller Synthesis 31

4.4.1. Plant 31

4.4.2. Reference Model 32

vn

4.4.3. Feedback Control Loop 32

4.4.4. Compatibility Condition 33

4.4.5. Error Equation 35

4.4.6. Adaptation Law 36

4.4.7. Stability of the Analog Controller 37

4.5. Analog Controller Simulation 38

4.5.1. Simulation Program 38

4.5.2. Simulation Result 39

4.5.3. Error Reduction 42

Chapter 5 Digital Controller Design 43

5.1. Introduction 43

5.2. Digital Controller Synthesis 44

5.2.1. Plant Model 44

5.2.2. Reference Model 45

5.2.3. Linear Feedback Controller 45

5.2.4. Compatibility Condition 46

5.2.5. Adaptive Mechanism 47

Chapter 6 Simulation of the Adaptive Digital Controller 50

6.1. Introduction 50

6.2. Dynamic Simulation Using MATLAB 50

6.2.1. Simulation Program 50

6.2.2. Error Calculation 51

viii

6.2.3. MATLAB Simulation Result 52

6.3. C++ Simulation Project 55

6.3.1. Plant Model Class 55

6.3.2. Reference Model Class 57

6.3.3. Linear Control Class 58

6.3.4. Comparator Class 59

6.3.5. Adaptive Mechanism Class 60

6.3.6. Create Makefile and Build Project 62

6.3.7. C++ Simulation Result 62

Chapter 7 Implementation of the Embedded Adaptive Controller 66

7.1. Introduction 66

7.1.1. Embedded Adaptive Controller Using ARM Processor 66

7.1.2. In-Hardware Validation Scheme 67

7.1.3. System Architecture and Operations 68

7.1.4. Kernel Image of the ARM Board 72

7.2. Common Database 73

7.3. Plant Simulator 74

7.4. Development of the Main Testing Form in HTML 75

7.5. Adaptive Mechanism Program 77

7.5.1. CGI Program 78

7.5.2. NFS Server Setup 82

7.6. Building the Kernel Image 84

ix

7.6.1. NFS Client Setup 84

7.6.2. Enabling the CGI Protocol 87

7.6.3. Enabling the Boa Web Server 89

7.7. Testing 93

7.7.1. Test Procedure 93

7.7.2. Test Results 98

Chapter 8 Conclusion and Future Work 104

8.1. Conclusion 104

8.2. Future Work 105

Appendix A: Distillation Control Techniques 109

A.l. Column Pressure Control 109

A.l.l . Coolant Manipulation 109

A.1.2. Vent-bleed 110

A.2. Column Level Control 111

A.3. Methods of Distillation Column Control 113

A.3.1. Degrees of Freedom of Distillation Process 113

A.3.2. Control Structures 114

A.3.3. Energy Balance Structure 116

A.3.4. Material Balance Structure 117

Appendix B: Process Calculation 119

B.l. Basic Engineering Data 119

B.2. Distillation Process Calculation 122

x

B.2.1. Equilibrium Flash Vaporization Curves 122

B.2.2. Yield of Fractions 123

B.2.3. Operating Pressure 124

B.3. Calculation for the Feed Section 124

B.3.1. Description 124

B.3.2. Calculation 125

B.4. Calculation for the Stripping Section 126

B.4.1. Description 126

B.4.2. Calculation 127

B.5. Calculation for the Rectifying Section 128

B.5.1. Description 128

B.5.2. Calculation 129

B.6. Calculation Results 131

B.6.1. Raw Gasoline Property 131

B.6.2. Main Stream Property 131

B.7. Process Description 132

B.7.1. Simplified Process Flow Diagram 132

B.7.2. Distillation Column 133

B.7.3. Blending System and Product Distribution 134

B.7.4. Feed Control 135

B.7.5. Top Column Section 136

B.7.6. Bottom Section 136

xi

Appendix C: Mathematical Model 137

C.l. Introduction 137

C.2. Dynamic Study of Distillation Process 138

C.2.1. Generic Trays 138

C.2.2. Feed Tray 140

C.2.3. Top Section 141

C.2.4. Bottom Section 143

C.3. Mathematical Model of Distillation Process 145

C.4. Simplified Model 145

C.5. Mathematical Model of the Gasoline Refinery 147

C.5.1. Relative Volatility 147

C.5.2. Latent Heat and Boilup 147

C.5.3. Liquid Holdups on Tray and Column Base 148

C.5.4. Liquid Holdup in Reflux Drum 150

C.6. Basic Mathematical Model of the Plant 150

Appendix D: Dynamic Simulation 154

D.l. Modular Decomposition of the Column 154

D.2. Simulation with MATLAB Simulink 155

Appendix E: Construction of Reference Model 161

E.l. Model Construction 161

E.2. Stability Test 167

xii

Appendix F: Source Code 169

F.l. Adaptive Mechanism 169

F.2. Plant Model 170

F.3. Reference Model 171

F.4. Linear Controller 172

F.5. Comparator 173

F.6. Controlled Output 174

F.7. Reference Outputs 175

F.8. CGI Program 175

Appendix G: MATLAB/C++ Simulation Output Files 198

G.l. State Variables Files 198

G.2. Reference and Controlled Outputs 202

G.3. Plant Error 206

G.4. Adaptive Gains 210

Appendix H: Hardware Validation Output Files 214

H.l. Validation Output Files of State Variables 214

H.2. Reference and Controlled Outputs 218

H.3. Plant Error 222

H.4. Adaptive Gains 225

References 230

xiii

LIST OF TABLES

Table 2.1. Main parameters of a distillation column 9

Table 2.2. Main features of the ARM-7 development board 18

Table 3.1. Main streams of the plant 21

Table 3.2. Steady-state compositions of the plant 25

Table 4.1. Plant output errors for different adaptation rates 42

Table 7.1. Structured data files 73

Table 7.2. Some key features of an HTML form 76

Table 7.3. Structured output data files 98

Table 7.4. Output data of state variables 99

Table 7.5. Comparison result between the embedded and software models 102

Table A. 1. Manipulated variables and controlled variables of a distillation column. .114

Table A.2. Typical column control structures 115

Table B.l. Condensate composition analyzed by gas chromatography 119

Table B.2. Distillation data 120

Table B.3. Gasoline quality requirement 121

Table B.4. Relationship between ASTM, TBP, and EFV 122

Table B.5. Material balances for the feed section 126

Table B.6. Material and energy balances of the stripping section 128

Table B.7. Material and energy balances around the boundary (A) 130

Table B.8. ASTM distillation curve of the raw gasoline 131

Table B.9. Main streams of the plant 132

xiv

Table C.l. Parameters of a generic tray 138

Table G.l. Simulation result of state variables 198

Table G.2. Simulation result of reference and controlled outputs 202

Table G.3. Simulation result of plant errors 206

Table G.4. Simulation result of adaptive gains 210

Table H.l. Validation result of state variables 214

Table H.2. Simulation result of reference and controlled outputs 218

Table H.3. Simulation result of plant errors 222

Table H.4. Simulation result of adaptive gains 226

xv

LIST OF FIGURES

Figure 2.1. Distillation column 8

Figure 2.2. Contacting between vapor and liquid phases at a tray 9

Figure 2.3. Energy balance control structure 10

Figure 2.4. Block diagram of an adaptive system 12

Figure 2.5. Procedure for selection of an appropriate adaptive scheme 12

Figure 2.6. Block diagram of a system with gain scheduling 13

Figure 2.7. Block diagram of a model reference adaptive control scheme 14

Figure 2.8. Illustration of Lyapunov stability 15

Figure 2.9. System block diagram of the ARM development board 17

Figure 2.10. Memory map 19

Figure 3.1. Simplified diagram of the condensate distillation 20

Figure 3.2. Process flow diagram of the gasoline refinery 22

Figure 3.3. Vapor liquid equilibrium relationship 24

Figure 3.4. Simulation result of the concentration on each stage 25

Figure 4.1. System architecture of the adaptive control system 26

Figure 4.2. Two-input two-output representation for the plant 28

Figure 4.3. Bode responses of two models 29

Figure 4.4. Simulation program for the analog adaptive controller 38

Figure 4.5. External disturbances 40

Figure 4.6. Reference states and plant states 40

Figure 4.7. Controlled outputs and reference outputs 41

xvi

Figure 4.8. Plot of plant output errors during simulation 41

Figure 5.1. Input and output signals of ZOH 43

Figure 5.2. Block diagram of a sampled-data system 43

Figure 5.3. Logic diagram of the adaptation law 48

Figure 6.1. Simulation program for the digital adaptive system 51

Figure 6.2. External disturbances 52

Figure 6.3. Reference states and plant states 53

Figure 6.4. Controlled outputs and reference outputs 53

Figure 6.5. Error plots 54

Figure 6.6. Plant class's header file 56

Figure 6.7. Reference model class's header file 57

Figure 6.8. Linear control class's header file 59

Figure 6.9. Comparator class's header file 60

Figure 6.10. Adaptive mechanism class's header file 61

Figure 6.11. Running the "adaptivecontrol" executive file 63

Figure 6.12. State variables 63

Figure 6.13. Controlled outputs and reference outputs 64

Figure 6.14. Plant output errors 64

Figure 7.1. Elementary block diagram of the system 66

Figure 7.2. In-hardware validation scheme 67

Figure 7.3. Integrated testing environment 68

Figure 7.4. NFS client/server interaction for mounting a network file system 69

xvii

Figure 7.5. Sequence diagram 71

Figure 7.6. Compile and build the plant simulator in a console terminal 75

Figure 7.7. Main testing form in HTML 76

Figure 7.8. Pseudo code of the adaptive mechanism program 78

Figure 7.9. Flow chart of the CGI program 80

Figure 7.10. Pseudo code of the CGI program 82

Figure 7.11. Enable NFS server for Ubuntu machine 83

Figure 7.12. Check rpc daemon status 83

Figure 7.13. Select network file systems 84

Figure 7.14. Select NFS supports 85

Figure 7.15. Select the "mount" option 85

Figure 7.16. Select the "umount" option 86

Figure 7.17. Modifications for Busybox Makefile 87

Figure 7.18. Start "xinetd" for Linux Ubuntu 91

Figure 7.19. Manually load the kernel image to the ARM board 92

Figure 7.20. Manually run the kernel image 92

Figure 7.21. Process status 93

Figure 7.22. Mount network files for the NFS client 94

Figure 7.23. Ping ARM board from the Linux machine 95

Figure 7.24. Ping the Linux machine from the ARM board 95

Figure 7.25. Open the main page of Boa web server 96

Figure 7.26. Start the plant simulator in a Linux machine 97

xviii

Figure 7.27. Testing result displayed on the web browser 97

Figure 7.28. Testing result displayed on the plant simulator's monitor 98

Figure 7.29. Variable states during simulation of the embedded adaptive controller.... 101

Figure 9.1. Block diagram of the experimental pilot plant 106

Figure 9.2. Adaptive mechanism programmed in a PLC 107

Figure 9.3. Integrated testing environment for SoCs and other digital systems 108

Figure A.l. Column pressure control using coolant manipulation 110

Figure A.2. Column pressure control using vent bleed I l l

Figure A.3. Some typical types of reboiler 112

Figure A.4. Energy balance structure 116

Figure A.5. D-V control structure 117

Figure A.6. L-B control structure 118

Figure B.l. Yield curve 124

Figure B.2. Equilibrium phase flows at the feed section 125

Figure B.3. Equilibrium phase flows at the stripping section 127

Figure B.4. Equilibrium phase flows at the rectifying section 129

Figure B.5. Simplified process flow diagram of the gasoline plant 133

Figure B.6. A local control devices for feed pumps 136

Figure C.l. A generic tray 138

Figure C.2. Variation of liquid depth across a generic tray 139

Figure C.3. Feed section 140

Figure C.4. Top section 141

xix

Figure C.5. Bottom section 143

Figure D.l. Modular decomposition scheme for the distillation column 154

Figure D.2. Hierarchical structure of the simulation program 155

Figure D.3. Main program in MATLAB Simulink 155

Figure D.4. Module of the rectifying section 156

Figure D.5. Module of the stripping section 157

Figure D.6. Module of the column base and reboiler 158

Figure D.7. Module of a generic tray 158

Figure D.8. Module of the feed tray 159

Figure D.9. Module of the eighth tray 159

Figure D.10. Module of the condenser and reflux drum 160

Figure E.l. Model of a generic tray 161

xx

LIST OF ABBREVIATIONS

API

ARM

ASTM

CGI

DCS

EFV

LPG

MIMO

MON

MRAC

MTBE

NFS

PC

PID

PLC

RISC

RON

RVP

SISO

TBP

ZOH

American Petroleum Institute

Advanced RISC machine

American Society for Testing and Materials

Common gateway interface

Distributed control system

Equilibrium flash vaporization

Liquefied petroleum gas

Multi-input multi-output

Motor octane number

Model-reference adaptive control

Methyl tert-butyl ether

Network file system

Personal computer

Proportional integral differential

Programmable logic controller

Reduced instruction set computer

Research octane number

Reid vapor pressure

Single-input single-output

True boiling point

Zero-order hold

LIST OF SYMBOLS

A State matrix

B Input matrix

C Output matrix

e State error

L Feedback matrix

M Feedforward matrix

u Control signal

x State variable

y Controlled output

Greek Symbols

a Relative volatility

y Adaptation rate

0 Adaptive gain

Subscript

B Bottom product

D Distillate or overhead product

F Feed

m Reference model

r Reduced-order model

xxii

CHAPTER 1

INTRODUCTION

1.1. Background

We have seen that the price of microprocessors has dropped significantly since

their creation in the early 1970s. As a consequence, microprocessors have increasingly

become the main part of many control systems. In the 1980s, microcontrollers were

developed due to the integration of microprocessors and other peripheral devices in the

same chip. Microcontrollers have widely increased applications of embedded systems

due to their low cost and high performance. Therefore, embedded controllers using

microprocessors such as ARM processors are aspired to develop for robotics and

industrial applications.

ARM processor has a 32-bit RISC architecture invented by ARM Company.

There are various ARM processors; however, they are based on a common architecture

and provide high performance, low power consumption, and reduced cost. They are

licensed by most of leading semiconductor manufacturers, who have shipped more than

ten billion ARM processors since the company was established in 1990 [1],

In this study, an embedded adaptive controller is designed and implemented for a

gasoline refinery. In the petroleum refining industry, distillation is the most popular and

important process. Crude oil, a mixture of thousands of organic substances, is refined by

the distillation process to produce a host of liquid fuels, pure chemical substances, and

petrochemicals [2]. The size of the refining industry is truly immense with the total

processing capacity of approximately 4 billion tons per year [3]. In addition, the

1

percentage of energy consumption by distillation is very high, about 40% for a typical

chemical plant [4]. Humphrey [5] estimates that, with advanced control strategy, there is

potential for an average 15% reduction in the energy consumption by distillation in the

United States' refining industry. Therefore, enhancement of distillation control would

result in major economic improvement for petroleum refineries.

1.2. Statement of the Problem

Distillation processes are highly multivariable and nonlinear. The dynamic

analysis and simulation of a distillation process are thus very complicated. Its theoretical

model can contain several hundreds of state variables; however, in practice, the amount

of information on the process is usually insufficient. Therefore, reduced state space

models should be employed [6].

Distillation processes are multiple-input multiple-output (MIMO) systems.

Conventional PID controllers normally employ a single-input single-output (SISO)

approach with appropriate pairings. For distillation processes, a controlled variable is

affected by many manipulated variables so that conventional controllers will have

multiple control loops. Consequently, there exists coupling, which causes serious

problems, particularly in the cases of high-purity distillation systems. De-couplers are

usually deployed to reduce the interaction between the control loops. However, the SISO

approach with pairing and de-coupling is only partially successful. Shen and Lee [7]

believe that the use of multivariable controllers such as adaptive controllers can greatly

improve the situation since they treat the MIMO process as a single system instead of

many individual subsystems.

2

Time-varying dynamic behaviors of distillation processes and the existence of

unpredictable external disturbances also present challenging control problems. If

conventional controllers such as PID controllers are used, they must be re-tuned for

different operating conditions. This task is costly, time-consuming, and even unfeasible.

Unlike conventional controllers, adaptive control systems use special adaptation

mechanisms that can self-adjust their control settings to compensate unanticipated

changes in the process or in the environment [8]. Therefore, adaptive control strategy has

been progressively applied for solving the difficult control problems [9].

There has been some research on applying adaptive control strategy to distillation

processes. For example, Nguyen and Afzulpurkar [10] propose an adaptive control

system for a natural gasoline plant; and Narenda and Annaswamy [11] suggest an

adaptive scheme for distillation column. However, most of these works focus on

continuous-time space. To implement adaptive algorithms on digital computers, they

must be discretized using z-transform.

After the embedded adaptive controller is successfully implemented, it must

interact with either a real pilot plant or a software-based plant simulator running on a

remote computer to close the control loop and allow real-time data transfer between the

plant and the controller. Therefore, an integrated testing environment must be developed

to be able to verify the controller performances.

1.3. Objectives of the Study

The structure of distillation as well as other chemical processes has become

increasingly complex due to better management of energy and raw materials. Hence, the

3

design of the control system for a complete plant has become intimately related to the

design of the process itself [12].

In this study, we design and implement the embedded adaptive controller and

plant simulator through various phases: 1) development of mathematical model; 2)

process calculation and modeling; 3) controller design in both continuous-time and

discrete spaces; and 4) hardware implementation and testing. The objectives of the study

are described as follows:

• Create adaptive algorithms for the plant using Lyapunov stability theory;

• Design adaptive controllers for the plant in both continuous-time and discrete-

time spaces;

• Create a software-based plant simulator, which executes functions of the

gasoline plant and its local auxiliaries;

• Implement the embedded adaptive controller using an ARM processor, which

fully satisfies all control objectives under different operating conditions of the

plant;

• Develop an integrated testing environment for verification of the embedded

adaptive controller.

1.4. Scope of the Study

Building a pilot plant is not feasible for this study since it is very expensive.

Hence, identification method, which requires operational data of the plant, is not

applicable. Instead, the reference model of the gasoline refinery will be developed using

mathematical method.

4

The embedded adaptive controller will be implemented on an ARM-7

development board. It will interact with the plant simulator written in C++ language on a

remote computer through an Ethernet network.

1.5. Methodology

The plant simulator, a software simulator, is created to play the roles of the

distillation column and other local auxiliaries. The embedded adaptive controller is an

adaptive mechanism that governed by an adaptation law and programmed in the ARM

kernel image. The embedded adaptive controller is thus physically an ARM processor,

residing on an ARM development board. An integrated environment is developed via an

Ethernet for testing the adaptive system. The major steps in this study are as follows:

• Study the plant dynamics and adaptive control strategy;

• Develop the mathematical model of the plant;

• Perform the plant simulation using MATLAB, a numerical computing

environment and fourth generation programming language developed by

Math works [13], to obtain the steady-state data;

• Construct the reference model of the plant using mathematical approach to

prepare for the next phase of adaptive controller design;

• Design the analog adaptive controller for the plant in continuous-time space

based on Lyapunov stability theory;

• Discretize the adaptive system using z-transform and design the digital

adaptive controller in discrete-time space;

5

• Simulate both analog and digital designs using either MATLAB or C++ and

verify their control performances;

• Implement the embedded adaptive controller on an ARM development board;

• Connect the embedded adaptive controller and the plant simulator via a local

network so that they form closed loop;

• Use network file system (NFS) technology to allow the embedded adaptive

controller and the plant simulator to have read or write access to the common

database in an NFS server.

6

CHAPTER 2

LITERATURE REVIEW

2.1. Gasoline Refinery

Petroleum refining emphasizes distillation of crude oil into various fractions. The

crude oil is heated to 370 degrees to 470 degrees Celsius and pumped into a distillation

column. The crude oil is then separated into the following major fractions: 1) naphtha; 2)

light naphtha; and 3) heavy naphtha. The naphtha or light naphtha fraction can be used

as a component of finished gasoline. The heavy naphtha needs further processing such as

catalytically reforming to become high-octane blending stock.

In this thesis, we study a gasoline refinery whose feed stream is condensate

produced from associated gas or natural gas fields. It contains fewer high-boiling

components than crude oil does. Moreover, its antiknock quality is quite low since its

composition has a large amount of straight paraffinic hydrocarbons [2]. In the gasoline

refinery, the distillation process is responsible for cutting off light components as propane

and butane to ensure the saturated vapor pressure and volatility of the gasoline product.

It will be finally blended with high octane number boosters and additives to ensure the

octane number and other quality criteria such as anti-oxidization.

2.2. Distillation Equipment

Distillation process is done in a special chemical apparatus, called distillation

column. It is made up of several parts, each of which is used to transfer heat energy or

enhance mass transfer. A typical distillation column consists of the following

7

components: 1) a vertical shell; 2) column internals such as trays; 3) a reboiler; 4) a

condenser; and 5) a reflux drum.

The reboiler provides heat for vaporizing the feed stream. The condenser is to

chill and condense overhead vapor. The reflux drum stores the condensed vapor and

recycles liquid reflux back to the column. The vertical shell covers the column internals.

A schematic of a typical distillation column with a single feed and two product streams is

shown in Figure 2.1. Main parameters of a distillation column are shown in Table 2.1.

@ RECTIFYING
SECTION

F (feed flow rate)

FEED-
cf (feed concentration)

(T) STRIPPING
SECTION

N+1

" Q n I (3) CONDENSER

rg fc\ —
coolant flaw ^ j \ s J ^

reflux flow Li ^ ::.. • . . . • • /

& i v-v. (4)REELUX DRUM
stage N+l (Q) j hA
(top toy) j DISTILLATE (OVERHEAD PRODUCT)

1 8 - D

stage f
(feed tny)

stage rc

Q
**r2 heol flow
stage 2 (J> ottam tray)

boil up roteV (/£($/$

B

© R E B O I L E R

BOTTOMS r BOTTOM PRODUCT)

Figure 2.1. Distillation column.

8

Table-2.1. Main parameters of a distillation column.

Material stream

Feed stream

Reflux stream
Overhead

Distillate stream

Return stream
Bottoms

Bottoms stream

Position

Stage f

Stage N

Reflux drum

Stage 1

Reboiler

Flow rate

F

L

D

V

B

Concentration

cF

XD

X D

XB

X B

2.3. Distillation Operation Principles

The liquid mixture is fed onto the feed tray. In normal operation, there is a certain

amount of liquid on each plate. The reboiler is used to supply energy for generating

vapor, which moves upward and passes through the liquid on each tray. The intimate

contact between liquid and vapor is usually accomplished by using bubble caps as shown

in Figure 2.2.

Liquid phase

Stage it

(Trav >i-l)

'.•?. '.'.'!'•••" . .

m^u
- Bubble cap

' Continuous contact
between ascending vapor
and descending liquid

Figure 2.2. Contacting between vapor and liquid phases at a tray.

9

The overhead vapor, upon leaving the top plate, enters the condenser where it is

condensed. The liquid is then collected in the reflux drum from which the reflux stream

and the top product stream are withdrawn. The top product is also called distillate.

The liquid that leaves the bottom tray of the column enters the reboiler, where it is

vaporized. The produced vapor is forced to flow back up through the column; and the

liquid withdrawn from the reboiler is called bottoms or bottom product.

2.4. Methods of Distillation Column Control

Distillation process has two degrees of freedom; therefore, there are various

control structures. One of the most common control structures is energy balance

structure as shown in Figure 2.3. Refer to Appendix A for more details on control

structures.

I |—0—I I

Figure 2.3. Energy balance control structure.

10

The energy balance structure or L—V structure can be considered the standard

control structure for dual composition control. In Figure 2.3, the reflux flow rate L and

the boilup manipulator V are used to control the primary outputs associated with the

product specifications. The secondary outputs, which are the liquid holdups in the reflux

drum and in the column base, are usually controlled by distillate flow rate D and the

bottoms flow rate B.

2.5. Principles of Adaptive Control

An adaptive control system can synthesize adaptive gains in such a way as to

compensate for variations in the characteristics of the process it controls. There are many

types of adaptive control systems, which differ only in the way the controller parameters

are adjusted [12].

Adaptive controllers are needed for chemical and petroleum processes since most

of them are nonlinear and nonstationary. The linearized models that are used to design

linear controllers depend on particular steady states. When their desired steady-state

operation has variation, the best values of the controller parameters will change. In

addition, their time-varying dynamic characteristics usually cause deterioration in the

performance of the linear controller. Therefore, adaptation of the controller parameters is

required.

Stephanopoulos [12] defines the objective of an adaptation law. It must guide the

adaptive mechanism to the best adjustment of the controller parameters rather than keep

the controlled variables at the specified set points, which can be accomplished by

conventional control loops.

11

An adaptive control system can be considered as consisting of two loops as shown

in Figure 2.4. One loop is a conventional feedback loop. The other loop is the parameter

adjustment loop [14].

Command_
signal

Adaptive
mechanism

«sj

Controller
parameters

Control '
signal

Plant 1
* Output

Figure 2.4. Block diagram of an adaptive system.

There are two different methods for adjustment of the controller parameters: 1)

direct method; and 2) indirect method. In the direct method, the adaptation law directs

the controller parameters adjustment such as gain scheduling and model-reference

adaptive systems. In the indirect method, at any adjustment step, new controller

parameters are obtained by solving the design problem such as self-tuning regulators.

Process dynamics)

Siv-CSnftlteF--"-:-

unpredictable
variations

Parametei'-fixed
Controller ^

Predictable
variations

>Adaptl»«?t»ritfofMt SS*9ir>;sct!ft<lu!ing:

Figure 2.5. Procedure for selection of an appropriate adaptive scheme.

12

Adaptive controllers, being inherently nonlinear, are more sophisticated than

conventional feedback controllers. The decision whether to use adaptive control is based

on the dynamic behaviors of the process as depicted in Figure 2.5.

2.6. Adaptive Schemes

2.6.1. Gain Scheduling

In many control systems, it is possible to determine measurable variables that

have well-defined connections with changes in process dynamics. These variables can be

used to adjust the controller parameters. This approach is called gain scheduling because

the scheme was originally used to measure the gain and then change the controller

parameters, as shown in Figure 2.6.

Gain
schedule ™~ I

i Controller
parameters |

Command
signal

j

Figure 2.6. Block diagram of a system with gain scheduling.

The system can be viewed as consisting of two loops: 1) an inner loop composed

of the plant and the controller; and 2) an outer loop that adjusts the controller parameters

on the basis of operating conditions. Gain scheduling can be considered as a mapping

Output

13

from plant parameters to controller parameters [14]; hence, it can be implemented as a

function or a lookup table.

2.6.2. Model Reference Adaptive Control Systems

The model reference adaptive control (MRAC) scheme was originally proposed to

solve the problem in which the performance specifications are given in terms of a

reference model. This model generates the desired output corresponding to the command

signal.

Command
signal CoHtrollet

MoctSI

Control
signal

Controller
parameters Adaptive

mechanism

Plant -*• Output

Figure 2.7. Block diagram of the model reference adaptive control scheme.

The controller consists of two loops, as shown in Figure 2.7. The inner loop is an

ordinary feedback loop composed of the plant and the controller. The outer loop adjusts

the controller parameters in such a way that the error, the difference between the plant

output and the model output, is small. The key problem is to design the adaptive

mechanism so that the adaptive control system is stable, and the error goes zero [14].

14

2.7. Lyapunov Stability Theory

Lyapunov stability theory primarily addresses the stability problem of any system

regardless of being linear or nonlinear. It is very significant for nonlinear control system

design since it is the only tool available when other methods are failed [15].

Lyapunov considers the nonlinear differential equation with zero initial condition:

dx
dt

= / (*) • (2.1)

Lyapunov investigates whether the solution of (2.1) is stable with respect to

disturbances or not.

2.7.1. Definition of Lyapunov Stability

The solution x(f) = 0 is stable if for a given s > 0 there exists a number S{e) > 0

such that all solutions with initial conditions ||x(0)|| < Shave the following property:

||x(OII<£, for 0<t<oo.

* 2

/
i

,

^
,*""""'

, - - '
^

**"- .—

,
,,.'-''

yfdx
"" * dt

x = 0 i

/ /
^^^

-">(.*) =

""" \
\

I
/

/
,s-

con.-,t

Xl

Figure 2.8. Illustration of Lyapunov stability.

The solution is asymptotically stable if a positive number Scan be found such that

all solutions with ||x(0)|| < Shave the following property:

15

||x(OII -> 0 as t ->QO.

2.7.2. Lyapunov Stability Theorem

The solution x(t) = 0 is stable if there exists a function V: R" -> R that is positive

definite such that its derivative along the solution of (2.1) is negative definite as

dV dVT dx dVT
 rr , „„ ,

= = / (*) = -W(x) (2.2)
dt dx dt dx

If dVldt is negative semi-definite, the solution is asymptotically stable. The

function V\s called a Lyapunov function for the system in (2.1).

2.7.3. Lyapunov Function

Assume that the following linear system is asymptotically stable:

dx
— = Ax (2.3)

dt

For each symmetric positive definite matrix Q, there exists a unique symmetric

positive definite matrix P such that

ATP + PA=-Q (2.4)

Equation (2.4) has always a unique solution with P positive definite; and the

following function:

V(x) = xTPx (2.5)

is a Lyapunov function [14].

2.8. ARM Processor

We use an ARM-7 development board manufactured by Samsung to implement

the embedded adaptive controller for the gasoline refinery. The following sections

describe its architecture and key specifications.

16

2.8.1. System Architecture of ARM Development Board

The S3C44B0X ARM-7 development board has various features including 8KB

cache, internal SRAM, LCD controller, 2-channel UART with handshake, 4-channel

DMA, system manager with chip select logic and FP/EDO/SDRAM controller, 5-channel

timers, I/O ports, RTC, 8-channel 10-bit ADC, IIC-BUS interface, and IIS-BUS interface

[16].

DB-9 DB-9

RS-232

Figure 2.9. System block diagram of the ARM development board.

The S3C44B0X is developed using an ARM7TDMI core and new bus

architecture, SAMBA II or Samsung ARM CPU embedded microcontroller bus

architecture [16]. The main features are shown in Table 2.2.

17

Table 2.2. Main features of the ARM-7 development board.

Features

CPU

Memory

subsystem

GPIO ports

UART

Ethernet

Descriptions

"ARM7TDMI" CPU core for 16/32 bit operations.

Cache 8KB for memory management.

On-chip ICE breaker debug support with JTAG based debugging

solution.

32x8 bit hardware multiplier.

SAMBA II bus architecture up to 66MHz.

Little/big endian support.

Address space: total 256 MB.

8 memory banks.

Supports programmable 8/16/32-bit data bus width for each bank.

Fixed bank start address and programmable bank size for 7 banks.

Programmable bank start address and bank size for one bank.

Fully programmable access cycles for all memory banks.

Supports self-refresh mode in DRAM/SDRAM for power-down.

Supports asymmetric/symmetric address of DRAM.

8 external interrupt ports.

71 multiplexed input/output ports.

2-channel UART with DMA-based or interrupt based operation.

Supports 5-bit, 6-bit, 7-bit, or 8-bit serial data.

Supports hardware handshaking during transmission/receiving.

Programmable baud rate.

Supports IrDA 1.0 (115.2kbps).

Loop back mode for testing.

Each channel have two internal 32-byte FIFO for Rx and Tx.

1 port 10 Base T (10/100Mbps)

18

2.8.2. Memory Organization

The memory space is 256MB in total. There are 8 memory banks: 1) the first 6

memory banks are used only for ROM; and 2) the last 2 memory banks can be realized

by RAM.

The 8-MB SDRAM is in Bank 6. The beginning address of Bank 6 is

OxOcOOOOOO. Therefore, the kernel image will be load to the ARM board at address

0x0c008000. The memory map is shown in Figure 2.10.

Figure 2.10. Memory map.

19

CHAPTER 3

PLANT MODELING AND SIMULATION

3.1. Introduction

Process modeling is the first phase in the whole system design procedure. This

phase is significant since it provides steady-state data of the plant. We will base on these

data to design the adaptive control system. In this section, we study the distillation

process of the gasoline refinery and perform the process modeling and simulation.

3.2. Process Description

Condensate, which is condensed from associated gas or natural gas in gas

processing plants, will be stabilized by cutting off light components such as propane and

butane in a distillation column.

TOCASOLME MKR 4—

4

RffLlrtERLMl

Figure 3.1. Simplified diagram of the condensate distillation.

The distillation column has 24 actual trays, which is equivalent to 14 theoretical

trays. Condensate is fed to the seventh tray. The top product is Liquefied Petroleum Gas

20

(LPG). The bottom product is naphtha, which will be blended with high octane number

boosters and additives to produce the finished gasoline.

The control objective is to keep the product qualities within the following limits

under different operating conditions:

and

xD > 98%

xB < 2.0%

(3.1)

(3.2)

where xo and x# are the product compositions or the product qualities.

3.3. Process Calculation

Based on the design basis, we calculate steady-state values of the gasoline-

refining plant. The process calculation is given in Appendix B. The key values of the

plant design are listed in Table 3.1.

Table 3.1.

Temperature, C

Pressure, atm

Density, kg/m3

Volume flow rate, m /h

Mass flow rate, kg/h

Mass flow rate, ton/year

Main streams oft

Condensate

118

8.6

670

227.6

15480

130000

he plant.

LPG

46

4.0

585

8.78

5061

43000

Raw gasoline

144

4.6

727

21.88

10405

87000

21

3.4. Process Description and Control Scheme

The process flow diagram of the plant is shown in Figure 3.2. Refer to Appendix

B for more details on process description.

The control structure is selected as L-V structure that directly controls separation

quality. Based on this structure, we construct the control scheme for the distillation

system.

Figure 3.2. Process flow diagram of the gasoline refinery.

3.5. Plant Modeling

For the distillation column with 14 trays and 20 components, the number of

differential and algebraic equations is equal to 14*(2*20+3) = 602 equations [17]. The

22

plant order should be reduced. We can lump a group of components together to make

pseudo-component; and the column dynamics are modeled on pseudo-component only

[18]. The feed can be approximated by a pseudo binary mixture of LPG (iso-butane, n-

butane and propane) and naphtha (iso-pentane, n-pentane, and heavier components).

As a result, the mathematical model of the gasoline refinery is represented by a

set of 31 nonlinear differential and algebraic equations:

14.03 x16 =164.6291^15 -75.6380x16 -92.7597xI6

5.8x15 =164.6291(>l4 -^1 5) + 75.6380(x16 -x15)

5.8x14 =164.62910,3 ->>14) + 75.6380(x15-x,4)

5.8x13 =164.6291012 -_y]3) + 75.6380(x14 -x13)

5.8x12 =164.6291(^n -y1 2) + 75.6380(x13 -x] 2)

5.8xH =164.629IO10 ~ ^ i) + 75.6380(x12-x,,)

5.8x10 =164.629109 -^1 0) + 75.6380(xn -x10)

5.8x9 = 66.1139>>8 -156.38^9 + 75.6380(x10 -x9) + 59.95

5.8x8 = 66.113907 ~y&) + 75.6380 x9 -188.59x8 + 33.99

5.8x7 = 66.1 \39(y6-y7) + \79.8871 (x8 -x 7)

5.8x6 =66.113905-> ;6) + 179.8871(x7-x6)

5.8x5 =66.113904"^) +179.887 l (x 6 -x 5)

5.8x4=66.113903-^4) + 179.8871(x5-x4)

5.8x3 =66.113902-73) +179.8871 (x 4 -x 3)

23

5.8x2 =66.1139(^->;2) +179.887l(x3-x2)

24.88x, = 179.8871x2-110.9235x1 -66.1139^,.

Vapor liquid equilibrium (VLE) relationship on each tray:

5.68x,
y\ = l + 4.68x,

y2

5.68x2

l + 4.68x,

(3.3)

^ 1 5 =

5.68x 15

l + 4.68x„
(3.4)

CHART OF VAPOR

01 0.2 0.3 0 4 0.5 0.6 0.7 0.8 0.9

Figure 3.3. Vapor liquid equilibrium relationship.

Refer to Appendix C for more detailed on establishment of mathematical model.

3.6. Plant Simulation

We perform simulation of the plant using MATLAB Simulink. In the simulation

program, each stage of the plant is represented by a specific subsystem. Refer to

24

Appendix D for more detailed on the simulation program. The steady-state solution is

summarized in Table 3.2.

n

Xn

*

Table 3.2.

1

0.0111

0.0599

2

0.0303

0.1507

Steady-state compositions of the plant.

3

0.0666

0.2884

4

0.1196

0.4355

5

0.1765

0.5490

6

0.2203

0.6161

7

0.2461

0.6496

8

0.2591

0.6651

n

Xn

Yn

9

0.2715

0.6792

10

0.2993

0.7081

11

0.3637

0.7645

12

0.4889

0.8446

13

0.6665

0.9190

14

0.8319

0.9656

15

0.9354

0.9880

16

0.9851

0.9974

CONCENTRATION OF LIGHT COMPONENT (LIGAS) ON EACH TRAY x D

• L _ I ! .' ! i 1 l /

I
s

6 8 10 12 14 16 18 20
Time (h)

Figure 3.4. Simulation result of the concentration on each stage.

In summary, the plan can obtain the operational objectives in which the purity of

the bottom product is greater than 98%, and the impurity of the overhead product is less

than 2%.

25

CHAPTER 4

ANALOG CONTROLLER DESIGN

4.1. Introduction

We apply adaptive control strategy to design the control system for the gasoline

plant. The adaptive system is more complicated than other conventional controller since

it was synthesized with adaptation law that enables it to operate properly for wide range

of operation as demonstrated in [19]—[21]. In the following sections, we will study

generic architecture of an analog adaptive controller. We then establish the adaptation

law and design the adaptive controller for the plant in continuous-time space.

4.2. System Architecture

As mentioned earlier in [14], Astrom and Wittenmark define adaptive control

strategy in which the system can self-adjust its settings to compensate for unpredictable

changes in the process or the environment. The system architecture of the adaptive

controller is shown in Figure 4.1.

Figure 4.1. System architecture of the adaptive control system.

26

The adaptive control system will consist of two loops. The inner loop is an

ordinary feedback loop composed of the plant and the conventional controller. The outer

loop is an adaptive loop that adjusts the conventional controller parameters in such a way

that the plant error is small. The adaptive loop will be synthesized based on the

Lyapunov stability theory introduced in Sec. 2.7.

There are two kinds of gains including adaptive gain and feedback gain. The

purpose of the adaptive mechanism is to enable synthesis of the adaptive gains, which

finally change the feedback gains as soon as state errors are detected. The adaptive

mechanism is thus the most important component of the adaptive system.

4.3. Construction of the Reference Model

Basically, there are two different methods of reference model construction [22].

They include: 1) mathematical approach; and 2) experimental approach. The

mathematical approach is based on physical laws and prior knowledge about the process.

The advantages of this approach are: 1) insightful understanding of the process; and 2)

physical interpretations of process parameters and variables. However, it is quite difficult

and time-consuming to build the model from fundamental knowledge. On the contrary,

the experimental approach is based on experimentation. It is also known as system

identification. This approach includes the following tasks: 1) experimental planning; 2)

selection of model structure; 3) parameter estimation; and 4) validation. For distillation

control, system identification is sometimes impractical since the experimentation needs to

build a real distillation column or a pilot plant, which is very expensive. Therefore, we

select the mathematical approach to construct the reference model.

27

We observe that the plant has many internal variables; however, its input-output

relationship is quite simple, as shown in Figure 5. We adjust the reflux flow rate L and

the vapor rate V so that the product quality is met the control objectives defined in (3.1)

and (3.2).

Disturbances

\ - \
External reflux flow(L) ~ <~ LPG purity (xDi

Di';tiil.itir.n Gy-.tem

Internal vapor rate (V) „ ^ Raw Gasoline impurity (xB)

Figure 4.2. Two-input two-output representation for the plant.

We can make linearization at the nominal operating point as follows:

x(t) = A(x{t) + Beu(t) (4.1)

and

y(t) = Cex(t) (4.2)

where Ae is a 16x16 matrix; Be is a 16x2 matrix; and Ce is a 2x16 matrix.

The values of Ae, Be, and Ce matrices are calculated with an algebraic method

described in Appendix E.

Many researchers state that the dynamic response of most distillation column is

dominated by one large time constant, which is nearly the same, regardless of where an

input or disturbance is introduced or where composition is measured. This is well known

both from plant measurements [23] and from theoretical studies [24]-[25]. This means

that most distillation columns can approximate by first order systems.

We can use Gramian-based input/output balancing of state-space realizations as

28

[sysb,g] = b a l r e a l (s y s) ;

The last 14 elements of the balanced Gramian matrix are small or zero; so we can

eliminate the last 14 states with the MATLAB command of model order reduction:

sysmred = m o d r e d (s y s b , 3 : 1 6 , ' d e l ') ;

As the result, the reduced-order model of the plant is a second-order two-input

two-output system:

xm(t) = Amxm(t) + Bmuc(t) (4.3)

and

ym(t) = cmxm(t) (4.4)

where A„, =
-6.7941

1.4686

-0.9095

-0.2497
B„

-0.1461 0.2073

-0.0021 -0.0281
, and C

-0.0624 -0.0281

0.2458 0.0009

Bode Diagram

"~ ^ ~ ~ — ~ ™ " ~ " ™ r f ™ " " " " " " " " " " " ^ J * .

-

Original model
Reduced order model

• Original model
• Reduced order model

^
\ .

Frequency (rad/sec)

Figure 4.3. Bode responses of two models.

29

In Figure 4.3, Bode diagram of the reduced-order model is nearly in agreement

with the one of the original model. The reduced-order model will be checked with

stability and other tests before deciding whether it is a reference model or not.

4.3.1. Stability Test

The system is stable because all eigenvalues of the state matrix {-6.5832, -

0.4606} are in left-hand side of the complex plane.

4.3.2. Controllability and Observability Test

A system is said to be controllable if and only if it is possible, by means of the

input, to transfer the system from any initial state x(t) = x,to any other state xj = x(T) in a

finite time T-t>0.

For any system described in the following forms

x = Ax(t) + Bu(t) (4.5)

and

y(t) = Cx(t) + Du{y) (4.6)

where A, B,C, and D are matrices.

The matrix M = [B AB ...A"'lB], where / is the rank of B and n is the system

dimension, is called controllability matrix. The system is completely controllable if Mis

full rank of n.

A system is said to be observable if and only if it is possible to determine any

arbitrary initial state x(t) = xt by using only a finite record, y(r) for t < r < T, of the

output.

For the system in (4.5) and (4.6), the observability matrix S is defined as

30

S=[CCACA2...CA"']]T

where / is the rank of C and n is the system dimension.

The system is completely observable if S is full rank (n).

We can use the following MATLAB commands to test controllability and

observability of the reduced-order model:

M = c t r b (A r , B r) ; % c o n t r o l l a b i l i t y mat r ix

S = obsv(Ar ,Cr) ; % o b s e r v a b i l i t y mat r ix

As the result, the M and S matrices have full rank; therefore, the model is

completely controllable and observable.

In conclusion, the reduced-order linear model fully satisfies the steady-state

property. Therefore, it is selected as the reference model for the MRAC system design in

the next section.

4.4. Analog Controller Synthesis

4.4.1. Plant

and

The model of the plant can be expressed in the state space as

x(t) = Ax(t) + Bu(t)

y{t) = Cx(t)

(4.7)

(4.8)

where A =
au

_a2]

au

an_
, B =

~K
_K

bu^

bn_
, and C =

-0.0624 -0.0281

0.2458 0.0009

31

The plant parameters including a\\, an, aj\, aji, b\\, bn, bj\, and 622 are unknown

and dependent on the plant dynamics. The plant model has the following vectors of

variables:

1) A vector of state variables x = [x\ X2] ;

2) A vector of control signals u = [u\ u-$\

3) A vector of controlled outputs y=\y>\ y-$.

4.4.2. Reference Model

The reference model for the plant is a linear time-invariant system as developed in

Sec. 4.3:

and

xm«) = Amxm(t) + Bmuc(t)

where A„

y„,(t) = cmxm(t)

-6.7941 -0.9095"

1.4686 -0.2497

(4.9)

(4.10)

5 =
-0.1461 0.2073

-0.0021 -0.0281
and C„

-0.0624 -0.0281

0.2458 0.0009

4.4.3. Feedback Control Loop

A general linear control law is given by:

u{t) = Muc{t)-Lx(t)

The matrices L and Mmay be chosen as follows:

L =

M =

(4.11)

01

0,

~ds

Pi

o2

* 4 _

e:
e*.

32

The closed-loop system is obtained by substituting (4.11) into (4.9):

x = (A- BL)x + BMuc.

The closed-loop system depends on a parameter 0 = [0\ 0i 0$ 04 0=, 0$ 0j 0%\ ;

hence, we define:

Ac(0) = (A-BL)

Bc{6) = BM.

As a result, the closed-loop system can be expressed as:

x(t) = Ac(0)x(t)+ Bc{0)uc{t)

Ac(0) = A-BL
au ~b\\@\ ~^OT, av-bu02-bn0,

i2\ ~b2\

'\2

y22L'3 ci~,, — b-,,0, — b-,-,0-, ci-,-, — b-,-,0-, — b-,-,0,

l 2 "11^2 ^12^4

22 _ ^ 2 1 ^ 2 ~ ^ 2 2 ^ 4

Bc(0) = BM =
'bu95+bnd7 bu66+b]2es

b2]65+b2281 b2Xdb+b22d%
(4.12)

4.4.4. Compatibility Condition

It is necessary to find at least one value of 0 such that the closed-loop equation is

equivalent to the reference equation (4.9). A sufficient condition is existence of at least

one special value 0° such that

This condition ensures a perfect model-following: x —» xm when t increases.

Substitute 0° = [<9,° 02 0° 0°4 0° 0° 0° 0%] into the compatibility

condition, we get:

33

au-bu6"-bnel =-6.7941

an -bu6
a
2 -bn6°4= -0.9095

a2]-b2]6°-b220° =1.4686

a22-b2]e2-b229°= -0.2497

6,A° + M7° =-0.1461

6,,06° + 6, X =0.2073

b2l6°5+b229° =-0.0021

b2]e°6+b226°s =-0.0281. (4.13)

Clearly, there always exists a parameter value 0° satisfying the compatibility

condition:

0 _ b22(au +6.7941)-bu(a2] -1.4686)
0? =

®\p22 ^12^21

a
o _ b22(an + 0.9095)-bn(a22 +0.2497)

^11^22 _ ^12^21

„„ -621(a,, + 6.794l) + bu(a2] -1.4686)
o3 —

buo22 —bnb2]

0 _ -b2](a]2 + 0.9095)+ bu(a22 +0.2497)
6> =

b\P 22 b]2b2]

n0 0.002lfe,2 -0.1461&22
6>5 —

-b2]bn+bub22

n0 0.02816I2+0.2073Z>22

(J6 =
-b2]bu+bub22

34

_0 - 0.00216,,+ 0.146 \b2x
Uf =

-b2]bu+bub22

0 =
0.02816, ,+0.20736,

-b2Xbu+bxxb
(4.14)

22

Error Equation

The model following error is defined as

e(0= x(0-*m(0

e(/) = ^ (0 + 5 i / (0 - ^ I B (0 - 5 m « c (0 - (4-15)

Substitute the term of u(t) into (4.15) and rearrange the equation as follows:

e(t) = Ame(t) + (A-Am- BL)x(t) + {BM - Bm)uc (/)

e{t) = Ame(t) + (Ac(eL) - Am)*(/) + (BC(6U) - Bm)uc (t)

e(t) = Ame(t) + (Ac (0L) - Ac (0°L))x(t) + {Bc (0M) - BC (0°M))tc (/)• (4.16)

Finally, the equation above is equivalent to the following:

e(t) = Ame(t) + V,(t)(0-O0) (4.17)

¥
•bxxxx -bux2 -bX2xx -bnx2 bxxucX buuc2 bnucX bnuc2

-b2xxx —b22x2 — b22xx —b22x2 b2xucX o2xuc2 b22ucX t>22uc2

0-6° =^-0? 62-0 6i ~ #7° 0« -0*1 •

35

4.4.6. Adaptation Law

To derive a parameter adjustment law, we introduce a Lyapunov candidate

function

V(e, 0) = \ [ye'Pe + (0 - 0° f (0 - 0°)) (4.18)

where e = [e\ e^\ is a vector of state errors; / i s an adaptation rate; and P = [1 0; 0 1] is

chosen as a positive matrix.

The function V is positive definite. To find out whether it is a Lyapunov function,

we calculate its total time derivative

f-§«'o«+*«-«vr*+c«-o'f (4.19)

or,

*L =_LerQe + {e_ey(dl + ry/rpe
J ' * dt v

(4.20)
dt 2

where Q is positive definite and such that

<P + PAm = -a (4-21)

The matrix Q = [13.5882 -0.5591; -0.5591 0.4994] is a positive-definite matrix.

Based on Lyapunov stability theory as introduced in (2.5), the function V(e, 0) above is a

Lyapunov function. In another way, Nguyen and Afzulpurkar [26] proved the Lyapunov

function candidate in (4.18) as a Lyapunov function by using another approach,

MATLAB Symbolic Algebra.

36

As the result, the adaptation law is chosen as

^ = -W'(t)Pe(t)
at

(4.22)

where,

V
bnxi bnx2 b\2x\ bnx2 b\\Uc\ bX]uc2 bnucX buuc2

— b2Xxx —b22x2 — b22xx —b22x2 b2{ucX b2xuc2 b22ucX b22uc2

Therefore, the adaptation law can be expanded as follows:

y(buex+b2Xe2)xx

y(buex+b2]e2)x2

y(bnex+b22e2)xx

y(bx2ex+b22e2)x2

-y(bxxex+b2xe2)ucX

-y(bxxex+b2Xe2)uc2

-y(bX2ex+b22e2)ucX

-y(buex+b22e2)uc2

6 = (4.23)

4.4.7. Stability of the Analog Controller

We compute differentiation of the Lyapunov function in (4.18). Substitution of

the dOldt term determined in (4.22), we get:

dt 2

or,

— = -%0.5591<?, -0.7066e2)2 +13.2756e,2].
dt 1

(4.24)

The system is stable because the time derivative of the Lyapunov function is

negative definite. As the result, the error goes to zero according to Lyapunov stability

theory, which will be demonstrated with dynamic simulation in the next section.

37

4.5. Analog Controller Simulation

4.5.1. Simulation Program

As shown in Figure 4.4, the program consists of all components of the adaptive

controller as follows:

1) Reference signals uc(t);

2) Disturbances^)?

3) Linear controller governed by the general linear control law;

4) Reference model;

5) Plant representing for the gasoline refinery with time-varying parameters;

6) Adaptive mechanism governed by the adaptation law in (4.23).

Ui

a n n f l

SIMULATION OF ANALOG ADAPTIVE CONTROLLER

REFERENCE MODEL

E s(0

^>-

K>

• y^n
tollA ^ £

dull In I

0ut2 In2

ADAPTIVE MECHANISM

- W K "

c

CH

V-5,

Figure 4.4. Simulation program for the analog adaptive controller.

38

To evaluate the controller performance, we compute mean error of the plant

output. As earlier mentioned, the state error is defined as

ex

. e 2 .

=
X\ ' Xm\

_X2 ' Xm2 _

=
Ax,

Ar2

We now define mean error e, based on root-mean-square of the vector e, as

follows:

e, = RMS(e,) = -^A, for / = 1 or 2

where nt is the dimension of the vector ec and |e,| is the norm of the vector et.

The norm of the vector et can be found by using the following MATLAB

commands:

norm_el = norm(el);

norm_e2 = norm(e2);

When the simulation is finished, all element values of the vector e\ and ej. are sent

to MATLAB workspace so that we can easily calculate the mean errors.

4.5.2. Simulation Result

Adaptation rate is set at value 10. The plant parameters are simulated by random

function. The reference inputs are step functions. External disturbances are simulated

with random noise, as shown in Figure 4.5. The reference state and plant states are

shown in Figure 4.6.

39

Figure: - disturbance

(File Edit View Insert Tools Debug Desktop Window Help

m B s in :

Figure 4.5. External disturbances.

Figures - x vc xm

Debug Desktop Window File Edit View Insert Tools Desktop Window Help

Q a y"i \k\ t:%mm «' d '""•: If cf |1 I i a

;:sao3

i iW :

m B &\m

•4s,:

Figure 4.6. Reference states and plant states.

40

Figures - y vs. ym
File Edit View Insert Tools Debug Desktop Window Help

is 10*

•» i" x

i m B » ; •

Figure 4.7. Controlled outputs and reference outputs.

The controlled outputs rapidly approach the desired values as shown in Figure

4.7. This is a clear illustration for the stability of the MRAC system as theoretically

proved in Sec. 4.4.7. The state errors reduce when time increases as shown in Figure 4.8.

I B
Ufcajuy ue^Kiup winuuw m e CUIL

im B ffin

State error e1(t)

State error e2(t)

Figure 4.8. Plot of plant output errors during simulation.

41

The mean errors in the simulation duration can be determined as follows:

e, =
0.0017

«, VTobT
= 5.4284*10"

0.0022

n2 VTooT
= 7.1062*10"

Error reduction will be introduced in the next section.

4.5.3. Error Reduction

Adaptation rate / has a strong effect on plant errors. In general, increasing

adaptation rate will weaken plant output errors. In Table 4.1, the plant errors rapidly

reduce to zero when the adaptation rate increases.

Table 4.1. Plant output errors for different adaptation rates.

Plant errors

«i

e2

Adaptation rate, y

1

5.4304* 10"5

7.1399*10"5

10

5.4284*10"'

7.1062*10"'

100

5.4076* 10"5

7.1003*10-5

42

CHAPTER 5

DIGITAL CONTROLLER DESIGN

5.1. Introduction

In the previous chapter, the control system is designed and analyzed in

continuous-time space. However the plant will be controlled by a digital computer. So

we will discretize the plant. Zero-order hold (ZOH) is a mathematical model of the

practical signal reconstruction accomplished by a conventional digital-to-analog

converter (DAC). It describes the effect of converting a continuous-time signal into

discrete-time signal by holding each sample value for one sample interval. The input and

output signals of a zero-order hold is shown in Figure 5.1.

Figure 5.1. Input and output signals of ZOH.

G(s)
y (t !

A/D

Figure 5.2. Block diagram of a sampled-data system.

43

In Figure 5.2, the zero-order-hold equivalent to G(s) is given by

z i s

where %, is the z-transform of the bracketed term in time continuous space.

5.2. Digital Controller Synthesis

5.2.1. Plant Model

The plant in continuous-time space is given by

x(t) = Ax{t) + Bu{t)

and

y(t) = Cx(t)

where A = [au an\ a2\ a22], B = [bu bn\ b2\ b22], and C = [-0.0624 -0.0281; 0.2458

0.0009]. The elements of the matrices A and B above are unknown and dependent on the

dynamics of the system.

The plant has the Laplace transform as

x(s) - ~[AX(S) + Bu(s)\
s

We assume that x(i) and u(t) are constant during the sampling interval T; hence,

the ZOH equivalence of the plant is given by

T
x(z) = [AX(Z) + Bu(z)]

z-\

Now we can easily convert it to the new form of difference equations, which is

conveniently implemented in a digital computer:
x(kT + T) = (In+TA)x(kT) + TBu(kT). (5.1)

44

The controlled output y(t) has ZOH equivalence as follow:

y(kT) = Cx{kT). (5.2)

5.2.2. Reference Model

The reference model for the plant is a linear time-invariant system, as developed

in Chapter 6:

*„(!) = Amxm{t) + Bmuc(t)

and

y„,(t) = cmxm(t)

where Am = [-6.7941 -0.9095; 1.4686 -0.2497], Bm = [-0.1461 0.2073; -0.0021 -0.0281],

and Cm = [-0.0624 -0.0281; 0.2458 0.0009].

Similarly to previous section, the reference model has the ZOH equivalence as

follows:

xm (kT + T) = (/„ + TAm K (kT) + TBuc (kT). (5.3)

The reference output yjf) has ZOH equivalence as follow:

y,„(kT) = Cxm(kT). (5.4)

5.2.3. Linear Feedback Controller

A general linear control law is given by:

u{t) = Muc(t)-Lx(t).

The ZOH equivalence is determined as

u(kT) = Muc(kT)-Lx(kT). (5.5)

All elements of the matrices L and Mare adjusted by the adaptive mechanism:

45

L =
0,{kT) 62(kT)

0,(kT) 0A{kT

M
05(kT) 06(kT)

87(kT) 0s(kT)^
(5.6)

5.2.4. Compatibility Condition

Similarly to the design in continuous-time space, we need to determine

compatibility value 0° = [< 02 0" 0° 0° 0° 0° 0°] as follows:

o _ ft2°2(a°, +6.7941)-ft,02(a2
0, -1.4686)

~ h°h° -h°h°
0]]L>22 "\T}2\

o _ 62°2(a,°2 +0.9095)-b\2{a\2 +0.2497)
~~ A%° -A%°

°\\°27 °12°21

0 / J>

8, 0
 _ -&2 ,K, + 6.7941) + ft,, (a2] -1.4686)

t O . O _ r 0 r 0
°11°22 °12°2I

o _ - f t " , ^ + 0.9095) + ft,0, (a°2 +0.2497)
~~ A%° — A%°

°11°22 °12°2I

tf

ft° =

0.0021ft,0,-0.1461ft0
22

-ft21 f t0
2+ft0 f t22

0.028 lft„+ 0.2073ft 22

-b2]b]2+bub22

q
0 - 0.002 lft°+ 0.146 lft°

21

-b2\bn+bub22

n0 0.0281ft,,+0.2073ft°,

'2\0\1 °]]°22

(5.7)

46

5.2.5. Adaptive Mechanism

The adaptive law obtained in continuous-time space is given by:

6(t) = -y^(t)Pe(t)

where y/ =
- 0 |] X] O n X 2 0 | 2 X | •bux2 buucl bnuc2 bl2uc] b]2uc2

t/-)]Xi L/y-fJiy UyyJi-i UJJJL') l)-\ 1W i ~>\ cl 77 c\ 77 c 7

The Laplace transform is as follows:

= yy/' (s)Pe(s)

Then we determine the ZOH equivalence in z-space:

0(z) = -^-y^'(z)Pe(z).
z — \

The discrete-time adaptation law is therefore obtained as

0(kT) = 0(kT -T) + T[-yy/ r (kT - T)Pe(kT - T)]. (5

The general adaptation law in (5.8) can be expanded as follows:

0, (kT) = 6> (kT -T) + Ty[b, ,e, (kT -T) + b2]e2 (kT - T)]x, (kT - T)

02(kT) = O2(kT -T) + Ty[bue](kT-T) + b2]e2(kT-T)]x2(kT-T)

03(kT) = 03(kT-T) + Ty[bue,(kT-T) + b22e2(kT-T)]X](kT-T)

04(kT) = 04(kT-T) + Ty[bne,(kT-T) + b22e2(kT-T)]x2(kT-T)

05(kT) = 05(kT -T)- Ty[bue, (kT -T) + b2]e2(kT - T)]uc] (kT - T)

06 (kT) = 06 (kT -T)- Ty[bne{ (kT -T) + b22e2 (kT - T)]uc2 (kT - T)

07 (kT) = 07 (kT -T)- Ty\bnex (kT -T) + b22e2 (kT - T)]uc] (kT - T)

0% (kT) = 6>8 (kT -T)- Ty[bne, (kT -T) + b22e2 (kT - T)]uc2 (kT - T). (5

47

Figure 5.3. Logic diagram of the adaptation law.

The logic diagram of the adaptation law is shown in Figure 5.3. Base on the

adaptation law, we are able to implement the embedded adaptive controller in hardware

48

using ARM processor, FPGA, or whatever type of digital computer. For the one using

ARM development board, the adaption law will be translated into C language; and the

adaptive mechanism will be an executable running in Linux environment.

49

CHAPTER 6

SIMULATION OF THE ADAPTIVE DIGITAL CONTROLLER

6.1. Introduction

The adaptive controller for the gasoline refinery is designed in Chapter 5. We

now perform simulation of the adaptive system to verify its control performance. In the

realm of control system design, MATLAB is normally used to perform simulation of

control systems; hence, we also follow this approach. Moreover, we develop an

alternative effective method for simulation of digital systems using C++ in which each

subsystem of the system will be represented by a C++ class.

The simulation program written in C++ has many advantages. First, it is an

executable so it can directly run in popular operating systems such as DOS/Windows or

Linux. Second, its I/O file handling and data exchange with other software systems are

quite simple since C++ has plentiful I/O library. Third, we can re-use the code to

develop the plant simulator in the next chapter, which will interact with the embedded

adaptive controller via an Ethernet.

6.2. Dynamic Simulation Using MATLAB

6.2.1. Simulation Program

The simulation program consists of major components of the adaptive system in

discrete-time space, as shown in Figure 6.1:

1) Reference signals uc{kT)\

2) Disturbances^^;

3) Subsystem of Linear Controller governed by the general linear control law as

50

u(kT) = Muc(kT)-Lx(kT);

4) Subsystem of Reference Model representing the desired responses to

reference signals

xm(kT) = Amxm(kT) +Bmuc(kT);

5) Subsystem of Plant representing the unknown process model as

jc(Jfcr) = Ax(kT) + Bu(kT);

6) Subsystem of Adaptive Mechanism governed by the adaptive law as

6(kT) = 6(kT -T) + T[-yy/' (kT - T)Pe(kT - T)].

1 tnl uc(k)

In2 uc(k-1)

xmljc)
uc(k) xm(k+1)J>

xm(k-1)

«>

REFERENCE MODEL

H
Disturbances

•€>

K>

[B^_]M

"00

0ut1 In)

0ut2 In2

' i f
MJi-1)

0 u , ! u«K-l)

ADAPTIVE MECHANISM

" m < »

Ot-1) Mux •

Figure 6.1. Simulation program for the digital adaptive system.

6.2.2. Error Calculation

As earlier mentioned, the plant output errors is defined as

51

e(kT) =
ex{kT)

e2(kT)

h(kT)-xnn{kT)

x2(kT)-xm2(kT)_

Ax^kT)

Ax2(kT)

We now define mean error e, based on root-mean-square of the vector e, as

follows:

e, = RMS{e,) = ^L , for / = 1 or 2 (6.1)

where n, is the dimension of vector e,; and ||e,-|| is the norm of vector eh

6.2.3. MATLAB Simulation Result

The plant parameters are simulated by random functions. The reference inputs

uc(kT) are step functions. External disturbances are simulated with random noise, as

shown in Figure 6.2.

Disturbance f(t)

-0.015

Figure 6.2. External disturbances.

As a result, the reference states (xm\, xm 2) are well tracked by plant states (xi, X2),

as depicted in Figure 6.3.

52

m
> P i « ^ e

Figure 6.3. Reference states and plant states.

The controlled outputs rapidly reach the desired values, as shown in Figure 6.4.

This is a clear illustration for the stability of the digital adaptive controller.

B
\m 113 ; *•> }&</" S

Figure 6.4. Controlled outputs and reference outputs.

53

The plant output errors approach zero; and the system has good control

performance, as depicted in Figure 6.5.

way"

a)e,(*7)

ns
> P ; * l

a) eiikT)

Figure 6.5. Error plots.

54

The mean errors over the simulation duration are calculated by using the error

equation (6.1) as follows:

I U I 9.4543e-004 _ „ . ^ - . s

/101
= 9.4074*10-

M = 9 . 6557e -Q04 = 9 6 0 7 8 t l 0 . 5

4n2 vioi

6.3. C++ Simulation Project

The functional verification project written in C++ is to simulate all subsystems

including plant, reference model, linear controller, comparator, and adaptive mechanism.

The algorithms and data structures of each C++ class are summarized in the following

sections.

6.3.1. Plant Model Class

Plant model class is to simulate the plant. It receives signals from the linear

controller and then generates plant state x(kT). The header file of the plant class is shown

in Figure 6.6.

1 #ifndef PLANT_MODEL_H

2 #define PLANT_MODEL_H

3 #include <stdlib.h>

4 #include "tbdefs.h"

5 class Plant{

6 private:

7 Pkt u_k; //control signal

8 Pkt x_k; //plant state

9 double all, al2, a21, a22

10 double bll, bl2, b21, b22

11 double ell, cl2, c21, c22

55

12 public:

13 Plant();

14 -Plant();

15 void getPlantPkt(int k, Pkt u_k, Pkt x_k) ;

16 void genPlantPkt(int k, Pkt &x_kpl);

17 };

18 #endif

Figure 6.6. Plant class's header file.

The plant class has several important member functions:

P l a n t () ;

void g e t P l a n t P k t (i n t k, Pkt u_k, Pkt x_k);

void g e n P l a n t P k t (i n t k, Pkt &x_kpl);

The algorithms of these functions are described below.

1) The class constructor P l a n t () is to create a new object of plant whose

parameters are randomized due to invariant dynamics of the plant:

a l l = - 6 . 7 9 4 1 + 0 . 6 7 * (r a n d () % 2 - 0 . 5) ;

a l 2 = - 0 . 9 0 9 5 + 0 . 0 9 * (r a n d () % 2 - 0 . 5) ;

a21 = 1.4686 + 0.15*(rand()%2-0.5);

a22 = -0.2497 + 0.02*(rand()%2-0.5);

bll = -0.1461 + 0.014*(rand()%2-0.5);

bl2 = 0.2073 + 0.02* (rand()%2-0.5);

b21 = -0.0021 + 0.0002*(rand()%2-0.5);

b22 = -0.0281 + 0.003* (rand()%2-0.5);

ell = -0.0624 + 0.006*(rand()%2-0.5);

cl2 = -0.0281 + 0.003*(rand()%2-0.5);

56

c21 = 0.2458 + 0.025*(rand()%2-0.5);

c22 = 0.0009 + 0.00009*(rand()%2-0.5);

2) The member function ge tP l an tPk t is to receive input signals of the plant

such as control signals from the linear controller.

3) The member function genPlantPkt is to generate plant states, which will be

stored in the common database.

6.3.2. Reference Model Class

Reference model class is to simulate the reference model. It receives signals from

the reference signal generator and then produces reference state xm(kT). The header file

of the reference model class is shown in Figure 6.7.

1 #ifndef REFERENCE_MODEL_H

2 #define REFERENCE_MODEL_H

3 #include <stdlib.h>

4 #include "tbdefs.h"

5 class Refmdl{

6 private:

7 Pkt uc_k;

8 Pkt xm_k;

9 public:

10 Refmdl();

11 -RefmdlO;

12 void refmdlGetPkt(int k, Pkt uc_k, Pkt xm_k);

13 void genRefPkt(int k, Pkt &xm_kpl);

14 };

15 #endif

Figure 6.7. Reference model class's header file.

57

The plant class has two important member functions:

void refmdlGetPkt (in t k, Pkt uc_k, Pkt xm_k);

void genRefPkt(in t k, Pkt &xm_kpl);

The algorithms of these functions are quite simple:

1) The function refmdlGetPkt is to receive reference signals from the

reference signal generator.

2) The function genRef Pkt is to generate reference states, which will be stored

in the common database.

6.3.3. Linear Control Class

Linear control class is to simulate the linear controller. It receives signals from

the reference signal generator and adaptive mechanism. It then produces control signals

u(kT) to manipulate the plant. The header file of the linear control class is shown in

Figure 6.8.

1 ttifndef LINEAR_CONTROL_H

2 #define LINEAR_CONTROL_H

3 #include <stdlib.h>

4 #include "tbdefs.h"

5 class Linctrl{

6 private:

7 thetaPkt th_k;

8 Pkt x_k;

9 Pkt uc_k;

10 public:

11 LinctrlO;

12 -LinctrlO;

58

13 void getLinctrlPkt(int k, thetaPkt th_k, Pkt uc_k, Pkt x_k);

14 void genLinctrlPkt(int k, Pkt &u_k);

15 };

16 #endif

Figure 6.8. Linear control class's header file.

The linear control class has two important member functions:

void g e t L i n c t r l P k t (i n t k, t he t aPk t th_k, Pkt uc_k, Pkt

x_k) ;

void g e n L i n c t r l P k t (i n t k, Pkt &u_k);

The algorithms of these functions are quite simple:

1) The function g e t L i n c t r l P k t is to receive signals from the adaptive

mechanism, the reference signal generator, and the plant.

2) The function genLinc t r lPk t is to generate control signals, which directly

manipulate the plant. The control signals are also stored in the common

database.

6.3.4. Comparator Class

Comparator class is to simulate the comparator. It receives signals from the

reference model and the plant. It then compares them and computes the error e(kT),

which is an important element to synthesize adaptive gains. The header file of the

comparator class is shown in Figure 6.9.

1 #ifndef COMPARATOR_H

2 Idefine COMPARATOR_H

3 #include <stdlib.h>

4 #include "tbdefs.h"

59

5 class Comparator{

6 private:

7 Pkt x_k;

8 Pkt xm_k;

9 Pkt e_k;

10 public:

11 Comparator();

12 -Comparator() ;

13 void getCmprPkt(int k, Pkt x_k, Pkt xm_k);

14 void genCmprPkt(int k, Pkt &e_k);

15 };

16 #endif

Figure 6.9. Comparator class's header file.

The linear control class has two important member functions:

void getCmprPkt(int k, Pkt x_k, Pkt xm_k);

void genCmprPkt(int k, Pkt &e_k);

The algorithms of these functions are quite simple:

1) The function getCmprPkt is to get state variables of the reference model

and the plant.

2) The function genCmprPkt is to compare the state variables above and

generate error signals.

6.3.5. Adaptive Mechanism Class

Adaptive mechanism class is to simulate the adaptive mechanism. It receives

signals from the signal generator, plant, and comparator. It then generates adaptive gains

6(kT). The header file of the adaptive mechanism is shown in Figure 6.10.

60

1 #ifndef ADAPTIVE_MECH_H

2 ttdefine ADAPTIVE JMECH_H

3 #include <stdlib.h>

4 #include "tbdefs.h"

5 class AdaptiveMech{

6 private:

7 thetaPkt th_kml;

8 Pkt x_kml;

9 Pkt e_kml;

10 Pkt uc_kml;

11 public:

12 AdaptiveMechO ;

13 -AdaptiveMechO;

14 void getAdapMechPkt(int k, Pkt x_kml, Pkt e_kml, Pkt

uc_kml, thetaPkt th_kml);

15 void genAdapMechPkt(int k, thetaPkt &th_k);

16 };

17 #endif

Figure 6.10. Adaptive mechanism class's header file.

The adaptive mechanism class has two important member functions:

void getAdapMechPkt(int k, Pkt x_kml, Pkt e_kml, Pkt

uc_kml, t he t aPk t th_kml);

void genAdapMechPkt(int k, t he t aPk t &th_k);

The algorithms of these functions are quite simple:

1) The function getAdapMechPkt is to get state variables of the reference

model and the plant.

2) The function genAdapMechPkt is to compute all adaptive gains and store

them into the common database.

61

6.3.6. Create Makefile and Build Project

We create the Makefile of the project with the following content:

CC = g++

a l l :

$(CC) -g -c -o AdaptiveMech.o AdaptiveMech.cpp

$(CC) -g -c -o Comparator.o Comparator.cpp

$(CC) -g -c -o LinearControl.o LinearControl.cpp

$(CC) -g -c -o PlantModel.o PlantModel.cpp

$(CC) -g -c -o ReferenceModel.o ReferenceModel.cpp

$(CC) -g -o adaptive_control AdaptiveMech.o

Comparator.o LinearControl.o PlantModel.o

ReferenceModel.o

In a console, we run the Makefile to compile and build the "adaptivecontrol"

executive file.

6.3.7. C++ Simulation Result

We run the executable to perform simulation of the adaptive system. We find that

it gives the same results as MATLAB simulation in Sec. 6.2. Thus we can deploy either

the simulation program written in C++ or the simulation written in MATLAB for testing

the embedded adaptive controller in the next chapter.

The most significant results are shown in the following figures. Refer to

Appendix G for more simulation data.

62

j # " haut/$ttu:.m

Pile Edit view Terminal Tabs Help

th2[9] = -0.519735
th3[9] =• 8.289982
th<t[9] = 0.399865
th5[9] = 1.028989
th6[9] = -6.845742
th7[9] = 6,017589
th8[9] - 1.018935
Plant sr.odel has- been created wi th randans parameters:
A =[-6.459199 -9.864506 1.543686 -6.23970G]
B = [-8.139199 6.217366 -8.662266 -8.929666]
C = [-B.865468 -8.029608 8.233308 6.883855]
Adapmech receives s i g n a l s . . .
Adapmech generates adaptive gains:
t h i l l ©] = 8,371379
thZ l i e] = -e.510663
t r i3 [ie] = 8.280843
th4[18] - -0.309971
thSl lB] = 1.632299
t he [l e i = -0.945S88
th7[18] = 0.8127X8
thSJiej = 1.999059
Simulation is done.

hoanfShoan:-/thesis/adapcon$ |

. <O.I> >?!iJ^A<:

±1
f
•-'<

i
\> •}i

%
%
':!<
€
;;::
f;
•2

. [' • .

:%

!
1

Figure 6.11. Running the "adaptive_control" executive file.

The reference state xm and plant states x are shown in Figure 6.12.

Reference slates and plant states

|L

i X

-

-

-

. * — < ^ — ^
y

\

- H J " •• -

~ttttfc

•=f—F^--

^ t ^ ; i ; : i i = ^ ^

1 r T ~ ~ ' ' ' ••
. • , : i ' - :. r.. - .ci

*3

-

-

-

Figure 6.12. State variables.

The controlled outputs rapidly reach the desired values as shown in Figure 6.13.

This is a definite illustration for the stability of the digital control system.

63

15

1

0.5

0

-0.5

-1.5

-2

0 G

x10"

" r"

J] ^

, . _ - " . . 1 1 = - — J

^ J - ' - ' - " ^ " ^

p
^ _ / _ r _ — ; • " " "

Reference outputs and controlled outputs

1 1 1 I

U ^ ^ ••••

^S_^j ^PH^—r— tp 'U^

^ ^ r r r ^ " " -;
' * • — . . :

1

>m1

*m2

y,

• •• • y 2

'"! '":.! "

_

-

-

-

5
time

Figure 6.13. Controlled outputs and reference outputs.

The plant output errors rapidly approach zero as shown in Figure 6.14.

Figure 6.14. Plant output errors.

The mean errors e in the simulation duration can be determined as follows:

64

e, =
|N| s9.4543c-004 ^

/101

9.6557e-004

VToi
= 9.6078* 10'5.

The mean errors determined by the C++ simulation program is the same as the

ones calculated by the MATLAB Simulink program in Sec. 6.2.

65

CHAPTER 7

IMPLEMENTATION OF THE EMBEDDED ADAPTIVE CONTROLLER

7.1. Introduction

7.1.1. Embedded Adaptive Controller Using ARM Processor

In previous chapters, we successfully design and simulate the adaptive controller

for the gasoline refinery. We now implement it using the ARM-7 processor. We firstly

develop a plant simulator, which runs on a Linux machine to simulate the plant and other

local instruments such as the conventional feedback control loop. The embedded

adaptive controller will be implemented in an ARM-7 development board, which governs

the adaptation law and remotely controls the plant via an Ethernet network. The

elementary block diagram of the plant simulator and embedded adaptive controller is

shown in Figure 7.1.

Figure 7.1. Elementary block diagram of the system.

66

7.1.2. In-Hardware Validation Scheme

In Chapter 6, we carried out simulation of the adaptive system in both MATLAB

and C++ in which the adaptive mechanism was represented by either a MATLAB

Simulink module or a C++ class. The simulation results showed that the design fully

obtained the control objectives under variant environment such as time-varying process

dynamics of the plant and unpredictable disturbances. Therefore, we can consider these

software models as golden models, which execute the functions of the adaptive

mechanism and generate accurate output data to compare against the actual results from

the hardware implementation [28].

MATLAB SIMULINK PROGRAM

Signal
Generator Signal

_ Data J

Adaptive
Mechanism mum MCHICI Output

Data

*5> I Error

y?V H Report̂

EmimdrtMi
Adaptive
Controller

Plant
Slmsliitsr

< =
J Output

Data

Linux yacnine

C++ SIMULATION PROGRAM

Adaptive
Mechanism jP'antMotfe. Output

Data

Figure 7.2. In-hardware validation scheme.

In Figure 7.2, we use the same data of reference signal to feed the MATLAB

Simulink program, C++ simulation program, and the validation blocks. Their output data

are collected and sent to the result comparator to prepare error reports.

67

7.1.3. System Architecture and Operations

The integrated testing environment consists of the plant simulator, the embedded

adaptive controller, a Boa web server with a built-in CGI program, an NFS server/ client,

web clients, and engineering stations. These machines are connected by a LAN network

as shown in Figure 7.3.

Figure 7.3. Integrated testing environment.

The ARM board is an NFS client; and a Linux machine plays the role of the NFS

server. The ARM board will mount and open the shared database on the NFS server.

The embedded adaptive controller resides on the ARM board whereas the plant simulator

runs on another Linux machine. Moreover, there is a type of computer called web client/

engineering station, which is either a personal computer (PC) or Linux computer. A user

sitting on this station can use a web browser to open the main graphical user interface

68

(GUI) page of the Boa web server to begin testing the adaptive system. He or she can

also access the shared database on the NFS server.

By default, the ARM board has an IP address 192.168.0.128 and subnet mask

255.255.255.0. We set the plant simulator machine an IP address 192.168.0.10/

255.255.255.0 and the NFS server an IP address 192.168.0.8.

After the kernel image is loaded into the ARM board, we perform the command

of NFS mount from the HyperTerminal. In Figure 7.4, the interaction between the NFS

client and the NFS server for mounting a network file system is described as follows:

• The NFS client initiates mounting the network file system;

• The NFS client makes RPC "get_port" request;

• The NFS server performs RPC "get_port" reply;

• The NFS client requests the server to mount the file system;

• The NFS server performs local mount for the requested files [29].

|:NFS Client| [:NFS Seiver|

P I
mount -t nfs 192.168 0.B:/opt/tes1 /var/tmp I

I
I

RPC get_port request ^

RPC get_port reply

RPC mount request

RPC mount reply

Authenticate client

Perform local mount
for the requested files

Figure 7.4. NFS client/server interaction for mounting a network file system.

69

After the network file system is successful mounted, the ARM board (i.e., the

NFS client) can acces the shared database on the remote NFS server.

The interactions among the web browser, the Boa web server, the CGI program,

the embedded adaptive controller, and the plant simulator are described as follows:

1) A user opens the web browser to request the form by entering the URL

<http://l 92.168.0.128/embedded_adaptive_controller.html>.

2) The browser makes a connection to the Boa server by the following steps:

• Break the URL into 3 parts including the protocol (http), the IP address

(192.168.0.128), and the file name (embedded_adaptive_controller.html);

• Form a connection to the IP address on the port 80;

• Send a "get" request to the Boa server.

3) The web server responds the request by sending HTML text for the web page

to the browser.

4) The browser reads HTML tags and displays the input form onto the screen.

5) The user enters testing parameters and submits them by clicking on "Run"

button.

6) The browser allows the user to enter testing parameters and submits

information to the Boa web server.

7) The Boa web server forwards the information and activates the CGI program.

8) The CGI program makes a function call for the adaptive mechanism.

9) The plant simulator running on a Linux machine interacts with the embedded

adaptive controller and forms the closed control loop.

70

http://l%2092.168.0.128/embedded_adaptive_controller.html

10) At every step, the CGI program sends the status to the Boa server.

11) The Boa server then sends the status in HTML text to the browser.

12) The browser reads HTML tags and formats the page onto the screen.

As shown in Figure 7.5, the sequence diagram describes interactions among the

web browser, the Boa web server, the CGI program, the embedded adaptive controller,

and the plant simulator.

User requests
the mantes!

lUser sufrmis fwm

r Output to wefc <At*i

:arv-affe ie C&

• •*» ot^pistoeoA

j ftqj&iljya&'gcfia•sgft | [a i s r f r d j ^ t f a b ^ l L?ffi i ; f f?,ff l£!,.,

jSyrSNss&e asfeif#Y9 gams

vas* tor PlssrtSwi

Send adaptYS e£i£2

, I

Sens (to i l sA i * !

Send gtsapiive sfct # '
•••"••J Fe'eiv? s«tsptive pw?i

a stent ms 7. j N™^

' (J 0 0 ̂ :'

SefieJ acispfcw BM#2

~"^ rtecasve sdapitr/e »'

Oylpaito wefccfer*

A%5

Figure 7.5. Sequence diagram.

71

7.1.4. Kernel Image of the ARM Board

The uClinux kernel is developed for the ARM board using Cygwin and Armtools

software [30]. The distribution CD provides installation files for Cygwin and Armtools

as well as various helpful documents such as datasheet and reference manual [31]. We

write a C program that plays the role of the adaptive mechanism and combine this

program with other predefined source files to build the uClinux kernel image. The kernel

image will consist of the following elements: 1) the adaptive mechanism program; 2) the

CGI program; 3) the Boa web server; and 4) the NFS client.

The CGI protocol includes a standard for interfacing applications with

information servers such as web servers. The executable in a CGI can be any type of

executable that handles standard input and output [32]. CGI programs are the most

common server-side method for performing an executable that go beyond HTML. In this

implementation, the adaptive mechanism and the CGI program are written in C language.

The Boa web servers is enabled from uClinux distribution through 3 steps: 1)

customize kernel settings, customize vendor/user settings, and update default vendor

settings; 2) select networking options and select network device support; and 3) establish

Ethernet connection between the ARM board and other computers such as the plant

simulator and engineering stations throughout a LAN network.

The Boa web server is enabled for the ARM board to allow a user to use a web

browser in a client machine or an engineering station to point to the Boa web server and

start the adaptive controller testing form. The user then set testing mode to send the

information in the form to the CGI program. It will make a function call for the adaptive

72

mechanism. At every simulation step, execution status is posted back to the Boa server

and finally received by the user's browser.

7.2. Common Database

The shared database is located in the NFS server. The database can be accessed

by any computer in the LAN. The database consists of a number of structured text files

as listed in Table 7.1.

Table 7.1. Structured data files.

No.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

File name

kx.dat

xl.dat

x2.dat

ke.dat

el.dat

e2.dat

kuc.dat

ucl.dat

uc2.dat

kth.dat

thl.dat

th2.dat

th3.dat

th4.dat

th5.dat

th6.dat

th7.dat

Data description

Time stamp of plant state

Plant state xi

Plant state X2

Time stamp of error variables

Error variable ei

Error variable e2

Time stamp of reference signal

Reference signal uci

Reference signal uC2

Time stamp of adaptive gains

Adaptive gain Gi

Adaptive gain 02

Adaptive gain 63

Adaptive gain 64

Adaptive gain 85

Adaptive gain 96

Adaptive gain 67

73

18

19

20

th8.dat

adapout.dat

kmax.dat

Adaptive gain 0g

Output data of embedded adaptive controller

Maximal step size

7.3. Plant Simulator

We build a C++ project, so called "plant simulator," to simulate the plant and

other auxiliaries including feedback control loop, reference model, and comparator. Each

subsystem is represented by a C++ class, which has been well developed in Chapter 6.

Hence, we just create the "Makefile" of the new project as follows:

CC = g++

all:

$(CC) -g -c -o Comparator.o Comparator.cpp

$(CC) -g -c -o LinearControl.o LinearControl.cpp

$(CC) -g -c -o PlantModel.o PlantModel.cpp

$(CC) -g -c -o ReferenceModel.o ReferenceModel.cpp

$(CC) -g -o PlantSim AdaptiveMech.o Comparator.o

LinearControl.o PlantModel.o ReferenceModel.o

In a console terminal, we run the "Makefile" to compile and build the PlantSim

executive file, as shown in Figure 7.6:

$ make

$ I s - 1 P l a n t S i m

74

1 iij-ji.--.,..^- : - : . M : - - I - - : .•

File Edit yiew Jsrmtnal Tabs Hop
hnafl8ntiar]:~/ths<;i?/piant^ii»$ make
g*+ -g -c -o Comparator.o Comparator.epp
g-w- -3 -c -o LinearControt.o LinearControl.cpp
9-w- -3 -c -o Plan-Model.o PtsrtHcdel.cpp
g++ -•} -L -o Refereiicelluds't.y RefeioiteMoJel.tpp
A++ -g -c -o ReferenceOutput.c RefereaceOutput.cpp
J H g c o ControllcdOutput.o ControllcdOutput.cpp

<(++ -w -g -o P'.an-siit t es t . cpp tcmparator.o Llnearcontrol,o planuwdel.o Referen
ceModel.a ReferenceOutput.o Ccntro'.ledOutput.a
hoan@rioai:-/thesis/PlantSi!i$ \s -I PlantSim
-rwxr-xr-* 1 hoan hoan 295822 29G9-10-19 22:37 Pl^Viw
hoan@hoan:--I'th«sis/PlantSin$ I

Figure 7.6. Compile and build the plant simulator in a console terminal.

7.4. Development of the Main Testing Form in HTML

We write the testing form in HTML to allow user to enter testing parameters. The

input form is quite simple and described as follows:

1 <html>

2 <head>

3 <title> UDP streaming </title>

4 </heaci>

5 <body>

6 <div a l ign="cen te r ">

7

8 <iirig s rc=" image . jpg" />

9 </div>

10 <hl>Embedded Adaptive Controller</hl>

11 <form action="/cgi-bin/mycgi" method="get" target="dest">

12 <h3>Please enter simulation parameters.</h3>

13 <p>Sampling time (T) : <input type="text"

name="sptime" value="" size=4 0>

75

14 <p>Adaptation rate (gamma): <input type="text" name="gamma"

value="" size=40>

15 <p><input type="submit" value = "Run"xinput type="reset">

16 <input type=hidden name=cmd value="run">

17 </form>

18 </body>

19 </html>

Figure 7.7. Main testing form in HTML.

The beginning section is normal HTML similarly to the start of any HTML web

page. The next section starting with the line <form a c t i o n = " / c g i - b i n / m y c g i "

method="get" t a r g e t = " d e s t " > is the actual form [30]. Some key features of

HTML form needed for CGI interface are listed in Table 7.2.

Table 7.2. Some key features of an HTML form.

Feature

action="..."

method="..."

target="..."

type=...

Code example

<form action='7cgi-bin/mycgi"

method-'get" target="dest">

<form action=7cgi-bin/rnycgi"

method="get" target="dest">

<form action="/cgi-bin/mycgi"

method="get" target="dest">

<input type=text name=sptime>

<input type = submit value =

"Run" >

Description

Define the URL of the CGI

program

Define how the information is

passed to the server

Define the target frame to load

the destination page

Input tag to enter sampling

time and text type

Collect and post data

76

7.5. Adaptive Mechanism Program

The adaptive mechanism program, the core of the embedded adaptive controller,

will be run in the ARJVI-7 development board. Similarly to the C++ simulation project in

Chapter 6, the adaptive mechanism program written in C has two basic functions as

follows:

static void getAdapMechPkt (int k, struct Pkt *xk_i, struct

Pkt *ek_i, struct Pkt *uck_i, struct thetaPkt *thk_i) ;

void genAdapMechPkt (int k, struct Pkt* xk_!, struct Pkt* ek_1,

struct Pkt* uck_i, struct thetaPkt* thk_i, struct thetaPkt

*thk) ;

The first function, getAdapMechPkt, is to receive signals from the common

database and save them to local variables. The second one, genAdapMechPkt, is to

synthesize adaptive gains and sent them to the plant simulator via the common database.

The pseudo code of the adaptive mechanism program is shown in Figure 7.8.

1 static void getAdapMechPkt(int k, struct Pkt *x[k-l],

struct Pkt *e[k-l], struct Pkt *uc[k-l], struct thetaPkt

*th[k-l]){

2 //Receive signals from database

3 getsig("/var/tmp/fkx.dat", &kx);

4 getsig("/var/tmp/fxl.dat", &xl);

5 getsig("/var/tmp/fx2.dat", &x2);

6 getsig("/var/tmp/fke.dat", &ke);

7 getsig("/var/tmp/fel.dat", &el);

8 getsig("/var/tmp/fe2.dat", &e2);

9 //...

10 g e t s i g (" / v a r / t m p / f t h 8 . d a t " , &th8);

77

11 return;

12 }

13 void genAdapMechPkt(int k, struct Pkt* x[k-l], struct Pkt*

e[k-l], struct Pkt* uc[k-l], struct thetaPkt* th[k-l],

struct thetaPkt *th[k]){

14 //compute adaptive gains

15 th->k = k;

16 thl[k]=thl[k-l]+Tgamma*(bll*el[k-1]+b21*e2[k-1])*xl[k-

1]/10000000;

17 th2[k]=th2[k-l]+Tgamma*(bll*el[k-l]+b21*e2[k-1])*x2[k-

1] /10000000;

18 //...

19 th8[k]=th8[k-1]-Tgamma*(bl2*el[k-1]+b22*e2[k-1]) *uc2[k-

1]/10000000;

2 0 //write to database

21 fwritethpkt("/var/tmp/adapout.dat", th_k);

22 settime("/var/tmp/fka.dat", k);

23 return;

24 }

Figure 7.8. Pseudo code of the adaptive mechanism program.

7.5.1. CGI Program

As described in the introduction section, CGI programs are the most common

server-side method for interfacing applications with web servers. Parameter passing will

be done in both ways of communication: 1) from client (browser) to CGI; and 2) from

CGI to the browser [30]. There are three steps of parameter passing as described below.

First, the CGI program communicates with the browser via web server:

printf("Content-type: text/html\n\n");

78

.p r in t f ("<html> <head> < t i t l e > Embedded Adaptive Mech

< / t i t l e > < /head>\n") ;

Second, the CGI program captures the value of the command from the browser:

unsigned char *strl,*str2, *cmd;

cmd = getval((unsigned char *)"cmd");

We note that the HTML file on the web server uses "hidden" attribute to pass

variables:

<input type=hidden name=cmd value="run">

The CGI program captures parameters passed by HTML page through

"getenv(...)" as follows:

vstr = (unsigned char*) getenv("REQUEST_METHOD");

if(vstr==NULL) return 0;

if(strcmp((const char*)vstr,"POST") == 0)

Third, the CGI program captures parameters. It finds the length of the

parameters:

vstr = (unsigned char*) getenv("CONTENT_LENGTH");

if (vstr==NULL || strlen((const char*)vstr)==0)return 0;

It then captures the parameters from the browser using fgets(...) function in the C

stdio library as shown below:

i f (vstr==NULL)return 0;

fgets((char*)vstr,cl+1,stdin);

The flow chart of CGI program is shown in Figure 7.9.

79

C End)
Figure 7.9. Flow chart of the CGI program.

The C pseudo code of the CGI program is shown in Figure 7.10.

1 main ()

2 {

3 i n t v a l i d ;

80

4 unsigned char *username,*password, *cmd;

5 //Al: Communicate with the browser

6 printf ("Content-type: text/html\n\n");

7 printf("<html> <head> <title> Embedded Adaptive Mech

</title> </head>\n");

8 //A2: Capture the value of cmd from browser

9 cmd = getval((unsigned char *)"cmd");

10 if(strcmp((const char *)cmd,"run")==0)

11 {

12 //A3: Capture value of sampling time

13 sptime=getval((unsigned char*)"sptiine")/60;

14 //A4: Capture value of gamma

15 gamma=getval((unsigned char*)"gamma");

16 ,//'A5: Run adaptive mech

17 while(k< kmax){

18 //A6: Waiting for Linux machine sending input signals

19 while(Igetkt){

20 getkt = getcsig("/var/tmp/fkt.dat", &kT) ;

21 wait(5000);

22 }

2 3 //Check time stamp

24 while(k!=kT){

25 getsig("/var/tmp/fkt.dat", &kT);

26 wait(10000);

27 }

28 //Al: Receive signals

29 getAdapMechPkt(k, &x_kml, &e_kml, &uc_kml, &th_kml);

30 //A8: Generate adaptive gains

31 genAdapMechPkt(k, &x_kml, &e_kml, &uc_kml, &th_kml,

&th_k);

32 //A9: Step increment

33 k++;

34 }

81

35 }

36 else

37 //AID: Error message

38 printf ("<p>Sorry, the request is invalid. \.n") ;

39 //All: Close body and html tags

40 printf ("</body></html>\n");

41 exit (0);

42 }

Figure 7.10. Pseudo code of the CGI program.

7.5.2. NFS Server Setup

The NFS server resides in a Linux machine. There are three utilities needed to

run an NFS server: 1) portmap daemon; 2) mount daemon; and 3) NFS daemon. The

following procedure describes the NFS server setup for Linux Ubuntu machine:

1) Install the package

• sudo apt-get install nfs-kernel-server nfs-common

2) Modify /etc/exports to make the file system

/ o p t / t e s t 192 .168 .0 .128(rw, f s id=0 , no_root_squash)

where:

• /opt/test is the directory to be exported;

• 192.168.0.128 is the IP address of ARM board (NFS client);

• rw is to allow client machine to read and write access to the directory;

• norootsquash is to allow root on the client machine to have the same level

of access to the files on the system as root on the server.

82

3) Enable the NFS server, which will start multiple services and export the file

system as shown in Figure 7.11.

#sudo /etc/init .d/nfs-kernel-server s tar t

Fii* Edt ^j»*» Terminal Tabs. Help

iootghosR./nome/^Odn* sudo / e U / i n t f i / ' i f s k e r n e l servet s t a r t
'* Expor t ing d i r e c t o r i e s f o r NFS ke rne l daemon. . .

e x p o r t f s : / e t c / e x p o r t s [1] : N e i t h e r ' s u b t r e e check' o r sno subt ree check s p p c i f
led for export "192.158.6.^/opt/ test".

Assuming d e f a u l t behaviour { ' no s u b t r e e ^ c h e c k ') .
NOTE: t h i s d e f a u l t has changed s ince n f s - u t i l s ve rs ion i . e . x

e x p o r t f s : / e t c / e x p o r t s [2 1 : N e i t h e r °subtree check' o
ied f o r export " 1 9 2 . 1 6 8 . 9 . - * : / o p t / t e s t / h o a n . t x t K .

Assuming d e f a u l t behaviour { ' n o subt ree c h e c k ' 1 .
NOTE: t h i s d e f a u l t has changed s ince n f s - u t i l s ve rs ion 1.0.x

* S t a r t i n g NFS ke m e l
oot@hoan:/home/hoan#

program
109880

looses
10S824
188824
100883
100883
100883
19S821

Yers
2
2
1
1
2
3
4
1

p r o t o
U p
udp
udp
t c p
udp
udp
udp
udp

daemon
r p c i o f o

port
111
111

48909
55541

2849
2849
2649

39236

P

partF.apper
po r t t appe r
s t a tus
s t a tus
n fs
n fs
n fs
n lock^r

subtree check' specif*

[OK

[OK

Figure 7.11. Enable NFS server for Ubuntu machine.

Finally, we can check status of RPC daemon using the following command:

#sudo rpcinfo -p

I I
Bin Edit y}&

hoan@aoan:-$

*> Terminal

rpc
program vers
loeoea
168800
169824
100024
168883
186803
198803
18SB21
196821
180821
188983
16B983
1813883
168621
188B21
168821
188895
leeaos
188885
109805
186885
188005

hoan^hoan: ~$

2
2
1
1
2
3
4
1
3
4
2
3
A
1
3
4
1
1
2
2
3
3

1

i n f o -
j r o t o

t cp
udp
udp
t c p
udp
udp
udp
udp
udp
udp
t c p
t cp
t c o
t cp
tco
t c p
udp
t c p
udp
t c p
udp
t c p

Tabs

P
po r t

111
n i

35368
35832

2649
2649
2S49

44664
44694
44994

2049
2849
2949

41394
41894
41894
33383
44819
33389
44819
33389
44819

M ^ s t i # k ^ ^ <

bMp

portssapper
portraapper
s ta tus
s ta tus
nfs
n fs
n fs
filockrcgr
nlock/ngr
nlockffKjr
nfs
n fs
nfs
nlockragr
nlockoigr
nlockmgr
isosintd
sountd
syjuotd
sountd
^ountd
ssountd

Figure 7.12. Check rpc daemon status.

83

7.6. Building the Kernel Image

7.6.1. NFS Client Setup

Firstly, we do "make menuconfig" for configuring the uClinux kernel. Under

"FileSystems" configuration, we choose "Network File Systems."

Figure 7.13. Select network file systems.

Now, under "Network File Systems", the following options should be chosen: 1)

"NFS File System Support"; and 2) "Provide NFSv3 client support" as shown in Figure

7.14. This completes the required configuration for the NFS client set up.

84

l - £ ig

Arrot» keys navigate the menu. <Ehter> se lec t s subgenus >. 3
Highlighted l e t t ers are hutkey£. Pressing (Y> includes, <H> excludes, 3
<H> Modularizes features. Press (Esc>(£sc> to e x i t , <?> for Help. 3
legend: E«3 bui l t - in t 3 excluded <H> module < > module capable 3

UAAftAAA^AAftft^A^fiaAAAA'AAAftAAAnAflAAAn'AM 3
3 [] oda f i l e system support (aduanced network fs>
3 1! J nterlfeszo f i l e system support (experimental, replicating f s)
3 t—1 N S f i l e system support
3 l >] ^ rg^deHre«3 c l i en t support

3 I J N S seruer support
3 £ 3 HB f i l e system support (to mount Windows shares e t c .)
3 t 3 N P f i l e systef? support (to mount NetWare volumes>
3
3
3
A

Figure 7.14. Select NFS supports.

Secondly, we add user level utility for remote mounting of the server exported

directory. Since the "mount" under uClinux-dist/user does not work well with Linux 2.4

kernel, we use the busybox utility. The busybox user level utility needs to be configured

to include mount and unmount. We choose "BusyBox" configuration under "Vendor

Settings" and select "mount" and "umount" under "BusyBox configuration."

Arrott keys navigate the
Highlighted letters are hotkeys. Pressing
<lf> modularizes features. Press (EscXEse> to exit , <?> for Help

„^S^n^.:.-..^*.^.*HiJ*~ift-...A...1..s?slttded __ <H> nodule _< Aj?????^s„<:apable
UAAAA£AAAAAAAAAAA'

3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
a
3
3
3
3
3
3
A

;*qir3Bm < e,,, > < u.,,. > 3
AflAAAAAAAftAAAAAAAAAAAAAAftftAAAftflO^

AAAAAAftftA^AAAAAAAflAAAflAAAAAAftAAAAAfiAA
[3 n <NEW>
[1 ogger <NEW>
[3 ogname (NEH>
[1 s <NEW>
[3 smod (N6»>
C 1 ro kedevs (NEU>
[3 m 5sum CNEW>
[3 m d i r (NEM>
[) > f s j m i n i x (NEW)
t 3 ro nod (NHO
[3 m temp (NEM>
[I n dprobe <NBI)
[l i t r e (NEW>
[•1 m unt (NEtO
(3 m unt: loop dev ice s <NEtf>
[3 m unt: support / e t c /mtab <HBO

mmmsamsmBBEMsmamsm
l 3 m<NEW>
[3 n <NB»

3 n lookup <NEtO
3 idof <W6W1
3 ing (NEU>

Figure 7.15. Select the "mount" option.

85

Figure 7.16. Select the "umount" option.

Lastly, we modify "Makefile" under /user/busybox directory. We make some

modifications for ROMFS as follows:

romfs: #install-romfs.sh busybox.links

syslog-install

c p $(PROG) $ (ROMFSDIR) /b in /$ (PROG)

$(ROMFSINST) / b i n / $ (P R O G)

$(SHELL) $< $ (R O M F S D I R) / b i n /

We fix for env, xargs, and rm: 1) change env -i to /bin/env; 2) change xarg to

/bin/xargs ; and 3) change rm -f to /bin/rm -f. The modifications are shown in Figure

7.17.

86

Ill i i^'i^:: •:.' : -§B

Figure 7.17. Modifications for Busybox Makefile.

7.6.2. Enabling the CGI Protocol

The CGI protocol is built into the Boa web server by default for the uClinux

distribution. We do the following two steps to enable the CGI protocol: 1) modify

"boa.conf' to make sure "cgi-bin" is mapped to Boa document root directory; and 2)

customize Boa "Makefile" to make sure cgi program is properly compiled, built, and

placed at the proper directory of the kernel image.

In the first step, we modify the "boa.conf configuration file. We note that the

configuration file for Boa is located in /uClinux-dist/user/boa/src directory. The first

thing is to map the virtual location of/cgi-bin/ to the actual location /usr/lib/cgi-bin/. We

usually set /etc/ as the document root of Boa server; hence, we can use it as the physical

87

location for the CGI program. We edit "boa.conf" by replacing the line of the Boa server

root location as

ScriptAlias /cgi-bin/ /etc/

In the final step, we modify Boa "Makefile" to build the CGI program to the

kernel image as follows:

1) Add one line to define "mycgi" as the CGI executable to be built:

TESTEXEC = m y c g i

2) Add one line to define "mycgi.o" as the temporary object file of "mycgi"

during compilation:

TESTOBJS = mycgi.o

3) Add multiple lines to define the way to build "mycgi" including depending

object ("mycgi.o"), the compiler ("$(CC)"), and the referenced libraries as:

$(TESTEXEC): $(TESTOBJS)

$(CC) $(LDFLAGS) - o $@

$(TESTOBJS) $(SSL_LIBS) $(EXTRALIBS) $(LDLIBS)

4) Add multiple lines under "romfs" entry to define the built program and other

files to the file systems:

romfs:

$(ROMFSINST) /bin/$(EXEC)

$(ROMFSINST) /etc/$(CONFIG)

$(ROMFSINST) /etc/$(MIME)

$(ROMFSINST) /etc/$ (INDEX)

$(ROMFSINST) /etc/$(TESTEXEC)

88

$(ROMFSINST) /etc/embedded_adaptive_controller.html

$(ROMFSINST) /etc/logo.gif

$(ROMFSINST) /etc/image.jpg

$(ROMFSINST) / e t c / c l i p . m p g

7.6.3. Enabling the Boa Web Server

Enabling the Boa web server from uClinux distribution takes 3 steps: 1)

customize kernel settings, customize vendor/user settings, and update default vendor

settings; 2) select networking options and select network device support; and 3) establish

a LAN connection of the ARM board and a laptop through a router.

In the first step, when performing "make manuconfig", make sure to check the

following three boxes:

1) Customize kernel settings;

2) Customize vendor/user settings,

3) Update default vendor settings;

In the second step, we select networking options and select network device

support:

1) TCP/IP networking;

2) IP kernel level autoconfig;

3) IP DHCP support;

4) IPBOOTP

5) IPRARP

Then exit from the networking options, we enter network device support and

check:

89

1) Ethernet (10 or 100 Mbit)

2) RTL8019AS

At the application settings customization, we go to "Network applications" screen

and check:

1) Boa

2) dhcpcd-new

3) dhclient

4) ifconfig

5) inetd

6) ping

7) portmap (to be used for NFS port mapping)

8) route

9) routed

10)telnetd

ll)tftpd

Finally, we build the kernel image using the command "make" from the console

terminal.

Once the kernel image is ready, it can be loaded into the ARM board by using use

Trivial File Transfer Protocol (TFPT) from either Windows or Linux computer. If a

Windows machine is used, we run the TFTP utility "tftp32.exe" under the

/Cygwin/tftpboot directory. Otherwise, the following command is to enable TFTP server

for Linux machines:

90

root# /etc/init.d/xinetd start

Figure 7.18. Start "xinetd" for Linux Ubuntu.

We then copy the kernel image to the /tftpboot directory. When power up the

ARM board, it automatically loads and run the kernel image.

Alternately, we can manually load and run the kernel image using the following

commands in the console terminal (Linux machine) or the hyperterminal (Windows

machine):

tftp 0x0c008000 linux_bootram.bin

go 0x0c008000

91

RRMboot 1.8.2 (Aug 12 2084 - 10:43:21)

RRMboot code: 0c700000 -> 0c719860
CFG_ENV_SIZE=00001000,CFG_ENVJDDR=00040000.
DRAM Configuration:
Bank tt0: 0C0O0000 8 MB
Flash Configuration:
Flash: 2 MB
»-* Using default environment
Hit any key to stop autoboot: 0
S3C44B0 H tftp 0X0C008000 linux_bootram.bin
RTL8019HS ethernet driver vl.0 2003/09/18
ARP broadcast 1
eth addr: 00:15:c5:7b:80:86
TFTP from server 192.168.0.7; our IP address is 192.168.0.128
Filename 'linux_bootram.bin'.
Load address: 0xc008000
Loading:

done
Bytes transferred = 1431920 (15d970 hex)
S3C44B0 « go 0x0c008000_

Figure 7.19. Manually load the kernel image to the ARM board.

i'--.l lly|if-i K irnir^i

File Edit View Call Transfer Help

a & *•••- s "0 a i f

Command: mkdir /var/run
Command: mkdir /var/lock
Command: ifconfig lo 127.0.0.1
Command: route add -net 127.0.0.0 netmask 255.255.255.0
Command: dhcpcd -p -a eth0 &
[111
Command: ifconfig eth0 192.168.0.128
Command: /bin/boa -c /etc &
[13]
Command: ps
PID PORT STAT SIZE SHARED XCPU COMMAND
1 S 37K 0K 48.5 init
2 S 0K 0K 0
3 S 0K 0K 0
4 S 0K 0K 0
5 S 0K 0K 0
6 S 0K 0K 0
7 R 72K 0K 99
11 Z 0K 0K 0
13 S 136K 0K 0

0 keventd
0 ksoftirqd CPU0
0 kswapd
0 bdflush
0 kupdated
9 /bin/sh /etc/rc
0 dhcpcd
0 /bin/boa -c /etc

Execution Finished, Exiting

Sash command shell (version 1.1.1)
/> _

In

Figure 7.20. Manually run the kernel image.

We are now able to ping ARM board from the host and to ping the host from

ARM board. With ping working, we can now start the Boa server as follows:

/> /b in /boa -c / e t c &

92

where /etc is the internet document root directory of the Boa web server; and "&" makes

the Boa process run in the background.

We can use "ps" to check out its status as shown in Figure 7.21.

lc*r H y p o lermiridl

File Edit View Call Transfer Help

p cs . S O B f
- -—......„... — . ,.„.

Command: mkdir /uar/log
Command: mkdir /var/run
Command: mkdir /var/lock
Command: ifconfig lo 127.0.6
Command: route add -net 127.
Command: dhcpcd -p -a eth0 i
til]

""'"•'"™ u u —

.1
0.0.0 netmask 255.255.255.0 lo

Command: ifconfig eth0 192.168.0.128
Execution Finished, Exiting

Sash command shell (version
/> /bin/boa -c /etc &
[141
/> ps
PID PORT STAT SIZE SHARED
1 S 37K 0K
2 S 0K 0K
3 S 0K 0K
4 S 0K 0K
5 S 0K 0K
6 S 0K 0K
13 S0 R 71K 0K
14 S0 S 136K 0K

/>

|Connected 0:10:22 : Auto detect 1152008-N-l

1.1.1)

KCPU COMMAND
0.2 init
0
0
0
0
0
0
7

0 keventd
0 ksoftirqd_CPU0
0 kswapd
0 bdflush
0 kupdated
2 /bin/sh
0 /bin/boa -c /etc

MUM

Figure 7.21. Process status.

7.7. Testing

7.7.1. Test Procedure

The test procedure for the whole system is as follows:

1) Establish the serial communication between a computer and the ARM board

using serial communication port 0.

2) On the PC side, run hyper terminal software by start > all program >

accessories > communications > hyper terminal.

93

3) Set up a LAN network consisting of the ARM board, the NFS server (Linux

machine), the plant simulator (PC/ Linux machine), and engineering stations

(PC/ Linux machine).

4) Power up the ARM board, the hyper terminal console will display the

following information:

• TFTP service loading the kernel image.

• Uncompressing Linux and booting the kernel.

• Shell invoked to run the boot script file: /etc/rc.

5) Enable Boa and run commands for portmap and NFS mount as depicted in

Figure 7.22.

• test - HyperTermin
File Edit View Call Tran

D G» *; S * S if

* j ; ," . ; ' !

5fw help

[11]
Command: ifconfig ethO 192.168.0.128
Command: boa -c /etc 8:
[13]
Command: portmap &
[14]
Command: ps
PID PORT STAT SIZE SHARED %CPU COMMAND
1 S 37K 0K 33.3 init
2 S OK OK 0
3 S OK OK 0
4 S OK OK 0
5 S 0K OK 0
6 S 0K OK 0
7 R 72K OK 78
11 Z OK OK 45
13 S 136K OK 0
14 S 91K OK 0

0 keventd
0 ksoftirqd_CPU0
0 kswapd
0 bdflush
0 kupdated
5 /bin/sh /etc/rc
0 dhcpcd
0 boa -c /etc
0 portmap

Command: busybox mount -t nfs -o rsize=1024,wsize=1024 192.168.0.20:/opt/test /v
ar/tmp
Execution Finished, Exiting

Sash command shell (version 1.1.1)
/> _

Connected 0:02:38 Auto detect i 115200 8-N-l NUM

.*v-

:̂

Figure 7.22. Mount network files for the NFS client.

94

Mount the network file system for NFS client (i.e., ARM board) using the

following command:

busybox mount - t n f s - o r s i z e = 1 0 2 4 , w s i z e = 1 0 2 4

1 9 2 . 1 6 8 . 0 . 8 : / o p t / t e s t / v a r / t m p

where 192.168.0.8 is the IP address of NFS server; /opt/test is the exported

directory; and /var/tmp is the local directory on NFS client.

Ping the ARM board from the Linux machine and vice versa.

| g haan@hoan: ~

file Edit ifiew Terminal Tabs Jdelp
hoant«oan:~$ ping mi:m.v:m
PING 192.168.6.128 (192.168
64 bytes from 192.168.8.128
64 bytes from 192.168.8.128
54 byles Hum 192.168.9.128
64 bytes from 192.168.6.128

8.128) 56(8-1) bytes of data.
lcmp_seq=l ttl=255 tisse=l.47 ms
icmp_seq=2 t t 1=255 twe=1.36 ms
leap seq=3 LLl=255 Uine=1.41 mi
icmp seq=4 tt1=255 time=1.4B ms

--• 197.168.6.178 ping statist ics ---
4 packets transmitted, 4 received, ®% packet loss, time 3
rtt min/avg/iBax/rsdev = 1.368/1.417/1.479/8.948 as
hoan@hoan:--$ |

Figure 7.23. Ping ARM board from the Linux machine.

I Oil hiypL i Icirmiidl

File Edit View CaB Transfer Help

D G? aa f
/bin> ping 192.168.0.8
PING 192.168.0.8 (192.168
64 bytes from 192.168.
64 bytes from 192.168.
64 bytes from 192.168.
64 bytes from 192.168.
64 bytes from 192.168.
64 bytes from 192.168.
64 bytes from 192.168.
64 bytes from 192.168.
64 bytes from 192.168.
64 bytes from 192
— 192.168.0.8 ping s
59 packets transmitted
round-trip min/aug/max
/bin>

0.8):
icmp
icmp.
icmp.
icmp.
icmp.
icmp.
icmp.
icmp.
icmp.

56 dat
_seq=0
_seq=l
_seq=2
_seq=3
_seq=4
_seq=5
_seq=6
_seq=7
_seq=8

a bytes
ttl=64 t
ttl=64 t
ttl=64 t
ttl=64 t
ttl=64 t
ttl=64 t
ttl=64 t
ttl=64 t
ttl=64 t

ime=20
ime=10
ime=10
ime=10
ime=10
ime=10
ime=10
ime=10
ime=10

.0 ms

.0 ms

.0 ms

.0 ms

.0 ms

.0 ms

.0 ms

.0 ms

. 0 ms

tatistics
59 packets received,
10.0/10.1/20.0 ms

0JS packet loss

Figure 7.24. Ping the Linux machine from the ARM board.

95

8) A user using a web browser to open the main GUI page of the Boa web

server at the URL location <http://l 92.168.0.128/embedded_adaptive_

controller.html>.

Main GUI of Embedded Adaptive Controller - Mozilla Firefox
File Edit View History Bookmarks lools (Help

$01 * C s- J http//192168.0^

J Main GUI of Embedded ...

SAN iOSfe STA'
OHIVERSiTY

Embedded Adaptive Controller

Please enter adaptive mechanism parameters.

Sampling time (T, msec) 110

Adaptive factor (gamma) 11000

Run! Reset

Done

Figure 7.25. Open the main page of Boa web server.

9) Set sampling time and adaptation rate y and click "Run" to submit

information to the CGI program.

10) At the same time, run the plant simulator on a Windows/ Linux computer

and start testing the embedded adaptive system as shown in Figure 7.26.

96

http://l%2092.168.0.128/embedded_adaptive_?controller.html
http://l%2092.168.0.128/embedded_adaptive_?controller.html

t ie edit View Terminal TaJ3s

hcangftoaa : - / t hes i s^P lan ts i i » i
Time = 6T:
Plant parameters:
A = -7.129180 -6.954586
B - 3.130388 6.197300
B - -3.959188 -6.825686
u l [8] = 0.517838
IIJ [HI = (J.iHHHhH
xi[8] = B.Eeeese
x2[ei = s.csesas
M l [8] - 6.666960
atr ia l = e.eeeooo
TisiC = IT:
Plant parameters:
A = -7.129199 -6.954566
B = -3.139189 8.197396
K = -tf.BMOBB -K.H74bB8

Jdp

. / adap t i vecamro l

1.3S3603
6.682830

6.258383

1.393689
-8.£62298
B. JhK-iH:-)

input pkt sent :o Adaptive wechanlsu.
Meiil i i iy fui cstidiilive ydln pk l
Press any hey to c c n t i n u e . . .

-6.239783
6.626603

6,66G855

-9.259783
-0.629683
H HHI-li4*s

Figure 7.26. Start the plant simulator in a Linux machine.

11) The testing results can be observed at either the web browser (Figure 7.27)

or the plant simulator's consol (Figure 7.28).

4 ' .' . "
Bis Edit Yiaw History look

Gsxgte i

efk-D.pl =

e(k-l) .p2 =

ucfk-lj.k =

uc(k- l) .p l

uc(k-l) .p2

thik-lj .k =

th ik - l j . th l

th ik- l) . th2

th(k- l) . th3

th!k- l] . th4

th!k- l) . th5

th!k- l) . th5

thfk- l j . th?

Dans

& c
l:

-119

-18

6

= 50000

=10000

65S95

= 66000

= 5

= 1

= -309998

= 1 0 4 4 2 2 5 4

= -42712

= 4240

ITtdlk^ Turlb

o Htp iH9i

| IG^Search

Help

16S.0 .1

» •'* zf>

* B . g

&

b i r / p

- M

ycqr 'u

' * "

. . _ _

I. °'

EtllF

^Settings

>i

-

-

!
i
i

1

i
1

1
-',

i

Figure 7.27. Testing result displayed on the web browser.

97

2SS£2!SSIiiSyi Ngjj£jlll
file Edit \/iew Terminal tabs Help

Get t i i i ie: :Fress any key to con t inue 2}
<p> Opening the input f i l e / op t / t es t / f ka .da t \
<p> Opening the input f i l e /opt / test /adapout .dat
Adaptive gains synthesized:
th .k |5] ~ 6881 t

t h l [5] = 9 .371599 ;
t i ! 2 [5) = -6 .516686 I
t h 3 [5] = fl.286662 |
t h 4 [5) = -8 .389999 |
t hS [5J = 1.044283 I
t h 6 [S] = -B.B42788 |
t h 7 [5] = 8 .868449 !
t h 8 [5] = 1.886624 !

u l [5] - 9 .517732 !
u2[5J = 6 .101256
x l [5] = -8 .867699 JS
x 2 [5] = -8 .S85796
Jns l [5] s -8 .887186
X B 2 [S J = -8.GS5626 J
Titfve = 6T: '^
Plant paraii^eters:
A = -7.129188 -8.954586 1,543688 -8.239788
B = -0,153198 0.217368 -8.082696 -8,829688
B - -8.859488 -8.829688 0.233388 B.OB8945
Input pkt sent to Adaptive Mechanise.
Waiting for adaptive gain pkt .
Press any key to cont inue. . .

Figure 7.28. Testing result displayed on the plant simulator's monitor.

7.7.2. Test Results

As aforementioned, all testing outputs are stored in the shared database, which

can be accessed from any computer of the LAN network. The output data files are listed

in Table 7.3.

Table 7.3. Structured output data files.

No.

1

2

3

4

5

6

7

8

File name

t_x.dat

t_xm.dat

t_e.dat

t_uc.dat

t_u.dat

t_theta.dat

t_y.dat

t_ym.dat

Data description

Plant state x\ and X2.

Reference state xm\ andxm2-

Error variables e\ and ej.

Reference signals uc\ and uci-

Control signals u\ and U2.

Adaptive gains 6\ - 0%.

Controlled outputs y\ and_y2.

Reference outputs ym\ and_yOT2-

98

The plant simulator has varying dynamics by randomized parameters and

interfered by unpredictable disturbances. The embedded adaptive controller synthesizes

adaptive gains at every step time. We find that the plant states always keep track of the

reference states all the testing time as shown in Table 7.4.

Table 7.4. Output data of state variables.

k

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

Time

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

X\

0.00000

-0.00521

-0.00667

-0.00817

-0.00764

-0.00770

-0.00815

-0.00738

-0.00650

-0.00665

-0.00641

-0.00623

-0.00645

-0.00594

-0.00587

-0.00551

-0.00514

-0.00587

-0.00641

X2

0.00000

-0.00037

-0.00151

-0.00291

-0.00447

-0.00580

-0.00713

-0.00862

-0.00986

-0.01091

-0.01202

-0.01313

-0.01403

-0.01503

-0.01586

-0.01667

-0.01748

-0.01817

-0.01903

%m\

0.00000

-0.00523

-0.00687

-0.00730

-0.00731

-0.00719

-0.00702

-0.00685

-0.00669

-0.00652

-0.00637

-0.00622

-0.00608

-0.00595

-0.00582

-0.00569

-0.00558

-0.00546

-0.00536

Xm2

0.00000

-0.00039

-0.00153

-0.00289

-0.00427

-0.00563

-0.00693

-0.00817

-0.00936

-0.01049

-0.01158

-0.01261

-0.01359

-0.01453

-0.01543

-0.01628

-0.01710

-0.01788

-0.01862

99

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

1.9

2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

4

4.1

4.2

4.3

4.4

4.5

4.6

-0.00522

-0.00480

-0.00564

-0.00550

-0.00539

-0.00547

-0.00528

-0.00496

-0.00503

-0.00430

-0.00472

-0.00441

-0.00491

-0.00511

-0.00390

-0.00446

-0.00383

-0.00369

-0.00381

-0.00435

-0.00441

-0.00439

-0.00447

-0.00373

-0.00418

-0.00404

-0.00373

-0.00440

-0.01982

-0.02051

-0.02115

-0.02190

-0.02251

-0.02311

-0.02367

-0.02427

-0.02476

-0.02525

-0.02558

-0.02603

-0.02641

-0.02687

-0.02732

-0.02756

-0.02781

-0.02813

-0.02832

-0.02862

-0.02894

-0.02916

-0.02952

-0.02980

-0.02995

-0.03014

-0.03035

-0.03052

-0.00526

-0.00516

-0.00507

-0.00498

-0.00489

-0.00481

-0.00474

-0.00466

-0.00460

-0.00453

-0.00447

-0.00440

-0.00435

-0.00429

-0.00424

-0.00419

-0.00414

-0.00410

-0.00405

-0.00401

-0.00397

-0.00393

-0.00390

-0.00386

-0.00383

-0.00380

-0.00377

-0.00374

-0.01933

-0.02000

-0.02065

-0.02126

-0.02185

-0.02241

-0.02294

-0.02345

-0.02394

-0.02440

-0.02484

-0.02526

-0.02566

-0.02605

-0.02641

-0.02676

-0.02710

-0.02741

-0.02772

-0.02800

-0.02828

-0.02854

-0.02879

-0.02903

-0.02926

-0.02948

-0.02969

-0.02989

100

47

48

49

50

4.7

4.8

4.9

5.0

-0.00453

-0.00436

-0.00385

-0.00428

-0.03078

-0.03109

-0.03139

-0.03161

-0.00371

-0.00369

-0.00366

-0.00364

-0.03007

-0.03025

-0.03043

-0.03059

0

-0 01

-0.015

-0 02

-0 025

-0.03

"

L
] L

%

I

!

""•

I

Reference states and plant states

_ m _ _ ^ i = , , _ — p i r r F ^

^ ^ ^ ,

i

~~'-ti =;=:::=ii

- I ^

=;=;::^:

l

r ^

—

—

,-—^zr ,~~"
i

*2(enfc)
-

-

-

"

-

Figure 7.29. Variable states during simulation of the embedded adaptive controller.

As introduced in Sec.7.1.2, the output data of the embedded adaptive controller

will be compared with the result of software models, the MATLAB Simulink program

and the C++ executable. We note that MATLAB and C++-based simulation programs

have the same results. The comparison result is shown in Table 7.5. We find that all data

are almost identical.

101

Table 7.5. Comparison result between the embedded and software models.

k

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Time

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

Ax\

0.0000

0.0007

0.0006

-0.0006

-0.0009

-0.0011

-0.0008

0.0005

0.0004

-0.0001

0.0001

-0.0004

-0.0008

-0.0001

0.0000

0.0003

0.0006

0.0002

-0.0002

0.0006

0.0002

-0.0005

-0.0004

-0.0005

-0.0004

-0.0008

A*2

0.0000

0.0000

0.0001

0.0001

-0.0001

-0.0002

-0.0002

-0.0003

-0.0003

-0.0002

-0.0002

-0.0003

-0.0002

-0.0003

-0.0003

-0.0003

-0.0002

-0.0001

-0.0002

-0.0002

-0.0002

-0.0002

-0.0002

-0.0002

-0.0002

-0.0002

Axm\

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

Axm2

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

102

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

2.6

2.7

2.8

2.9

3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

4

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

5.0

-0.0010

-0.0009

0.0004

0.0002

-0.0001

-0.0009

-0.0006

0.0006

0.0001

0.0005

0.0008

0.0006

-0.0005

-0.0001

-0.0008

-0.0013

0.0003

-0.0002

-0.0004

-0.0007

-0.0014

-0.0006

-0.0007

-0.0001

-0.0010

-0.0003

-0.0004

-0.0005

-0.0003

-0.0003

-0.0003

-0.0004

-0.0004

-0.0002

-0.0001

-0.0002

0.0000

0.0000

0.0000

0.0001

-0.0001

-0.0002

-0.0002

-0.0002

-0.0002

-0.0003

-0.0005

-0.0006

-0.0008

-0.0008

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

103

CHAPTER 8

CONCLUSION AND FUTURE WORK

8.1. Conclusion

Adaptive control is applied for solving the control problem of the gasoline

refinery with high nonlinearity and unpredictable disturbances. For this class of control

problems, conventional controllers are very limited and have a lot of deficiencies.

The adaptive mechanism governed by an adaptation law is the heart of any

adaptive controller. We establish the adaptation law for the plant control system using

Lyapunov stability theory. This adaptation law is accurate for a generic second order

plant; hence, it is obviously applicable for adaptive control of other second order systems

in different realms such as chemical industry, military industry, and robotics.

Adaptive control system design is much complicated than conventional controller

design due to the complexity of adaptive structure and the issue of unknown or time-

varying parameters. We use an effective methodology for system modeling and design

using state space. All computational works are based on matrix manipulation, which is

fully supported by MATLAB. We can apply this methodology to extend the result to

higher order systems.

We have shown the design - verification flow with various phases: 1)

mathematical model; 2) process calculation and modeling; 3) controller design in both

continuous-time and discrete spaces; 4) controller simulation; and 5) in-hardware

implementation and testing. The mathematical model, which is given in term of a set of

mathematical equations of energy and material balances, provides insightful

104

understanding of the dynamic behaviors of the plant. The process calculation is

necessary to obtain steady-state data for control system design in later phases. The

reference model is constructed with mathematical approach and proven to be stable and

ensure the plant's steady-state properties.

We design the adaptive controller in continuous-time space and then convert it

into discrete-time space using z- transform. The discrete-time version must be

accomplished prior to implementation of the adaptive design on digital computers. We

successfully design and implement the embedded adaptive controller using ARM

processor. We apply the state-of-the-art testing technique in which we employ NFS and

concept of distributed system over an Ethernet network. We have overcome the new

challenges, which require a reliable closed control loop and real-time data transfer

between the controller and the plant simulator. As a result, the embedded adaptive

controller remotely controls the plant simulator on a network node.

8.2. Future Work

First, we can design embedded adaptive controllers using combination of

Lyapunov theory and hyperstability concept, which give better rejection of disturbances

and time-varying parameter problems [34]. Many authors concern this perspective, for

example, Nguyen and Nitin [10] design an adaptive control system with hyperstability in

continuous-time space. We can extend the existing works to discrete-time space and use

the same methodology proposed in the thesis to carry out in-hardware implementation.

Second, we can build a real pilot plant. It is costly; however, we can carry out

experiments and measure actual control performance. The experimental scheme is

105

proposed as displayed in Figure 9.1. Ideally, the composition is continuously measured

by an online analyzer or gas chromatography. However, we can select tray temperatures

as secondary measurements, which indicate product concentration in an indirect way.

The reason is to reduce equipment cost. Temperatures Ta and Tp are the most sensitive

temperatures, which are best related to product concentrations x# and x/>

Cf

PLC

-i V

xv2 r~

L

I VI

-©

PILOT PLANT

Realtime
(lata

D X„

B, x„

_L

Online
ineasui emait

Embedded
Adaptive Controller

Figure 9.1. Block diagram of the experimental pilot plant.

The proposed scheme includes three main parts. The first part is a distillation

column in laboratory. The second part is an embedded adaptive controller implemented

in a PC or microcontroller. The third part is a programmable logic controller (PLC)

system for handling control valves Vi and V2.

106

Third, adaptive mechanism can be programmed in a PLC. By using this concept,

we can upgrade existing conventional controllers using PLCs just by modification of their

programs. This is important to save equipment and engineering cost.

PE "-W-
V2

V

fc V -
tvi

PILOT PLANT

PID
Embedded

Adaptive Ccntroller

PLC

D \

B, x.

Online
measurement

J

Figure 9.2. Adaptive mechanism programmed in a PLC.

Fourth, we can design adaptive controller as System on a Chip (SoC) which

contains the complete system. SoCs are developed with Verilog or any HDL language

and can be implemented using a Field-Programmable Gate Array (FPGA) such as an

Ethernet-supported Xilinx FPGA board.

107

Web client /
Engineering station

Hyperterminal

Embedded
Adaptive Controller

Web client /
Engineering station

SoC
Adaptive Controller

Figure 9.3. Integrated testing environment for SoCs and other digital systems.

Finally, we can extend testing environment introduced in Sec. 7.1.3 by integrating

SoC adaptive controller and pilot plant as shown in Figure 9.3. The embedded adaptive

controller remotely controls the pilot plant over the LAN network. Obviously, we can

deploy this testing methodology for validation of SoCs and other digital systems,

particularly distributed systems.

108

APPENDIX A: DISTILLATION CONTROL TECHNIQUES

A.l. Column Pressure Control

Most distillation control systems, either conventional or advanced, assume that

distillation columns operate at a constant pressure. Maintaining constant operation gives

stable operation and increases overall plant profit.

It is important to prevent pressure of a distillation column from changing rapidly,

either up or down. Sudden decreases in pressure can cause flashing of the liquid on the

trays; and the excessive vapor rate can flood the column. Sudden increase in pressure can

cause condensation of vapor; and the low vapor rates can cause weeping and dumping of

trays.

We consider again the schematic of distillation column, as shown in Figure 2.1.

The overhead vapor after being heat removal in the condenser will consist of two phases,

liquid and vapor. The objective is to condense maximum quantity of distillate (i.e.,

maximize the profit) at its true boiling point to minimize the energy cost for condenser

duty. There is a pressure balance established between the column top and the reflux

drum for the purpose of stabilizing the column pressure. Several common types of

column pressure control are described in the following sections.

A.l.l. Coolant Manipulation

As shown in Figure A. 1, the condenser is normally a heat exchanger using coolant

(e.g., cooling water or refrigerant). The control valve adjusts the flow rate of coolant to

obtain the desired condenser duty.

109

6>piKii(issUK flsi;»; CO " -105.-1 kl'ai

® Spf M / -&- 1

i
 KZ- ^ -n

* <1)

(A/V) t* •- Coolant
CONDENSER T '

[j

REFLUX DRUM

Figure A. 1. Column pressure control using coolant manipulation.

Pressure signal from the pressure sensor installed in the overhead vapor flow is

transmitted to the pressure controller. The control output, which is a function of the error

signal based on the deviation of the measured pressure from the set point, supplies

controlled pressurized air (20.7 - 103.4 kPa) to the pneumatic valve actuator. As the

result, the coolant flow rate is adjusted to the desired value. If the overhead flow rate

increases (or decreases), the coolant flow rate will increase (or decrease)

correspondingly. This maintains the column pressure stable.

A. 1.2. Vent-bleed

As shown in Figure A.2, inert gas is added or bled from the system using a dual

split-ranged valve system so that under normal conditions, both control valves are closed.

The reflux flow must be considerably sub-cooled in order to keep the product

concentration in the vent gas stream low. The reflux temperature is directly affected by

the coolant temperature.

110

fvV-:

CONDENSER^-"

r«f|u>: flow i_i

— 4 6

i — a—>p j

Figure A.2. Column pressure control using vent bleed.

The cooling capacity of condenser is preset. When the vapor rate increases

significantly, it is not totally condensed. As a consequence, the pressure in the reflux

drum will increase. To stabilize it, the pressure controller will command the control

valve VI to vent the exceed vapor.

In contrast, the vapor rate is condensed too much, which causes a pressure drop at

the top column section. Consequently, the control valve VI is gradually closed; and the

control valve V2 is slightly open.

A.2. Column Level Control

The two liquid levels that must be controlled are in the reflux drum and column

base. The levels are controlled in different ways, depending on a number of factors [35].

If the column is part of a series of units in a plant, it is usually important from a

plant-wide control viewpoint to use the liquid levels as surge capacities to reduce effect

of disturbances. In such an environment, it is usually preferable to control the base level

with the bottoms flow and the reflux drum level with the distillate flow.

I l l

Inert gas O

— m
<V3

i te i iaal

J5) Input ho-ot IS)

r
f>r;tge n-"=j (stage n-0

B - t-t

T

a) Kettle type.

o h m m I K I

i t t_e i i - 1 1

-& Q

" _ U ftau irav

P| . . vopor flow

V U . . heat -

1

" - i _i
r-f u—/ : : r «

b) Vertical thermo-siphon type.

*,^t

r
oiiiim lose !
f!-1iifictl-f;

B -

c) Horizontal thermo-siphon type.
d) Forced-circulation type with heat

exchanger.

*n
r

bottom tray
vopor flow

column bas. i______—= /

triage n=l) H = § § | i = 7

^

A
WH-J

e) Forced-circulation type with heater.

Figure A.3. Some typical types of reboiler.

In high reflux ratio columns (i.e., LID > 5), using distillate stream to control level

would require large changes in D for fairy small changes in L or V. Thus, the

112

disturbances would be amplified in the distillate flow rate. The reflux drum level should

be controlled by reflux in accordance with the Richardson's rule-we always control level

with the level with the largest stream [36].

In practice, we should care of potential problems with "inverse response" that

may happen and cause the plant unstable. An increase in reboiler heat input can quickly

increase the fraction of vapor. In a thermo-siphon reboiler, this can push liquid back into

the base of the column, resulting in a momentary increase in the liquid level in the

column base. In a kettle reboiler, the increase in vapor fraction causes the material in the

reboiler to swell and more liquid flows over the outlet weir into the surge volume in the

end of the reboiler. Therefore, the liquid level in this section momentarily increases.

Various reboiler types are shown in Figure A.3.

A.3. Methods of Distillation Column Control

A.3.1. Degrees of Freedom of Distillation Process

The degrees of freedom of a processing system are the independent variables that

must be specified in order to define the process completely. Consequently, the desired

control of a process will be achieved when and only when all the degrees of freedom

have been specified.

The mathematical approach to finding the degrees of freedom of any process is to

total all the variables and subtract the number of independent equations [12]. However,

there is a simple approach developed by Luyben [35]. In Figure 2.1, there are five

control valves, one on each of the following streams: distillate, reflux, coolant, bottoms,

and heating medium. The feed stream is considered being set by the upstream process.

113

So this column has five degrees of freedom. But inventories in any process always must

be controlled. Inventory loops involve liquid levels and pressures. This means that the

liquid level in the reflux drum, the liquid level in the column base; and the column

pressure must be controlled.

If we subtract the three variables that must be controlled from five, we end up

with two degrees of freedom. Thus, there are two and only two additional variables that

can be controlled in the distillation column.

Notice that we have made no assumptions about the number or type of chemical

components being distilled. Therefore, a simple, ideal, binary system has two degrees of

the freedom; and a complex, multi-component, non-ideal distillation system also has two

degrees of freedom.

A.3.2. Control Structures

The manipulated variables and controlled variables of a distillation column are

displayed in Table A. 1.

Table A. 1. Manipulated variables and controlled variables of a distillation column.

1

2

3

4

5

Controlled variables

Concentration (temperature) of distillate

Concentration (temperature) of bottoms

Column pressure

Liquid level in the column base

Liquid level in the reflux drum

Manipulated

variables

Reflux flow rate

Reboiler duty

Condenser duty

Bottoms flow rate

Distillate flow rate

Control valve

location

Reflux flow (VI)

Heat flow (V4)

Coolant flow (V3)

Bottoms flow (V5)

Distillate flow (V2)

114

The column has 2 degrees of freedom; hence, a control structure is a selective

combination of two manipulated variables. As shown in Table A.2, there are many

common control structures are used in practical distillation [37].

Table A.2. Typical column control structures.

1

2

3

4

5

6

7

8

Control Structure

D-V(or D-QB)

L-V(or L-QB)

L-B

L/D-V

L/D-B

D-V/B

L-V/B

L/D-V/B

Role of valve

D

(V2)

SC

IC

IC

IC

IC

SC

IC

IC

L

(VI)

IC

SC

SC

SC

SC

IC

SC

SC

QB

(V4)

SC

SC

IC

SC

IC

SC

SC

SC

B

(V5)

IC

IC

SC

IC

SC

IC

IC

IC

Manipulated variable

Inventory

Control (IC)

L, B

D,B

D,V

D,B

D,V

L,B

D,B

D,B

Separation

Control (SC)

D,V

L,V

L, B

L/D,V

L/D, B

D,V/B

L,V/B

L/D, V/B

For a binary distillation, the most common structures are the energy balance

structure, L-V, and the material balance structure, D-V and L-B. Most industrial

distillation columns on two-point control are probably operated by one of these control

structures.

Selecting a control structure is a complicated problem with many facets. It

requires looking at the column control problem from several perspectives:

1) A local perspective considering the steady state characteristics of the column;

2) A local perspective considering the dynamic characteristics of the column;

115

3) A global perspective considering the interaction of the column with other

units in the plant.

A.3.3. Energy Balance Structure

As shown in Figure A.4, the energy balance structure, which is usually called L—V

structure, can be considered to be the standard control structure for dual composition

control of distillation. In this control structure, the reflux flow rate L and the boilup

manipulator V are used to control the "primary" outputs associated with the product

specifications. The liquid holdups in the reflux drum and in the column base, known as

the "secondary" outputs, are usually controlled by distillate flow rate D and the bottoms

flow rate B.

Cf

I » - § I -

N/1

<M^

AT„

V

-ft-
L

-©

1XB

D y-r

Figure A.4. Energy balance structure.

116

A.3.4. Material Balance Structure

Two other common control structures are the material balance structures D-V and

L-B. As shown in Figure A.5, the D-V structure seems very similar to the L—V structure.

The only one difference between the L-Vand D-V structures is that the roles of L and D

are switched.

Figure A.5. D-V control structure.

The L-B structure is depicted in Figure A.6. There exists a possibility to occur an

inverse response between reboiler liquid level and boilup flow, which causes difficulties

for inventory control in the bottom section. This structure is very sensitive to

disturbances in feed.

117

A t

0.

L

H, & J *•

D x D

Figure A.6. L-B control structure.

118

APPENDIX B: PROCESS CALCULATION

B.l. Basic Engineering Data

The plant feed stock is condensate, whose actual composition always fluctuates

around the average composition as shown in Table B.l [44].

Table B.l. Condensate composition analyzed by gas chromatography.

Component

Propane

Normal Butane

Isobutane

Isopentane

Normal Pentane

Hexane

Heptane

Octane

Nonane

Normal Decane

n-CHH24

n-C12H26

Cyclopentane

Methylclopentane

Benzene

Toluen

O-Xylene

E-Benzene

Mole %

0.01

19.99

26.65

20.95

10.05

7.26

3.23

1.21

0.0

0.0

1.94

2.02

1.61

2.02

1.61

0.00

0.00

0.00

119

Table B.2. Distillation data.

Cut point

(%)

0.00

1.00

2.00

5.00

7.50

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

55.00

60.00

65.00

70.00

75.00

80.00

85.00

90.00

95.00

98.00

99.00

100.00

TBP

(°C)

-1.44

-0.80

1.61

10.56

18.02

24.67

29.57

31.58

33.59

35.99

39.12

43.94

50.00

58.42

66.23

69.51

70.77

75.91

86.06

98.63

100.57

115.54

131.07

148.30

159.91

168.02

ASTM D86

(°C)

31.22

31.63

32.94

37.72

40.29

45.29

47.84

48.86

49.89

51.09

52.92

55.83

59.64

65.19

70.38

72.55

73.34

76.68

84.11

94.20

95.91

109.54

124.024

140.20

146.78

156.75

120

Product specifications are given in Table B.3 [44].

Table B.3. Gasoline quality requirement.

Properties

1. Octane Number

2. Lead Content (g/1)

3. Distillation (deg C) :

IBP

10% vol

50% vol

90% vol

FBP

Residue (% vol)

4. Corrosion. 3h/50°C

5. Existent Gum (mg/100ml)

6. RVP @37.8 deg C (kPa)

7. Total sulfur content (%wt)

8. Oxidation stability (min)

9. Density at 15 deg C (g/cm3)

Testing method

ASTM D2699

ASTMD3341

ASTM D86

ASTM D130

ASTMD381

ASTM D323

ASTM D1266

ASTM D525

ASTMD1298

Requirements

min 87

max 0.15

max 70

max 120

max 190

max 210

max 2.0

maxN-1

max 4.0

min 43

max 80

max 0.15

min 240

0.70 - 0.74

The plant's nominal capacity is 130,000 tons of raw condensate/year based on 24

operating hours per day and 350 working days per year. The plant capacity is quite low

due to depending on upstream processes. The plant equipment is specified with a design

margin of 10% above the nominal capacity and turndown ratio is 50% of the nominal

capacity.

121

8.2. Distillation Process Calculation

B.2.1. Equilibrium Flash Vaporization Curves

According to W. C. Edmister method [45], the equilibrium flash vaporization

(EFV) curve is converted from the data of true boiling point (TBP). For example, we

perform calculation for the 50-percent point as follows:

tso% (TBP) = 58.42 C

t(30%- io%) (TBP) = 35.99-24.67=11.32 °C.

Look up TBP-EFV chart, the temperature difference is determined as

t50% (EFV-TBP) = 1-5 C .

Therefore,

tso% (EFV) = 58.42+1.5=59.62 °C.

Repeat the procedure above for all TBP temperatures to determine EFV (1 atm)

temperatures. Then convert the EFV (1 atm) data into the EFV (4.6 atm) data by using

the Cox chart [46]. The results are shown in Table B.4.

Table B.4. Relationship between ASTM, TBP, and EFV.

%vol.

I.B.P.

5

TBP

t°C

-1.44

10.56

At

12

14.11

EFV (1 atm)

At

1.5

4

t°C

41.62

43.12

EFV (4.6 atm)

t°C

93

95

122

10

20

30

40

50

60

70

80

90

24.67

31.58

35.99

43.93

58.42

69.51

75.91

98.63

115.54

6.91

4.41

7.95

14.48

11.09

6.40

22.72

16.91

3

2.5

5

6

5.5

6.5

7.5

7

47.12

50.12

52.62

57.62

63.62

69.12

75.62

83.12

90.12

102

106

110

116

125

132

141

150

158

B.2.2. Yield of Fractions

Based on the TBP data, the yield of fractions for the gasoline plant can be

determined as shown in Figure B.l.

123

180

20 3840 60

Volume %

80 100

Figure B. 1. Yield curve.

B.2.3. Operating Pressure

The column is designed 14 trays; and the pressure drop across each tray is

estimated approximately 80 kPa. Therefore, the pressures at the feed section and the top

section are 4.6 atm and 4 atm, respectively.

B.3. Calculation for the Feed Section

B.3.1. Description

The pre-heater rises the feed temperature towards the expected temperature at

which the required phase equilibrium is established. As a result, the feed split specified

by the yield curve is obtained.

The key parameters will be determined as follows:

1) Equilibrium phase flows into the feed section;

124

2) Material balance at the feed section;

3) The feed temperature.

B.3.2. Calculation

The feed has liquid-gas equilibrium with gas percentage of 38% volume.

However, it is usually to deeply cut more 4% (the unexpected heavy component will be

condensed and refluxed to the column). Thus there are two equilibrium phase flows: 1)

vapor VF = 38+4 = 42(%); and 2) liquid LF =100 - 42 = 58(%).

The phase equilibrium is depicted in Figure B.2.

fe>e>d f l ow

tray f

42%

J

i
' V f

0
58%

1

R f

Figure B.2. Equilibrium phase flows at the feed section.

The heavy fraction flow LF dissolved a small amount of light components is

descending to the column bottom. These undesirable light components shall be caught by

125

the vapor flow Vf arising to the top column. The vapor flow Vf can be assigned as 28%

vol.

The bottom product is determined by the yield curve as 62%vol; hence, the

internal reflux across the feed section can be calculated:

Rf= B-LF+ Vf= 62 - 58 + 28 = 32% vol.

Look up the EFV curve (4.6 atm) of the feed section, the required feed

temperature is 118°C corresponding to the point of 42% vol.

Table B.5. Material balances for the feed section.

Stream

vF

v f

Rf

Total light

fractions E S D

L F

v f

Rf

Bottoms B

Volume fraction

vol%

42

28

-32

38

58

-28

32

62

Liquid flow rate

m3/h

9.7015

6.4677

-7.3916

8.7775

13.3973

-6.4677

7.3916

14.3213

Liquid density

ton/m

0.591

0.598

0.615

0.577

0.726

0.598

0.615

0.727

Mass flow rate

ton/h

5.7336

3.8677

-4.5458

5.0651

9.7264

-3.8677

4.5458

10.4046

B.4. Calculation for the Stripping Section

B.4.1. Description

In the stripping section, liquid flows, which are descending from the feed section,

include the equilibrium phase flow LF and the internal reflux flow RE. They are

contacting with the arising vapor flow Vffox heat transfer and mass transfer. The result is

126

that all undesirable light components should be completely removal from the bottoms.

This process is accomplished with the aid of heat flow supplied by the reboiler.

The main parameters should be determined as follows:

1) The bottoms temperature;

2) The reboiler duty QB.

B.4.2. Calculation

The column base pressure is approximately the pressure at the feed section (4.6

bars) because the pressure drop across this section can be neglected.

The phase equilibrium is shown in Figure B.3.

stripping
section

Figure B.3. Equilibrium phase flows at the stripping section.

127

Look up the EFV curve (1 atm) of the stripping section and the Cox chart, the

equilibrium temperature at this section (4.6 atm) is 144 °C.

The reboiler duty is equal to the heat input, which generates boilup and increases

the temperature of the stripping section by an increment of 144-118=26°C.

Table B.6. Material and energy balances of the stripping section.

INLET

LF

Rf

Total

ton/h

9.73

4.55

14.27

kcal/kg

68

69

OUT]

v f

B

Total

ton/h

3.87

10.40

14.27

kcal/kg

165

82

kcal/h.lOJ

661.40

313.66

975.06

kJ/h.l0 j

2768.60

1313.00

4081.61

LET

kcal/h.lOJ

638.16

853.18

1491.34

kJ/h.l0J

2671.36

3571.41

6242.80

As a result, the reboiler duty is QB = (6242.8 - 4081.61) 103 = 2161190 kJ/h.

B.5. Calculation for the Rectifying Section

B.5.1. Description

The overhead vapor flow, which includes F/rfrom the feed section and V/from the

stripping section, passes through the condenser (to remove heat) and then enter into the

reflux drum. There exist two equilibrium phases: 1) liquid (butane); and 2) vapor

(propane vapor and dry gas). The liquid from the reflux drum is partly pumped back into

128

the top tray as the reflux flow L and partly removed from the system as the distillate flow

D.

The liquid is still dissolved a very small amount of light components. Therefore,

the reflux flow whilst entering into the top tray will receive heat to vaporize completely

all light component dissolved; and the liquid remained will be collected as the internal

reflux flow.

B.5.2. Calculation

The top pressure is 4 atm due to pressure drop across the rectifying section.

The dew point of distillate is correspondingly the point 100% of the EFV curve of

rectifying section. Based on the Cox chart, the top section temperature is determined as

46°C.

The equilibrium phase flows at the stripping section are display in Figure B.4.

Stage 15
(tray 14)

»- Uncondensed Gas
(small quantity)

D
Distillate

Figure B.4. Equilibrium phase flows at the rectifying section.

129

Table B.7. Material and energy balances around the boundary (A).

INLET

VF+Vf

Ro

Total

ton/h

9.611

Ro

9.611+Ro

kcal/kg

115

24

OUT!

ZSD+Ro

Rf

Total

ton/h

5.065+Ro

4.546

9.611+Ro

kcal/kg

97

16

kcal/h.lOJ

1105.3

24 Ro

1105.3+24 R0

kJ/h.lOJ

4626.6

100.5 R0

4626.3+100.5 R0

LET

kcal/h.103

491.31+97Ro

72.73

564.05+ 97R0

kJ/h.l0J

2056.65+406R0

304.46

2361.11+406R0

Based on the energy balance, we find the solution of R0:

4626.3+100.5 Ro= 2361.11+406 Ro

Therefore,

Ro= 7.415 (ton/h).

We now calculate the (external) reflux flow L. Enthalpy data of the reflux flow L,

looked up the experimental chart for petroleum's enthalpy, are corresponding to the

liquid state of 40°C (liquid inlet at the top tray) and the vapor state of 46°C (vapor outlet

at the column top).

L inlet at 42°C: Hiiqujd (inlet) = 22 kcal/kg

L outlet at 46°C: Hvapor (ou,iet) = 106 kcal/kg

We find the solution of the energy balance equation:

AHRo.R0= AHL.L

130

(115-24) (7.42) = (106-22) I

Therefore,

L = 8.04 (ton/h).

B.6. Calculation Results

B.6.1. Raw Gasoline Property

The bottom product, named raw gasoline, is the major blend for manufacturing

the finished gasoline. The distillation data of the raw gasoline is shown in Table B.8.

Table B.8. ASTM distillation curve of the raw gasoline.

% vol

0

5

10

20

30

40

50

60

70

80

90

100

Boiling point (°C)

41.68

44.51

46.23

48.10

50.14

55.72

66.24

72.13

80.98

95.07

122.81

161.34

B.6.2. Main Stream Property

The specification of the finished gasoline product is presented in Table B.9.

131

Table B.9. Main streams of the plant.

Stream

Temperature (C)

Pressure (atm)

Density (kg/m)

Volume flow rate (m /h)

Mass flow rate (kg/h)

Mass flow rate (ton/year)

Stream

Temperature (C)

RVP (kPa)

Volume flow rate (m /h)

Density (kg/m)

Mass flow rate (kg/h)

Mass flow rate (ton/year)

Condensate

118

8.6

670

227.6

15480

130000

Reformate

30

105

16.58

789.8

12500

105000

LPG

46

4.0

585

8.78

5061

43000

MTBE

30

105

2.39

746

1800

15000

Raw gasoline

144

4.6

727

21.88

10405

87000

Gasoline

30

105

39.18

752

29800

250000

B.7. Process Description

B.7.1. Simplified Process Flow Diagram

The simplified process flow diagram is shown in Figure B.5. The gasoline plant

consists of many apparatuses and facilities, for instance, the distillation column, the

mixer, and storage tanks.

132

a FEEDi BOTTOMS
HEAT EXCHANGER

&

Condensate
•

M i

BJ

•ff

RAW GASOLIHE CO'
i£9 f l u
IOLEP. L J C

MTBE ,_
Reform ate — • -

^

Raw Gasoline

w
L

"&
V - 0 1

PEF l l ' * OPUH

LPG

C-01

O&TILLATfcN COLUMN

-Gasoline

M-01

GSSOLINE MIXER

Figure B.5. Simplified process flow diagram of the gasoline plant.

B.7.2. Distillation Column

Condensate is fed using feed pumps (P-01 A/B) through the feed/bottoms heat

exchanger (E-01) to the distillation column (C-01). The column (C-01) plays a very

important role in the plant. Here, condensate after processing in the column (called

naphtha or raw gasoline) is cut off the light fraction having a boiling point of less than

40°C. The raw gasoline then mixes with Reformate or MTBE to produce the finished

gasoline.

The column has 24 actual trays (equivalent to 14 theoretical trays). Condensate is

fed to the seventh tray and the raw gasoline is withdrawn off from the column base. The

133

operating pressure is 4.6 atm. The top temperature is 46°C; and the bottom temperature

is 128°C.

The raw gasoline (naphtha) is sent to the raw gasoline tanks (TK-11 A/B). Its

heat has been removed by the feed/bottoms heat exchanger and cooled by the raw

gasoline cooler (E-04). A part of the bottom stream is heated up in the reboiler furnace

(H-01) and returned to the distillation column to supply required heat for distillation.

The distillation column overhead vapor is cooled at the column overhead

condenser (E-03) to produce the uncondensed gas, so called, off-gas, and the reflux

liquid. The former is mainly burnt off at the reboiler furnace and the remaining amount

for controlling the reflux drum pressure is burnt at flare. The latter accumulated at the

reflux drum (V-01) is returned to the column at the top tray, under controlled flow rate,

for maintaining stable operations and maximizing the recovery of naphtha.

B.7.3. Blending System and Product Distribution

The blending system consists of an in-line static mixer, an on-line multi-property

analyzer, ratio control with DCS, and an off-line blend simulator.

The blending system will perform the following functions:

1) Continuous ratio control of blend header qualities to meet specification with

minimum deviation from optimal recipe;

2) Continuous monitoring of blends using infra-red analyzers and tracking

integrated blend quality;

134

3) Offline optimization of header quality control and recipe targets based on

reconciled blend models and integrated blend results to optimally meet

scheduler-specified blend order quality recipe and inventory targets.

Based on the quality requirements of gasoline as specified standard, the off-line

simulator calculates precisely the necessary flow rate of octane booster to blend the

whole volume of raw gasoline.

The other additives (detergent, color, anti-oxidation, and metal deactivator) are

injected in a pre-determined amount directly into the raw gasoline stream just before the

mixer.

Gasoline product blended at the gasoline mixer is analyzed with a multi-property

analyzer and sent to the gasoline storage tanks (TK-13 A/B). In case of low quality, the

gasoline will be pumped to off-spec storage tank and then returned to the mixer. The off-

spec product tank is designed for 12 production hours.

From the gasoline storage tanks, gasoline after being checked the quality is

pumped out the plant through the tank truck filling station or through the jetty to load in

tankers.

B.7.4. Feed Control

The feed section has several components:

1) A local flow controller (FC-11) to control the feed flow rate;

2) A local controller for feed pumps;

3) A local pressure controller (PIC-13) to keep the pressure of the feed flow at

4.6 atm.

135

HXH

i T C - 1 r

TC-2;

—I—
I

--©

,5/B,

l-M—J

To
Column

Figure B.6. A local control devices for feed pumps.

B.7.5. Top Column Section

Column pressure control includes: 1) vapor bypass line; and 2) vent line to flare.

If there is a pressure drop in reflux drum (V-01), the local pressure controller commands

to slightly open the control valve upstream (E-03) and gradually close the control valve in

the vent line. If column pressure increases, the local pressure controller commands to

gradually close the vapor bypass flow and open more flow to flare.

B.7.6. Bottom Section

The reboiler is a forced-circulation typed reboiler including pumps (P-08/09) and

a heater (H-01). The discharge of the pump is split as two streams: 1) a part is withdrawn

as raw gasoline; and 2) a part is heated up in the heater to generate vapor back to the

column base. When the temperature in the bottom section is changed, the local

temperature controller TIC-34 will adjust the rate of fuel gas into the heater.

136

APPENDIX C: MATHEMATICAL MODEL

C.l. Introduction

Distillation process is very complicated. So we develop its mathematical model

to study its dynamics and then select appropriate control strategy. The mathematical

model of distillation process is established on dynamic continuity equations of mass and

energy for trays, condenser, reflux drum, and reboiler.

In general, the dynamic continuity equations state that the rate of accumulation of

mass or energy in a system is equal to the mass or energy flows entered and generated,

less the amount leaving and consumed within the system. The accumulation term is a

first order time derivatives of the total mass or energy. The flow terms are algebraic.

Therefore, the results are first order ordinary differential equations that are usually non

linear.

The liquid rates throughout the column will not be the same dynamically. They

will depend on the fluid mechanics of the tray. Often a simple Francis weir formula

relationship is used to relate the liquid holdup on a tray to the liquid flow rate L„ over the

outlet weir:

M„ = f(LJ. (C.l)

We now develop the state equations that will describe the dynamic behavior of a

distillation column. The fundamental quantities are total mass and mass of the light

component, which is the more volatile component.

137

C.2. Dynamic Study of Distillation Process

C.2.1. Generic Trays

A general tray is an nth stage such that n = 1, 2, ...,Nand n *f.

The total mole holdup in the nth tray M„ is considered constant, but the imbalance

in the input and output flows is accounted for in the component and heat balance

equations:

d(M„)

dt
= Z„+I - L„ + VnA - V„ =Z„+ 1 -L„. (C.2)

Table C. 1. Parameters of a generic tray.

INLET

OULET

Phase

Liquid

Vapor

Vapor

Liquid

Flow rate

Ln+1

v„.,
Vn

Ln

Concentration

Xn+1

Yn-1

Yn

Xn

staae n

Figure C. 1. A generic tray.

The rate of change of holdup in the «th tray results in the change of exit liquid

flow after a hydraulic lag [38] or hydraulic time constant [35]:

138

dL. 1 dM„
dt x dt

(C.3)

where r is hydraulic time constant.

The hydraulic lag can be treated as a liquid level problem, which is, complicated

somewhat by the change in level across the plate. At the center of a tray, the average

depth of clear liquid is usually less than at the either end and may even be less than the

weir height, as shown in Figure C.2.

Foam height
h height abova weir

Depth of clear liquid!

^ ^ 1-
hj : average depth of clear liquid

Figure C.2. Variation of liquid depth across a generic tray.

The hydraulic time constant can be calculated with the formula [38]:

dh, dM„
x = A-

dL„ dL
(C.4)

where r is hydraulic lag for 1 plate; M„ is holding of liquid per plate; and Ln is liquid rate.

Component balance is given by

d(M„x„)
dt

L„+iXn+] + V„A ynA - Lnxn - V„ yn. (C.5)

139

By differentiating and substituting for the term, we obtain:

dXn = 4+1 X«+\ + Vn -1 y„ -1 - (4 + l + Vn-X K - K (y„ ~ Xn)

dt M„
(C.6)

Energy balance is given by

d(Mnhn)
dt

= hn+]Ln+l+HH_lVH_i-hnL„-HllVn (C.7)

or,

at dt n+\ n+\ « - l n—\ n n n n*
(C.8)

Because the — - term is approximately zero, substituting for the change of the
dt

holdup term, we obtain:
dt

V =
H-h

(C.9)

C.2.2. Feed Tray

The feed section includes the feed tray, as shown in Figure C.3.

F,c,

stage /
(feed tray;

Lf,..,Xr„

I-v. v>
Lr.Xf

V!:Vr.

Figure C.3. Feed section.

140

Total mass balance is given by

d(Mf)

dt
= F + Lf+] +VfA -Lf-Vf=F + Lf+] -Lf.

Component balance is given by the following equations:

d(Mfxf)

dt
Fcf +Lf+xxf+x+VfAyfA -Lfxf-Vfyf

or,

dx„ _ 4+1x„+, + V„., yn., - (Ln+l + V„_x)x„ - Vn {yn - xn)

dt M„

Energy balance is given by

= KF +hn+]Ln+] +Hn_xVn_x -hnLn -HnVn

d(Mfhf)

dt

or,

V =
h,,F +/z„+,4+, +HnAVn_, -{L^+V^K

H-h

(CIO)

(C.ll)

(C.12)

C.2.3. Top Section

The top section consists of the top tray and the reflux drum, as shown in Figure

C.4.

V«„

U:

11
V:,:
M*1

v„

Qc

Stage N+1
(Nth Tray) Mo

L.XD

Figure C.4. Top section.

D.Xc

141

Total mass balance of the top tray is determined as

or,

d(MN+l) _ (C 13)
dt

Component balance of the top tray is characterized as

d(M XN+])=Lx^ + y L _ y (C 1 4)

at

Energy balance for the top tray is given by the following equations:

d { M ^) = hDL + HNVN -hN+lLN+i -HN+]VN+I (C.15)
at

y =hDL + HNVN-(L + VN)hN+l (Q { 6)
N+] H -h

11 N+\ nN+\

Total mass balance for the reflux drum and condenser is given by

= VN+, -L -D. {CM)
d{Mn) _

dt

Component balance for the reflux drum and condenser is determined as

^MDXD) = VN+xyN+x -{L + D)xD. (C.18)

dt

We now define energy balance around condenser. The condenser duty Qc is

equal to the latent heat required to condense the overhead vapor to its bubble point:
Qc = HmVw -houlLoul = VN(HN -hN). (C. 19)

142

C.2.4. Bottom Section

i

l I
l I

-t4----K--
I 1 st tray f« = 2)

<HXr-
B . x F

Figure C.5. Bottom section.

Total mass balance for the bottom tray is given by

d(M2)
dt

L3-L2+ VB -V2.

Component balance for the bottom tray is given by

= L3x3+VByB-L2x2 - V2y2.
d{M2x2)

dt

Energy balance for the bottom tray is as follows:

d{MRhB)
dt

= /23Z3 +HBVB- h2L2 - H2V2.

Therefore,

V2 =
h3L,+HBVB-(L3+VB)h2

H2 -h2

(C

(C

(C

The base of the column has some particular characteristics as follows:

1) There is a reboiler heat flux QB to produce the boilup vapor flow VB.

143

or,

2) The holdup is a sensitive variable; hence, changes in sensible heat cannot

be neglected.

3) The outflow of liquid from the bottoms B is determined externally.

Total mass balance for the column base is given by the following equation:

d{MB) = L 2 _ V B B (C 2 3)

dt

Component balance for the column base is determined as

J (M g X / i) = L2x2-VByB-B xB. (C.24)
dt

Energy balance for the column base is as follows:

d(MBhB)

dt
= h2L2+QB-hBB-HBVB (C.25)

IT ^ i r> dh„ , dMR

h2L2+QH-hBB-MB-^--hB—f-
VB = & 2L-. (c.26)

HB

All the equations above are state equations and describe the dynamic behavior of

the distillation column. The state variables of the model are:

1) Liquid hold ups M\, M2, ...,Mf, ..., MN+2,

2) Liquid concentrations x\,x2, ...,x/, ..., xN+\.

When all the equations above are resolved, we find how the flow rate and

concentrations of the two product streams (distillate product, bottoms product) change

with time, in the presence of changes in the various input variables.

144

3. Mathematical Model of Distillation Process

4. Simplified Model

To simplify the model, we make the following assumptions [35]:

1) The relative volatility a is constant throughout the column.

2) The vapor - liquid equilibrium relationship can be expressed by

yn = ̂ r\\ (C27)

\ + (a-l)x„

where x„ is the liquid composition on rath stage; y„ is the vapor composition on

nth stage; and a is the relative volatility.

3) The overhead vapor is totally condensed in the condenser.

4) The liquid holdups on each tray, condenser, and the reboiler are constant and

perfectly mixed (i.e., the same immediate liquid response, dLi = dL?, = ...=

aZyv+2 = dL).

5) The holdup of vapor is negligible throughout the system (i.e., the same

immediate vapor response, dV\ = dVj = ...= dV^+i = dV).

6) The molar flow rates of the vapor and liquid through the stripping and

rectifying sections are constant:
Vi = V2=...= VN+i;

L,2= LT,~ ...= LN+2-

7) The column is numbered from bottom, e.g., n — 1 for reboiler, n = 2 for first

tray, n =/for feed tray, n = N+\ for top tray, and n = N+2 for condenser.

145

Under these assumptions, the dynamic model can be expressed by the following

equations [12]:

1) Condenser (n = N+2):

MDxn =(V + V„,)y^ - Lxn - Dxn. (C.28)

2) Tray n(n=f+2, ...,N+1):

M xn = (V + VF)(yn_, - yj + L(xn+] - xj. (C.29)

3) Above feed location (n=f+l):

Mxn=(V + V,.)(yn^ - yj + L(xn+, - xj + VFyF. (C.30)

4) Below feed location (n=f):

M Xn=(V + Vf)(y^ -yJ + L(x„+l -x„) + LFxF. (C.31)

5) Tray n(n = 2, . . . , / - l) :

M xn = F6v, - yj + (L + LF)(xn+x - xj. (C.32)

6) Reboiler («=1):

MBX] =(L + LF)X2 - Vy, - fix,. (C.33)

Flow rate are assumed as constant molar flows:

1) LF=qFF;

2) VF = F-LF;

3) D=VN-L=V+VF-L (assuming condenser holdup constant);

4) B = L2-V] = L + LF-V(assuming boiler holdup constant);

Composition xF and yF in the liquid and vapor phase of the feed are obtained by

solving the flash equations:

146

FcF = LFxF + VFyF (C.34)

y, = , r\\ • (C35)

1 + \a - \)Xj,

Although the model order is reduced, the representation of the distillation system

is still nonlinear due to the vapor liquid equilibrium relationship between y„ and x„ in

(C.27).

C.5. Mathematical Model of the Gasoline Refinery

In this section, we use some data obtained by process calculation described in

Appendix B to plug in generic equations above. As the result, the mathematical model of

the plant is completely defined.

C.5.1. Relative Volatility

Using the formula ajJ = Kj/Kj and looking up data in the handbook [39] for the

operating range of temperature and pressure, the relative volatility is estimated as a- 5.68.

C.5.2. Latent Heat and Boilup

The heat input of QB (reboiler duty) to the reboiler is to increase the temperature

of stripping section and generate boilup Vo [40]:

v^=QH-BcH(tH-tF) (C 3 6)

A

where A is the latent heat or heat of vaporization; B is the flow rate of bottom product

(kg); CB is the specific heat capacity (kJ/kg.°C); tF is the inlet temperature (°C); and ts is

the outlet temperature (bottoms temperature, °C).

147

The latent heat at any temperature is described in terms of the latent heat at the

normal boiling point [40]:

X = yXB^- (C.37)
-*«

where L is the latent heat at absolute temperature T (°R); LB is the latent heat at absolute

normal boiling point TB (°R); and y is the correction factor obtained from the empirical

chart.

The calculation results are summarized as follows:

A = 730 (kJ/kg);

V0= 3909.8 (kg/h) or 66.8871 (kmole/h).

The average vapor flow rate arising in the stripping section is calculated as

V = 0+ ' = 66.3407 (kmole/h).

C.5.3. Liquid Holdups on Tray and Column Base

Liquid holdups are calculated with the methods proposed by McCabe [42] and

Joshi [43].

Velocity of vapor phase arising in the column:

ffl^^M (C.38)

V Pc,

where pi is the density of liquid phase; pv is the density of vapor phase; and C is a

correction factor depending flow rates.

The actual velocity co is normally selected that co = (0.80^0.85)con for paraffinic

vapor.

148

The diameter of the column is calculated with the following formula:

4V
Dk = J — (C.39)

where Vm is the mean flow of vapor in the column.

The height of the column is calculated on distance of trays. The tray distance is

selected on basis of the column diameter.

The holdup in the column base is given by

M ^ « A ^ (C40)
B 4 WB

where HNB is normal liquid level in the column base (m); Wg is molar weight of the

bottom product (kg/kmole); and de is density of the bottom product (kg/m).

As a result, the holdup in the column base is calculated as

3.14(1.75X1-4)' Z ^ = 24.88 (kmole).
B 4 78.6

The holdup on each tray is given by

t , 0.957ch,D2
k dr

M = —-—-
4 Wr

where hr is average depth of clear liquid on a tray; Wj is molar weight of the liquid

holdup on a tray; and dr is the mean density of the liquid holdup on a tray.

Therefore, the holdup on each tray is calculated as

0.95(3.14)(0.28)(1.75)2 680
M = = 5.80 (kmole).

4 75

149

C.5.4. Liquid Holdup in Reflux Drum

The retention time of distillate in the reflux drum is selected as 5 minutes.

Liquid holdup MD is equal to the quantity of distillate contained in the reflux

drum:

MD = 5iL + D) (C.41)

D 60

where MD is holdup in the reflux drum; L is the reflux flow rate; and D is the distillate

flow rate.

As the result, the liquid holdup in reflux drum is calculated as
. . 5(75.30 + 82.15) 1 / i m . , .
Mn= — = 14.03 (kmole).

" 6 0

C.6. Basic Mathematical Model of the Plant

Material balances for change in holdup of light component on each tray are as

follows:

Condenser (n = 16): MDx]6 =(V + VF)y]5 - Zx16 - Dxl6

Tray 14 («= 15): Mx]5=(V+ VF)(yH-y]5) + L(x]6-x]5)

Tray 13 (n = 14): Mx]4 = (V + V,.)(yu -yH) + L(x,s -x1 4)

Tray 12 (n = 13): Mxu=(V+ VF)(yu -yu) + L(xu -x]3)

Tray 11 (w= 12): Mxn=(V+ VF\yu-yn) + L{xn-xu)

TraylO(»=ll): Mxu = (V + V„){yw -yu) + L(xu -xu)

Tray 9(n= 10): Mxw=(V + VF)(y9 -y]0) + L(xu -xl0)

Tray 8 (n = 9): Mx9 = VFyF +Vys-(V + VF)y9 + L(x]0 - x9)

150

Tray 7 (n = 8): Mxg = V(y7 - y%) + Lxg + LFxF - (Z + LF)x8

Tray 6 (n = 7): M;7 = F(>6 - j/7) + (Z + LF)(x8 - x7)

Tray 5 (n = 6): M:6 = F(^5 - y6) + (Z + LF)(x7 - x6)

Tray 4 (w = 5): Mx5 = V(y4 -y5) + (L +LF)(x6 - xs)

Tray 3 (n = 4): M;4 = F(^3 - >;4) + (Z + ZF)(x5 - x4)

Tray 2 (« = 3): Mc3 = F(^2 - y3) + (Z + LF)(x4 - x3)

Tray 1 (« = 2): Mc2 = F(j>, - ^2) + (Z + Z/r)(x3 - x2)

Reboiler (n = 1): MBi, = (Z + Zf)x2 -Vyx- Bxl.

Process data are summarized as follows:

• The liquid holdups: MD = 14.03 (kmole), M = 5.80 (kmole), and MB =

24.88 (kmole);

• Feed flow rates: LF= 104.2491 (kmole/h) and VF = 98.5152 (kmole/h);

• Flow rates above the feed location: Z9 = ...= Z)5 = Z = 75.6380 (kmole/h)

and V9 = ...= Fi5= V+ VF= 66.1139+ 98.5152 = 164.6291 (kmole/h);

• Flow rates below the feed location: L\ = ...= Zg = Z + LF = 75.6380 +

104.2491= 179.8871 (kmole/h) and V\ = ...= V%= V= 66.1139 (kmole/h);

• Distillate flow rate: D = 92.7597 (kmole/h);

• Bottoms flow rate: B = 110.9235 (kmole/h);

• Solving flash equations: xF = 0.2609 and yF = 0.6672.

In summary, the dynamic model is represented by a set of 31 nonlinear

differential and algebraic equations:

151

14.03 x16 =164.6291 y]5 - 75.6380x,6 -92.7597x,6

5.8x15 = 164.6291(y14 -y] 5) + 75.6380(x,6 -x l 5)

5.8x,4 = 164.6291(7,3->>,4) + 75.6380(x,5-x,4)

5.8x13 = 164.6291(712 - yn) + 75.6380(xl4 - x13)

5.8x12 =164.6291(j; |l-j;12) + 75.6380(x13-x12)

5.8*,, = 164.6291(710 -yu) + 75.6380(x,2 -x , ,)

5.8x,0 = 164.6291(79-^,0) + 75.6380(x,,-x,0)

5.8x9 = 66.1 \39ys -156.38>-9 + 75.6380(xl0 -x 9) + 59.95

5.8x8 = 66.1139(y7 -ya) + 75.6380 x9 - 188.59x8 + 33.99

5.8x7 = 66.1139(.y6-.y7) +179.887 l (x 8-x 7)

5.8x6 = 66.1 \39(y5-y6) + 179.887 l (x 7 -x 6)

5.8x5 = 66.1139(j/4 - y5) +179.8871 (x6 - x5)

5.8x4 =66.1139(^3 -yA) + \ 79.887 l (x 5-x 4)

5.8x3 = 66.1 139(^2 - y 3) + l79.8871 (x4 - x3)

5.8x2 =66.1139(j, -y2) +179.8871 (x 3 -x 2)

24.88x, = 179.8871 x2 -110.9235x, -66.1139^,. (C.42)

Vapor liquid equilibrium (VLE) relationship on each tray is given as

5.68x,
y' ~ l + 4.68x,

152

y2 =
5.68x2

1 + 4.68x,

^ 1 5 =

5.68x,

l + 4.68x,
(C.43)

153

APPENDIX D: DYNAMIC SIMULATION

D.l. Modular Decomposition of the Column

Modular decomposition of the column is depicted in Figure D.l. The column is

divided into two groups: 1) rectifying section; and 2) stripping section.

•CO

1

L

REfCBSER & JSCFiL'tf Ettlft?

WJ?6RfSE.ii' [• ^ • ^ t ^ ^ . K ' j a

<9

?"*"
« r M |

3» < £
" * A V 13 |

» ^
SA/ 11' j

S> <^> s e c
.BflV I f 1 -®-

w r n i |

^ <?>
f*M f .3 1

ET
m.Ar £ |

~^ "IT
JWi? a ? — i

C?> $
IZ

s*'<w i f e f j f f tw-

1
ma r ii |

P $
mar t. |

r TT s m
» « « 1 SECi

ET
r Jfifl V 3 1

b $
TWVl'P 2 1

J ^
m d If f |

4> #> _,
• •{ JffBimil.

A *MS£ * titisttiLu;

7]

l

zl 1

WFYMtG

H#

fiterttxm.

Figure D. 1. Modular decomposition scheme for the distillation column.

154

D.2. Simulation with MATLAB Simulink

For convenience, the simulation program is organized as a hierarchical structure

with three levels, as depicted in Figure D.2. The lowest-level modules actually represent

differential and algebraic equations.

1 COLUMN BASE
R REBOILER

STRIPPING
SECTION

GENERAL TRAY

COLUMN

1

1
TRAY 7

1
TRAYS

RECTI FYINO
SECTION

GENERAL TRAY
1

CONDENSER &
REFLUX DRUM

Figure D.2. Hierarchical structure of the simulation program.

The highest level of the simulation program in MATLAB Simulink is shown in

Figure D.3.

Step

GASOLINE REFINING PLANT
Distillation Column Dynamic Simulation

Operational Objectives :
Purity of LPG xD > 98%
Impurity in Raw Gasoline xB < 2%

- w i 1.3411 ;:

yF'VF

~W 4.6804 ".

xF'LF

RECTIFYING
SECTION

' • • l n 1 Out1

— • In2 Out2

STRIPPING
SECTION

• : XD

To Workspacel

-4L
Scope 1

Raw Gasoline

• | xB

To Workspace

H!
Scope

Figure D.3. Main program in MATLAB Simulink.

155

The second-level modules include the rectifying section, as shown in Figure D.4,

and the stripping section, as shown in Figure D.5.

In20ut2

Condenser & Reflux Drum

Inl O u l l M

In 2 Ou!2t

Tray 14

• " i n l Out1 |

- W i n 2 Oul2|

Tray 13

In 10ut 1

In20ut2

Tray 12

• " In lOu t l

In20ut2

Tray 11

InlOutl

In20ul2

Tray 10

•••••jlnlOutl

•Nln20Ut2

Tray 9

l . j ;—

In1

{ ' ~2~> -
In2

'Out1

• in 2

In 3

Tray 8

x . 1 .:•
Out'l

• - K 2 . ;
Out2

Figure D.4. Module of the rectifying section.

156

1 }

In1

,_2 ..}—

In2

t

|

!

i

'

I
[

•

f •

, n 1 n n H I .W>' A

In 2 Ol l t l

In 3

Tray 7

— •

•

In 10ut1 \

In20ut2

Tray 6

' — • i n l O u t l j-

- > In20ut2 \

Tray 5

In lOut l -

• ln20ut2

Tray 4

• in lOut l

•

i

1 •

•

In20ut2

Tray 3

In lOut l

In20ut2 [

Tray 2

t->

[•

In lOut l H

In20ul2 |

1 Tray 1

__*
Out1

• In1

Out2 -> <_2_>

Column base
and Reboiler

Figure D.5. Module of the stripping section.

157

The third-level modules include some special components and generic trays as

depicted in the following figures.

x2

O •'7.2302

Outi

COLUMN BASE « REBOILER (Stage n*1)

471 r
Integrator 2

• XI

To Workspace2

•

Scope 2

K 2 :
Olit2

2.T899 ^
Function

VLE equation

Figure D.6. Module of the column base and reboiler.

GENERIC TRAY n

GL(n+1)
iquid flow arrives

V : • ! L(n+1).Mn

in1

GV(n-1)
Vapoi flow arrives

2) • • • V(n-1).Mn

In2 _ . . . - - '

Out 1 vapor flow leaves out the tray
1 -4

A i " ' \
•;

V

GVn

-•'.'.. Vn/Mn

"* '".:"! xn

• 1 /
integrator 2

GLn

y
< •

n MATLAB | ^
Function

V IE equa Son

• xn

To Workspace2

.. •• • ; - .

Scope xn

1 * 2

Liquid flow leaves out the t oy

Figure D.7. Module of a generic tray.

158

TRAY 7 (Stage n -8)

LF 'xF

•:'" 3 >•

In 3

x9

:• " 1 "

In'l

V7

(" 2 "
in2

Outl

en <

IH130410 ~:>-

• 11.9679";;;

VF *yF

In 3

••¥••:..

y- Integrator 2

1 1 9 6 7 9 < - ? - I ™ ™ " *
Function

VLE equation

Figure D.8. Module of the feed tray.

To Workspaces

Scope 2

> • ' . . ? . :

Out2

xlO

. 1 : lHn.0410

••*• xS

To Workspace

2 : • 11.9879
In2

Outl
• • " " I ' *

28.9533 N

li"
integrator 2

13,0410

Function

MATLAB Fen 2

• > • •

Scope2

Ol*2

Figure D.9. Module of the eighth tray.

159

y15

(1 '
In2

11.9666
1 I
s J

Integrator 2

12.0027 K

x16

Scope 2

xn

Out 2

Figure D. 10. Module of the condenser and reflux drum.

160

APPENDIX E: CONSTRUCTION OF REFERENCE MODEL

E.l. Model Construction

This section describes construction of full order model. The outputs of interest

are the purity of overhead and bottom products. These quantities are desired to be kept

within prescribed limits (XD ^ 98% and XB < 2%) under disturbances of the feed streams

or environment. The selected control structure is L-V structure, in which the reflux flow

L at the column top and the boilup rate in the column bottom V are the manipulated

inputs.

Consider the nonlinear equations represented for a generic tray:

Figure E. 1. Model of a generic tray.

Material balance is determined as follows:

ACCUMULATION = INLET - OUTLET

161

MnXn = (F„_,F„_1+4+,Xn+1) (VnYn+LnXn)

or,

V
X=^^Y. M„ n-\ — Y. + ^±LX,

L

M. M.
n+\ M„

'-X. (E.l)

where I i = ...= L* = L + LF = L+ 104.2491; L9= ...= Ll5 = L; V\ = ...= V8= F;and V9

= ...= V15= F+ VF = V+ 98.5152.

Vapor liquid equilibrium relationship at each tray is given by

aX„ 5.68X. K =
" l + (a - l) x „ 1 + 4.68X„

Vw = l 15. (E.2)

Therefore, the concentrations of liquid on each tray are a vector function/of state

vector x and manipulated input vector u:

X = f(X,u,t)

where X = (X,,X2,...,X,6)T; and u = (L, V)r.

The above nonlinear system can be linearized around the steady state value at the

nominal operating point (X*, u). We define the perturbed states and control inputs as

dX = X-X*

du = u - u

The linearized equations are given by:

dX \df]
<3x

dX + \8f] _du_
du

162

where df IdX stands for the Jacobian of the vector function / with respect to the state

vector x; and df I du stands for the Jacobian of the vector function/with respect to the

manipulated input vector u.

Make differentiation of (E.l) as follows:

dXn = ̂ =LdYn_x +^dVn , n-dYn ~-Z^dVn

Mn Mn Mn Mn

T* X* T* X*
+ -*±dXn+, + ̂ *±dLn+] --^dXn

 n-dL.

Mn "+1 Mn "+1 Mn " Mn "

Substituting for terms of dYmd regrouping the equation give the following result:

T* T* -t- V V* K V*

dXn=^dX„+] -L»+K»y» dXn+^^t±dXn, Y* — Y* V* — V*
+ A"-' A"-]dL- " "~]dV

(E.3)

where dL„ = dL, for all n=\, ..., 15; dVn = dV, for all n = 1, ,15; K„ is the linearized

VLE constant; and y„ ,x„ , L„ and V„ are the steady-state values at the nominal operating

point.

In addition, we make linearization for some special stages as follows:

1) Reboiler(« = 1)

dX, = -^dX2 + ̂ dL-^dY, -^-dV-—dXv

2) Condenser (n = 16)

dXl6 =^dYi5 +-^dV--^dXl6 -^dL-—dX]6.
Mi6 Ml6 M 1 6 M 1 6 M]6

As a result, the model is represented in state space in terms of deviation variables:

i (0 = Ax(t) + Bu(t) (E.4)

163

and

y(t) = Cx(t) (E.5)

where x - [dx\ dx2 ... dx\e]r is the vector of composition deviations; and u = [dx\ dxj ...

dx\<$ is the vector of manipulated inputs; and y = [CIXB dXo]J = \dX\ dX\^ is the vector

of controlled outputs.

The algorithm for calculating state matrix elements A (16x16) is described as

follows:

1) Collect flow rates data:

L{ =..=LS* = 179.8871 (kmole/h),

L9* =. . .= Z15*= 75.6380 (kmole/h),

V* = ...= V%* = 66.1139 (kmole/h),

V9* = ...= V]5* = 164.6291 (kmole/h).

2) Collect liquid holdups data:

MX=MB = 24.88 (kmole),

M2 = M3 = ... = Mi5 = 5.80 (kmole),

M16 = MB = 24.88 (kmole).

3) Calculate K\, K2, ..., K\6.

4) Calculate the state matrix elements:

/ i - l . f l , , - — , a]2- —
M, M}

_KK _ (L]+K2V*) _ L*
2,1 M2

 2'2 M2
 2'3 M 2

164

*-,C „ (K+KX) „ _ ^ y\ • ,7 — f ' ~ ' " - | /y — \ f l " " / ft — ff + '
" • " « , n - l , , ' un,n ~ , , ' ","+1 j t M„ M„ M„

w = 1 6 : a , 6 1 5 = — — ^ , a] 6 1 6 = — .
^ , 6 A*16

As a result, the state matrix 4̂ (16x16) is tri-diagonal:

-23.0

61.4

0

0

0

0

0

0

0

0

0

0

0

0

0

0

7.3

-83.2

52.1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

31.0

-70.5

39.5

0

0

0

0

0

0

0

0

0

0

0

0

0

0

31.0

-59.0

27.9

0

0

0

0

0

0

0

0

0

0

0

0

0

0

31.0

-51.4

20.4

0

0

0

0

0

0

0

0

0

0

0

0

0

0

31.0

-47.5

16.5

0

0

0

0

0

0

0

0

0

0

0

0

0

0

31.0

-45.7

14.7

0

0

0

0

0

0

0

0

0

0

0

0

0

0

31.0

-44.9

13.9

0

0

0

0

0

0

0

0

0

0

0

0

0

0

13.0

-44.9

31.9

0

0

0

0

0

0

0

0

0

0

0

0

0

0

13.0

-41.6

28.5

0

0

0

0

0

0

0

0

0

0

0

0

0

0

13.0

-35.6

22.5

0

0

0

0

0

0

0

0

0

0

0

0

0

0

13.0

-28.3

15.2

0

0

0

0

0

0

0

0

0

0

0

0

0

0

13.0

-22.7

9.7

0

0

0

0

0

0

0

0

0

0

0

0

0

0

13.0

-19.9

6.9

0

0

0

0

0

0

0

0

0

0

0

0

0

0

13.0

-18.7

2.4

0

0

0

0

0

0

0

0

0

0

0

0

0

0

13.0

-12.(

The algorithm for calculating input matrix elements B (16x2) is as follows:

165

1) Collect data:

LPG product purity: XD* = X]6* =0.9851=98.51%;

Raw Gasoline product purity: \-XB* = 1 - X,* = 0.989 = 98.9%.

2) Calculate the state matrix elements:

w = 1 : ^ 1 = 7 Z ' 6 i . 2=TT

w =2: h _{xlZx2) , _-fe-i;)
2 J ~ M2 ' 2<2~ M2

» * „ ,2 =
-te-^.)

« - 1 6 : 6,6>i = '6 , ft162
^ 1 6

The input matrix B (16x2) is:

B =

_ K
M16

[0.0012 0.0063 0.0091 0.0098 0.0076 0.0044 0.0022 0.0021 0.0048

0.0111 0.0216 0.0306 0.0285 0.0178 0.0086 -0.0702;

-0.0024 -0.0157 -0.0237 -0.0254 -0.0196 -0.0116 -0.0058 -0.0027 -0.0024

-0.0050 -0.0097 -0.0138 -0.0128 -0.0080 -0.0039 0.0704]r.

The output matrix C (2x16) is

C =
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0'

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

166

E.2. Stability Test

The stability of the system can be determined by using the Lyapunov direct

method. Let us assume that the quadratic Lyapunov function is

V(x)=xTPx (E.6)

where P is a symmetric, positive definite matrix.

The time derivative of V is

V(x) = xT Px + xTP x. (E. 7)

Since the system homogeneous differential equation x=Ax and (Ax)T = xTAT, we

have

V(x) = (AxfPx + xrP x

V(x) = xTATPx + xTPAx = xT(ATP + PA)x. (E.8)

If A P + PA = -Q for some positive definite matrix Q, then the system is

asymptotically stable.

We choose Q = I, where / i s the identity (16x16) matrix. The symmetric matrix P

is determined by solving the following equation:

ATP + PA = -I (E.9)

where A is the state matrix. The system is asymptotically stable when matrix P is

positive definite.

The system stability test can be done with the following MATLAB program:

% The condition V(0,t) = 0 is obviously satisfied.

P = lyap(A,I);

% Determinants of the principal minors:

for i=l:16

167

Pi = P (1: i, 1: i) ;

det(Pi) ;

detPi=['det(P' int2str(i) ') = ' num2str(det(Pi))];

d i s p (d e t P i) ;

end

The results show that all principal minors are positive:

d e t (P l) = 0 . 0 3 2 8 3 1

d e t (P 2) = 0 . 0 0 0 9 0 8 4 9

d e t (P 3) = 2 . 4 4 4 3 e - 0 0 5

d e t (P 4) = 5 . 5 4 7 6 e - 0 0 7

d e t (P 5) = 1 . 0 1 5 2 e - 0 0 8

d e t (P 6) = 1 . 6 2 0 8 e - 0 1 0

d e t (P 7) = 2 . 3 0 2 5 e - 0 1 2

d e t (P 8) = 2 . 6 1 8 3 e - 0 1 4

d e t (P 9) = 4 . 1 9 5 9 e - 0 1 6

d e t (P l O) = 1 . 2 8 8 6 e - 0 1 7

d e t (P l l) = 6 . 7 8 4 7 e - 0 1 9

d e t (P 1 2) = 3 . 9 1 6 e - 0 2 0

d e t (P 1 3) = 1 . 8 3 0 8 e - 0 2 1

d e t (P 1 4) = 7 . 0 8 9 e - 0 2 3

d e t (P15) = 2 . 4 8 7 6 e - 0 2 4

d e t (P 1 6) = 8 . 4 6 1 2 e - 0 2 6

The symmetric matrix P is positive definite; hence, the system is asymptotically

stable.

168

APPENDIX F: SOURCE CODE

F.l. Adaptive Mechanism

#include <iostream>

#include <stdlib.h>

#include "AdaptiveMech.h"

using namespace std;

AdaptiveMech::AdaptiveMech() {

}

AdaptiveMech::-AdaptiveMech() {

}

void AdaptiveMech::getAdapMechPkt(int k, Pkt x_kml, Pkt e_kml,

Pkt uc_kml, thetaPkt th_kml) {

if(k != x_kml.k+l)

printf("AdaptiveMech::getAdapMechPkt=>Wrong x(k-l) time

stamp!\n");

if(k != e_kml.k+l)

printf("AdaptiveMech::getAdapMechPkt=>Wrong e(k-l) time

stamp!\n");

if(k != uc_kml.k+l)

printf("AdaptiveMech::getAdapMechPkt=>Wrong uc(k-l) time

stamp!\n");

this->x_kml = x_kml;

this->e_kml = e_kml;

this->uc_kml = uc_kml;

this->th_kml = th_kml;

return;

}

void AdaptiveMech::genAdapMechPkt(int k, thetaPkt &th_k) {

// generate adaptive gains

th k.k = k;

169

t h _ k . t h l = t h_kml . t h l + T*gamma*(bll*e_kml.pi +

b21*e_kml.p2)*x_kml.pl,•

t h_k . t h2 = th_kml. th2 + T*gamma*(bll*e_kml.pi +

b21*e_kml.p2)*x_kml.p2;

t h _ k . t h 3 = th_kml . th3 + T*gamma*(bl2*e_kml.pi +

b22*e_kml.p2)*x_kml.pl;

t h_k . th4 = th_kml. th4 + T*gamma*(bl2*e_kml.pi +

b22*e_kml.p2)*x_kml.p2;

t h _ k . t h 5 = th_kml . th5 - T*gamma*(bll*e_kml.pi +

b21*e_kml.p2)*uc_kml.pl;

t h _ k . t h 6 = th_kml . th6 - T*gamma*(bll*e_kml.pi +

b21*e_kml.p2)*uc_kml.p2;

t h_k . t h7 = th_kml. th7 - T*gamma*(bl2*e_kml.pi +

b22*e_kml.p2)*uc_kml.pl;

t h_k . t h8 = th_kml. th8 - T*gamma*(bl2*e_kml.pi +

b22*e_kml.p2)*uc_kml.p2;

r e t u r n ;

}

F.2. Plant Model

#include <iostream>

#include <stdlib.h>

#include "PlantModel.h"

using namespace std;

Plant::Plant() {

all = -6.7941 + 0.67*(rand()%2-0.5)

al2 = -0.9095 + 0.09*(rand()%2-0.5)

a21 = 1.4686 + 0.15*(rand()%2-0.5)

a22 = -0.2497 + 0.02*(rand()%2-0.5)

bll = -0.1461 + 0.014*(rand()12-0.5);

bl2 = 0.2073 + 0.02*(rand()%2-0.5);

b21 = -0.0021 + 0.0002*(rand()12-0.5);

b22 = -0.0281 + 0.003*(rand()%2-0.5);

170

http://x_kml.pl

ell = -0.0624 + 0.006*(rand()%2-0.5);

cl2 = -0.0281 + 0.003*(rand()%2-0.5);

c21 = 0.2458 + 0.025*(rand()%2-0.5);

c22 = 0.0009 + 0.00009*(rand()%2-0.5);

printf("A = %f\t %f\t %f\t %f\t\n", all, al2, a21, a22;

printf("B = %f\t %f\t %f\t %f\t\n", bll, bl2, b21, b22;

printf("B = %f\t %f\t %f\t %f\t\n", ell, cl2, c21, c22;

}

Plant::~Plant () {

void Plant::getPlantPkt(int k, Pkt u_k, Pkt x_k) {

if(k != u_k.k)

printf("Plant::getPlantPkt => Wrong u(k) time stamp!\n");

this->u_k = u_k;

this->x_k = x_k;

return;

}

void Plant::genPlantPkt(int k, Pkt &x_kpl) {

//compute plant states

x_kpl.pl = (l+all*T)*x_k.pl + al2*T*x_k.p2 + bll*T*u_k.pl +

bl2*T*u_k.p2;

x_kpl.p2 = a21*T*x_k.pl + (l+a22*T)*x_k.p2 + b21*T*u_k.pl +

b22*T*u_k.p2;

x_kpl.k = k+1;

r e t u r n ;

}

F.3. Reference Model

#include <iostream>

#include <stdlib.h>

#include "ReferenceModel.h"

using namespace std;

Refmdl::Refmdl() {

171

http://x_kpl.pl

}

Refmdl::~Refmdl() {

}

void Refmdl::refmdlGetPkt(int k, Pkt uc_k, Pkt xm_k) {

if(k != uc_k.k)

printf("Refmdl::refmdlGetPkt => Wrong uc(k) time

stamp!\n");

this->uc_k = uc_k;

if(k != xm_k.k)

printf("Refmdl::refmdlGetPkt => Wrong xm(k) time

stamp!\n");

this->xm_k = xm_k;

return;

}

void Refmdl::genRefPkt(int k, Pkt &xm_kpl) {

// compute reference states

xm_kpl.k = k+1;

xm_kpl.pl = (l+amll*T)*xm_k.pl + aml2*T*xm_k.p2 +

bmll*T*uc_k.pl + bml2*T*uc_k.p2;

xm_kpl.p2 = am21*T*xm_k.pl + (l+am22*T)*xm_k.p2 +

bm21*T*uc_k.pl + bm22*T*uc_k.p2;

return;

}

F.4. Linear Controller

#include <iostream>

#include <stdlib.h>

#include "LinearControl.h"

using namespace std;

Linctrl: : Linctrl() {

}

Linctrl: :-Linctrl () {

172

http://xm_kpl.pl

}

void Linctrl::getLinctrlPkt(int k, thetaPkt th_k, Pkt uc_k, Pkt

x_k) {

if(th_k.k ! = k) printf("Linctrl::getLinctrlPkt => Wrong th(k)

time stamp!\n");

this->th_k = th_k;

if(k != uc_k.k) printf("Linctrl::getLinctrlPkt => Wrong uc(k)

time stamp!\n");

this->uc_k = uc_k;

if(k != x_k.k) printf("Linctrl::getLinctrlPkt => Wrong x(k)

time stamp!\n");

this->x_k = x_k;

return;

}

void Linctrl::genLinctrlPkt(int k, Pkt &u_k) {

//produce control signals

u_k.pl = th_k.th5*uc_k.pl + th_k.th6*uc_k.p2 - th_k.thl*x_k.pl

- th_k.th2*x_k.p2;

u_k.p2 = th_k.th7*uc_k.pl + th_k.th8*uc_k.p2 - th_k.th3*x_k.pl

- th_k.th4*x_k.p2;

u_k.k = k;

return;

}

F.5. Comparator

#include <iostream>

#include <stdlib.h>

#include "Comparator.h"

using namespace std;

Comparator::Comparator() {

}

Comparator::~Comparator() {

}

173

http://u_k.pl

void Comparator::getCmprPkt(int k, Pkt x_k, Pkt xm_k) {

if(k != x_k.k) printf("Comparator::Wrong x(k) time stamp!\n");

this->x_k = x_k;

this->xm_k = xm_k;

return;

}

void Comparator::genCmprPkt(int k, Pkt &e_k) {

//compute errors

e_k.pl = x_k.pl - xm_k.pl;

e_k.p2 = x_k.p2 - xm_k.p2;

e_k.k = k;

r e t u r n ;

}

F.6. Controlled Output

#include <iostream>

#include <stdlib.h>

#include "ControlledOutput.h"

using namespace std;

ControlledOutput::ControlledOutput() {

}

ControlledOutput::-ControlledOutput() {

}

void ControlledOutput::getRefOutPkt(int k, Pkt x_k) {

if(k != x_k.k) printf("ControlledOutput::Wrong x(k) time

stamp!\n");

this->x_k = x_k;

return;

}

void ControlledOutput::genRefOutPkt(int k, Pkt &y_k) {

//produce controlled outputs

y_k.pl = cll*x_k.pl + cl2*x_k.p2;

y_k.p2 = c21*x_k.pl + c22*x_k.p2;

174

http://e_k.pl
http://x_k.pl
http://xm_k.pl
http://y_k.pl

y_k.k = k;

return;

}

F.7. Reference Outputs

#include <iostream>

#include <stdlib.h>

#include "ReferenceOutput.h"

using namespace std;

RefOutput::RefOutput() {

}

RefOutput: :-RefOutput() {

}

void RefOutput::getRefOutPkt(int k, Pkt xm_k) {

if(k != xm_k.k) printf("RefOutput::getRefOutPkt => Wrong xm(k)

time stamp!\n");

this->xm_k = xm k;

return;

}

void RefOutput::genRefOutPkt(int k, Pkt &ym_k) {

ym_k.pl = cmll*xm_k.pl + cml2*xm_k.p2;

ym_k.p2 = cm21*xm_k.pl + cm22*xm_k.p2;

ym_k.k = k;

ym_k.pi = ym_k.pi;

ym_k.p2 = ym_k.p2;

r e t u r n ;

}

F.8. CGI Program

#inc lude <s td io .h>

inc lude < s t d l i b . h >

inc lude <ctype.h>

ttinclude < a s s e r t . h >

175

http://ym_k.pl

#include

#include

#include

#include

#include

#include

#include

#include

#include

#include

<errno.h>

<string.h>

<stdio.h>

<unistd.h>

<fcntl.h>

<string.h>

<sys/socket.h>

<sys/types.h>

<netinet/in.h>

<arpa/inet.h>

#define DATA_PORT 2534

#define CLIENTIP"192.168.0.8'

#define LINELEN 1024

struct valinfo

{

unsigned char *name;

unsigned char *text;

};

struct thetaPkt

{

int

int

int

int

int

int

int

int

int

k;

thl

th2

th3

th4

th5

th6

th7

th8

struct Pkt

{

int k;

int pi;

int p2;

};

static const int MAXSIZE = 2000;

//static const int T = 0.1;

static const int Tgamma = 1;

static const int MAXPKT = 11;

static const int ucl = 500;

static const int uc2 = 100;

static

static

static

static

static

static

static

static

static

static

static

static

static

static

static

static

static

static

const

const

const

const

const

const

const

const

const

const

const

const

const

const

const

const

const

const

int

int

int

int

int

int

int

int

int

int

int

int

int

int

int

int

int

int

amll =

ami 2 =

am21 =

am22 =

bmll =

bml2 =

bm21 =

bm22 =

cmll =

cml2 =

cm21 =

cm22 =

all = -

al2 = -

a21 =

a22 = -

bll = -

bl2 =

-67 94;

-910;

1469;

-2410;

-146;

207;

-2;

-2 8;

-62;

-2 8;

246;

l;

-6712;

-897;

1559;

-158;

-8 3;

235;

static

static

static

static

static

static

static

static

static

static

static

static

static

static

const

const

const

const

const

const

const

const

const

const

const

const

const

const

int

int

int

int

int

int

int

int

int

int

int

int

int

int

b21

b22

ell

cl2

c21

c22

thO_

thO_

thO_

thO_

thO_

thO_

thO_

thO

=

=

=

=

=

=

_1

2

3

_4

_5

_6

7

8

8;

27;

-62;

-2 8;

246;

1;

= 371;

= -510;

= 280;

= -310;

= 1044;

= -42;

= 0;

= 1006;

unsigned char *getval(unsigned char *) ;

static int gotvals=0;

static int nvals=0;

static struct valinfo *vals;

static int hextobin(unsigned char) ;

static unsigned char *httpunescape(unsigned char *) ;

static int getvals(void);

static void getAdapMechPkt(int k, struct Pkt *x_kml, struct Pkt

*e_kml, struct Pkt *uc_kml, struct thetaPkt *th_kml);

static void fwritethpkt(char* fname, struct thetaPkt* th);

static void fwritepkt(char* fname, struct Pkt* pkt);

void itoch(int xl, unsigned char* c, int* len, unsigned char*

sign);

unsigned char *getval(unsigned char *name)

{

int i;

178

if (!gotvals)

{

nvals = getvals();

gotvals = 1;

}

if (nvals == 0) return NULL;

for (i=0;i<nvals;i++)

{

if(strcmp((const char *)name, (const char

*)vals[i].name)==0)

return vals[i].text;

}

return NULL;

}

/* =============== httpunescape =========== */

static unsigned char *httpunescape(unsigned char *sis)

{

unsigned char *siptr;

unsigned char *soptr;

unsigned char *sos;

sos = (unsigned char *) calloc (strlen((char *)sis)+1,sizeof

(unsigned char)) ;

if(sos == NULL) return NULL;

soptr = sos;

siptr = sis;

while (*siptr)

{

if(*siptr == '%')

{

int c = 0, i;

179

for (i=0;i<2;i++)

{

int h;

siptr++;

if (*siptr == ' \0') break;

if ((h=hextobin(*siptr)) == -1) break;

c = c«4 + h;

}

if (i != 2)

{

free(sos);

return NULL;

}

*soptr++ = (unsigned char) c;

} else if (*siptr == '+')

*soptr++ = ' ';

else

*soptr++ = *siptr;

siptr++;

}

*soptr = '\0' ;

strcpy ((char *)sis, (const char *)sos);

free (sos);

return sis;

}

/* =============== hextobin ================= */

static int hextobin(unsigned char c)

{

if(isdigit(c))

return c-'0';

else if (isxdigit(c))

180

return tolower(c) - 'a' + 10;

else

return -1;

/* =============== getvals =================== */

static int getvals(void)

{

int i;

int vent = 0;

unsigned char *vstr;

unsigned char *vptr;

unsigned char *eptr;

unsigned char *aptr;

vstr = (unsigned char *) getenv ("REQUEST_METHOD");

if(vstr == NULL) return 0;

if(stremp((const char *)vstr,"POST") == 0)

{

int 1, cl;

vstr = (unsigned char *) getenv("CONTENT_LENGTH"]

if (vstr == NULL | | strlen((const char *)vstr) ==

return 0;

if ((cl = atoi((const char *)vstr)) == 0)

return 0;

vstr = (unsigned char *)malloc(cl+2);

if(vstr == NULL)

return 0;

fgets((char *)vstr,cl + 1,stdin);

1 = strlen((const char *)vstr);

if(vstr[l-l] == '\n')

vstr[l-l]='\0';

181

else

{

vstr = (unsigned char *) getenv("QUERY_STRING");

if(vstr == NULL) return 0;

}

vptr = vstr;

while (*vptr)

if(*vptr++ == '&') vcnt++;

vcnt++;

vals = (struct valinfo *)calloc(vent,sizeof (struct

valinfo));

if(vals == NULL) return 0;

vptr = vstr;

for (i=0;i<vcnt;i++)

{

eptr = (unsigned char *)strchr((const char *)vptr,'=');

aptr = (unsigned char *)strchr((const char *)vptr,'&');

if (eptr == NULL)

return 0;

*eptr = '\0';

vals[i].name = httpunescape(vptr);

if (vals[i].name == NULL) return 0;

if (aptr)

{

*aptr = '\0';

vptr = aptr+1;

}

vals[i].text = httpunescape(eptr+1);

182

if(vals [i] .text == NULL) return 0;

}

return vent;

}

/* =============== write adaptive gains =================== */

static void fwritethpkt(char* fname, struct thetaPkt* th){

unsigned char *c;

unsigned char *cs;

int fd, len;

fd=open(fname,0_WRONLY | 0_CREAT, 0 666);

if((fd==-l)){

printf("Can't write %s\n", fname);

exit (1);

}

c = (unsigned char*) malloc(20);

cs = (unsigned char*) malloc(2);

itoch(th->k, c, &len, cs) ;

write(fd, c, len);

write(fd, "\t", 1);

free((void*) c);

free((void*) cs);

c = (unsigned char*) malloc(20);

cs = (unsigned char*) malloc(l);

itoch(th->thl, c, &len, cs);

write(fd, cs, 1);

write(fd, c, len);

write(fd, "\t", 1);

free((void*) c);

183

free((void*) cs);

c = (unsigned char*) malloc (20);

cs = (unsigned char*) malloc(l);

itoch(th->th2, c, &len, cs);

write(fd, cs, 1);

write(fd, c, len);

write(fd, "\t", 1);

free((void*) c);

free((void*) cs);

c = (unsigned char*) malloc (20);

cs = (unsigned char*) malloc(1);

itoch(th->th3, c, &len, cs) ;

write(fd, cs, 1);

write(fd, c, len);

write(fd, "\t", 1);

free((void*) c);

free((void*) cs) ;

c = (unsigned char*) malloc(20);

cs = (unsigned char*) malloc (1);

itoch(th->th4, c, &len, cs);

write(fd, cs, 1);

write(fd, c, len);

write(fd, "\t", 1);

free((void*) c);

free((void*) cs);

c = (unsigned char*) malloc (20);

cs = (unsigned char*) malloc(l);

itoch(th->th5, c, &len, cs);

write(fd, cs, 1);

write(fd, c, len);

184

write(fd, "\t", 1);

free((void*) c);

free((void*) cs);

c = (unsigned char*) malloc (20);

cs = (unsigned char*) malloc (1);

itoch(th->th6, c, &len, cs);

write(fd, cs, 1);

write(fd, c, len);

write(fd, "\t", 1);

free((void*) c);

free((void*) cs);

c = (unsigned char*) malloc (20);

cs = (unsigned char*) malloc (1);

itoch(th->th7, c, Slen, cs);

write(fd, cs, 1);

write(fd, c, len);

write(fd, "\t", 1);

free((void*) c);

free((void*) cs);

c = (unsigned char*) malloc(20);

cs = (unsigned char*) malloc(1);

itoch(th->th8, c, &len, cs);

write(fd, cs, 1);

write(fd, c, len);

write(fd, "\t", 1);

free((void*) c);

free((void*) cs);

close(fd);

return;

185

/* =============== write signals =================== */

static void fwritepkt(char* fname, struct Pkt* pkt){

unsigned char *c;

unsigned char *cs;

int fd, len;

fd=open(fname,OJAJRONLY | 0_CREAT, 0 666);

//fd=open("adap.out",0_WRONLY, 0666);

if((fd==-l)){

printf("Can't write %s\n", fname);

exit(1);

}

c = (unsigned char*) malloc(20);

cs = (unsigned char*) malloc(2);

itoch(pkt->k, c, &len, cs);

write(fd, c, len);

write(fd, "\t", 1);

free((void*) c);

free((void*) cs);

c = (unsigned char*) malloc (20);

cs = (unsigned char*) malloc(1);

itoch(pkt->pl, c, &len, cs);

write(fd, cs, 1);

write(fd, c, len);

write(fd, "\t", 1);

free((void*) c);

free((void*) cs);

c = (unsigned char*) malloc(20);

cs = (unsigned char*) malloc(1);

186

itoch(pkt->p2, c, &len, cs);

write(fd, cs, 1);

write(fd, c, len);

write(fd, "\t", 1);

free((void*) c);

free((void*) cs);

close(fd);

return;

}

/* =============== write a signal =================== */

static void fwritesig(char* fname, int sig){

unsigned char *c;

unsigned char *cs;

int fd, len;

fd=open(fname,0_WRONLY | 0_CREAT, 0666);

//fd=open("adap.out",0_WRONLY, 0666);

if((fd==-l)){

printf("Can't write %s\n", fname);

exit (1);

}

c = (unsigned char*) malloc(20);

cs = (unsigned char*) malloc(2);

itoch(sig, c, &len, cs);

write(fd, cs, 1);

write(fd, c, len);

write(fd, "\t", 1);

free((void*) c);

free((void*) cs);

187

close(fd);

return;

}

/* =============== getsignal =================== */

static void getsig(char* fname, int* signal){

int fn, s, i, m, sn, 1;

unsigned char* buf;

buf = (unsigned char*) malloc(20);

//printf("<p> Opening the input file\n");

fn = open(fname, 0_RDONLY);

//make sure it was really opened

if(fn==-l)

{

printf ("<p> Cannot open the fn.dat file.\n");

//exit(1) ;

return;

}

read(fn, buf, 20);

s = atoi((const char*) buf);

*signal = s;

free((void*) buf);

close(fn);

return;// s;

}

/* =============== get ascii signal =================== */

static int getcsig (char* fname, int* signal)!

int fn, s, i, m, sn, 1;

unsigned char* buf;

buf = (unsigned char*) malloc(20);

//printf("<p> Opening the input file\n");

fn = open(fname, 0_RDONLY);

188

//make sure it was really opened

if(fn==-l)

{

printf ("<p> Cannot open the input file %s.\n", fname);

//exit (1);

return 0;

}

read(fn, buf, 20);

s = atoi((const char*) buf);

*signal = s;

free((void*) buf);

close(fn);

return 1;

}

/* =============== settime =================== */

static void settime(char* fname, int k){

int f;

int t=0;

unsigned char *c;

unsigned char *cs;

int len;

f=open(fname, 0_WRONLY I 0_CREAT, 0666);

// if((f==-l)){

// printf("Can't write %s\n", fname);

// exit(l);

// }

while(f==-l &&t<10000){

printf("<p>t=%d: cannot open %s\n", t++, fname);

}

if(t>=10000) exit(l);

c = (unsigned char*) malloc(20);

189

cs = (unsigned char*) malloc(2);

itoch(k, c, &len, cs);

write(f, c, len);

write(f, "\t", 1);

free((void*) c);

free((void*) cs);

close (f);

return;

}

/* =============== Wait =================== */

static void wait(int n) {

int i=0;

while(i++<n);

}

/* =============== gettime =================== */

static void gettime(int* kT){

int k;

//Use for testing CGI running on ARM

getsig("/var/tmp/fkt.dat", &k);

//clear signals

//clearsig("/var/tmp/fkt.dat");

*kT = k;

//printf("<p> x(k-l).k = %d\n", k);

//Write to files

fwritesig("/var/tmp/chk_kT.dat", k);

return;

}

/* =============== clear signal =================== */

static void clearsig(char* fname){

int fn;

//printf ("<p> Opening the input file\n");

190

fn = open(fname, 0_WRONLY, 0 666);

//make sure it was really opened

if(fn==-l)

{

printf("<p> Cannot open the input file %s.\n", fname);

exit(1);

return;

}

write(fn,"",20);

close(fn);

return;

}

/* =============== integer to character =================== */

void itoch(int xl, unsigned char* c, int* len, unsigned char*

sign){

int i ;

unsigned char* ch;

ch = (unsigned char*) malloc(128);

i=-l;

if (xl==0)

{

ch[0] = '0';

*len = 1;

}

if(xl<0){

xl = -xl;

sign[0] = '-';

} else {

sign[0] = '+';

}

191

while(xl>0)

{

i++;

ch[i] = '0' + xl%10;

xl=xl/10;

}

*len=i+l;

for(i=0; i<*len; i++)

{

c[i] = (const char) ch [*len-i-l];

}

free((void*) ch);

return;

}

/* =============== getAdapMechPkt =================== */

static void getAdapMechPkt(int k, struct Pkt *x_kml, struct P

*e_kml, struct Pkt *uc_kml, struct thetaPkt *th_kml){

int kx, xl, x2, ke, el, e2, kuc, ucl, uc2, kth, thl, th2,

th4, th5, th6, th7, th8;

int outfile;

//Receive signals

getsig("/var/tmp/fkx.dat", &kx);

getsig("/var/tmp/fxl.dat", &xl);

getsig("/var/tmp/fx2.dat", &x2);

getsig("/var/tmp/fke.dat", &ke);

getsig("/var/tmp/fel.dat", &el);

getsig("/var/tmp/fe2.dat", &e2);

getsig("/var/tmp/fkuc.dat", &kuc);

getsig("/var/tmp/fucl.dat", &ucl);

192

getsig

getsig

getsig

getsig

getsig

getsig

getsig

getsig

getsig

getsig

"/var/tmp/fuc2,

"/var/tmp/fkth.

"/var/tmp/fthl,

"/var/tmp/fth2.

"/var/tmp/fth3.

"/var/tmp/fth4,

"/var/tmp/fth5.

"/var/tmp/fth6.

"/var/tmp/fth7.

"/var/tmp/fth8.

dat",

dat",

dat",

dat",

dat",

dat",

dat",

dat",

dat",

dat",

&uc2)

&kth)

&thl)

&th2)

&th3)

&th4)

&th5)

&th6)

&th7)

&th8)

//Display on HTML page

printf("<h3> Embedded Adaptive Controller: input signals

received.</h3>\n");

printf

printf

printf

printf

printf

printf

printf

printf

printf

printf

printf

printf

printf

printf

printf

printf

printf

printf

printf

'<h3> Time = %dT </h3>\n", k) ;

'<p> x(%d).k = %d\n", k-1, kx) ;

'<p> xl(%d) = %d\n", k-1, xl);

'<p> x2(%d) = %d\n", k-1, x2);

'<p> e(%d).k = %d\n", k-1, ke) ;

'<p> el(%d) = %d\n", k-1, el) ;

'<p> e2(%d) = %d\n", k-1, e2);

<p> uc(%d).k = %d\n", k-1, kuc) ;

'<p> ucl

'<p> uc2

'<p> thl

'<p> thl

'<p> th2

'<p> th3

'<p> th4

'<p> th5

'<p> th6

'<p> th7

'<p> th8

%d) = %d\n", k-1, ucl) ;

%d) = %d\n", k-1, uc2);

%d).k = %d\n", k-1, kth);

%d) = %d\n", k-1, thl)

%d) = %d\n", k-1, th2)

%d) = %d\n", k-1, th3)

%d) = %d\n", k-1, th4)

%d) = %d\n", k-1, th5)

%d) = %d\n", k-1, th6)

%d) = %d\n", k-1, th7)

%d) = %d\n", k-1, th8)

193

x_kml->k = kx;

x_kml->pl = xl;

x_kml->p2 = x2;

e_kml->k = ke;

e_kml->pl = el;

e_kml->p2 = e2;

uc_kml->k = kuc;

uc_kml->pl = ucl;

uc_kml->p2 = uc2;

th_kml->k = kth;

th_kml->thl = thl

th_kml->th2 = th2

th_kml->th3 = th3

th_kml->th4 = th4

th_kml->th5 = th5

th_kml->th6 = th6

th_kml->th7 = th7

th kml->th8 = th8

//Write to files

fwritepkt("/var/tmp/chk_x.dat", x_kml);

fwritepkt("/var/tmp/chk_e.dat", e_kml);

fwritepkt("/var/tmp/chk_uc.dat", uc_kml);

fwritethpkt("/var/tmp/chk_th.dat", th_kml);

return;

}

/* =============== genAdapMechPkt =================== */

void genAdapMechPkt(int k, struct Pkt* x_kml, struct Pkt* e_kml,

struct Pkt* uc_kml, struct thetaPkt* th_kml, struct thetaPkt

*th k){

th k->k = k;

194

th_k->thl = th_kml->thl + Tgamma*(bll*e_kml->pl + b21*e_kml-

>p2)*x_kml->pl/10000000;

th_k->th2 = th_kml->th2 + Tgamma*(bll*e_kml->pl + b21*e_kml-

>p2)*x_kml->p2/10000000;

th_k->th3 = th_kml->th3 + Tgamma*(bl2*e_kml->pl + b22*e_kml-

>p2)*x_kml->pl/10000000;

th_k->th4 = th_kml->th4 + Tgamma*(bl2*e_kml->pl + b22*e_kml-

>p2)*x_kml->p2/10000000;

th_k->th5 = th_kml->th5 - Tgamma*(bll*e_kml->pl + b21*e_kml-

>p2)*uc_kml->pl/10000000;

th_k->th6 = th_kml->th6 - Tgamma*(bll*e_kml->pl + b21*e_kml-

>p2)*uc_kml->p2/10000000;

th_k->th7 = th_kml->th7 - Tgamma*(bl2*e_kml->pl + b22*e_kml-

>p2)*uc_kml->pl/10000000;

th_k->th8 = th_kml->th8 - Tgamma*(bl2*e_kml->pl + b22*e_kml-

>p2)*uc_kml->p2/10000000;

// Write to files

fwritethpkt("/var/tmp/adapout.dat", th_k);

settime("/var/tmp/fka.dat", k) ;

return;

/* =============== main ============

main ()

{

unsigned char *strl,*str2, *cmd;

int valid;

int stime, gamm;

int i=0;

int k, kT;

int kmax=2;

195

struct Pkt x_kml;

struct Pkt e_kml;

struct Pkt uc_kml;

struct thetaPkt th_kml;

struct thetaPkt th_k;

int getkt=0;

int getkmax=0;

cmd = getval((unsigned char *)"cmd");

printf ("Content-type: text/html\n\n");

printf("<html> <head> <title> Web Server of Embedded Adaptive

Controller </title>

</head>\n");

if(strcmp((const char *)cmd, "run") == 0){

strl = getval((unsigned char*)"sptime");

str2 = getval((unsigned char*)"gamma");

printf("<body><hl>Embedded Adaptive Controller</hl>\n");

k=l;

while(!getkmax){

getkmax=getcsig("/var/tmp/fkmax.dat", &kmax);

wait(5000);

}

printf("<p> Maximal step size kmax = %d\n", kmax);

while(k< kmax){

printf("<h2> Time = %dT:</h2>\n", k) ;

//Waiting for Plant Simulator sending signals

printf("<p> Waiting for Plant Simulator sending

signals.\n");

while(Igetkt){

getkt = getcsig("/var/tmp/fkt.dat", &kT);

wait (5000);

}

196

printf("<p> kT = %d, k = %d\n", kT, k);

while(k!=kT){

getsig("/var/tmp/fkt.dat", &kT) ;

wait(10000);

}

printf("<p> Adaptive Mech receiving input

signals...\n");

getAdapMechPkt(k, &x_kml, &e_kml, &uc_kml, &th_kml);

printf("<p> Adaptive Mech synthesizing adaptive

gains...\n");

genAdapMechPkt(k, &x_kml, &e_kml, &uc_kml, &th_kml,

&th_k);

k++;

}

} else {

printf ("<p>Sorry, the request is invalid.\n") ;

}

printf ("</body></html>\n");

exit (0);

}

197

APPENDIX G: MATLAB/C++ SIMULATION OUTPUT FILES

The simulation programs written in MATLAB and C++ give the same results,

which are stored in output files. The results are shown in the following tables.

G.l. State Variables Files

The content of state variables data files is shown in Table G. 1.

Table G. 1. Simulation result of state variables.

k

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

t

0.000000

0.100000

0.200000

0.300000

0.400000

0.500000

0.600000

0.700000

0.800000

0.900000

1.000000

1.100000

1.200000

1.300000

1.400000

1.500000

1.600000

1.700000

1.800000

xl

0.000000

-0.005938

-0.007274

-0.007525

-0.006703

-0.006552

-0.007393

-0.007877

-0.006929

-0.006522

-0.006511

-0.005794

-0.005655

-0.005802

-0.005829

-0.005804

-0.005700

-0.006102

-0.006161

x2

0.000000

-0.000402

-0.001596

-0.002967

-0.004377

-0.005628

-0.006885

-0.008274

-0.009549

-0.010673

-0.011823

-0.012844

-0.013834

-0.014738

-0.015578

-0.016366

-0.017279

-0.018029

-0.018812

xml

0.000000

-0.005232

-0.006874

-0.007297

-0.007309

-0.007186

-0.007024

-0.006854

-0.006686

-0.006524

-0.006369

-0.006221

-0.006080

-0.005945

-0.005816

-0.005693

-0.005576

-0.005464

-0.005358

xm2

0.000000

-0.000386

-0.001531

-0.002888

-0.004274

-0.005626

-0.006927

-0.008172

-0.009360

-0.010494

-0.011576

-0.012609

-0.013594

-0.014533

-0.015429

-0.016284

-0.017099

-0.017877

-0.018620

198

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

1.900000

2.000000

2.100000

2.200000

2.300000

2.400000

2.500000

2.600000

2.700000

2.800000

2.900000

3.000000

3.100000

3.200000

3.300000

3.400000

3.500000

3.600000

3.700000

3.800000

3.900000

4.000000

4.100000

4.200000

4.300000

4.400000

4.500000

4.600000

-0.005840

-0.005030

-0.005135

-0.005074

-0.004855

-0.005031

-0.004512

-0.004009

-0.004133

-0.004671

-0.004958

-0.004323

-0.003983

-0.004546

-0.004544

-0.004603

-0.004297

-0.004450

-0.004369

-0.003873

-0.004316

-0.003581

-0.003195

-0.004056

-0.004004

-0.003677

-0.003060

-0.002967

-0.019639

-0.020340

-0.020948

-0.021660

-0.022270

-0.022872

-0.023498

-0.023983

-0.024360

-0.024769

-0.025263

-0.025755

-0.026125

-0.026483

-0.026923

-0.027330

-0.027685

-0.027977

-0.028329

-0.028643

-0.028964

-0.029283

-0.029457

-0.029607

-0.029793

-0.029938

-0.030105

-0.030178

-0.005256

-0.005159

-0.005067

-0.004979

-0.004894

-0.004814

-0.004737

-0.004664

-0.004595

-0.004528

-0.004465

-0.004404

-0.004346

-0.004291

-0.004239

-0.004189

-0.004141

-0.004095

-0.004052

-0.004010

-0.003971

-0.003933

-0.003897

-0.003863

-0.003830

-0.003798

-0.003769

-0.003740

-0.019327

-0.020003

-0.020647

-0.021262

-0.021848

-0.022407

-0.022941

-0.023449

-0.023935

-0.024398

-0.024840

-0.025261

-0.025663

-0.026047

-0.026413

-0.026762

-0.027095

-0.027412

-0.027715

-0.028004

-0.028280

-0.028543

-0.028794

-0.029033

-0.029261

-0.029479

-0.029687

-0.029885

199

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

4.700000

4.800000

4.900000

5.000000

5.100000

5.200000

5.300000

5.400000

5.500000

5.600000

5.700000

5.800000

5.900000

6.000000

6.100000

6.200000

6.300000

6.400000

6.500000

6.600000

6.700000

6.800000

6.900000

7.000000

7.100000

7.200000

7.300000

7.400000

-0.003945

-0.003632

-0.003741

-0.003254

-0.004091

-0.003652

-0.004092

-0.004512

-0.003289

-0.002858

-0.002967

-0.003991

-0.003572

-0.003271

-0.003674

-0.003566

-0.003464

-0.003407

-0.002696

-0.002674

-0.003472

-0.003254

-0.003053

-0.003501

-0.003466

-0.003658

-0.002994

-0.003796

-0.030245

-0.030477

-0.030604

-0.030814

-0.030945

-0.031179

-0.031310

-0.031532

-0.031857

-0.031948

-0.031971

-0.032005

-0.032227

-0.032303

-0.032298

-0.032383

-0.032482

-0.032554

-0.032590

-0.032534

-0.032468

-0.032440

-0.032512

-0.032535

-0.032586

-0.032618

-0.032758

-0.032787

-0.003713

-0.003687

-0.003662

-0.003639

-0.003616

-0.003595

-0.003574

-0.003555

-0.003536

-0.003519

-0.003502

-0.003485

-0.003470

-0.003455

-0.003441

-0.003428

-0.003415

-0.003403

-0.003391

-0.003380

-0.003370

-0.003360

-0.003350

-0.003341

-0.003332

-0.003324

-0.003316

-0.003308

-0.030074

-0.030254

-0.030426

-0.030590

-0.030747

-0.030896

-0.031039

-0.031175

-0.031304

-0.031428

-0.031546

-0.031659

-0.031766

-0.031868

-0.031966

-0.032059

-0.032148

-0.032233

-0.032314

-0.032391

-0.032465

-0.032535

-0.032602

-0.032666

-0.032727

-0.032785

-0.032840

-0.032893

200

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97-

98

99

100

7.500000

7.600000

7.700000

7.800000

7.900000

8.000000

8.100000

8.200000

8.300000

8.400000

8.500000

8.600000

8.700000

8.800000

8.900000

9.000000

9.100000

9.200000

9.300000

9.400000

9.500000

9.600000

9.700000

9.800000

9.900000

10.000000

-0.004422

-0.003688

-0.002866

-0.003432

-0.003142

-0.002693

-0.003564

-0.003913

-0.004231

-0.004049

-0.003128

-0.002355

-0.002156

-0.002358

-0.002603

-0.003386

-0.004014

-0.004132

-0.003349

-0.003703

-0.003246

-0.003219

-0.003219

-0.002317

-0.002500

-0.003393

-0.032935

-0.033168

-0.033314

-0.033233

-0.033228

-0.033288

-0.033206

-0.033185

-0.033216

-0.033382

-0.033535

-0.033510

-0.033344

-0.033200

-0.033080

-0.032950

-0.032966

-0.033023

-0.033146

-0.033219

-0.033293

-0.033271

-0.033284

-0.033355

-0.033271

-0.033212

-0.003301

-0.003294

-0.003287

-0.003281

-0.003275

-0.003269

-0.003264

-0.003259

-0.003254

-0.003249

-0.003244

-0.003240

-0.003236

-0.003232

-0.003228

-0.003225

-0.003221

-0.003218

-0.003215

-0.003212

-0.003209

-0.003207

-0.003204

-0.003202

-0.003199

-0.003197

-0.032944

-0.032992

-0.033038

-0.033082

-0.033124

-0.033164

-0.033202

-0.033238

-0.033272

-0.033306

-0.033337

-0.033367

-0.033396

-0.033423

-0.033449

-0.033474

-0.033498

-0.033520

-0.033542

-0.033563

-0.033582

-0.033601

-0.033619

-0.033636

-0.033652

-0.033668

201

G.2. Reference and Controlled Outputs

The content of simulation data files for reference and controlled outputs is shown

in Table G.2.

Table G.2. Simulation result of reference and controlled outputs.

k

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

t

0.000000

0.100000

0.200000

0.300000

0.400000

0.500000

0.600000

0.700000

0.800000

0.900000

1.000000

1.100000

1.200000

1.300000

1.400000

1.500000

1.600000

1.700000

1.800000

1.900000

2.000000

yi

-0.000000

0.000365

0.000479

0.000535

0.000528

0.000556

0.000643

0.000713

0.000694

0.000703

0.000737

0.000724

0.000745

0.000781

0.000807

0.000829

0.000850

0.000896

0.000923

0.000928

0.000901

y2

0.000000

-0.001534

-0.001880

-0.001946

-0.001735

-0.001697

-0.001915

-0.002042

-0.001798

-0.001694

-0.001692

-0.001508

-0.001472

-0.001511

-0.001519

-0.001513

-0.001487

-0.001592

-0.001608

-0.001525

-0.001317

yml

-0.000000

0.000337

0.000472

0.000536

0.000576

0.000607

0.000633

0.000657

0.000680

0.000702

0.000723

0.000742

0.000761

0.000779

0.000796

0.000813

0.000828

0.000843

0.000858

0.000871

0.000884

ym2

0.000000

-0.001286

-0.001691

-0.001796

-0.001800

-0.001771

-0.001733

-0.001692

-0.001652

-0.001613

-0.001576

-0.001540

-0.001507

-0.001474

-0.001443

-0.001414

-0.001386

-0.001359

-0.001334

-0.001309

-0.001286

202

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

2.100000

2.200000

2.300000

2.400000

2.500000

2.600000

2.700000

2.800000

2.900000

3.000000

3.100000

3.200000

3.300000

3.400000

3.500000

3.600000

3.700000

3.800000

3.900000

4.000000

4.100000

4.200000

4.300000

4.400000

4.500000

4.600000

4.700000

0.000925

0.000943

0.000948

0.000976

0.000964

0.000948

0.000967

0.001011

0.001042

0.001019

0.001010

0.001054

0.001067

0.001082

0.001075

0.001092

0.001098

0.001078

0.001114

0.001080

0.001062

0.001117

0.001120

0.001105

0.001073

0.001070

0.001130

-0.001344

-0.001329

-0.001273

-0.001319

-0.001185

-0.001056

-0.001088

-0.001228

-0.001302

-0.001139

-0.001051

-0.001197

-0.001197

-0.001212

-0.001134

-0.001173

-0.001153

-0.001025

-0.001139

-0.000950

-0.000851

-0.001073

-0.001060

-0.000975

-0.000816

-0.000792

-0.001045

0.000896

0.000908

0.000919

0.000930

0.000940

0.000950

0.000959

0.000968

0.000977

0.000985

0.000992

0.001000

0.001007

0.001013

0.001020

0.001026

0.001032

0.001037

0.001042

0.001047

0.001052

0.001057

0.001061

0.001065

0.001069

0.001073

0.001077

-0.001264

-0.001243

-0.001223

-0.001203

-0.001185

-0.001168

-0.001151

-0.001135

-0.001120

-0.001105

-0.001091

-0.001078

-0.001066

-0.001054

-0.001042

-0.001031

-0.001021

-0.001011

-0.001001

-0.000992

-0.000984

-0.000976

-0.000968

-0.000960

-0.000953

-0.000946

-0.000940

203

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

4.800000

4.900000

5.000000

5.100000

5.200000

5.300000

5.400000

5.500000

5.600000

5.700000

5.800000

5.900000

6.000000

6.100000

6.200000

6.300000

6.400000

6.500000

6.600000

6.700000

6.800000

6.900000

7.000000

7.100000

7.200000

7.300000

7.400000

0.001118

0.001128

0.001105

0.001159

0.001140

0.001170

0.001201

0.001138

0.001115

0.001123

0.001184

0.001166

0.001150

0.001174

0.001170

0.001167

0.001166

0.001125

0.001122

0.001167

0.001153

0.001144

0.001171

0.001170

0.001183

0.001147

0.001196

-0.000964

-0.000992

-0.000867

-0.001083

-0.000970

-0.001084

-0.001192

-0.000877

-0.000766

-0.000794

-0.001058

-0.000950

-0.000873

-0.000977

-0.000949

-0.000922

-0.000908

-0.000724

-0.000718

-0.000925

-0.000868

-0.000816

-0.000932

-0.000923

-0.000973

-0.000801

-0.001009

0.001080

0.001084

0.001087

0.001090

0.001093

0.001095

0.001098

0.001100

0.001103

0.001105

0.001107

0.001109

0.001111

0.001113

0.001115

0.001116

0.001118

0.001120

0.001121

0.001123

0.001124

0.001125

0.001126

0.001128

0.001129

0.001130

0.001131

-0.000934

-0.000928

-0.000922

-0.000917

-0.000911

-0.000907

-0.000902

-0.000897

-0.000893

-0.000889

-0.000885

-0.000882

-0.000878

-0.000875

-0.000871

-0.000868

-0.000865

-0.000863

-0.000860

-0.000857

-0.000855

-0.000853

-0.000851

-0.000848

-0.000846

-0.000845

-0.000843

204

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

7.500000

7.600000

7.700000

7.800000

7.900000

8.000000

8.100000

8.200000

8.300000

8.400000

8.500000

8.600000

8.700000

8.800000

8.900000

9.000000

9.100000

9.200000

9.300000

9.400000

9.500000

9.600000

9.700000

9.800000

9.900000

10.000000

0.001238

0.001201

0.001156

0.001188

0.001170

0.001145

0.001195

0.001215

0.001235

0.001229

0.001178

0.001132

0.001115

0.001123

0.001134

0.001176

0.001214

0.001223

0.001180

0.001203

0.001178

0.001176

0.001176

0.001125

0.001133

0.001185

-0.001170

-0.000981

-0.000769

-0.000915

-0.000840

-0.000724

-0.000949

-0.001039

-0.001121

-0.001074

-0.000837

-0.000637

-0.000585

-0.000637

-0.000701

-0.000903

-0.001065

-0.001095

-0.000893

-0.000985

-0.000867

-0.000860

-0.000860

-0.000627

-0.000674

-0.000905

0.001132

0.001133

0.001134

0.001134

0.001135

0.001136

0.001137

0.001137

0.001138

0.001139

0.001139

0.001140

0.001140

0.001141

0.001141

0.001142

0.001142

0.001143

0.001143

0.001144

0.001144

0.001144

0.001145

0.001145

0.001145

0.001146

-0.000841

-0.000839

-0.000838

-0.000836

-0.000835

-0.000833

-0.000832

-0.000831

-0.000830

-0.000829

-0.000827

-0.000826

-0.000825

-0.000825

-0.000824

-0.000823

-0.000822

-0.000821

-0.000820

-0.000820

-0.000819

-0.000818

-0.000818

-0.000817

-0.000817

-0.000816

205

Plant Error

The content of simulation data file for plant error is shown in Table G.3.

Table G.3. Simulation result of plant errors.

k

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

t

0.000000

0.100000

0.200000

0.300000

0.400000

0.500000

0.600000

0.700000

0.800000

0.900000

1.000000

1.100000

1.200000

1.300000

1.400000

1.500000

1.600000

1.700000

1.800000

1.900000

2.000000

2.100000

ei

0.000000

-0.000706

-0.000400

-0.000229

0.000606

0.000634

-0.000368

-0.001023

-0.000243

0.000002

-0.000142

0.000427

0.000425

0.000143

-0.000013

-0.000110

-0.000124

-0.000638

-0.000803

-0.000584

0.000129

-0.000068

e2

0.000000

-0.000016

-0.000065

-0.000079

-0.000103

-0.000002

0.000042

-0.000102

-0.000189

-0.000179

-0.000247

-0.000236

-0.000241

-0.000205

-0.000149

-0.000082

-0.000180

-0.000152

-0.000193

-0.000312

-0.000337

-0.000301

206

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

2.200000

2.300000

2.400000

2.500000

2.600000

2.700000

2.800000

2.900000

3.000000

3.100000

3.200000

3.300000

3.400000

3.500000

3.600000

3.700000

3.800000

3.900000

4.000000

4.100000

4.200000

4.300000

4.400000

4.500000

4.600000

4.700000

4.800000

-0.000096

0.000040

-0.000217

0.000226

0.000656

0.000462

-0.000143

-0.000493

0.000081

0.000364

-0.000255

-0.000305

-0.000414

-0.000157

-0.000355

-0.000318

0.000137

-0.000345

0.000352

0.000702

-0.000194

-0.000175

0.000122

0.000709

0.000773

-0.000232

0.000055

-0.000399

-0.000422

-0.000465

-0.000557

-0.000534

-0.000425

-0.000371

-0.000423

-0.000494

-0.000462

-0.000436

-0.000510

-0.000569

-0.000590

-0.000565

-0.000614

-0.000639

-0.000684

-0.000740

-0.000663

-0.000574

-0.000531

-0.000459

-0.000418

-0.000293

-0.000171

-0.000223

207

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

4.900000

5.000000

5.100000

5.200000

5.300000

5.400000

5.500000

5.600000

5.700000

5.800000

5.900000

6.000000

6.100000

6.200000

6.300000

6.400000

6.500000

6.600000

6.700000

6.800000

6.900000

7.000000

7.100000

7.200000

7.300000

7.400000

-0.000078

0.000385

-0.000474

-0.000057

-0.000518

-0.000957

0.000247

0.000660

0.000534

-0.000505

-0.000102

0.000184

-0.000232

-0.000138

-0.000049

-0.000004

0.000696

0.000707

-0.000103

0.000106

0.000297

-0.000160

-0.000134

-0.000334

0.000322

-0.000488

-0.000177

-0.000224

-0.000198

-0.000283

-0.000271

-0.000357

-0.000553

-0.000520

-0.000425

-0.000347

-0.000461

-0.000434

-0.000332

-0.000324

-0.000333

-0.000321

-0.000276

-0.000143

-0.000003

0.000095

0.000090

0.000130

0.000141

0.000167

0.000082

0.000106

208

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

7.500000

7.600000

7.700000

7.800000

7.900000

8.000000

8.100000

8.200000

8.300000

8.400000

8.500000

8.600000

8.700000

8.800000

8.900000

9.000000

9.100000

9.200000

9.300000

9.400000

9.500000

9.600000

9.700000

9.800000

9.900000

10.000000

-0.001121

-0.000394

0.000422

-0.000151

0.000133

0.000576

-0.000300

-0.000655

-0.000977

-0.000800

0.000116

0.000885

0.001080

0.000874

0.000625

-0.000161

-0.000792

-0.000914

-0.000134

-0.000491

-0.000037

-0.000012

-0.000015

0.000884

0.000699

-0.000196

0.000008

-0.000176

-0.000276

-0.000152

-0.000104

-0.000124

-0.000005

0.000053

0.000056

-0.000076

-0.000198

-0.000143

0.000052

0.000223

0.000369

0.000524

0.000532

0.000498

0.000396

0.000343

0.000289

0.000330

0.000335

0.000281

0.000381

0.000456

209

Adaptive Gains

The content of simulation data file for adaptive gains is shown in Table G.4

Table G.4. Simulation result of adaptive gains.

k

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

Time

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0.800

0.900

1.000

1.100

1.200

1.300

1.400

1.500

1.600

1.700

1.800

1.900

2.000

2.100

2.200

ei

0.372

0.372

0.372

0.372

0.371

0.372

0.372

0.372

0.371

0.371

0.371

0.371

0.371

0.371

0.371

0.371

0.371

0.371

0.371

0.371

0.371

0.371

0.371

92

-0.511

-0.511

-0.511

-0.511

-0.511

-0.511

-0.511

-0.511

-0.511

-0.511

-0.511

-0.511

-0.511

-0.511

-0.511

-0.511

-0.511

-0.511

-0.511

-0.511

-0.511

-0.511

-0.511

93

0.281

0.281

0.281

0.281

0.281

0.281

0.281

0.281

0.281

0.281

0.281

0.281

0.281

0.281

0.281

0.281

0.281

0.281

0.281

0.281

0.281

0.281

0.281

94

-0.310

-0.310

-0.310

-0.310

-0.310

-0.310

-0.310

-0.310

-0.310

-0.310

-0.310

-0.310

-0.310

-0.310

-0.310

-0.310

-0.310

-0.310

-0.310

-0.310

-0.309

-0.309

-0.309

95

1.044

1.044

1.039

1.036

1.035

1.039

1.044

1.041

1.034

1.032

1.032

1.031

1.034

1.037

1.038

1.038

1.037

1.036

1.032

1.026

1.022

1.023

1.022

96

-0.043

-0.043

-0.044

-0.044

-0.045

-0.044

-0.043

-0.043

-0.045

-0.045

-0.045

-0.045

-0.045

-0.044

-0.044

-0.044

-0.044

-0.044

-0.045

-0.046

-0.047

-0.047

-0.047

97

0.000

0.000

0.007

0.011

0.013

0.007

0.001

0.005

0.015

0.017

0.016

0.017

0.013

0.008

0.007

0.007

0.008

0.008

0.015

0.022

0.027

0.026

0.026

98

1.007

1.007

1.008

1.009

1.009

1.008

1.007

1.007

1.009

1.010

1.010

1.010

1.009

1.008

1.008

1.008

1.008

1.008

1.009

1.011

1.012

1.012

1.012

210

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

2.300

2.400

2.500

2.600

2.700

2.800

2.900

3.000

3.100

3.200

3.300

3.400

3.500

3.600

3.700

3.800

3.900

4.000

4.100

4.200

4.300

4.400

4.500

4.600

4.700

4.800

4.900

5.000

0.371

0.371

0.371

0.371

0.371

0.371

0.371

0.371

0.371

0.371

0.371

0.371

0.371

0.371

0.371

0.371

0.371

0.371

0.371

0.371

0.371

0.371

0.371

0.371

0.371

0.371

0.371

0.371

-0.511

-0.511

-0.511

-0.511

-0.511

-0.511

-0.511

-0.511

-0.511

-0.511

-0.511

-0.511

-0.511

-0.511

-0.511

-0.512

-0.512

-0.512

-0.512

-0.511

-0.511

-0.511

-0.511

-0.511

-0.511

-0.511

-0.511

-0.511

0.281

0.281

0.281

0.281

0.281

0.281

0.281

0.281

0.281

0.281

0.281

0.281

0.281

0.281

0.281

0.281

0.281

0.281

0.281

0.281

0.281

0.281

0.281

0.281

0.281

0.281

0.281

0.281

-0.309

-0.309

-0.309

-0.310

-0.310

-0.310

-0.310

-0.310

-0.310

-0.310

-0.310

-0.310

-0.310

-0.310

-0.310

-0.309

-0.310

-0.309

-0.310

-0.310

-0.310

-0.310

-0.310

-0.311

-0.311

-0.311

-0.311

-0.311

1.022

1.022

1.020

1.022

1.026

1.030

1.028

1.025

1.025

1.028

1.026

1.024

1.021

1.020

1.017

1.015

1.016

1.013

1.016

1.021

1.019

1.018

1.019

1.024

1.029

1.027

1.028

1.027

-0.047

-0.047

-0.047

-0.047

-0.046

-0.046

-0.046

-0.047

-0.046

-0.046

-0.046

-0.047

-0.047

-0.048

-0.048

-0.049

-0.048

-0.049

-0.048

-0.047

-0.048

-0.048

-0.048

-0.047

-0.046

-0.046

-0.046

-0.046

0.026

0.025

0.027

0.024

0.016

0.011

0.012

0.016

0.015

0.011

0.012

0.015

0.018

0.019

0.021

0.023

0.021

0.024

0.019

0.011

0.012

0.013

0.011

0.004

-0.004

-0.002

-0.003

-0.003

1.012

1.012

1.012

1.011

1.010

1.009

1.009

1.010

1.009

1.009

1.009

1.009

1.010

1.010

1.011

1.011

1.011

1.011

1.010

1.009

1.009

1.009

1.009

1.007

1.006

1.006

1.006

1.006

211

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

5.100

5.200

5.300

5.400

5.500

5.600

5.700

5.800

5.900

6.000

6.100

6.200

6.300

6.400

6.500

6.600

6.700

6.800

6.900

7.000

7.100

7.200

7.300

7.400

7.500

7.600

7.700

7.800

0.371

0.371

0.371

0.371

0.371

0.371

0.371

0.371

0.371

0.371

0.371

0.371

0.371

0.371

0.371

0.371

0.371

0.371

0.371

0.371

0.371

0.371

0.371

0.371

0.371

0.371

0.371

0.371

-0.511

-0.511

-0.511

-0.511

-0.512

-0.511

-0.511

-0.511

-0.511

-0.511

-0.511

-0.511

-0.511

-0.511

-0.511

-0.511

-0.511

-0.511

-0.511

-0.511

-0.511

-0.511

-0.511

-0.511

-0.511

-0.511

-0.512

-0.511

0.281

0.281

0.281

0.281

0.281

0.281

0.281

0.281

0.281

0.281

0.281

0.281

0.281

0.281

0.281

0.281

0.281

0.281

0.281

0.281

0.281

0.281

0.281

0.281

0.281

0.281

0.281

0.281

-0.311

-0.311

-0.311

-0.311

-0.310

-0.310

-0.311

-0.311

-0.311

-0.311

-0.311

-0.311

-0.311

-0.311

-0.311

-0.311

-0.312

-0.312

-0.312

-0.312

-0.312

-0.312

-0.312

-0.312

-0.311

-0.311

-0.310

-0.311

1.030

1.026

1.026

1.022

1.016

1.017

1.022

1.026

1.022

1.021

1.023

1.021

1.020

1.020

1.019

1.024

1.029

1.028

1.029

1.031

1.030

1.029

1.027

1.029

1.026

1.018

1.015

1.018

-0.046

-0.046

-0.046

-0.047

-0.048

-0.048

-0.047

-0.046

-0.047

-0.047

-0.047

-0.047

-0.048

-0.048

-0.048

-0.047

-0.046

-0.046

-0.046

-0.045

-0.046

-0.046

-0.046

-0.046

-0.046

-0.048

-0.048

-0.048

-0.007

-0.003

-0.002

0.002

0.011

0.008

0.001

-0.005

-0.001

-0.000

-0.003

-0.001

-0.000

-0.000

-0.001

-0.008

-0.015

-0.014

-0.015

-0.018

-0.016

-0.014

-0.011

-0.014

-0.009

0.002

0.006

0.001

1.005

1.006

1.006

1.007

1.009

1.008

1.007

1.005

1.006

1.006

1.006

1.006

1.006

1.006

1.006

1.005

1.003

1.004

1.004

1.003

1.003

1.004

1.004

1.004

1.005

1.007

1.008

1.007

212

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

7.900

8.000

8.100

8.200

8.300

8.400

8.500

8.600

8.700

8.800

8.900

9.000

9.100

9.200

9.300

9.400

9.500

9.600

9.700

9.800

9.900

10.000

0.371

0.371

0.371

0.371

0.371

0.371

0.371

0.371

0.371

0.371

0.371

0.371

0.371

0.371

0.371

0.371

0.371

0.371

0.371

0.371

0.371

0.371

-0.511

-0.511

-0.511

-0.511

-0.512

-0.512

-0.512

-0.512

-0.512

-0.511

-0.511

-0.511

-0.511

-0.511

-0.512

-0.512

-0.512

-0.512

-0.512

-0.512

-0.512

-0.511

0.281

0.281

0.281

0.281

0.281

0.281

0.281

0.281

0.281

0.281

0.281

0.281

0.281

0.281

0.281

0.281

0.281

0.281

0.281

0.281

0.281

0.281

-0.311

-0.311

-0.311

-0.311

-0.311

-0.310

-0.309

-0.309

-0.310

-0.311

-0.311

-0.312

-0.312

-0.311

-0.310

-0.310

-0.310

-0.310

-0.310

-0.310

-0.310

-0.311

1.017

1.018

1.022

1.020

1.015

1.009

1.003

1.004

1.010

1.017

1.024

1.028

1.027

1.021

1.015

1.014

1.011

1.011

1.011

1.011

1.017

1.022

-0.048

-0.048

-0.047

-0.048

-0.048

-0.050

-0.051

-0.051

-0.050

-0.048

-0.047

-0.046

-0.046

-0.047

-0.049

-0.049

-0.049

-0.049

-0.049

-0.049

-0.048

-0.047

0.002

0.001

-0.005

-0.002

0.005

0.014

0.022

0.021

0.012

0.001

-0.007

-0.013

-0.010

-0.002

0.008

0.010

0.015

0.016

0.017

0.017

0.009

0.003

1.007

1.007

1.006

1.006

1.007

1.009

1.011

1.011

1.009

1.007

1.005

1.004

1.004

1.006

1.008

1.008

1.010

1.010

1.010

1.010

1.008

1.007

213

APPENDIX H: HARDWARE VALIDATION OUTPUT FILES

H.l. Validation Output Files of State Variables

The content of state variable data files is shown in Table H.l.

Table H. 1. Validation result of state variables.

k

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

t

0.000000

0.100000

0.200000

0.300000

0.400000

0.500000

0.600000

0.700000

0.800000

0.900000

1.000000

1.100000

1.200000

1.300000

1.400000

1.500000

1.600000

1.700000

1.800000

1.900000

2.000000

Xl

0.000000

-0.005213

-0.006672

-0.008169

-0.007644

-0.007699

-0.008154

-0.007384

-0.006498

-0.006647

-0.006411

-0.006230

-0.006451

-0.005944

-0.005865

-0.005507

-0.005139

-0.005865

-0.006413

-0.005215

-0.004796

X2

0.000000

-0.000372

-0.001506

-0.002906

-0.004473

-0.005796

-0.007132

-0.008622

-0.009855

-0.010913

-0.012023

-0.013130

-0.014033

-0.015028

-0.015859

-0.016666

-0.017478

-0.018174

-0.019033

-0.019821

-0.020508

xmi

0.000000

-0.005232

-0.006874

-0.007297

-0.007309

-0.007186

-0.007024

-0.006854

-0.006686

-0.006524

-0.006369

-0.006221

-0.006080

-0.005945

-0.005816

-0.005693

-0.005576

-0.005464

-0.005358

-0.005256

-0.005159

Xm2

0.000000

-0.000386

-0.001531

-0.002888

-0.004274

-0.005626

-0.006927

-0.008172

-0.009360

-0.010494

-0.011576

-0.012609

-0.013594

-0.014533

-0.015429

-0.016284

-0.017099

-0.017877

-0.018620

-0.019327

-0.020003

214

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

2.100000

2.200000

2.300000

2.400000

2.500000

2.600000

2.700000

2.800000

2.900000

3.000000

3.100000

3.200000

3.300000

3.400000

3.500000

3.600000

3.700000

3.800000

3.900000

4.000000

4.100000

4.200000

4.300000

4.400000

4.500000

4.600000

4.700000

-0.005636

-0.005499

-0.005389

-0.005468

-0.005280

-0.004964

-0.005034

-0.004301

-0.004719

-0.004414

-0.004911

-0.005111

-0.003898

-0.004461

-0.003833

-0.003692

-0.003811

-0.004348

-0.004405

-0.004391

-0.004473

-0.003726

-0.004176

-0.004041

-0.003734

-0.004398

-0.004528

-0.021153

-0.021902

-0.022509

-0.023112

-0.023668

-0.024270

-0.024759

-0.025247

-0.025581

-0.026025

-0.026411

-0.026873

-0.027315

-0.027557

-0.027813

-0.028126

-0.028324

-0.028620

-0.028935

-0.029157

-0.029522

-0.029797

-0.029945

-0.030135

-0.030351

-0.030524

-0.030781

-0.005067

-0.004979

-0.004894

-0.004814

-0.004737

-0.004664

-0.004595

-0.004528

-0.004465

-0.004404

-0.004346

-0.004291

-0.004239

-0.004189

-0.004141

-0.004095

-0.004052

-0.004010

-0.003971

-0.003933

-0.003897

-0.003863

-0.003830

-0.003798

-0.003769

-0.003740

-0.003713

-0.020647

-0.021262

-0.021848

-0.022407

-0.022941

-0.023449

-0.023935

-0.024398

-0.024840

-0.025261

-0.025663

-0.026047

-0.026413

-0.026762

-0.027095

-0.027412

-0.027715

-0.028004

-0.028280

-0.028543

-0.028794

-0.029033

-0.029261

-0.029479

-0.029687

-0.029885

-0.030074

215

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

4.800000

4.900000

5.000000

5.100000

5.200000

5.300000

5.400000

5.500000

5.600000

5.700000

5.800000

5.900000

6.000000

6.100000

6.200000

6.300000

6.400000

6.500000

6.600000

6.700000

6.800000

6.900000

7.000000

7.100000

7.200000

7.300000

7.400000

-0.004364

-0.003851

-0.004275

-0.003488

-0.004129

-0.003415

-0.002908

-0.003426

-0.002905

-0.002945

-0.002959

-0.003857

-0.004283

-0.003904

-0.003717

-0.003901

-0.004434

-0.003717

-0.003381

-0.002788

-0.003621

-0.003745

-0.003136

-0.003398

-0.003197

-0.003819

-0.003593

-0.031089

-0.031392

-0.031608

-0.031867

-0.031972

-0.032127

-0.032175

-0.032197

-0.032248

-0.032252

-0.032197

-0.032162

-0.032284

-0.032490

-0.032604

-0.032713

-0.032914

-0.033116

-0.033278

-0.033267

-0.033253

-0.033342

-0.033419

-0.033342

-0.033439

-0.033512

-0.033652

-0.003687

-0.003662

-0.003639

-0.003616

-0.003595

-0.003574

-0.003555

-0.003536

-0.003519

-0.003502

-0.003485

-0.003470

-0.003455

-0.003441

-0.003428

-0.003415

-0.003403

-0.003391

-0.003380

-0.003370

-0.003360

-0.003350

-0.003341

-0.003332

-0.003324

-0.003316

-0.003308

-0.030254

-0.030426

-0.030590

-0.030747

-0.030896

-0.031039

-0.031175

-0.031304

-0.031428

-0.031546

-0.031659

-0.031766

-0.031868

-0.031966

-0.032059

-0.032148

-0.032233

-0.032314

-0.032391

-0.032465

-0.032535

-0.032602

-0.032666

-0.032727

-0.032785

-0.032840

-0.032893

216

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

7.500000

7.600000

7.700000

7.800000

7.900000

8.000000

8.100000

8.200000

8.300000

8.400000

8.500000

8.600000

8.700000

8.800000

8.900000

9.000000

9.100000

9.200000

9.300000

9.400000

9.500000

9.600000

9.700000

9.800000

9.900000

10.000000

-0.003756

-0.004296

-0.003310

-0.003600

-0.003684

-0.004076

-0.003503

-0.003989

-0.004075

-0.004365

-0.003148

-0.004010

-0.003440

-0.003184

-0.003502

-0.004142

-0.004063

-0.003750

-0.003078

-0.003062

-0.003270

-0.004051

-0.003045

-0.003074

-0.003973

-0.003841

-0.033687

-0.033717

-0.033822

-0.033808

-0.033813

-0.033915

-0.034075

-0.034090

-0.034174

-0.034355

-0.034481

-0.034367

-0.034446

-0.034452

-0.034402

-0.034367

-0.034495

-0.034588

-0.034652

-0.034570

-0.034511

-0.034490

-0.034669

-0.034609

-0.034624

-0.034750

-0.003301

-0.003294

-0.003287

-0.003281

-0.003275

-0.003269

-0.003264

-0.003259

-0.003254

-0.003249

-0.003244

-0.003240

-0.003236

-0.003232

-0.003228

-0.003225

-0.003221

-0.003218

-0.003215

-0.003212

-0.003209

-0.003207

-0.003204

-0.003202

-0.003199

-0.003197

-0.032944

-0.032992

-0.033038

-0.033082

-0.033124

-0.033164

-0.033202

-0.033238

-0.033272

-0.033306

-0.033337

-0.033367

-0.033396

-0.033423

-0.033449

-0.033474

-0.033498

-0.033520

-0.033542

-0.033563

-0.033582

-0.033601

-0.033619

-0.033636

-0.033652

-0.033668

217

H.2. Reference and Controlled Outputs

The content of simulation data files for reference and controlled outputs is shown

in Table H.2.

Table H.2. Simulation result of reference and controlled outputs.

k

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

time

0.000000

0.100000

0.200000

0.300000

0.400000

0.500000

0.600000

0.700000

0.800000

0.900000

1.000000

1.100000

1.200000

1.300000

1.400000

1.500000

1.600000

1.700000

1.800000

1.900000

2.000000

2.100000

yi

-0.000000

0.000320

0.000436

0.000563

0.000573

0.000611

0.000674

0.000668

0.000648

0.000685

0.000701

0.000719

0.000756

0.000753

0.000770

0.000770

0.000770

0.000832

0.000887

0.000837

0.000830

0.000897

y2

0.000000

-0.001217

-0.001558

-0.001908

-0.001787

-0.001802

-0.001909

-0.001731

-0.001525

-0.001561

-0.001507

-0.001466

-0.001518

-0.001401

-0.001383

-0.001300

-0.001215

-0.001386

-0.001514

-0.001235

-0.001138

-0.001335

ymi

-0.000000

0.000337

0.000472

0.000536

0.000576

0.000607

0.000633

0.000657

0.000680

0.000702

0.000723

0.000742

0.000761

0.000779

0.000796

0.000813

0.000828

0.000843

0.000858

0.000871

0.000884

0.000896

ym2

0.000000

-0.001286

-0.001691

-0.001796

-0.001800

-0.001771

-0.001733

-0.001692

-0.001652

-0.001613

-0.001576

-0.001540

-0.001507

-0.001474

-0.001443

-0.001414

-0.001386

-0.001359

-0.001334

-0.001309

-0.001286

-0.001264

218

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

2.200000

2.300000

2.400000

2.500000

2.600000

2.700000

2.800000

2.900000

3.000000

3.100000

3.200000

3.300000

3.400000

3.500000

3.600000

3.700000

3.800000

3.900000

4.000000

4.100000

4.200000

4.300000

4.400000

4.500000

4.600000

4.700000

4.800000

0.000909

0.000919

0.000940

0.000943

0.000940

0.000958

0.000927

0.000961

0.000954

0.000994

0.001018

0.000958

0.000998

0.000968

0.000967

0.000980

0.001020

0.001031

0.001036

0.001051

0.001014

0.001045

0.001042

0.001029

0.001073

0.001088

0.001086

-0.001304

-0.001279

-0.001298

-0.001254

-0.001181

-0.001198

-0.001027

-0.001125

-0.001054

-0.001171

-0.001218

-0.000935

-0.001067

-0.000921

-0.000888

-0.000916

-0.001041

-0.001055

-0.001052

-0.001071

-0.000897

-0.001002

-0.000971

-0.000900

-0.001055

-0.001086

-0.001048

0.000908

0.000919

0.000930

0.000940

0.000950

0.000959

0.000968

0.000977

0.000985

0.000992

0.001000

0.001007

0.001013

0.001020

0.001026

0.001032

0.001037

0.001042

0.001047

0.001052

0.001057

0.001061

0.001065

0.001069

0.001073

0.001077

0.001080

-0.001243

-0.001223

-0.001203

-0.001185

-0.001168

-0.001151

-0.001135

-0.001120

-0.001105

-0.001091

-0.001078

-0.001066

-0.001054

-0.001042

-0.001031

-0.001021

-0.001011

-0.001001

-0.000992

-0.000984

-0.000976

-0.000968

-0.000960

-0.000953

-0.000946

-0.000940

-0.000934

219

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

4.900000

5.000000

5.100000

5.200000

5.300000

5.400000

5.500000

5.600000

5.700000

5.800000

5.900000

6.000000

6.100000

6.200000

6.300000

6.400000

6.500000

6.600000

6.700000

6.800000

6.900000

7.000000

7.100000

7.200000

7.300000

7.400000

0.001064

0.001095

0.001055

0.001096

0.001057

0.001029

0.001060

0.001030

0.001033

0.001032

0.001085

0.001113

0.001096

0.001088

0.001102

0.001139

0.001102

0.001086

0.001050

0.001100

0.001109

0.001075

0.001089

0.001079

0.001118

0.001109

-0.000928

-0.001027

-0.000844

-0.000993

-0.000827

-0.000709

-0.000830

-0.000708

-0.000718

-0.000721

-0.000930

-0.001030

-0.000941

-0.000898

-0.000941

-0.001066

-0.000899

-0.000820

-0.000682

-0.000876

-0.000905

-0.000763

-0.000824

-0.000777

-0.000923

-0.000870

0.001084

0.001087

0.001090

0.001093

0.001095

0.001098

0.001100

0.001103

0.001105

0.001107

0.001109

0.001111

0.001113

0.001115

0.001116

0.001118

0.001120

0.001121

0.001123

0.001124

0.001125

0.001126

0.001128

0.001129

0.001130

0.001131

-0.000928

-0.000922

-0.000917

-0.000911

-0.000907

-0.000902

-0.000897

-0.000893

-0.000889

-0.000885

-0.000882

-0.000878

-0.000875

-0.000871

-0.000868

-0.000865

-0.000863

-0.000860

-0.000857

-0.000855

-0.000853

-0.000851

-0.000848

-0.000846

-0.000845

-0.000843

220

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

7.500000

7.600000

7.700000

7.800000

7.900000

8.000000

8.100000

8.200000

8.300000

8.400000

8.500000

8.600000

8.700000

8.800000

8.900000

9.000000

9.100000

9.200000

9.300000

9.400000

9.500000

9.600000

9.700000

9.800000

9.900000

10.000000

0.001119

0.001152

0.001096

0.001113

0.001118

0.001144

0.001114

0.001144

0.001151

0.001173

0.001104

0.001152

0.001121

0.001106

0.001123

0.001160

0.001159

0.001143

0.001105

0.001101

0.001112

0.001158

0.001103

0.001103

0.001157

0.001153

-0.000908

-0.001034

-0.000804

-0.000872

-0.000892

-0.000983

-0.000849

-0.000963

-0.000983

-0.001051

-0.000767

-0.000968

-0.000835

-0.000775

-0.000849

-0.000999

-0.000980

-0.000908

-0.000751

-0.000747

-0.000796

-0.000978

-0.000743

-0.000750

-0.000960

-0.000929

0.001132

0.001133

0.001134

0.001134

0.001135

0.001136

0.001137

0.001137

0.001138

0.001139

0.001139

0.001140

0.001140

0.001141

0.001141

0.001142

0.001142

0.001143

0.001143

0.001144

0.001144

0.001144

0.001145

0.001145

0.001145

0.001146

-0.000841

-0.000839

-0.000838

-0.000836

-0.000835

-0.000833

-0.000832

-0.000831

-0.000830

-0.000829

-0.000827

-0.000826

-0.000825

-0.000825

-0.000824

-0.000823

-0.000822

-0.000821

-0.000820

-0.000820

-0.000819

-0.000818

-0.000818

-0.000817

-0.000817

-0.000816

221

H.3. Plant Error

The content of simulation data file for plant error is shown in Table H.3.

Table H.3. Simulation result of plant errors.

k

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

t

0.000000

0.100000

0.200000

0.300000

0.400000

0.500000

0.600000

0.700000

0.800000

0.900000

1.000000

1.100000

1.200000

1.300000

1.400000

1.500000

1.600000

1.700000

1.800000

1.900000

2.000000

2.100000

ei

0.00000

0.00002

0.00020

-0.00087

-0.00033

-0.00051

-0.00113

-0.00053

0.00019

-0.00012

-0.00004

-0.00001

-0.00037

0.00000

-0.00005

0.00019

0.00044

-0.00040

-0.00106

0.00004

0.00036

-0.00057

e2

0.00000

0.00001

0.00003

-0.00002

-0.00020

-0.00017

-0.00021

-0.00045

-0.00049

-0.00042

-0.00045

-0.00052

-0.00044

-0.00049

-0.00043

-0.00038

-0.00038

-0.00030

-0.00041

-0.00049

-0.00050

-0.00051

222

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

2.200000

2.300000

2.400000

2.500000

2.600000

2.700000

2.800000

2.900000

3.000000

3.100000

3.200000

3.300000

3.400000

3.500000

3.600000

3.700000

3.800000

3.900000

4.000000

4.100000

4.200000

4.300000

4.400000

4.500000

4.600000

4.700000

4.800000

4.900000

-0.00052

-0.00050

-0.00065

-0.00054

-0.00030

-0.00044

0.00023

-0.00025

-0.00001

-0.00057

-0.00082

0.00034

-0.00027

0.00031

0.00040

0.00024

-0.00034

-0.00043

-0.00046

-0.00058

0.00014

-0.00035

-0.00024

0.00004

-0.00066

-0.00082

-0.00068

-0.00019

-0.00064

-0.00066

-0.00071

-0.00073

-0.00082

-0.00082

-0.00085

-0.00074

-0.00076

-0.00075

-0.00083

-0.00090

-0.00080

-0.00072

-0.00071

-0.00061

-0.00062

-0.00065

-0.00061

-0.00073

-0.00076

-0.00068

-0.00066

-0.00066

-0.00064

-0.00071

-0.00083

-0.00097

223

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

5.000000

5.100000

5.200000

5.300000

5.400000

5.500000

5.600000

5.700000

5.800000

5.900000

6.000000

6.100000

6.200000

6.300000

6.400000

6.500000

6.600000

6.700000

6.800000

6.900000

7.000000

7.100000

7.200000

7.300000

7.400000

7.500000

7.600000

7.700000

-0.00064

0.00013

-0.00053

0.00016

0.00065

0.00011

0.00061

0.00056

0.00053

-0.00039

-0.00083

-0.00046

-0.00029

-0.00049

-0.00103

-0.00033

0.00000

0.00058

-0.00026

-0.00040

0.00021

-0.00007

0.00013

-0.00050

-0.00029

-0.00046

-0.00100

-0.00002

-0.00102

-0.00112

-0.00108

-0.00109

-0.00100

-0.00089

-0.00082

-0.00071

-0.00054

-0.00040

-0.00042

-0.00052

-0.00055

-0.00056

-0.00068

-0.00080

-0.00089

-0.00080

-0.00072

-0.00074

-0.00075

-0.00061

-0.00065

-0.00067

-0.00076

-0.00074

-0.00072

-0.00078

224

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

7.800000

7.900000

8.000000

8.100000

8.200000

8.300000

8.400000

8.500000

8.600000

8.700000

8.800000

8.900000

9.000000

9.100000

9.200000

9.300000

9.400000

9.500000

9.600000

9.700000

9.800000

9.900000

10.000000

-0.00032

-0.00041

-0.00081

-0.00024

-0.00073

-0.00082

-0.00112

0.00010

-0.00077

-0.00020

0.00005

-0.00027

-0.00092

-0.00084

-0.00053

0.00014

0.00015

-0.00006

-0.00084

0.00016

0.00013

-0.00077

-0.00064

-0.00073

-0.00069

-0.00075

-0.00087

-0.00085

-0.00090

-0.00105

-0.00114

-0.00100

-0.00105

-0.00103

-0.00095

-0.00089

-0.00100

-0.00107

-0.00111

-0.00101

-0.00093

-0.00089

-0.00105

-0.00097

-0.00097

-0.00108

H.4. Adaptive Gains

The content of simulation data file for adaptive gains is shown in Table G.4.

225

Table H.4. Simulation result of adaptive gains.

k

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

time

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0.800

0.900

1.000

1.100

1.200

1.300

1.400

1.500

1.600

1.700

1.800

1.900

2.000

2.100

2.200

2.300

2.400

2.500

2.600

2.700

2.800

e,
0.3716

0.3716

0.3716

0.3716

0.3716

0.3716

0.3716

0.3716

0.3716

0.3716

0.3716

0.3716

0.3716

0.3716

0.3716

0.3716

0.3716

0.3716

0.3716

0.3716

0.3716

0.3716

0.3716

0.3716

0.3716

0.3716

0.3716

0.3716

0.3716

e2

-0.5106

-0.5106

-0.5106

-0.5106

-0.5106

-0.5106

-0.5106

-0.5106

-0.5106

-0.5106

-0.5106

-0.5106

-0.5106

-0.5106

-0.5106

-0.5106

-0.5106

-0.5106

-0.5106

-0.5106

-0.5106

-0.5106

-0.5106

-0.5106

-0.5106

-0.5106

-0.5106

-0.5106

-0.5106

e3

0.2806

0.2806

0.2806

0.2806

0.2806

0.2806

0.2806

0.2806

0.2806

0.2806

0.2806

0.2806

0.2806

0.2806

0.2806

0.2806

0.2806

0.2806

0.2806

0.2806

0.2806

0.2806

0.2806

0.2806

0.2806

0.2806

0.2806

0.2806

0.2806

e4

-0.3100

-0.3100

-0.3100

-0.3100

-0.3100

-0.3100

-0.3100

-0.3100

-0.3100

-0.3100

-0.3100

-0.3100

-0.3100

-0.3100

-0.3100

-0.3100

-0.3100

-0.3100

-0.3100

-0.3100

-0.3100

-0.3100

-0.3100

-0.3100

-0.3100

-0.3100

-0.3100

-0.3100

-0.3100

e5

1.0442

1.0442

1.0442

1.0442

1.0442

1.0442

1.0442

1.0442

1.0442

1.0442

1.0442

1.0442

1.0442

1.0442

1.0442

1.0442

1.0442

1.0442

1.0442

1.0442

1.0442

1.0442

1.0442

1.0442

1.0442

1.0442

1.0442

1.0442

1.0442

e6

-0.0427

-0.0427

-0.0427

-0.0427

-0.0427

-0.0427

-0.0427

-0.0427

-0.0427

-0.0427

-0.0427

-0.0427

-0.0427

-0.0427

-0.0427

-0.0427

-0.0427

-0.0427

-0.0427

-0.0427

-0.0427

-0.0427

-0.0427

-0.0427

-0.0427

-0.0427

-0.0427

-0.0428

-0.0428

e7

0.0004

0.0004

0.0004

0.0004

0.0004

0.0004

0.0005

0.0005

0.0005

0.0004

0.0005

0.0005

0.0005

0.0005

0.0005

0.0005

0.0005

0.0005

0.0005

0.0005

0.0005

0.0005

0.0005

0.0005

0.0005

0.0005

0.0004

0.0004

0.0005

e8

1.0066

1.0066

1.0066

1.0066

1.0066

1.0066

1.0066

1.0066

1.0066

1.0066

1.0066

1.0066

1.0066

1.0066

1.0067

1.0067

1.0066

1.0066

1.0066

1.0066

1.0066

1.0066

1.0066

1.0067

1.0067

1.0067

1.0067

1.0067

1.0067

226

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

2.900

3.000

3.100

3.200

3.300

3.400

3.500

3.600

3.700

3.800

3.900

4.000

4.100

4.200

4.300

4.400

4.500

4.600

4.700

4.800

4.900

5.000

5.100

5.200

5.300

5.400

5.500

5.600

5.700

5.800

5.900

0.3716

0.3716

0.3716

0.3716

0.3716

0.3716

0.3716

0.3716

0.3716

0.3716

0.3716

0.3716

0.3716

0.3716

0.3716

0.3716

0.3716

0.3716

0.3716

0.3716

0.3716

0.3716

0.3716

0.3716

0.3716

0.3716

0.3716

0.3716

0.3716

0.3716

0.3716

-0.5106

-0.5106

-0.5106

-0.5106

-0.5106

-0.5106

-0.5106

-0.5106

-0.5106

-0.5106

-0.5106

-0.5106

-0.5106

-0.5106

-0.5106

-0.5106

-0.5106

-0.5106

-0.5106

-0.5106

-0.5106

-0.5106

-0.5106

-0.5106

-0.5106

-0.5106

-0.5106

-0.5106

-0.5106

-0.5106

-0.5106

0.2806

0.2806

0.2806

0.2806

0.2806

0.2806

0.2806

0.2806

0.2806

0.2806

0.2806

0.2806

0.2806

0.2806

0.2806

0.2806

0.2806

0.2806

0.2806

0.2806

0.2806

0.2806

0.2806

0.2806

0.2806

0.2806

0.2806

0.2806

0.2806

0.2806

0.2806

-0.3100

-0.3100

-0.3100

-0.3100

-0.3100

-0.3100

-0.3100

-0.3100

-0.3100

-0.3100

-0.3100

-0.3100

-0.3100

-0.3099

-0.3099

-0.3099

-0.3099

-0.3099

-0.3099

-0.3099

-0.3099

-0.3099

-0.3099

-0.3099

-0.3099

-0.3099

-0.3099

-0.3099

-0.3099

-0.3099

-0.3099

1.0442

1.0442

1.0442

1.0441

1.0442

1.0442

1.0442

1.0442

1.0442

1.0442

1.0442

1.0442

1.0442

1.0441

1.0442

1.0441

1.0441

1.0441

1.0442

1.0442

1.0442

1.0442

1.0442

1.0442

1.0442

1.0442

1.0442

1.0442

1.0442

1.0442

1.0442

-0.0428

-0.0428

-0.0428

-0.0428

-0.0428

-0.0428

-0.0428

-0.0428

-0.0428

-0.0428

-0.0428

-0.0428

-0.0428

-0.0428

-0.0428

-0.0428

-0.0428

-0.0428

-0.0428

-0.0428

-0.0428

-0.0428

-0.0428

-0.0428

-0.0428

-0.0428

-0.0428

-0.0428

-0.0428

-0.0428

-0.0428

0.0005

0.0004

0.0005

0.0004

0.0005

0.0005

0.0005

0.0005

0.0005

0.0005

0.0005

0.0005

0.0005

0.0005

0.0005

0.0005

0.0005

0.0005

0.0005

0.0005

0.0005

0.0005

0.0005

0.0005

0.0005

0.0005

0.0005

0.0005

0.0005

0.0005

0.0005

1.0067

1.0067

1.0067

1.0067

1.0068

1.0068

1.0068

1.0068

1.0068

1.0068

1.0068

1.0068

1.0068

1.0068

1.0068

1.0068

1.0068

1.0068

1.0068

1.0069

1.0069

1.0069

1.0069

1.0069

1.0069

1.0069

1.0069

1.0069

1.0069

1.0069

1.0069

227

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

6.000

6.100

6.200

6.300

6.400

6.500

6.600

6.700

6.800

6.900

7.000

7.100

7.200

7.300

7.400

7.500

7.600

7.700

7.800

7.900

8.000

8.100

8.200

8.300

8.400

8.500

8.600

8.700

8.800

8.900

9.000

0.3716

0.3716

0.3716

0.3716

0.3716

0.3716

0.3716

0.3716

0.3716

0.3716

0.3716

0.3716

0.3716

0.3716

0.3716

0.3716

0.3716

0.3716

0.3716

0.3716

0.3716

0.3716

0.3716

0.3716

0.3716

0.3716

0.3716

0.3716

0.3716

0.3716

0.3716

-0.5106

-0.5106

-0.5106

-0.5106

-0.5106

-0.5106

-0.5106

-0.5106

-0.5106

-0.5106

-0.5106

-0.5106

-0.5106

-0.5106

-0.5106

-0.5106

-0.5106

-0.5106

-0.5106

-0.5106

-0.5106

-0.5106

-0.5106

-0.5106

-0.5106

-0.5106

-0.5106

-0.5106

-0.5106

-0.5106

-0.5106

0.2806

0.2806

0.2806

0.2806

0.2806

0.2806

0.2806

0.2806

0.2806

0.2806

0.2806

0.2806

0.2806

0.2806

0.2806

0.2806

0.2806

0.2806

0.2806

0.2806

0.2806

0.2806

0.2806

0.2806

0.2806

0.2806

0.2806

0.2806

0.2806

0.2806

0.2806

-0.3099

-0.3099

-0.3099

-0.3099

-0.3099

-0.3099

-0.3099

-0.3099

-0.3099

-0.3099

-0.3099

-0.3099

-0.3099

-0.3099

-0.3099

-0.3099

-0.3099

-0.3099

-0.3099

-0.3099

-0.3099

-0.3099

-0.3099

-0.3098

-0.3098

-0.3098

-0.3098

-0.3098

-0.3098

-0.3098

-0.3098

1.0441

1.0441

1.0441

1.0441

1.0441

1.0441

1.0441

1.0441

1.0441

1.0441

1.0441

1.0441

1.0441

1.0441

1.0441

1.0441

1.0440

1.0440

1.0440

1.0440

1.0440

1.0440

1.0440

1.0440

1.0441

1.0441

1.0441

1.0441

1.0441

1.0441

1.0441

-0.0428

-0.0428

-0.0428

-0.0428

-0.0428

-0.0428

-0.0428

-0.0428

-0.0428

-0.0428

-0.0428

-0.0428

-0.0428

-0.0428

-0.0428

-0.0428

-0.0428

-0.0428

-0.0428

-0.0428

-0.0428

-0.0428

-0.0428

-0.0428

-0.0428

-0.0428

-0.0428

-0.0428

-0.0428

-0.0428

-0.0428

0.0005

0.0005

0.0005

0.0005

0.0005

0.0005

0.0005

0.0005

0.0005

0.0005

0.0005

0.0005

0.0005

0.0005

0.0005

0.0005

0.0005

0.0005

0.0005

0.0005

0.0005

0.0005

0.0005

0.0006

0.0005

0.0006

0.0006

0.0006

0.0006

0.0006

0.0006

1.0069

1.0069

1.0069

1.0069

1.0069

1.0069

1.0069

1.0069

1.0069

1.0069

1.0069

1.0069

1.0069

1.0069

1.0069

1.0070

1.0070

1.0070

1.0070

1.0070

1.0070

1.0070

1.0070

1.0070

1.0070

1.0070

1.0070

1.0070

1.0070

1.0070

1.0070

228

91

92

93

94

95

96

97

98

99

100

9.100

9.200

9.300

9.400

9.500

9.600

9.700

9.800

9.900

10.000

0.3716

0.3716

0.3716

0.3716

0.3716

0.3716

0.3716

0.3716

0.3716

0.3716

-0.5106

-0.5106

-0.5106

-0.5106

-0.5106

-0.5106

-0.5106

-0.5106

-0.5106

-0.5106

0.2806

0.2806

0.2806

0.2806

0.2806

0.2806

0.2806

0.2806

0.2806

0.2806

-0.3098

-0.3098

-0.3098

-0.3098

-0.3098

-0.3098

-0.3098

-0.3098

-0.3098

-0.3098

1.0441

1.0441

1.0441

1.0441

1.0441

1.0441

1.0441

1.0441

1.0441

1.0441

-0.0428

-0.0428

-0.0429

-0.0428

-0.0428

-0.0428

-0.0429

-0.0429

-0.0428

-0.0429

0.0006

0.0006

0.0005

0.0005

0.0005

0.0006

0.0005

0.0005

0.0005

0.0006

1.0070

1.0070

1.0070

1.0070

1.0070

1.0070

1.0070

1.0070

1.0070

1.0070

229

REFERENCES

[1] ARM Ltd. (2009, Oct. 19). ARM processor instruction set architecture. [Online].

Available: http://www.arm.com/products/CPUs/architecture.html

[2] R. N. Shreve and G. T. Austin, "Petroleum Processing," in Shreve's Chemical

Process Industries, 5th ed. New York: McGraw-Hill, 1984, pp. 713-725.

[3] R. C. Darton, "Distillation and absorption technology: Current market and new

developments," Trans. IChemE, vol. 70, pp. 435^137, Sep. 1992.

[4] T. J. McAvoy, Interaction Analysis Principles and Applications. Durham, NC:

Instrument Society of America, 1983.

[5] J. L. Humphrey, A. F. Seibert, and R. R. Koort, Separation Technologies -

Advances and Priorities, Washington. DC: US DOE Report, 1991.

[6] B. Dahho, H. Youlal, A. Hmamed, and A. Majdoul, "Identification and control of

a distillation column," in IF AC 9th Triennial World Congress, Budapest,

Hungary, vol. 3, pp. 1719-1724, 1984.

[7] G. C. Shen and W. K. Lee, "Adaptive inferential control for chemical processes

with intermittent measurements," Ind. Eng. Chem. Res., vol. 28, no. 5, pp. 557-

563, May 1989.

[8] D. E. Seborg, T. F. Edgar, and S. L. Shah, "Adaptive control strategies for process

control: A Survey". AIChEJ., vol. 32, no. 6, pp. 881-913, Jun. 1986.

[9] M. Agarwal and D. E. Seborg, "A multivariable nonlinear self-tuning controller,"

AIChE J., vol. 33, no. 8, pp. 1379-1386, Aug. 1987.

230

http://www.arm.com/products/CPUs/architecture.html

[10] H. T. Nguyen and N. Afzulpurkar, "Application of multivariable adaptive control

design to natural gasoline plant," in Proc. 3rd Asian Conf Industrial Automation

and Robotics, Bangkok, Thailand, 2003, pp. 90-95.

[11] K. S. Narenda and A. M. Annaswamy, Stable Adaptive Systems. Englewood Cliff,

N.J.: Prentice Hall, 1989.

[12] G. Stephanopoulos, Chemical Process Control. Englewood Cliffs, NJ: Prentice-

Hall, 1984.

[13] Wikipedia. (2009, Sep. 12). MATLAB [Online]. Available: http://en.wikipedia.

org/wiki/MATLAB

[14] K. J. Astrom and B. Wittenmark, Adaptive Control. New York, NY: Addison-

Wesley Publishing Company, 1995.

[15] G. O. Mutambara, Design and Analysis of Control Systems. Boca Raton, FL: CRC

Press, 1999.

[16] S3C44B0X RISC Microprocessor Datasheet, Samsung Corporation, 1998.

[17] C. D. Holland, Fundamentals of Multicomponent Distillation. New York:

McGraw-Hill, 1981.

[18] H. Kehlen and M. T. Ratzsch, "Complex multicomponent distillation calculations

by continuous thermodynamics," Chem. Eng. Sci., 42, pp. 221-232, 1987.

[19] R. J. Fuentes and M. J. Balas, "Robust model reference adaptive control with

disturbance rejection," in 2002 Proc. American Control Conf, Anchorage, AK,

2002, pp. 4003-4008.

231

http://en.wikipedia

[20] G. Kreisselmeier and K. Narendra, "Stable model reference adaptive control in

the presence of bounded disturbances," IEEE Trans. Autom. Control, vol. 27, no.

6, pp. 1169-1175, Dec. 1982.

[21] B. Peterson and K. Narendra, "Bounded error adaptive control," IEEE Trans.

Autom. Control, vol. 27, no. 6, pp. 1161-1168, Dec. 1982.

[22] K. J. Astrom and B. Wittenmark, Computer-Controlled Systems: Theory and

Design. Englewood Cliffs, NJ: Prentice-Hall International, 1990.

[23] G. A. McNeill and J. D. Sachs, "High Performance Column Control," Chem. Eng.

Prog., vol. 65, no. 3, pp. 33-39, Mar. 1969.

[24] J. S. Moczek, R. E. Otto, and T. J. Williams, Approximation Model for the

Dynamic Response of Large Distillation Units. Amsterdam: Elsevier, 1965.

[25] S. Skogestad and M. Morari, "Understanding the dynamic behavior of distillation

columns," Ind. Eng. Chem. Res., vol. 27, pp. 1848-1862, Jun. 1987.

[26] H. T. Nguyen and N. Afzulpurkar, "Symbolic Algebra Approach for Adaptive

Controller Design," in Proc. 4th Asian Conf Industrial Automation and Robotics,

Bangkok, Thailand, 2005.

[27] C. L. Phillips and H. Troy, Digital Control System Analysis and Design.

Englewood Cliffs, NJ: Prentice-Hall, 1984.

[28] D. Hung, Lecture Notes and Handouts ofCMPE 264. San Jose, CA: Computer

Engineering Department, San Jose State University, 2008.

232

[29] EventHelix Inc. (2009, Oct. 2). NFS Protocol Diagrams [Online]. Available:

http://www.eventhelix.com/RealtimeMantra/Networking/NFS_Protocol_Sequenc

e_Diagram.pdf

[30] H. Li, Lecture Notes and Handouts ofCMPE 244. San Jose, CA: Computer

Engineering Department, San Jose State University, 2009.

[31] ARM Software Development Toolkit Version 2.50 User Guide, ARM Ltd., 1998.

[32] M. Felton, CGI Internet Programming with C++ and C. Upper Saddle River, NJ:

Prentice Hall, 1997.

[33] D. E. Seborg, T. F. Edgar, and S. L. Shah, "Adaptive control strategies for process

control: A survey," AIChE J., vol. 32, no. 6, pp. 881-913, Jun. 1986.

[34] V. M. Popov, Hyper stability of Automatic Control Systems. New York: Springer,

1973.

[35] W. L. Luyben, Process Modeling Simulation and Control for Chemical

Engineers, 2nd ed. Auckland: McGraw-Hill, 1990.

[36] R. Richardson, Lehigh Distillation Control Short Course. Lehigh, PA: Lehigh

University, 1990.

[37] W. L. Luyben, Practical Distillation Control. New York: Van Nostrand Reinhold,

1993.

[38] P. Harriott, Process Control. New York: McGraw-Hill, 1964.

[39] J. H. Perry, Ed., Chemical Engineers' Handbook, 6th ed. New York: McGraw-

Hill, 1984.

233

http://www.eventhelix.com/RealtimeMantra/Networking/NFS_Protocol_Sequenc

[40] R. G. E. Franks, Modeling and Simulation in Chemical Engineering. New York:

Wiley-Interscience, 1972.

[41] W. L. Nelson, Petroleum Refinery Engineering. Auckland: McGraw-Hill

International Book Company, 1982.

[42] W. L. McCabe and J. C. Smith, Unit Operations of Chemical Engineering. New

York: McGraw-Hill, 1976.

[43] M. V. Joshi, Process Equipment Design. New Delhi: Macmillan Company of

India, 1979.

[44] Feasibility Study of Condensate Processing Plant, Petrovietnam Corp., 1998.

[45] W. C. Edmister, "Hydrocarbon adsorption and fractionation process design

methods," Petroleum Engineer, vol. 21, pp. 45-50, 1949.

[46] B. I. Lee, J. H. Erbar, and W. C. Edmister, "Properties for low temperature

hydrocarbon process calculation," AIChE J., vol. 19, pp. 349-356, Mar. 1973.

234

	San Jose State University
	SJSU ScholarWorks
	Fall 2009

	Design and implementation of embedded adaptive controller using ARM processor.
	Hoan The Nguyen
	Recommended Citation

	ProQuest Dissertations

