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ABSTRACT 

DESIGN AND IMPLEMENTATION OF EMBEDDED ADAPTIVE 
CONTROLLER USING ARM PROCESSOR 

by Hoan The Nguyen 

This thesis is concerned with development of embedded adaptive controllers for 

industrial applications. Many industrial processes present challenging control problems 

such as high nonlinearity, time-varying dynamic behaviors, and unpredictable external 

disturbances. Conventional controllers are too limited to successfully resolve these 

problems. Therefore, the adaptive control strategy, an advanced control theory, is applied 

to overcome deficiencies of the conventional controllers. 

Through the thesis, an embedded adaptive controller is designed and implemented 

for the specific case study, a gasoline-refining plant. The adaptive controller design is 

initially achieved in continuous-time space and then converted to discrete-time space by 

using z- transform. It is finally implemented on an advanced reduced instruction set 

computer machine (ARM) processor. A plant simulator written in C++ executes 

functions of the gasoline-refining plant. Therefore, an integrated testing environment is 

developed in order that the embedded adaptive controller can interact in real-time fashion 

with the plant simulator located in a remote computer. In all system tests, the embedded 

adaptive controller successfully controlled the remote plant simulator and fully satisfied 

all control objectives. 
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CHAPTER 1 

INTRODUCTION 

1.1. Background 

We have seen that the price of microprocessors has dropped significantly since 

their creation in the early 1970s. As a consequence, microprocessors have increasingly 

become the main part of many control systems. In the 1980s, microcontrollers were 

developed due to the integration of microprocessors and other peripheral devices in the 

same chip. Microcontrollers have widely increased applications of embedded systems 

due to their low cost and high performance. Therefore, embedded controllers using 

microprocessors such as ARM processors are aspired to develop for robotics and 

industrial applications. 

ARM processor has a 32-bit RISC architecture invented by ARM Company. 

There are various ARM processors; however, they are based on a common architecture 

and provide high performance, low power consumption, and reduced cost. They are 

licensed by most of leading semiconductor manufacturers, who have shipped more than 

ten billion ARM processors since the company was established in 1990 [1], 

In this study, an embedded adaptive controller is designed and implemented for a 

gasoline refinery. In the petroleum refining industry, distillation is the most popular and 

important process. Crude oil, a mixture of thousands of organic substances, is refined by 

the distillation process to produce a host of liquid fuels, pure chemical substances, and 

petrochemicals [2]. The size of the refining industry is truly immense with the total 

processing capacity of approximately 4 billion tons per year [3]. In addition, the 
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percentage of energy consumption by distillation is very high, about 40% for a typical 

chemical plant [4]. Humphrey [5] estimates that, with advanced control strategy, there is 

potential for an average 15% reduction in the energy consumption by distillation in the 

United States' refining industry. Therefore, enhancement of distillation control would 

result in major economic improvement for petroleum refineries. 

1.2. Statement of the Problem 

Distillation processes are highly multivariable and nonlinear. The dynamic 

analysis and simulation of a distillation process are thus very complicated. Its theoretical 

model can contain several hundreds of state variables; however, in practice, the amount 

of information on the process is usually insufficient. Therefore, reduced state space 

models should be employed [6]. 

Distillation processes are multiple-input multiple-output (MIMO) systems. 

Conventional PID controllers normally employ a single-input single-output (SISO) 

approach with appropriate pairings. For distillation processes, a controlled variable is 

affected by many manipulated variables so that conventional controllers will have 

multiple control loops. Consequently, there exists coupling, which causes serious 

problems, particularly in the cases of high-purity distillation systems. De-couplers are 

usually deployed to reduce the interaction between the control loops. However, the SISO 

approach with pairing and de-coupling is only partially successful. Shen and Lee [7] 

believe that the use of multivariable controllers such as adaptive controllers can greatly 

improve the situation since they treat the MIMO process as a single system instead of 

many individual subsystems. 
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Time-varying dynamic behaviors of distillation processes and the existence of 

unpredictable external disturbances also present challenging control problems. If 

conventional controllers such as PID controllers are used, they must be re-tuned for 

different operating conditions. This task is costly, time-consuming, and even unfeasible. 

Unlike conventional controllers, adaptive control systems use special adaptation 

mechanisms that can self-adjust their control settings to compensate unanticipated 

changes in the process or in the environment [8]. Therefore, adaptive control strategy has 

been progressively applied for solving the difficult control problems [9]. 

There has been some research on applying adaptive control strategy to distillation 

processes. For example, Nguyen and Afzulpurkar [10] propose an adaptive control 

system for a natural gasoline plant; and Narenda and Annaswamy [11] suggest an 

adaptive scheme for distillation column. However, most of these works focus on 

continuous-time space. To implement adaptive algorithms on digital computers, they 

must be discretized using z-transform. 

After the embedded adaptive controller is successfully implemented, it must 

interact with either a real pilot plant or a software-based plant simulator running on a 

remote computer to close the control loop and allow real-time data transfer between the 

plant and the controller. Therefore, an integrated testing environment must be developed 

to be able to verify the controller performances. 

1.3. Objectives of the Study 

The structure of distillation as well as other chemical processes has become 

increasingly complex due to better management of energy and raw materials. Hence, the 
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design of the control system for a complete plant has become intimately related to the 

design of the process itself [12]. 

In this study, we design and implement the embedded adaptive controller and 

plant simulator through various phases: 1) development of mathematical model; 2) 

process calculation and modeling; 3) controller design in both continuous-time and 

discrete spaces; and 4) hardware implementation and testing. The objectives of the study 

are described as follows: 

• Create adaptive algorithms for the plant using Lyapunov stability theory; 

• Design adaptive controllers for the plant in both continuous-time and discrete-

time spaces; 

• Create a software-based plant simulator, which executes functions of the 

gasoline plant and its local auxiliaries; 

• Implement the embedded adaptive controller using an ARM processor, which 

fully satisfies all control objectives under different operating conditions of the 

plant; 

• Develop an integrated testing environment for verification of the embedded 

adaptive controller. 

1.4. Scope of the Study 

Building a pilot plant is not feasible for this study since it is very expensive. 

Hence, identification method, which requires operational data of the plant, is not 

applicable. Instead, the reference model of the gasoline refinery will be developed using 

mathematical method. 
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The embedded adaptive controller will be implemented on an ARM-7 

development board. It will interact with the plant simulator written in C++ language on a 

remote computer through an Ethernet network. 

1.5. Methodology 

The plant simulator, a software simulator, is created to play the roles of the 

distillation column and other local auxiliaries. The embedded adaptive controller is an 

adaptive mechanism that governed by an adaptation law and programmed in the ARM 

kernel image. The embedded adaptive controller is thus physically an ARM processor, 

residing on an ARM development board. An integrated environment is developed via an 

Ethernet for testing the adaptive system. The major steps in this study are as follows: 

• Study the plant dynamics and adaptive control strategy; 

• Develop the mathematical model of the plant; 

• Perform the plant simulation using MATLAB, a numerical computing 

environment and fourth generation programming language developed by 

Math works [13], to obtain the steady-state data; 

• Construct the reference model of the plant using mathematical approach to 

prepare for the next phase of adaptive controller design; 

• Design the analog adaptive controller for the plant in continuous-time space 

based on Lyapunov stability theory; 

• Discretize the adaptive system using z-transform and design the digital 

adaptive controller in discrete-time space; 
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• Simulate both analog and digital designs using either MATLAB or C++ and 

verify their control performances; 

• Implement the embedded adaptive controller on an ARM development board; 

• Connect the embedded adaptive controller and the plant simulator via a local 

network so that they form closed loop; 

• Use network file system (NFS) technology to allow the embedded adaptive 

controller and the plant simulator to have read or write access to the common 

database in an NFS server. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1. Gasoline Refinery 

Petroleum refining emphasizes distillation of crude oil into various fractions. The 

crude oil is heated to 370 degrees to 470 degrees Celsius and pumped into a distillation 

column. The crude oil is then separated into the following major fractions: 1) naphtha; 2) 

light naphtha; and 3) heavy naphtha. The naphtha or light naphtha fraction can be used 

as a component of finished gasoline. The heavy naphtha needs further processing such as 

catalytically reforming to become high-octane blending stock. 

In this thesis, we study a gasoline refinery whose feed stream is condensate 

produced from associated gas or natural gas fields. It contains fewer high-boiling 

components than crude oil does. Moreover, its antiknock quality is quite low since its 

composition has a large amount of straight paraffinic hydrocarbons [2]. In the gasoline 

refinery, the distillation process is responsible for cutting off light components as propane 

and butane to ensure the saturated vapor pressure and volatility of the gasoline product. 

It will be finally blended with high octane number boosters and additives to ensure the 

octane number and other quality criteria such as anti-oxidization. 

2.2. Distillation Equipment 

Distillation process is done in a special chemical apparatus, called distillation 

column. It is made up of several parts, each of which is used to transfer heat energy or 

enhance mass transfer. A typical distillation column consists of the following 
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components: 1) a vertical shell; 2) column internals such as trays; 3) a reboiler; 4) a 

condenser; and 5) a reflux drum. 

The reboiler provides heat for vaporizing the feed stream. The condenser is to 

chill and condense overhead vapor. The reflux drum stores the condensed vapor and 

recycles liquid reflux back to the column. The vertical shell covers the column internals. 

A schematic of a typical distillation column with a single feed and two product streams is 

shown in Figure 2.1. Main parameters of a distillation column are shown in Table 2.1. 
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reflux flow Li ^ ::.. • . . . • • / 

& i v-v. (4)REELUX DRUM 
stage N+l (Q) j hA 
(top toy) j DISTILLATE (OVERHEAD PRODUCT) 

1 8 - D 

stage f 
(feed tny) 

stage rc 

Q 
**r2 heol flow 
stage 2 (J> ottam tray) 

boil up roteV (/£($/$ 

B 

© R E B O I L E R 

BOTTOMS r BOTTOM PRODUCT) 

Figure 2.1. Distillation column. 
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Table-2.1. Main parameters of a distillation column. 

Material stream 

Feed stream 

Reflux stream 
Overhead 

Distillate stream 

Return stream 
Bottoms 

Bottoms stream 

Position 

Stage f 

Stage N 

Reflux drum 

Stage 1 

Reboiler 

Flow rate 

F 

L 

D 

V 

B 

Concentration 

cF 

XD 

X D 

XB 

X B 

2.3. Distillation Operation Principles 

The liquid mixture is fed onto the feed tray. In normal operation, there is a certain 

amount of liquid on each plate. The reboiler is used to supply energy for generating 

vapor, which moves upward and passes through the liquid on each tray. The intimate 

contact between liquid and vapor is usually accomplished by using bubble caps as shown 

in Figure 2.2. 

Liquid phase 

Stage it 

(Trav >i-l) 

'.•?. '.'.'!'•••" . . 

m^u 
- Bubble cap 

' Continuous contact 
between ascending vapor 
and descending liquid 

Figure 2.2. Contacting between vapor and liquid phases at a tray. 
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The overhead vapor, upon leaving the top plate, enters the condenser where it is 

condensed. The liquid is then collected in the reflux drum from which the reflux stream 

and the top product stream are withdrawn. The top product is also called distillate. 

The liquid that leaves the bottom tray of the column enters the reboiler, where it is 

vaporized. The produced vapor is forced to flow back up through the column; and the 

liquid withdrawn from the reboiler is called bottoms or bottom product. 

2.4. Methods of Distillation Column Control 

Distillation process has two degrees of freedom; therefore, there are various 

control structures. One of the most common control structures is energy balance 

structure as shown in Figure 2.3. Refer to Appendix A for more details on control 

structures. 

I |—0—I I 

Figure 2.3. Energy balance control structure. 
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The energy balance structure or L—V structure can be considered the standard 

control structure for dual composition control. In Figure 2.3, the reflux flow rate L and 

the boilup manipulator V are used to control the primary outputs associated with the 

product specifications. The secondary outputs, which are the liquid holdups in the reflux 

drum and in the column base, are usually controlled by distillate flow rate D and the 

bottoms flow rate B. 

2.5. Principles of Adaptive Control 

An adaptive control system can synthesize adaptive gains in such a way as to 

compensate for variations in the characteristics of the process it controls. There are many 

types of adaptive control systems, which differ only in the way the controller parameters 

are adjusted [12]. 

Adaptive controllers are needed for chemical and petroleum processes since most 

of them are nonlinear and nonstationary. The linearized models that are used to design 

linear controllers depend on particular steady states. When their desired steady-state 

operation has variation, the best values of the controller parameters will change. In 

addition, their time-varying dynamic characteristics usually cause deterioration in the 

performance of the linear controller. Therefore, adaptation of the controller parameters is 

required. 

Stephanopoulos [12] defines the objective of an adaptation law. It must guide the 

adaptive mechanism to the best adjustment of the controller parameters rather than keep 

the controlled variables at the specified set points, which can be accomplished by 

conventional control loops. 
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An adaptive control system can be considered as consisting of two loops as shown 

in Figure 2.4. One loop is a conventional feedback loop. The other loop is the parameter 

adjustment loop [14]. 

Command_ 
signal 

Adaptive 
mechanism 

«sj 

Controller 
parameters 

Control ' 
signal 

Plant 1 
* Output 

Figure 2.4. Block diagram of an adaptive system. 

There are two different methods for adjustment of the controller parameters: 1) 

direct method; and 2) indirect method. In the direct method, the adaptation law directs 

the controller parameters adjustment such as gain scheduling and model-reference 

adaptive systems. In the indirect method, at any adjustment step, new controller 

parameters are obtained by solving the design problem such as self-tuning regulators. 

Process dynamics ) 

Siv-CSnftlteF--"-:-

unpredictable 
variations 

Parametei'-fixed 
Controller ^ 

Predictable 
variations 

>Adaptl»«?t»ritfofMt SS*9ir>;sct!ft<lu!ing: 

Figure 2.5. Procedure for selection of an appropriate adaptive scheme. 
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Adaptive controllers, being inherently nonlinear, are more sophisticated than 

conventional feedback controllers. The decision whether to use adaptive control is based 

on the dynamic behaviors of the process as depicted in Figure 2.5. 

2.6. Adaptive Schemes 

2.6.1. Gain Scheduling 

In many control systems, it is possible to determine measurable variables that 

have well-defined connections with changes in process dynamics. These variables can be 

used to adjust the controller parameters. This approach is called gain scheduling because 

the scheme was originally used to measure the gain and then change the controller 

parameters, as shown in Figure 2.6. 

Gain 
schedule ™~ I 

i Controller 
parameters | 

Command 
signal 

j 

Figure 2.6. Block diagram of a system with gain scheduling. 

The system can be viewed as consisting of two loops: 1) an inner loop composed 

of the plant and the controller; and 2) an outer loop that adjusts the controller parameters 

on the basis of operating conditions. Gain scheduling can be considered as a mapping 

Output 
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from plant parameters to controller parameters [14]; hence, it can be implemented as a 

function or a lookup table. 

2.6.2. Model Reference Adaptive Control Systems 

The model reference adaptive control (MRAC) scheme was originally proposed to 

solve the problem in which the performance specifications are given in terms of a 

reference model. This model generates the desired output corresponding to the command 

signal. 

Command 
signal CoHtrollet 

MoctSI 

Control 
signal 

Controller 
parameters Adaptive 

mechanism 

Plant -*• Output 

Figure 2.7. Block diagram of the model reference adaptive control scheme. 

The controller consists of two loops, as shown in Figure 2.7. The inner loop is an 

ordinary feedback loop composed of the plant and the controller. The outer loop adjusts 

the controller parameters in such a way that the error, the difference between the plant 

output and the model output, is small. The key problem is to design the adaptive 

mechanism so that the adaptive control system is stable, and the error goes zero [14]. 
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2.7. Lyapunov Stability Theory 

Lyapunov stability theory primarily addresses the stability problem of any system 

regardless of being linear or nonlinear. It is very significant for nonlinear control system 

design since it is the only tool available when other methods are failed [15]. 

Lyapunov considers the nonlinear differential equation with zero initial condition: 

dx 
dt 

= / ( * ) • (2.1) 

Lyapunov investigates whether the solution of (2.1) is stable with respect to 

disturbances or not. 

2.7.1. Definition of Lyapunov Stability 

The solution x(f) = 0 is stable if for a given s > 0 there exists a number S{e) > 0 

such that all solutions with initial conditions ||x(0)|| < Shave the following property: 

||x(OII<£, for 0<t<oo. 

* 2 

/ 
i 

, 

^ 
,*""""' 

, - - ' 
^ 

**"- .— 

, 
,,.'-'' 

yfdx 
"" * dt 

x = 0 i 

/ / 
^^^ 

-">(.*) = 

""" \ 
\ 

I 
/ 

/ 
,s-

con.-,t 

Xl 

Figure 2.8. Illustration of Lyapunov stability. 

The solution is asymptotically stable if a positive number Scan be found such that 

all solutions with ||x(0)|| < Shave the following property: 
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||x(OII -> 0 as t ->QO. 

2.7.2. Lyapunov Stability Theorem 

The solution x(t) = 0 is stable if there exists a function V: R" -> R that is positive 

definite such that its derivative along the solution of (2.1) is negative definite as 

dV dVT dx dVT
 rr , „„ , 

= = / (* ) = -W(x) (2.2) 
dt dx dt dx 

If dVldt is negative semi-definite, the solution is asymptotically stable. The 

function V\s called a Lyapunov function for the system in (2.1). 

2.7.3. Lyapunov Function 

Assume that the following linear system is asymptotically stable: 

dx 
— = Ax (2.3) 

dt 

For each symmetric positive definite matrix Q, there exists a unique symmetric 

positive definite matrix P such that 

ATP + PA=-Q (2.4) 

Equation (2.4) has always a unique solution with P positive definite; and the 

following function: 

V(x) = xTPx (2.5) 

is a Lyapunov function [14]. 

2.8. ARM Processor 

We use an ARM-7 development board manufactured by Samsung to implement 

the embedded adaptive controller for the gasoline refinery. The following sections 

describe its architecture and key specifications. 
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2.8.1. System Architecture of ARM Development Board 

The S3C44B0X ARM-7 development board has various features including 8KB 

cache, internal SRAM, LCD controller, 2-channel UART with handshake, 4-channel 

DMA, system manager with chip select logic and FP/EDO/SDRAM controller, 5-channel 

timers, I/O ports, RTC, 8-channel 10-bit ADC, IIC-BUS interface, and IIS-BUS interface 

[16]. 

DB-9 DB-9 

RS-232 

Figure 2.9. System block diagram of the ARM development board. 

The S3C44B0X is developed using an ARM7TDMI core and new bus 

architecture, SAMBA II or Samsung ARM CPU embedded microcontroller bus 

architecture [16]. The main features are shown in Table 2.2. 
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Table 2.2. Main features of the ARM-7 development board. 

Features 

CPU 

Memory 

subsystem 

GPIO ports 

UART 

Ethernet 

Descriptions 

"ARM7TDMI" CPU core for 16/32 bit operations. 

Cache 8KB for memory management. 

On-chip ICE breaker debug support with JTAG based debugging 

solution. 

32x8 bit hardware multiplier. 

SAMBA II bus architecture up to 66MHz. 

Little/big endian support. 

Address space: total 256 MB. 

8 memory banks. 

Supports programmable 8/16/32-bit data bus width for each bank. 

Fixed bank start address and programmable bank size for 7 banks. 

Programmable bank start address and bank size for one bank. 

Fully programmable access cycles for all memory banks. 

Supports self-refresh mode in DRAM/SDRAM for power-down. 

Supports asymmetric/symmetric address of DRAM. 

8 external interrupt ports. 

71 multiplexed input/output ports. 

2-channel UART with DMA-based or interrupt based operation. 

Supports 5-bit, 6-bit, 7-bit, or 8-bit serial data. 

Supports hardware handshaking during transmission/receiving. 

Programmable baud rate. 

Supports IrDA 1.0 (115.2kbps). 

Loop back mode for testing. 

Each channel have two internal 32-byte FIFO for Rx and Tx. 

1 port 10 Base T (10/100Mbps) 
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2.8.2. Memory Organization 

The memory space is 256MB in total. There are 8 memory banks: 1) the first 6 

memory banks are used only for ROM; and 2) the last 2 memory banks can be realized 

by RAM. 

The 8-MB SDRAM is in Bank 6. The beginning address of Bank 6 is 

OxOcOOOOOO. Therefore, the kernel image will be load to the ARM board at address 

0x0c008000. The memory map is shown in Figure 2.10. 

Figure 2.10. Memory map. 
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CHAPTER 3 

PLANT MODELING AND SIMULATION 

3.1. Introduction 

Process modeling is the first phase in the whole system design procedure. This 

phase is significant since it provides steady-state data of the plant. We will base on these 

data to design the adaptive control system. In this section, we study the distillation 

process of the gasoline refinery and perform the process modeling and simulation. 

3.2. Process Description 

Condensate, which is condensed from associated gas or natural gas in gas 

processing plants, will be stabilized by cutting off light components such as propane and 

butane in a distillation column. 

TOCASOLME MKR 4— 

4 

RffLlrtERLMl 

Figure 3.1. Simplified diagram of the condensate distillation. 

The distillation column has 24 actual trays, which is equivalent to 14 theoretical 

trays. Condensate is fed to the seventh tray. The top product is Liquefied Petroleum Gas 
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(LPG). The bottom product is naphtha, which will be blended with high octane number 

boosters and additives to produce the finished gasoline. 

The control objective is to keep the product qualities within the following limits 

under different operating conditions: 

and 

xD > 98% 

xB < 2.0% 

(3.1) 

(3.2) 

where xo and x# are the product compositions or the product qualities. 

3.3. Process Calculation 

Based on the design basis, we calculate steady-state values of the gasoline-

refining plant. The process calculation is given in Appendix B. The key values of the 

plant design are listed in Table 3.1. 

Table 3.1. 

Temperature, C 

Pressure, atm 

Density, kg/m3 

Volume flow rate, m /h 

Mass flow rate, kg/h 

Mass flow rate, ton/year 

Main streams oft 

Condensate 

118 

8.6 

670 

227.6 

15480 

130000 

he plant. 

LPG 

46 

4.0 

585 

8.78 

5061 

43000 

Raw gasoline 

144 

4.6 

727 

21.88 

10405 

87000 
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3.4. Process Description and Control Scheme 

The process flow diagram of the plant is shown in Figure 3.2. Refer to Appendix 

B for more details on process description. 

The control structure is selected as L-V structure that directly controls separation 

quality. Based on this structure, we construct the control scheme for the distillation 

system. 

Figure 3.2. Process flow diagram of the gasoline refinery. 

3.5. Plant Modeling 

For the distillation column with 14 trays and 20 components, the number of 

differential and algebraic equations is equal to 14*(2*20+3) = 602 equations [17]. The 
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plant order should be reduced. We can lump a group of components together to make 

pseudo-component; and the column dynamics are modeled on pseudo-component only 

[18]. The feed can be approximated by a pseudo binary mixture of LPG (iso-butane, n-

butane and propane) and naphtha (iso-pentane, n-pentane, and heavier components). 

As a result, the mathematical model of the gasoline refinery is represented by a 

set of 31 nonlinear differential and algebraic equations: 

14.03 x16 =164.6291^15 -75.6380x16 -92.7597xI6 

5.8x15 =164.6291(>l4 -^1 5) + 75.6380(x16 -x15) 

5.8x14 =164.62910,3 ->>14) + 75.6380(x15-x,4) 

5.8x13 =164.6291012 -_y]3) + 75.6380(x14 -x13) 

5.8x12 =164.6291(^n -y1 2) + 75.6380(x13 -x ] 2) 

5.8xH =164.629IO10 ~ ^ i ) + 75.6380(x12-x,,) 

5.8x10 =164.629109 -^1 0) + 75.6380(xn -x10) 

5.8x9 = 66.1139>>8 -156.38^9 + 75.6380(x10 -x9) + 59.95 

5.8x8 = 66.113907 ~y&) + 75.6380 x9 -188.59x8 + 33.99 

5.8x7 = 66.1 \39(y6-y7) + \79.8871 (x8 -x 7 ) 

5.8x6 =66.113905-> ;6) + 179.8871(x7-x6) 

5.8x5 =66.113904"^) +179.887 l (x 6 -x 5 ) 

5.8x4=66.113903-^4) + 179.8871(x5-x4) 

5.8x3 =66.113902-73) +179.8871 (x 4 -x 3 ) 
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5.8x2 =66.1139(^->;2) +179.887l(x3-x2) 

24.88x, = 179.8871x2-110.9235x1 -66.1139^,. 

Vapor liquid equilibrium (VLE) relationship on each tray: 

5.68x, 
y\ = l + 4.68x, 

y2 

5.68x2 

l + 4.68x, 

(3.3) 

^ 1 5 = 

5.68x 15 

l + 4.68x„ 
(3.4) 

CHART OF VAPOR 

01 0.2 0.3 0 4 0.5 0.6 0.7 0.8 0.9 

Figure 3.3. Vapor liquid equilibrium relationship. 

Refer to Appendix C for more detailed on establishment of mathematical model. 

3.6. Plant Simulation 

We perform simulation of the plant using MATLAB Simulink. In the simulation 

program, each stage of the plant is represented by a specific subsystem. Refer to 
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Appendix D for more detailed on the simulation program. The steady-state solution is 

summarized in Table 3.2. 

n 

Xn 

* 

Table 3.2. 

1 

0.0111 

0.0599 

2 

0.0303 

0.1507 

Steady-state compositions of the plant. 

3 

0.0666 

0.2884 

4 

0.1196 

0.4355 

5 

0.1765 

0.5490 

6 

0.2203 

0.6161 

7 

0.2461 

0.6496 

8 

0.2591 

0.6651 

n 

Xn 

Yn 

9 

0.2715 

0.6792 

10 

0.2993 

0.7081 

11 

0.3637 

0.7645 

12 

0.4889 

0.8446 

13 

0.6665 

0.9190 

14 

0.8319 

0.9656 

15 

0.9354 

0.9880 

16 

0.9851 

0.9974 

CONCENTRATION OF LIGHT COMPONENT (LIGAS) ON EACH TRAY x D 

• L _ I ! .' ! i 1 l / 

I 
s 

6 8 10 12 14 16 18 20 
Time (h) 

Figure 3.4. Simulation result of the concentration on each stage. 

In summary, the plan can obtain the operational objectives in which the purity of 

the bottom product is greater than 98%, and the impurity of the overhead product is less 

than 2%. 
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CHAPTER 4 

ANALOG CONTROLLER DESIGN 

4.1. Introduction 

We apply adaptive control strategy to design the control system for the gasoline 

plant. The adaptive system is more complicated than other conventional controller since 

it was synthesized with adaptation law that enables it to operate properly for wide range 

of operation as demonstrated in [19]—[21]. In the following sections, we will study 

generic architecture of an analog adaptive controller. We then establish the adaptation 

law and design the adaptive controller for the plant in continuous-time space. 

4.2. System Architecture 

As mentioned earlier in [14], Astrom and Wittenmark define adaptive control 

strategy in which the system can self-adjust its settings to compensate for unpredictable 

changes in the process or the environment. The system architecture of the adaptive 

controller is shown in Figure 4.1. 

Figure 4.1. System architecture of the adaptive control system. 
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The adaptive control system will consist of two loops. The inner loop is an 

ordinary feedback loop composed of the plant and the conventional controller. The outer 

loop is an adaptive loop that adjusts the conventional controller parameters in such a way 

that the plant error is small. The adaptive loop will be synthesized based on the 

Lyapunov stability theory introduced in Sec. 2.7. 

There are two kinds of gains including adaptive gain and feedback gain. The 

purpose of the adaptive mechanism is to enable synthesis of the adaptive gains, which 

finally change the feedback gains as soon as state errors are detected. The adaptive 

mechanism is thus the most important component of the adaptive system. 

4.3. Construction of the Reference Model 

Basically, there are two different methods of reference model construction [22]. 

They include: 1) mathematical approach; and 2) experimental approach. The 

mathematical approach is based on physical laws and prior knowledge about the process. 

The advantages of this approach are: 1) insightful understanding of the process; and 2) 

physical interpretations of process parameters and variables. However, it is quite difficult 

and time-consuming to build the model from fundamental knowledge. On the contrary, 

the experimental approach is based on experimentation. It is also known as system 

identification. This approach includes the following tasks: 1) experimental planning; 2) 

selection of model structure; 3) parameter estimation; and 4) validation. For distillation 

control, system identification is sometimes impractical since the experimentation needs to 

build a real distillation column or a pilot plant, which is very expensive. Therefore, we 

select the mathematical approach to construct the reference model. 

27 



We observe that the plant has many internal variables; however, its input-output 

relationship is quite simple, as shown in Figure 5. We adjust the reflux flow rate L and 

the vapor rate V so that the product quality is met the control objectives defined in (3.1) 

and (3.2). 

Disturbances 

\ - \ 
External reflux flow(L) ~ <~ LPG purity (xDi 

Di';tiil.itir.n Gy-.tem 

Internal vapor rate (V) „ ^ Raw Gasoline impurity (xB) 

Figure 4.2. Two-input two-output representation for the plant. 

We can make linearization at the nominal operating point as follows: 

x(t) = A(x{t) + Beu(t) (4.1) 

and 

y(t) = Cex(t) (4.2) 

where Ae is a 16x16 matrix; Be is a 16x2 matrix; and Ce is a 2x16 matrix. 

The values of Ae, Be, and Ce matrices are calculated with an algebraic method 

described in Appendix E. 

Many researchers state that the dynamic response of most distillation column is 

dominated by one large time constant, which is nearly the same, regardless of where an 

input or disturbance is introduced or where composition is measured. This is well known 

both from plant measurements [23] and from theoretical studies [24]-[25]. This means 

that most distillation columns can approximate by first order systems. 

We can use Gramian-based input/output balancing of state-space realizations as 
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[sysb,g] = b a l r e a l ( s y s ) ; 

The last 14 elements of the balanced Gramian matrix are small or zero; so we can 

eliminate the last 14 states with the MATLAB command of model order reduction: 

sysmred = m o d r e d ( s y s b , 3 : 1 6 , ' d e l ' ) ; 

As the result, the reduced-order model of the plant is a second-order two-input 

two-output system: 

xm(t) = Amxm(t) + Bmuc(t) (4.3) 

and 

ym(t) = cmxm(t) (4.4) 

where A„, = 
-6.7941 

1.4686 

-0.9095 

-0.2497 
B„ 

-0.1461 0.2073 

-0.0021 -0.0281 
, and C 

-0.0624 -0.0281 

0.2458 0.0009 

Bode Diagram 

"~ ^ ~ ~ — ~ ™ " ~ " ™ r f ™ " " " " " " " " " " " ^ J * . 

-

Original model 
Reduced order model 

• Original model 
• Reduced order model 

^ 
\ . 

Frequency (rad/sec) 

Figure 4.3. Bode responses of two models. 
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In Figure 4.3, Bode diagram of the reduced-order model is nearly in agreement 

with the one of the original model. The reduced-order model will be checked with 

stability and other tests before deciding whether it is a reference model or not. 

4.3.1. Stability Test 

The system is stable because all eigenvalues of the state matrix {-6.5832, -

0.4606} are in left-hand side of the complex plane. 

4.3.2. Controllability and Observability Test 

A system is said to be controllable if and only if it is possible, by means of the 

input, to transfer the system from any initial state x(t) = x,to any other state xj = x(T) in a 

finite time T-t>0. 

For any system described in the following forms 

x = Ax(t) + Bu(t) (4.5) 

and 

y(t) = Cx(t) + Du{y) (4.6) 

where A, B,C, and D are matrices. 

The matrix M = [B AB ...A"'lB], where / is the rank of B and n is the system 

dimension, is called controllability matrix. The system is completely controllable if Mis 

full rank of n. 

A system is said to be observable if and only if it is possible to determine any 

arbitrary initial state x(t) = xt by using only a finite record, y( r) for t < r < T, of the 

output. 

For the system in (4.5) and (4.6), the observability matrix S is defined as 
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S=[CCACA2...CA"']]T 

where / is the rank of C and n is the system dimension. 

The system is completely observable if S is full rank (n). 

We can use the following MATLAB commands to test controllability and 

observability of the reduced-order model: 

M = c t r b ( A r , B r ) ; % c o n t r o l l a b i l i t y mat r ix 

S = obsv(Ar ,Cr) ; % o b s e r v a b i l i t y mat r ix 

As the result, the M and S matrices have full rank; therefore, the model is 

completely controllable and observable. 

In conclusion, the reduced-order linear model fully satisfies the steady-state 

property. Therefore, it is selected as the reference model for the MRAC system design in 

the next section. 

4.4. Analog Controller Synthesis 

4.4.1. Plant 

and 

The model of the plant can be expressed in the state space as 

x(t) = Ax(t) + Bu(t) 

y{t) = Cx(t) 

(4.7) 

(4.8) 

where A = 
au 

_a2] 

au 

an_ 
, B = 

~K 
_K 

bu^ 

bn_ 
, and C = 

-0.0624 -0.0281 

0.2458 0.0009 
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The plant parameters including a\\, an, aj\, aji, b\\, bn, bj\, and 622 are unknown 

and dependent on the plant dynamics. The plant model has the following vectors of 

variables: 

1) A vector of state variables x = [x\ X2] ; 

2) A vector of control signals u = [u\ u-$\ 

3) A vector of controlled outputs y=\y>\ y-$. 

4.4.2. Reference Model 

The reference model for the plant is a linear time-invariant system as developed in 

Sec. 4.3: 

and 

xm«) = Amxm(t) + Bmuc(t) 

where A„ 

y„,(t) = cmxm(t) 

-6.7941 -0.9095" 

1.4686 -0.2497 

(4.9) 

(4.10) 

5 = 
-0.1461 0.2073 

-0.0021 -0.0281 
and C„ 

-0.0624 -0.0281 

0.2458 0.0009 

4.4.3. Feedback Control Loop 

A general linear control law is given by: 

u{t) = Muc{t)-Lx(t) 

The matrices L and Mmay be chosen as follows: 

L = 

M = 

(4.11) 

01 

0, 

~ds 

Pi 

o2 

* 4 _ 

e: 
e*. 
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The closed-loop system is obtained by substituting (4.11) into (4.9): 

x = (A- BL)x + BMuc. 

The closed-loop system depends on a parameter 0 = [0\ 0i 0$ 04 0=, 0$ 0j 0%\ ; 

hence, we define: 

Ac(0) = (A-BL) 

Bc{6) = BM. 

As a result, the closed-loop system can be expressed as: 

x(t) = Ac(0)x(t)+ Bc{0)uc{t) 

Ac(0) = A-BL 
au ~b\\@\ ~^OT, av-bu02-bn0, 

i2\ ~b2\ 

'\2 

y22L'3 ci~,, — b-,,0, — b-,-,0-, ci-,-, — b-,-,0-, — b-,-,0, 

l 2 "11^2 ^12^4 

22 _ ^ 2 1 ^ 2 ~ ^ 2 2 ^ 4 

Bc(0) = BM = 
'bu95+bnd7 bu66+b]2es 

b2]65+b2281 b2Xdb+b22d% 
(4.12) 

4.4.4. Compatibility Condition 

It is necessary to find at least one value of 0 such that the closed-loop equation is 

equivalent to the reference equation (4.9). A sufficient condition is existence of at least 

one special value 0° such that 

This condition ensures a perfect model-following: x —» xm when t increases. 

Substitute 0° = [<9,° 02 0° 0°4 0° 0° 0° 0%] into the compatibility 

condition, we get: 
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au-bu6"-bnel =-6.7941 

an -bu6
a
2 -bn6°4= -0.9095 

a2]-b2]6°-b220° =1.4686 

a22-b2]e2-b229°= -0.2497 

6,A° + M7° =-0.1461 

6,,06° + 6, X =0.2073 

b2l6°5+b229° =-0.0021 

b2]e°6+b226°s =-0.0281. (4.13) 

Clearly, there always exists a parameter value 0° satisfying the compatibility 

condition: 

0 _ b22(au +6.7941)-bu(a2] -1.4686) 
0? = 

®\p22 ^12^21 

a 
o _ b22(an + 0.9095)-bn(a22 +0.2497) 

^11^22 _ ^12^21 

„„ -621(a,, + 6.794l) + bu(a2] -1.4686) 
o3 — 

buo22 —bnb2] 

0 _ -b2](a]2 + 0.9095)+ bu(a22 +0.2497) 
6> = 

b\P 22 b]2b2] 

n0 0.002lfe,2 -0.1461&22 
6>5 — 

-b2]bn+bub22 

n0 0.02816I2+0.2073Z>22 

(J6 = 
-b2]bu+bub22 
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_0 - 0.00216,,+ 0.146 \b2x 
Uf = 

-b2]bu+bub22 

0 = 
0.02816, ,+0.20736, 

-b2Xbu+bxxb 
(4.14) 

22 

Error Equation 

The model following error is defined as 

e(0= x(0-*m(0 

e(/) = ^ ( 0 + 5 i / ( 0 - ^ I B ( 0 - 5 m « c ( 0 - (4-15) 

Substitute the term of u(t) into (4.15) and rearrange the equation as follows: 

e(t) = Ame(t) + (A-Am- BL)x(t) + {BM - Bm )uc (/) 

e{t) = Ame(t) + (Ac(eL) - Am )*(/) + (BC(6U ) - Bm )uc (t) 

e(t) = Ame(t) + (Ac (0L ) - Ac (0°L))x(t) + {Bc (0M) - BC (0°M ))tc (/)• (4.16) 

Finally, the equation above is equivalent to the following: 

e(t) = Ame(t) + V,(t)(0-O0) (4.17) 

¥ 
•bxxxx -bux2 -bX2xx -bnx2 bxxucX buuc2 bnucX bnuc2 

-b2xxx —b22x2 — b22xx —b22x2 b2xucX o2xuc2 b22ucX t>22uc2 

0-6° =^-0? 62-0 6i ~ #7° 0« -0*1 • 
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4.4.6. Adaptation Law 

To derive a parameter adjustment law, we introduce a Lyapunov candidate 

function 

V(e, 0) = \ [ye'Pe + (0 - 0° f (0 - 0°)) (4.18) 

where e = [e\ e^\ is a vector of state errors; / i s an adaptation rate; and P = [1 0; 0 1] is 

chosen as a positive matrix. 

The function V is positive definite. To find out whether it is a Lyapunov function, 

we calculate its total time derivative 

f-§«'o«+*«-«vr*+c«-o'f (4.19) 

or, 

*L =_LerQe + {e_ey(dl + ry/rpe 
J ' * dt v 

(4.20) 
dt 2 

where Q is positive definite and such that 

<P + PAm = -a (4-21) 

The matrix Q = [13.5882 -0.5591; -0.5591 0.4994] is a positive-definite matrix. 

Based on Lyapunov stability theory as introduced in (2.5), the function V(e, 0) above is a 

Lyapunov function. In another way, Nguyen and Afzulpurkar [26] proved the Lyapunov 

function candidate in (4.18) as a Lyapunov function by using another approach, 

MATLAB Symbolic Algebra. 
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As the result, the adaptation law is chosen as 

^ = -W'(t)Pe(t) 
at 

(4.22) 

where, 

V 
bnxi bnx2 b\2x\ bnx2 b\\Uc\ bX]uc2 bnucX buuc2 

— b2Xxx —b22x2 — b22xx —b22x2 b2{ucX b2xuc2 b22ucX b22uc2 

Therefore, the adaptation law can be expanded as follows: 

y(buex+b2Xe2)xx 

y(buex+b2]e2)x2 

y(bnex+b22e2)xx 

y(bx2ex+b22e2)x2 

-y(bxxex+b2xe2)ucX 

-y(bxxex+b2Xe2)uc2 

-y(bX2ex+b22e2)ucX 

-y(buex+b22e2)uc2 

6 = (4.23) 

4.4.7. Stability of the Analog Controller 

We compute differentiation of the Lyapunov function in (4.18). Substitution of 

the dOldt term determined in (4.22), we get: 

dt 2 

or, 

— = -%0.5591<?, -0.7066e2)2 +13.2756e,2]. 
dt 1 

(4.24) 

The system is stable because the time derivative of the Lyapunov function is 

negative definite. As the result, the error goes to zero according to Lyapunov stability 

theory, which will be demonstrated with dynamic simulation in the next section. 
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4.5. Analog Controller Simulation 

4.5.1. Simulation Program 

As shown in Figure 4.4, the program consists of all components of the adaptive 

controller as follows: 

1) Reference signals uc(t); 

2) Disturbances^)? 

3) Linear controller governed by the general linear control law; 

4) Reference model; 

5) Plant representing for the gasoline refinery with time-varying parameters; 

6) Adaptive mechanism governed by the adaptation law in (4.23). 

Ui 

a n n f l 

SIMULATION OF ANALOG ADAPTIVE CONTROLLER 

REFERENCE MODEL 

E s(0 

^>-

K> 

• y^n 
tollA ^ £ 

dull In I 

0ut2 In2 

ADAPTIVE MECHANISM 

- W K " 

c 

CH 

V-5, 

Figure 4.4. Simulation program for the analog adaptive controller. 
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To evaluate the controller performance, we compute mean error of the plant 

output. As earlier mentioned, the state error is defined as 

ex 

. e 2 . 

= 
X\ ' Xm\ 

_X2 ' Xm2 _ 

= 
Ax, 

Ar2 

We now define mean error e, based on root-mean-square of the vector e, as 

follows: 

e, = RMS(e,) = -^A, for / = 1 or 2 

where nt is the dimension of the vector ec and |e,| is the norm of the vector et. 

The norm of the vector et can be found by using the following MATLAB 

commands: 

norm_el = norm(el); 

norm_e2 = norm(e2); 

When the simulation is finished, all element values of the vector e\ and ej. are sent 

to MATLAB workspace so that we can easily calculate the mean errors. 

4.5.2. Simulation Result 

Adaptation rate is set at value 10. The plant parameters are simulated by random 

function. The reference inputs are step functions. External disturbances are simulated 

with random noise, as shown in Figure 4.5. The reference state and plant states are 

shown in Figure 4.6. 
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Figure 4.5. External disturbances. 
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Figure 4.6. Reference states and plant states. 
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Figures - y vs. ym 
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Figure 4.7. Controlled outputs and reference outputs. 

The controlled outputs rapidly approach the desired values as shown in Figure 

4.7. This is a clear illustration for the stability of the MRAC system as theoretically 

proved in Sec. 4.4.7. The state errors reduce when time increases as shown in Figure 4.8. 

I B 
Ufcajuy ue^Kiup winuuw m e CUIL 

im B ffin 

State error e1(t) 

State error e2(t) 

Figure 4.8. Plot of plant output errors during simulation. 
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The mean errors in the simulation duration can be determined as follows: 

e, = 
0.0017 

«, VTobT 
= 5.4284*10" 

0.0022 

n2 VTooT 
= 7.1062*10" 

Error reduction will be introduced in the next section. 

4.5.3. Error Reduction 

Adaptation rate / has a strong effect on plant errors. In general, increasing 

adaptation rate will weaken plant output errors. In Table 4.1, the plant errors rapidly 

reduce to zero when the adaptation rate increases. 

Table 4.1. Plant output errors for different adaptation rates. 

Plant errors 

«i 

e2 

Adaptation rate, y 

1 

5.4304* 10"5 

7.1399*10"5 

10 

5.4284*10"' 

7.1062*10"' 

100 

5.4076* 10"5 

7.1003*10-5 
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CHAPTER 5 

DIGITAL CONTROLLER DESIGN 

5.1. Introduction 

In the previous chapter, the control system is designed and analyzed in 

continuous-time space. However the plant will be controlled by a digital computer. So 

we will discretize the plant. Zero-order hold (ZOH) is a mathematical model of the 

practical signal reconstruction accomplished by a conventional digital-to-analog 

converter (DAC). It describes the effect of converting a continuous-time signal into 

discrete-time signal by holding each sample value for one sample interval. The input and 

output signals of a zero-order hold is shown in Figure 5.1. 

Figure 5.1. Input and output signals of ZOH. 

G(s) 
y ( t ! 

A/D 

Figure 5.2. Block diagram of a sampled-data system. 
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In Figure 5.2, the zero-order-hold equivalent to G(s) is given by 

z i s 

where %, is the z-transform of the bracketed term in time continuous space. 

5.2. Digital Controller Synthesis 

5.2.1. Plant Model 

The plant in continuous-time space is given by 

x(t) = Ax{t) + Bu{t) 

and 

y(t) = Cx(t) 

where A = [au an\ a2\ a22], B = [bu bn\ b2\ b22], and C = [-0.0624 -0.0281; 0.2458 

0.0009]. The elements of the matrices A and B above are unknown and dependent on the 

dynamics of the system. 

The plant has the Laplace transform as 

x(s) - ~[AX(S) + Bu(s)\ 
s 

We assume that x(i) and u(t) are constant during the sampling interval T; hence, 

the ZOH equivalence of the plant is given by 

T 
x(z) = [AX(Z) + Bu(z)] 

z-\ 

Now we can easily convert it to the new form of difference equations, which is 

conveniently implemented in a digital computer: 
x(kT + T) = (In+TA)x(kT) + TBu(kT). (5.1) 
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The controlled output y(t) has ZOH equivalence as follow: 

y(kT) = Cx{kT). (5.2) 

5.2.2. Reference Model 

The reference model for the plant is a linear time-invariant system, as developed 

in Chapter 6: 

*„(!) = Amxm{t) + Bmuc(t) 

and 

y„,(t) = cmxm(t) 

where Am = [-6.7941 -0.9095; 1.4686 -0.2497], Bm = [-0.1461 0.2073; -0.0021 -0.0281], 

and Cm = [-0.0624 -0.0281; 0.2458 0.0009]. 

Similarly to previous section, the reference model has the ZOH equivalence as 

follows: 

xm (kT + T) = (/„ + TAm K (kT) + TBuc (kT). (5.3) 

The reference output yjf) has ZOH equivalence as follow: 

y,„(kT) = Cxm(kT). (5.4) 

5.2.3. Linear Feedback Controller 

A general linear control law is given by: 

u{t) = Muc(t)-Lx(t). 

The ZOH equivalence is determined as 

u(kT) = Muc(kT)-Lx(kT). (5.5) 

All elements of the matrices L and Mare adjusted by the adaptive mechanism: 
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L = 
0,{kT) 62(kT) 

0,(kT) 0A{kT 

M 
05(kT) 06(kT) 

87(kT) 0s(kT)^ 
(5.6) 

5.2.4. Compatibility Condition 

Similarly to the design in continuous-time space, we need to determine 

compatibility value 0° = [< 02 0" 0° 0° 0° 0° 0°] as follows: 

o _ ft2°2(a°, +6.7941)-ft,02(a2
0, -1.4686) 

~ h°h° -h°h° 
0]]L>22 "\T}2\ 

o _ 62°2(a,°2 +0.9095)-b\2{a\2 +0.2497) 
~~ A%° -A%° 

°\\°27 °12°21 

0 / J> 

8, 0
 _ -&2 ,K, + 6.7941) + ft,, (a2] -1.4686) 

t O . O _ r 0 r 0 
°11°22 °12°2I 

o _ - f t " , ^ + 0.9095) + ft,0, (a°2 +0.2497) 
~~ A%° — A%° 

°11°22 °12°2I 

tf 

ft° = 

0.0021ft,0,-0.1461ft0 
22 

-ft21 f t0
2+ft0 f t22 

0.028 lft„+ 0.2073ft 22 

-b2]b]2+bub22 

q 
0 - 0.002 lft°+ 0.146 lft° 

21 

-b2\bn+bub22 

n0 0.0281ft,,+0.2073ft°, 

'2\0\1 °]]°22 

(5.7) 
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5.2.5. Adaptive Mechanism 

The adaptive law obtained in continuous-time space is given by: 

6(t) = -y^(t)Pe(t) 

where y/ = 
- 0 | ] X ] O n X 2 0 | 2 X | •bux2 buucl bnuc2 bl2uc] b]2uc2 

t/-)]Xi L/y-fJiy UyyJi-i UJJJL') l)-\ 1W i ~>\ cl 77 c\ 77 c 7 

The Laplace transform is as follows: 

= yy/' (s)Pe(s) 

Then we determine the ZOH equivalence in z-space: 

0(z) = -^-y^'(z)Pe(z). 
z — \ 

The discrete-time adaptation law is therefore obtained as 

0(kT) = 0(kT -T) + T[-yy/ r (kT - T)Pe(kT - T)]. (5 

The general adaptation law in (5.8) can be expanded as follows: 

0, (kT) = 6> (kT -T) + Ty[b, ,e, (kT -T) + b2]e2 (kT - T)]x, (kT - T) 

02(kT) = O2(kT -T) + Ty[bue](kT-T) + b2]e2(kT-T)]x2(kT-T) 

03(kT) = 03(kT-T) + Ty[bue,(kT-T) + b22e2(kT-T)]X](kT-T) 

04(kT) = 04(kT-T) + Ty[bne,(kT-T) + b22e2(kT-T)]x2(kT-T) 

05(kT) = 05(kT -T)- Ty[bue, (kT -T) + b2]e2(kT - T)]uc] (kT - T) 

06 (kT) = 06 (kT -T)- Ty[bne{ (kT -T) + b22e2 (kT - T)]uc2 (kT - T) 

07 (kT) = 07 (kT -T)- Ty\bnex (kT -T) + b22e2 (kT - T)]uc] (kT - T) 

0% (kT) = 6>8 (kT -T)- Ty[bne, (kT -T) + b22e2 (kT - T)]uc2 (kT - T). (5 
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Figure 5.3. Logic diagram of the adaptation law. 

The logic diagram of the adaptation law is shown in Figure 5.3. Base on the 

adaptation law, we are able to implement the embedded adaptive controller in hardware 
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using ARM processor, FPGA, or whatever type of digital computer. For the one using 

ARM development board, the adaption law will be translated into C language; and the 

adaptive mechanism will be an executable running in Linux environment. 
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CHAPTER 6 

SIMULATION OF THE ADAPTIVE DIGITAL CONTROLLER 

6.1. Introduction 

The adaptive controller for the gasoline refinery is designed in Chapter 5. We 

now perform simulation of the adaptive system to verify its control performance. In the 

realm of control system design, MATLAB is normally used to perform simulation of 

control systems; hence, we also follow this approach. Moreover, we develop an 

alternative effective method for simulation of digital systems using C++ in which each 

subsystem of the system will be represented by a C++ class. 

The simulation program written in C++ has many advantages. First, it is an 

executable so it can directly run in popular operating systems such as DOS/Windows or 

Linux. Second, its I/O file handling and data exchange with other software systems are 

quite simple since C++ has plentiful I/O library. Third, we can re-use the code to 

develop the plant simulator in the next chapter, which will interact with the embedded 

adaptive controller via an Ethernet. 

6.2. Dynamic Simulation Using MATLAB 

6.2.1. Simulation Program 

The simulation program consists of major components of the adaptive system in 

discrete-time space, as shown in Figure 6.1: 

1) Reference signals uc{kT)\ 

2) Disturbances^^; 

3) Subsystem of Linear Controller governed by the general linear control law as 

50 



u(kT) = Muc(kT)-Lx(kT); 

4) Subsystem of Reference Model representing the desired responses to 

reference signals 

xm(kT) = Amxm(kT) +Bmuc(kT); 

5) Subsystem of Plant representing the unknown process model as 

jc(Jfcr) = Ax(kT) + Bu(kT); 

6) Subsystem of Adaptive Mechanism governed by the adaptive law as 

6(kT) = 6(kT -T) + T[-yy/' (kT - T)Pe(kT - T)]. 

1 tnl uc(k) 

In2 uc(k-1) 

xmljc) 
uc(k) xm(k+1)J> 

xm(k-1) 

*«*> 

REFERENCE MODEL 

H 
Disturbances 

•€> 

K> 

[B^_]M 

"00 

0ut1 In) 

0ut2 In2 

' i f 
MJi-1) 

0 u , ! u«K-l) 

ADAPTIVE MECHANISM 

" m < » 

Ot-1) Mux • 

Figure 6.1. Simulation program for the digital adaptive system. 

6.2.2. Error Calculation 

As earlier mentioned, the plant output errors is defined as 
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e(kT) = 
ex{kT) 

e2(kT) 

h(kT)-xnn{kT) 

x2(kT)-xm2(kT)_ 

Ax^kT) 

Ax2(kT) 

We now define mean error e, based on root-mean-square of the vector e, as 

follows: 

e, = RMS{e,) = ^L , for / = 1 or 2 (6.1) 

where n, is the dimension of vector e,; and ||e,-|| is the norm of vector eh 

6.2.3. MATLAB Simulation Result 

The plant parameters are simulated by random functions. The reference inputs 

uc(kT) are step functions. External disturbances are simulated with random noise, as 

shown in Figure 6.2. 

Disturbance f(t) 

-0.015 

Figure 6.2. External disturbances. 

As a result, the reference states (xm\, xm 2) are well tracked by plant states (xi, X2), 

as depicted in Figure 6.3. 
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m 
> P i « ^ e 

Figure 6.3. Reference states and plant states. 

The controlled outputs rapidly reach the desired values, as shown in Figure 6.4. 

This is a clear illustration for the stability of the digital adaptive controller. 

B 
\m 113 ; *•> }&</" S 

Figure 6.4. Controlled outputs and reference outputs. 
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The plant output errors approach zero; and the system has good control 

performance, as depicted in Figure 6.5. 

way" 

a)e,(*7) 

ns 
> P ; * l 

a) eiikT) 

Figure 6.5. Error plots. 
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The mean errors over the simulation duration are calculated by using the error 

equation (6.1) as follows: 

I U I 9.4543e-004 _ „ . ^ - . s 

/101 
= 9.4074*10-

M = 9 . 6557e -Q04 = 9 6 0 7 8 t l 0 . 5 

4n2 vioi 

6.3. C++ Simulation Project 

The functional verification project written in C++ is to simulate all subsystems 

including plant, reference model, linear controller, comparator, and adaptive mechanism. 

The algorithms and data structures of each C++ class are summarized in the following 

sections. 

6.3.1. Plant Model Class 

Plant model class is to simulate the plant. It receives signals from the linear 

controller and then generates plant state x(kT). The header file of the plant class is shown 

in Figure 6.6. 

1 #ifndef PLANT_MODEL_H 

2 #define PLANT_MODEL_H 

3 #include <stdlib.h> 

4 #include "tbdefs.h" 

5 class Plant{ 

6 private: 

7 Pkt u_k; //control signal 

8 Pkt x_k; //plant state 

9 double all, al2, a21, a22 

10 double bll, bl2, b21, b22 

11 double ell, cl2, c21, c22 

55 



12 public: 

13 Plant(); 

14 -Plant(); 

15 void getPlantPkt(int k, Pkt u_k, Pkt x_k) ; 

16 void genPlantPkt(int k, Pkt &x_kpl); 

17 }; 

18 #endif 

Figure 6.6. Plant class's header file. 

The plant class has several important member functions: 

P l a n t ( ) ; 

void g e t P l a n t P k t ( i n t k, Pkt u_k, Pkt x_k); 

void g e n P l a n t P k t ( i n t k, Pkt &x_kpl); 

The algorithms of these functions are described below. 

1) The class constructor P l a n t () is to create a new object of plant whose 

parameters are randomized due to invariant dynamics of the plant: 

a l l = - 6 . 7 9 4 1 + 0 . 6 7 * ( r a n d ( ) % 2 - 0 . 5 ) ; 

a l 2 = - 0 . 9 0 9 5 + 0 . 0 9 * ( r a n d ( ) % 2 - 0 . 5 ) ; 

a21 = 1.4686 + 0.15*(rand()%2-0.5); 

a22 = -0.2497 + 0.02*(rand()%2-0.5); 

bll = -0.1461 + 0.014*(rand()%2-0.5); 

bl2 = 0.2073 + 0.02* (rand()%2-0.5); 

b21 = -0.0021 + 0.0002*(rand()%2-0.5); 

b22 = -0.0281 + 0.003* (rand()%2-0.5); 

ell = -0.0624 + 0.006*(rand()%2-0.5); 

cl2 = -0.0281 + 0.003*(rand()%2-0.5); 
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c21 = 0.2458 + 0.025*(rand()%2-0.5); 

c22 = 0.0009 + 0.00009*(rand()%2-0.5); 

2) The member function ge tP l an tPk t is to receive input signals of the plant 

such as control signals from the linear controller. 

3) The member function genPlantPkt is to generate plant states, which will be 

stored in the common database. 

6.3.2. Reference Model Class 

Reference model class is to simulate the reference model. It receives signals from 

the reference signal generator and then produces reference state xm(kT). The header file 

of the reference model class is shown in Figure 6.7. 

1 #ifndef REFERENCE_MODEL_H 

2 #define REFERENCE_MODEL_H 

3 #include <stdlib.h> 

4 #include "tbdefs.h" 

5 class Refmdl{ 

6 private: 

7 Pkt uc_k; 

8 Pkt xm_k; 

9 public: 

10 Refmdl(); 

11 -RefmdlO; 

12 void refmdlGetPkt(int k, Pkt uc_k, Pkt xm_k); 

13 void genRefPkt(int k, Pkt &xm_kpl); 

14 }; 

15 #endif 

Figure 6.7. Reference model class's header file. 
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The plant class has two important member functions: 

void refmdlGetPkt ( in t k, Pkt uc_k, Pkt xm_k); 

void genRefPkt( in t k, Pkt &xm_kpl); 

The algorithms of these functions are quite simple: 

1) The function refmdlGetPkt is to receive reference signals from the 

reference signal generator. 

2) The function genRef Pkt is to generate reference states, which will be stored 

in the common database. 

6.3.3. Linear Control Class 

Linear control class is to simulate the linear controller. It receives signals from 

the reference signal generator and adaptive mechanism. It then produces control signals 

u(kT) to manipulate the plant. The header file of the linear control class is shown in 

Figure 6.8. 

1 ttifndef LINEAR_CONTROL_H 

2 #define LINEAR_CONTROL_H 

3 #include <stdlib.h> 

4 #include "tbdefs.h" 

5 class Linctrl{ 

6 private: 

7 thetaPkt th_k; 

8 Pkt x_k; 

9 Pkt uc_k; 

10 public: 

11 LinctrlO; 

12 -LinctrlO; 
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13 void getLinctrlPkt(int k, thetaPkt th_k, Pkt uc_k, Pkt x_k); 

14 void genLinctrlPkt(int k, Pkt &u_k); 

15 }; 

16 #endif 

Figure 6.8. Linear control class's header file. 

The linear control class has two important member functions: 

void g e t L i n c t r l P k t ( i n t k, t he t aPk t th_k, Pkt uc_k, Pkt 

x_k) ; 

void g e n L i n c t r l P k t ( i n t k, Pkt &u_k); 

The algorithms of these functions are quite simple: 

1) The function g e t L i n c t r l P k t is to receive signals from the adaptive 

mechanism, the reference signal generator, and the plant. 

2) The function genLinc t r lPk t is to generate control signals, which directly 

manipulate the plant. The control signals are also stored in the common 

database. 

6.3.4. Comparator Class 

Comparator class is to simulate the comparator. It receives signals from the 

reference model and the plant. It then compares them and computes the error e(kT), 

which is an important element to synthesize adaptive gains. The header file of the 

comparator class is shown in Figure 6.9. 

1 #ifndef COMPARATOR_H 

2 Idefine COMPARATOR_H 

3 #include <stdlib.h> 

4 #include "tbdefs.h" 
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5 class Comparator{ 

6 private: 

7 Pkt x_k; 

8 Pkt xm_k; 

9 Pkt e_k; 

10 public: 

11 Comparator(); 

12 -Comparator() ; 

13 void getCmprPkt(int k, Pkt x_k, Pkt xm_k); 

14 void genCmprPkt(int k, Pkt &e_k); 

15 }; 

16 #endif 

Figure 6.9. Comparator class's header file. 

The linear control class has two important member functions: 

void getCmprPkt( int k, Pkt x_k, Pkt xm_k); 

void genCmprPkt(int k, Pkt &e_k); 

The algorithms of these functions are quite simple: 

1) The function getCmprPkt is to get state variables of the reference model 

and the plant. 

2) The function genCmprPkt is to compare the state variables above and 

generate error signals. 

6.3.5. Adaptive Mechanism Class 

Adaptive mechanism class is to simulate the adaptive mechanism. It receives 

signals from the signal generator, plant, and comparator. It then generates adaptive gains 

6(kT). The header file of the adaptive mechanism is shown in Figure 6.10. 
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1 #ifndef ADAPTIVE_MECH_H 

2 ttdefine ADAPTIVE JMECH_H 

3 #include <stdlib.h> 

4 #include "tbdefs.h" 

5 class AdaptiveMech{ 

6 private: 

7 thetaPkt th_kml; 

8 Pkt x_kml; 

9 Pkt e_kml; 

10 Pkt uc_kml; 

11 public: 

12 AdaptiveMechO ; 

13 -AdaptiveMechO; 

14 void getAdapMechPkt(int k, Pkt x_kml, Pkt e_kml, Pkt 

uc_kml, thetaPkt th_kml); 

15 void genAdapMechPkt(int k, thetaPkt &th_k); 

16 }; 

17 #endif 

Figure 6.10. Adaptive mechanism class's header file. 

The adaptive mechanism class has two important member functions: 

void getAdapMechPkt(int k, Pkt x_kml, Pkt e_kml, Pkt 

uc_kml, t he t aPk t th_kml); 

void genAdapMechPkt(int k, t he t aPk t &th_k); 

The algorithms of these functions are quite simple: 

1) The function getAdapMechPkt is to get state variables of the reference 

model and the plant. 

2) The function genAdapMechPkt is to compute all adaptive gains and store 

them into the common database. 
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6.3.6. Create Makefile and Build Project 

We create the Makefile of the project with the following content: 

CC = g++ 

a l l : 

$(CC) -g -c -o AdaptiveMech.o AdaptiveMech.cpp 

$(CC) -g -c -o Comparator.o Comparator.cpp 

$(CC) -g -c -o LinearControl.o LinearControl.cpp 

$(CC) -g -c -o PlantModel.o PlantModel.cpp 

$(CC) -g -c -o ReferenceModel.o ReferenceModel.cpp 

$(CC) -g -o adaptive_control AdaptiveMech.o 

Comparator.o LinearControl.o PlantModel.o 

ReferenceModel.o 

In a console, we run the Makefile to compile and build the "adaptivecontrol" 

executive file. 

6.3.7. C++ Simulation Result 

We run the executable to perform simulation of the adaptive system. We find that 

it gives the same results as MATLAB simulation in Sec. 6.2. Thus we can deploy either 

the simulation program written in C++ or the simulation written in MATLAB for testing 

the embedded adaptive controller in the next chapter. 

The most significant results are shown in the following figures. Refer to 

Appendix G for more simulation data. 
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Figure 6.11. Running the "adaptive_control" executive file. 

The reference state xm and plant states x are shown in Figure 6.12. 
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Figure 6.12. State variables. 

The controlled outputs rapidly reach the desired values as shown in Figure 6.13. 

This is a definite illustration for the stability of the digital control system. 
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Figure 6.13. Controlled outputs and reference outputs. 

The plant output errors rapidly approach zero as shown in Figure 6.14. 

Figure 6.14. Plant output errors. 

The mean errors e in the simulation duration can be determined as follows: 
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e, = 
|N| s9.4543c-004 ^ 

/101 

9.6557e-004 

VToi 
= 9.6078* 10'5. 

The mean errors determined by the C++ simulation program is the same as the 

ones calculated by the MATLAB Simulink program in Sec. 6.2. 
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CHAPTER 7 

IMPLEMENTATION OF THE EMBEDDED ADAPTIVE CONTROLLER 

7.1. Introduction 

7.1.1. Embedded Adaptive Controller Using ARM Processor 

In previous chapters, we successfully design and simulate the adaptive controller 

for the gasoline refinery. We now implement it using the ARM-7 processor. We firstly 

develop a plant simulator, which runs on a Linux machine to simulate the plant and other 

local instruments such as the conventional feedback control loop. The embedded 

adaptive controller will be implemented in an ARM-7 development board, which governs 

the adaptation law and remotely controls the plant via an Ethernet network. The 

elementary block diagram of the plant simulator and embedded adaptive controller is 

shown in Figure 7.1. 

Figure 7.1. Elementary block diagram of the system. 
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7.1.2. In-Hardware Validation Scheme 

In Chapter 6, we carried out simulation of the adaptive system in both MATLAB 

and C++ in which the adaptive mechanism was represented by either a MATLAB 

Simulink module or a C++ class. The simulation results showed that the design fully 

obtained the control objectives under variant environment such as time-varying process 

dynamics of the plant and unpredictable disturbances. Therefore, we can consider these 

software models as golden models, which execute the functions of the adaptive 

mechanism and generate accurate output data to compare against the actual results from 

the hardware implementation [28]. 

MATLAB SIMULINK PROGRAM 
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Generator Signal 

_ Data J 

Adaptive 
Mechanism mum MCHICI Output 

Data 

*5> I Error 

y?V H Report̂  

EmimdrtMi 
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Controller 

Plant 
Slmsliitsr 

< = 
J Output 

Data 

Linux yacnine 

C++ SIMULATION PROGRAM 

Adaptive 
Mechanism jP'antMotfe. Output 

Data 

Figure 7.2. In-hardware validation scheme. 

In Figure 7.2, we use the same data of reference signal to feed the MATLAB 

Simulink program, C++ simulation program, and the validation blocks. Their output data 

are collected and sent to the result comparator to prepare error reports. 
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7.1.3. System Architecture and Operations 

The integrated testing environment consists of the plant simulator, the embedded 

adaptive controller, a Boa web server with a built-in CGI program, an NFS server/ client, 

web clients, and engineering stations. These machines are connected by a LAN network 

as shown in Figure 7.3. 

Figure 7.3. Integrated testing environment. 

The ARM board is an NFS client; and a Linux machine plays the role of the NFS 

server. The ARM board will mount and open the shared database on the NFS server. 

The embedded adaptive controller resides on the ARM board whereas the plant simulator 

runs on another Linux machine. Moreover, there is a type of computer called web client/ 

engineering station, which is either a personal computer (PC) or Linux computer. A user 

sitting on this station can use a web browser to open the main graphical user interface 
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(GUI) page of the Boa web server to begin testing the adaptive system. He or she can 

also access the shared database on the NFS server. 

By default, the ARM board has an IP address 192.168.0.128 and subnet mask 

255.255.255.0. We set the plant simulator machine an IP address 192.168.0.10/ 

255.255.255.0 and the NFS server an IP address 192.168.0.8. 

After the kernel image is loaded into the ARM board, we perform the command 

of NFS mount from the HyperTerminal. In Figure 7.4, the interaction between the NFS 

client and the NFS server for mounting a network file system is described as follows: 

• The NFS client initiates mounting the network file system; 

• The NFS client makes RPC "get_port" request; 

• The NFS server performs RPC "get_port" reply; 

• The NFS client requests the server to mount the file system; 

• The NFS server performs local mount for the requested files [29]. 

|:NFS Client| [:NFS Seiver| 

P I 
mount -t nfs 192.168 0.B:/opt/tes1 /var/tmp I 

I 
I 

RPC get_port request ^ 

RPC get_port reply 

RPC mount request 

RPC mount reply 

Authenticate client 

Perform local mount 
for the requested files 

Figure 7.4. NFS client/server interaction for mounting a network file system. 
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After the network file system is successful mounted, the ARM board (i.e., the 

NFS client) can acces the shared database on the remote NFS server. 

The interactions among the web browser, the Boa web server, the CGI program, 

the embedded adaptive controller, and the plant simulator are described as follows: 

1) A user opens the web browser to request the form by entering the URL 

<http://l 92.168.0.128/embedded_adaptive_controller.html>. 

2) The browser makes a connection to the Boa server by the following steps: 

• Break the URL into 3 parts including the protocol (http), the IP address 

(192.168.0.128), and the file name (embedded_adaptive_controller.html); 

• Form a connection to the IP address on the port 80; 

• Send a "get" request to the Boa server. 

3) The web server responds the request by sending HTML text for the web page 

to the browser. 

4) The browser reads HTML tags and displays the input form onto the screen. 

5) The user enters testing parameters and submits them by clicking on "Run" 

button. 

6) The browser allows the user to enter testing parameters and submits 

information to the Boa web server. 

7) The Boa web server forwards the information and activates the CGI program. 

8) The CGI program makes a function call for the adaptive mechanism. 

9) The plant simulator running on a Linux machine interacts with the embedded 

adaptive controller and forms the closed control loop. 
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10) At every step, the CGI program sends the status to the Boa server. 

11) The Boa server then sends the status in HTML text to the browser. 

12) The browser reads HTML tags and formats the page onto the screen. 

As shown in Figure 7.5, the sequence diagram describes interactions among the 

web browser, the Boa web server, the CGI program, the embedded adaptive controller, 

and the plant simulator. 
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Figure 7.5. Sequence diagram. 
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7.1.4. Kernel Image of the ARM Board 

The uClinux kernel is developed for the ARM board using Cygwin and Armtools 

software [30]. The distribution CD provides installation files for Cygwin and Armtools 

as well as various helpful documents such as datasheet and reference manual [31]. We 

write a C program that plays the role of the adaptive mechanism and combine this 

program with other predefined source files to build the uClinux kernel image. The kernel 

image will consist of the following elements: 1) the adaptive mechanism program; 2) the 

CGI program; 3) the Boa web server; and 4) the NFS client. 

The CGI protocol includes a standard for interfacing applications with 

information servers such as web servers. The executable in a CGI can be any type of 

executable that handles standard input and output [32]. CGI programs are the most 

common server-side method for performing an executable that go beyond HTML. In this 

implementation, the adaptive mechanism and the CGI program are written in C language. 

The Boa web servers is enabled from uClinux distribution through 3 steps: 1) 

customize kernel settings, customize vendor/user settings, and update default vendor 

settings; 2) select networking options and select network device support; and 3) establish 

Ethernet connection between the ARM board and other computers such as the plant 

simulator and engineering stations throughout a LAN network. 

The Boa web server is enabled for the ARM board to allow a user to use a web 

browser in a client machine or an engineering station to point to the Boa web server and 

start the adaptive controller testing form. The user then set testing mode to send the 

information in the form to the CGI program. It will make a function call for the adaptive 
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mechanism. At every simulation step, execution status is posted back to the Boa server 

and finally received by the user's browser. 

7.2. Common Database 

The shared database is located in the NFS server. The database can be accessed 

by any computer in the LAN. The database consists of a number of structured text files 

as listed in Table 7.1. 

Table 7.1. Structured data files. 

No. 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

File name 

kx.dat 

xl.dat 

x2.dat 

ke.dat 

el.dat 

e2.dat 

kuc.dat 

ucl.dat 

uc2.dat 

kth.dat 

thl.dat 

th2.dat 

th3.dat 

th4.dat 

th5.dat 

th6.dat 

th7.dat 

Data description 

Time stamp of plant state 

Plant state xi 

Plant state X2 

Time stamp of error variables 

Error variable ei 

Error variable e2 

Time stamp of reference signal 

Reference signal uci 

Reference signal uC2 

Time stamp of adaptive gains 

Adaptive gain Gi 

Adaptive gain 02 

Adaptive gain 63 

Adaptive gain 64 

Adaptive gain 85 

Adaptive gain 96 

Adaptive gain 67 
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18 

19 

20 

th8.dat 

adapout.dat 

kmax.dat 

Adaptive gain 0g 

Output data of embedded adaptive controller 

Maximal step size 

7.3. Plant Simulator 

We build a C++ project, so called "plant simulator," to simulate the plant and 

other auxiliaries including feedback control loop, reference model, and comparator. Each 

subsystem is represented by a C++ class, which has been well developed in Chapter 6. 

Hence, we just create the "Makefile" of the new project as follows: 

CC = g++ 

all: 

$(CC) -g -c -o Comparator.o Comparator.cpp 

$(CC) -g -c -o LinearControl.o LinearControl.cpp 

$(CC) -g -c -o PlantModel.o PlantModel.cpp 

$(CC) -g -c -o ReferenceModel.o ReferenceModel.cpp 

$(CC) -g -o PlantSim AdaptiveMech.o Comparator.o 

LinearControl.o PlantModel.o ReferenceModel.o 

In a console terminal, we run the "Makefile" to compile and build the PlantSim 

executive file, as shown in Figure 7.6: 

$ make 

$ I s - 1 P l a n t S i m 
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A++ -g -c -o ReferenceOutput.c RefereaceOutput.cpp 
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<(++ -w -g -o P'.an-siit t es t . cpp tcmparator.o Llnearcontrol,o planuwdel.o Referen 
ceModel.a ReferenceOutput.o Ccntro'.ledOutput.a 
hoan@rioai:-/thesis/PlantSi!i$ \s -I PlantSim 
-rwxr-xr-* 1 hoan hoan 295822 29G9-10-19 22:37 Pl^Viw 
hoan@hoan:--I'th«sis/PlantSin$ I 

Figure 7.6. Compile and build the plant simulator in a console terminal. 

7.4. Development of the Main Testing Form in HTML 

We write the testing form in HTML to allow user to enter testing parameters. The 

input form is quite simple and described as follows: 

1 <html> 

2 <head> 

3 <title> UDP streaming </title> 

4 </heaci> 

5 <body> 

6 <div a l ign="cen te r "> 

7 <img s r c=" logo .g i f " /><br> 

8 <iirig s rc=" image . jpg" /><br> 

9 </div> 

10 <hl>Embedded Adaptive Controller</hl> 

11 <form action="/cgi-bin/mycgi" method="get" target="dest"> 

12 <h3>Please enter simulation parameters.</h3> 

13 <p>Sampling time (T) : <input type="text" 

name="sptime" value="" size=4 0> 
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14 <p>Adaptation rate (gamma): <input type="text" name="gamma" 

value="" size=40> 

15 <p><input type="submit" value = "Run"xinput type="reset"> 

16 <input type=hidden name=cmd value="run"> 

17 </form> 

18 </body> 

19 </html> 

Figure 7.7. Main testing form in HTML. 

The beginning section is normal HTML similarly to the start of any HTML web 

page. The next section starting with the line <form a c t i o n = " / c g i - b i n / m y c g i " 

method="get" t a r g e t = " d e s t " > is the actual form [30]. Some key features of 

HTML form needed for CGI interface are listed in Table 7.2. 

Table 7.2. Some key features of an HTML form. 

Feature 

action="..." 

method="..." 

target="..." 

type=... 

Code example 

<form action='7cgi-bin/mycgi" 

method-'get" target="dest"> 

<form action=7cgi-bin/rnycgi" 

method="get" target="dest"> 

<form action="/cgi-bin/mycgi" 

method="get" target="dest"> 

<input type=text name=sptime> 

<input type = submit value = 

"Run" > 

Description 

Define the URL of the CGI 

program 

Define how the information is 

passed to the server 

Define the target frame to load 

the destination page 

Input tag to enter sampling 

time and text type 

Collect and post data 
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7.5. Adaptive Mechanism Program 

The adaptive mechanism program, the core of the embedded adaptive controller, 

will be run in the ARJVI-7 development board. Similarly to the C++ simulation project in 

Chapter 6, the adaptive mechanism program written in C has two basic functions as 

follows: 

static void getAdapMechPkt (int k, struct Pkt *xk_i, struct 

Pkt *ek_i, struct Pkt *uck_i, struct thetaPkt *thk_i) ; 

void genAdapMechPkt (int k, struct Pkt* xk_!, struct Pkt* ek_1, 

struct Pkt* uck_i, struct thetaPkt* thk_i, struct thetaPkt 

*thk) ; 

The first function, getAdapMechPkt, is to receive signals from the common 

database and save them to local variables. The second one, genAdapMechPkt, is to 

synthesize adaptive gains and sent them to the plant simulator via the common database. 

The pseudo code of the adaptive mechanism program is shown in Figure 7.8. 

1 static void getAdapMechPkt(int k, struct Pkt *x[k-l], 

struct Pkt *e[k-l], struct Pkt *uc[k-l], struct thetaPkt 

*th[k-l]){ 

2 //Receive signals from database 

3 getsig("/var/tmp/fkx.dat", &kx); 

4 getsig("/var/tmp/fxl.dat", &xl); 

5 getsig("/var/tmp/fx2.dat", &x2); 

6 getsig("/var/tmp/fke.dat", &ke); 

7 getsig("/var/tmp/fel.dat", &el); 

8 getsig("/var/tmp/fe2.dat", &e2); 

9 //... 

10 g e t s i g ( " / v a r / t m p / f t h 8 . d a t " , &th8); 
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11 return; 

12 } 

13 void genAdapMechPkt(int k, struct Pkt* x[k-l], struct Pkt* 

e[k-l], struct Pkt* uc[k-l], struct thetaPkt* th[k-l], 

struct thetaPkt *th[k]){ 

14 //compute adaptive gains 

15 th->k = k; 

16 thl[k]=thl[k-l]+Tgamma*(bll*el[k-1]+b21*e2[k-1])*xl[k-

1]/10000000; 

17 th2[k]=th2[k-l]+Tgamma*(bll*el[k-l]+b21*e2[k-1])*x2[k-

1] /10000000; 

18 //... 

19 th8[k]=th8[k-1]-Tgamma*(bl2*el[k-1]+b22*e2[k-1] ) *uc2[k-

1]/10000000; 

2 0 //write to database 

21 fwritethpkt("/var/tmp/adapout.dat", th_k); 

22 settime("/var/tmp/fka.dat", k); 

23 return; 

24 } 

Figure 7.8. Pseudo code of the adaptive mechanism program. 

7.5.1. CGI Program 

As described in the introduction section, CGI programs are the most common 

server-side method for interfacing applications with web servers. Parameter passing will 

be done in both ways of communication: 1) from client (browser) to CGI; and 2) from 

CGI to the browser [30]. There are three steps of parameter passing as described below. 

First, the CGI program communicates with the browser via web server: 

printf("Content-type: text/html\n\n"); 
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.p r in t f ("<html> <head> < t i t l e > Embedded Adaptive Mech 

< / t i t l e > < /head>\n" ) ; 

Second, the CGI program captures the value of the command from the browser: 

unsigned char *strl,*str2, *cmd; 

cmd = getval((unsigned char *)"cmd"); 

We note that the HTML file on the web server uses "hidden" attribute to pass 

variables: 

<input type=hidden name=cmd value="run"> 

The CGI program captures parameters passed by HTML page through 

"getenv(...)" as follows: 

vstr = (unsigned char*) getenv("REQUEST_METHOD"); 

if(vstr==NULL) return 0; 

if(strcmp((const char*)vstr,"POST") == 0) 

Third, the CGI program captures parameters. It finds the length of the 

parameters: 

vstr = (unsigned char*) getenv("CONTENT_LENGTH"); 

if (vstr==NULL || strlen((const char*)vstr)==0)return 0; 

It then captures the parameters from the browser using fgets(...) function in the C 

stdio library as shown below: 

i f (vstr==NULL)return 0; 

fgets((char*)vstr,cl+1,stdin); 

The flow chart of CGI program is shown in Figure 7.9. 
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C End ) 
Figure 7.9. Flow chart of the CGI program. 

The C pseudo code of the CGI program is shown in Figure 7.10. 

1 main () 

2 { 

3 i n t v a l i d ; 
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4 unsigned char *username,*password, *cmd; 

5 //Al: Communicate with the browser 

6 printf ("Content-type: text/html\n\n"); 

7 printf("<html> <head> <title> Embedded Adaptive Mech 

</title> </head>\n"); 

8 //A2: Capture the value of cmd from browser 

9 cmd = getval((unsigned char *)"cmd"); 

10 if(strcmp((const char *)cmd,"run")==0) 

11 { 

12 //A3: Capture value of sampling time 

13 sptime=getval((unsigned char*)"sptiine")/60; 

14 //A4: Capture value of gamma 

15 gamma=getval((unsigned char*)"gamma"); 

16 ,//'A5: Run adaptive mech 

17 while(k< kmax){ 

18 //A6: Waiting for Linux machine sending input signals 

19 while(Igetkt){ 

20 getkt = getcsig("/var/tmp/fkt.dat", &kT) ; 

21 wait(5000); 

22 } 

2 3 //Check time stamp 

24 while(k!=kT){ 

25 getsig("/var/tmp/fkt.dat", &kT); 

26 wait(10000); 

27 } 

28 //Al: Receive signals 

29 getAdapMechPkt(k, &x_kml, &e_kml, &uc_kml, &th_kml); 

30 //A8: Generate adaptive gains 

31 genAdapMechPkt(k, &x_kml, &e_kml, &uc_kml, &th_kml, 

&th_k); 

32 //A9: Step increment 

33 k++; 

34 } 

81 



35 } 

36 else 

37 //AID: Error message 

38 printf ("<p>Sorry, the request is invalid. \.n") ; 

39 //All: Close body and html tags 

40 printf ("</body></html>\n"); 

41 exit (0); 

42 } 

Figure 7.10. Pseudo code of the CGI program. 

7.5.2. NFS Server Setup 

The NFS server resides in a Linux machine. There are three utilities needed to 

run an NFS server: 1) portmap daemon; 2) mount daemon; and 3) NFS daemon. The 

following procedure describes the NFS server setup for Linux Ubuntu machine: 

1) Install the package 

• sudo apt-get install nfs-kernel-server nfs-common 

2) Modify /etc/exports to make the file system 

/ o p t / t e s t 192 .168 .0 .128( rw, f s id=0 , no_root_squash) 

where: 

• /opt/test is the directory to be exported; 

• 192.168.0.128 is the IP address of ARM board (NFS client); 

• rw is to allow client machine to read and write access to the directory; 

• norootsquash is to allow root on the client machine to have the same level 

of access to the files on the system as root on the server. 
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3) Enable the NFS server, which will start multiple services and export the file 

system as shown in Figure 7.11. 

#sudo /etc/init .d/nfs-kernel-server s tar t 

Fii* Edt ^j»*» Terminal Tabs. Help 

iootghosR./nome/^Odn* sudo / e U / i n t f i / ' i f s k e r n e l servet s t a r t 
'* Expor t ing d i r e c t o r i e s f o r NFS ke rne l daemon. . . 

e x p o r t f s : / e t c / e x p o r t s [ 1 ] : N e i t h e r ' s u b t r e e check' o r sno subt ree check s p p c i f 
led for export "192.158.6.^/opt/ test". 

Assuming d e f a u l t behaviour { ' no s u b t r e e ^ c h e c k ' ) . 
NOTE: t h i s d e f a u l t has changed s ince n f s - u t i l s ve rs ion i . e . x 

e x p o r t f s : / e t c / e x p o r t s [ 2 1 : N e i t h e r °subtree check' o 
ied f o r export " 1 9 2 . 1 6 8 . 9 . - * : / o p t / t e s t / h o a n . t x t K . 

Assuming d e f a u l t behaviour { ' n o subt ree c h e c k ' 1 . 
NOTE: t h i s d e f a u l t has changed s ince n f s - u t i l s ve rs ion 1.0.x 

* S t a r t i n g NFS ke m e l 
oot@hoan:/home/hoan# 

program 
109880 

looses 
10S824 
188824 
100883 
100883 
100883 
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111 
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n fs 
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n fs 
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subtree check' specif* 

[ OK 

[ OK 

Figure 7.11. Enable NFS server for Ubuntu machine. 

Finally, we can check status of RPC daemon using the following command: 

#sudo rpcinfo -p 

I I 
Bin Edit y}& 

hoan@aoan:-$ 

*> Terminal 

rpc 
program vers 
loeoea 
168800 
169824 
100024 
168883 
186803 
198803 
18SB21 
196821 
180821 
188983 
16B983 
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168621 
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168821 
188895 
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188885 
109805 
186885 
188005 
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Figure 7.12. Check rpc daemon status. 
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7.6. Building the Kernel Image 

7.6.1. NFS Client Setup 

Firstly, we do "make menuconfig" for configuring the uClinux kernel. Under 

"FileSystems" configuration, we choose "Network File Systems." 

Figure 7.13. Select network file systems. 

Now, under "Network File Systems", the following options should be chosen: 1) 

"NFS File System Support"; and 2) "Provide NFSv3 client support" as shown in Figure 

7.14. This completes the required configuration for the NFS client set up. 
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l - £ ig 

Arrot» keys navigate the menu. <Ehter> se lec t s subgenus >. 3 
Highlighted l e t t ers are hutkey£. Pressing (Y> includes, <H> excludes, 3 
<H> Modularizes features. Press (Esc>(£sc> to e x i t , <?> for Help. 3 
legend: E«3 bui l t - in t 3 excluded <H> module < > module capable 3 

UAAftAAA^AAftft^A^fiaAAAA'AAAftAAAnAflAAAn'AM 3 
3 [ ] oda f i l e system support (aduanced network fs> 
3 1! J nterlfeszo f i l e system support (experimental, replicating f s ) 
3 t—1 N S f i l e system support 
3 l > ] ^ rg^deHre«3 c l i en t support 

3 I J N S seruer support 
3 £ 3 HB f i l e system support (to mount Windows shares e t c . ) 
3 t 3 N P f i l e systef? support (to mount NetWare volumes> 
3 
3 
3 
A 

Figure 7.14. Select NFS supports. 

Secondly, we add user level utility for remote mounting of the server exported 

directory. Since the "mount" under uClinux-dist/user does not work well with Linux 2.4 

kernel, we use the busybox utility. The busybox user level utility needs to be configured 

to include mount and unmount. We choose "BusyBox" configuration under "Vendor 

Settings" and select "mount" and "umount" under "BusyBox configuration." 

Arrott keys navigate the 
Highlighted letters are hotkeys. Pressing 
<lf> modularizes features. Press (EscXEse> to exit , <?> for Help 

„^S^n^.:.-..^*.^.*HiJ*~ift-...A...1..s?slttded __ <H> nodule _< Aj?????^s„<:apable 
UAAAA£AAAAAAAAAAA' 

3 
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3 
3 
3 
3 
3 
3 
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3 
3 
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3 
3 
3 
3 
3 
3 
A 

;*qir3Bm < e,,, > < u.,,. > 3 
AflAAAAAAAftAAAAAAAAAAAAAAftftAAAftflO^ 

AAAAAAftftA^AAAAAAAflAAAflAAAAAAftAAAAAfiAA 
[ 3 n <NEW> 
[ 1 ogger <NEW> 
[ 3 ogname (NEH> 
[ 1 s <NEW> 
[ 3 smod (N6»> 
C 1 ro kedevs (NEU> 
[ 3 m 5sum CNEW> 
[ 3 m d i r (NEM> 
[ ) > f s j m i n i x (NEW) 
t 3 ro nod (NHO 
[ 3 m temp (NEM> 
[ I n dprobe <NBI) 
[ l i t r e (NEW> 
[•1 m unt (NEtO 
( 3 m unt: loop dev ice s <NEtf> 
[ 3 m unt: support / e t c /mtab <HBO 
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[ 3 n <NB» 
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3 idof <W6W1 
3 ing (NEU> 

Figure 7.15. Select the "mount" option. 
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Figure 7.16. Select the "umount" option. 

Lastly, we modify "Makefile" under /user/busybox directory. We make some 

modifications for ROMFS as follows: 

romfs: #install-romfs.sh busybox.links 

syslog-install 

c p $(PROG) $ (ROMFSDIR) /b in /$ (PROG) 

$(ROMFSINST) / b i n / $ ( P R O G ) 

$(SHELL) $< $ ( R O M F S D I R ) / b i n / 

We fix for env, xargs, and rm: 1) change env -i to /bin/env; 2) change xarg to 

/bin/xargs ; and 3) change rm -f to /bin/rm -f. The modifications are shown in Figure 

7.17. 
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Figure 7.17. Modifications for Busybox Makefile. 

7.6.2. Enabling the CGI Protocol 

The CGI protocol is built into the Boa web server by default for the uClinux 

distribution. We do the following two steps to enable the CGI protocol: 1) modify 

"boa.conf' to make sure "cgi-bin" is mapped to Boa document root directory; and 2) 

customize Boa "Makefile" to make sure cgi program is properly compiled, built, and 

placed at the proper directory of the kernel image. 

In the first step, we modify the "boa.conf configuration file. We note that the 

configuration file for Boa is located in /uClinux-dist/user/boa/src directory. The first 

thing is to map the virtual location of/cgi-bin/ to the actual location /usr/lib/cgi-bin/. We 

usually set /etc/ as the document root of Boa server; hence, we can use it as the physical 
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location for the CGI program. We edit "boa.conf" by replacing the line of the Boa server 

root location as 

ScriptAlias /cgi-bin/ /etc/ 

In the final step, we modify Boa "Makefile" to build the CGI program to the 

kernel image as follows: 

1) Add one line to define "mycgi" as the CGI executable to be built: 

TESTEXEC = m y c g i 

2) Add one line to define "mycgi.o" as the temporary object file of "mycgi" 

during compilation: 

TESTOBJS = mycgi.o 

3) Add multiple lines to define the way to build "mycgi" including depending 

object ("mycgi.o"), the compiler ("$(CC)"), and the referenced libraries as: 

$(TESTEXEC): $(TESTOBJS) 

$(CC) $(LDFLAGS) - o $@ 

$(TESTOBJS) $(SSL_LIBS) $(EXTRALIBS) $(LDLIBS) 

4) Add multiple lines under "romfs" entry to define the built program and other 

files to the file systems: 

romfs: 

$(ROMFSINST) /bin/$(EXEC) 

$(ROMFSINST) /etc/$(CONFIG) 

$(ROMFSINST) /etc/$(MIME) 

$(ROMFSINST) /etc/$ (INDEX) 

$(ROMFSINST) /etc/$(TESTEXEC) 

88 



$(ROMFSINST) /etc/embedded_adaptive_controller.html 

$(ROMFSINST) /etc/logo.gif 

$(ROMFSINST) /etc/image.jpg 

$(ROMFSINST) / e t c / c l i p . m p g 

7.6.3. Enabling the Boa Web Server 

Enabling the Boa web server from uClinux distribution takes 3 steps: 1) 

customize kernel settings, customize vendor/user settings, and update default vendor 

settings; 2) select networking options and select network device support; and 3) establish 

a LAN connection of the ARM board and a laptop through a router. 

In the first step, when performing "make manuconfig", make sure to check the 

following three boxes: 

1) Customize kernel settings; 

2) Customize vendor/user settings, 

3) Update default vendor settings; 

In the second step, we select networking options and select network device 

support: 

1) TCP/IP networking; 

2) IP kernel level autoconfig; 

3) IP DHCP support; 

4) IPBOOTP 

5) IPRARP 

Then exit from the networking options, we enter network device support and 

check: 
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1) Ethernet (10 or 100 Mbit) 

2) RTL8019AS 

At the application settings customization, we go to "Network applications" screen 

and check: 

1) Boa 

2) dhcpcd-new 

3) dhclient 

4) ifconfig 

5) inetd 

6) ping 

7) portmap (to be used for NFS port mapping) 

8) route 

9) routed 

10)telnetd 

ll)tftpd 

Finally, we build the kernel image using the command "make" from the console 

terminal. 

Once the kernel image is ready, it can be loaded into the ARM board by using use 

Trivial File Transfer Protocol (TFPT) from either Windows or Linux computer. If a 

Windows machine is used, we run the TFTP utility "tftp32.exe" under the 

/Cygwin/tftpboot directory. Otherwise, the following command is to enable TFTP server 

for Linux machines: 
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root# /etc/init.d/xinetd start 

Figure 7.18. Start "xinetd" for Linux Ubuntu. 

We then copy the kernel image to the /tftpboot directory. When power up the 

ARM board, it automatically loads and run the kernel image. 

Alternately, we can manually load and run the kernel image using the following 

commands in the console terminal (Linux machine) or the hyperterminal (Windows 

machine): 

tftp 0x0c008000 linux_bootram.bin 

go 0x0c008000 
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RRMboot 1.8.2 (Aug 12 2084 - 10:43:21) 

RRMboot code: 0c700000 -> 0c719860 
CFG_ENV_SIZE=00001000,CFG_ENVJDDR=00040000. 
DRAM Configuration: 
Bank tt0: 0C0O0000 8 MB 
Flash Configuration: 
Flash: 2 MB 
»-* Using default environment 
Hit any key to stop autoboot: 0 
S3C44B0 H tftp 0X0C008000 linux_bootram.bin 
RTL8019HS ethernet driver vl.0 2003/09/18 
ARP broadcast 1 
eth addr: 00:15:c5:7b:80:86 
TFTP from server 192.168.0.7; our IP address is 192.168.0.128 
Filename 'linux_bootram.bin'. 
Load address: 0xc008000 
Loading: 

done 
Bytes transferred = 1431920 (15d970 hex) 
S3C44B0 « go 0x0c008000_ 

Figure 7.19. Manually load the kernel image to the ARM board. 

i'--.l lly|if-i K irnir^i 

File Edit View Call Transfer Help 

a & *•••- s "0 a i f 

Command: mkdir /var/run 
Command: mkdir /var/lock 
Command: ifconfig lo 127.0.0.1 
Command: route add -net 127.0.0.0 netmask 255.255.255.0 
Command: dhcpcd -p -a eth0 & 
[111 
Command: ifconfig eth0 192.168.0.128 
Command: /bin/boa -c /etc & 
[13] 
Command: ps 
PID PORT STAT SIZE SHARED XCPU COMMAND 
1 S 37K 0K 48.5 init 
2 S 0K 0K 0 
3 S 0K 0K 0 
4 S 0K 0K 0 
5 S 0K 0K 0 
6 S 0K 0K 0 
7 R 72K 0K 99 
11 Z 0K 0K 0 
13 S 136K 0K 0 

0 keventd 
0 ksoftirqd CPU0 
0 kswapd 
0 bdflush 
0 kupdated 
9 /bin/sh /etc/rc 
0 dhcpcd 
0 /bin/boa -c /etc 

Execution Finished, Exiting 

Sash command shell (version 1.1.1) 
/> _ 

In 

Figure 7.20. Manually run the kernel image. 

We are now able to ping ARM board from the host and to ping the host from 

ARM board. With ping working, we can now start the Boa server as follows: 

/> /b in /boa -c / e t c & 
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where /etc is the internet document root directory of the Boa web server; and "&" makes 

the Boa process run in the background. 

We can use "ps" to check out its status as shown in Figure 7.21. 

lc*r H y p o lermiridl 

File Edit View Call Transfer Help 

p cs . S O B f 
- - . .....—...... ...... .„... — . ,.„. 

Command: mkdir /uar/log 
Command: mkdir /var/run 
Command: mkdir /var/lock 
Command: ifconfig lo 127.0.6 
Command: route add -net 127. 
Command: dhcpcd -p -a eth0 i 
til] 

""'"•'"™ u u — 

.1 
0.0.0 netmask 255.255.255.0 lo 

Command: ifconfig eth0 192.168.0.128 
Execution Finished, Exiting 

Sash command shell (version 
/> /bin/boa -c /etc & 
[141 
/> ps 
PID PORT STAT SIZE SHARED 
1 S 37K 0K 
2 S 0K 0K 
3 S 0K 0K 
4 S 0K 0K 
5 S 0K 0K 
6 S 0K 0K 
13 S0 R 71K 0K 
14 S0 S 136K 0K 

/> 

|Connected 0:10:22 : Auto detect 1152008-N-l 

1.1.1) 

KCPU COMMAND 
0.2 init 
0 
0 
0 
0 
0 
0 
7 

0 keventd 
0 ksoftirqd_CPU0 
0 kswapd 
0 bdflush 
0 kupdated 
2 /bin/sh 
0 /bin/boa -c /etc 

MUM 

Figure 7.21. Process status. 

7.7. Testing 

7.7.1. Test Procedure 

The test procedure for the whole system is as follows: 

1) Establish the serial communication between a computer and the ARM board 

using serial communication port 0. 

2) On the PC side, run hyper terminal software by start > all program > 

accessories > communications > hyper terminal. 
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3) Set up a LAN network consisting of the ARM board, the NFS server (Linux 

machine), the plant simulator (PC/ Linux machine), and engineering stations 

(PC/ Linux machine). 

4) Power up the ARM board, the hyper terminal console will display the 

following information: 

• TFTP service loading the kernel image. 

• Uncompressing Linux and booting the kernel. 

• Shell invoked to run the boot script file: /etc/rc. 

5) Enable Boa and run commands for portmap and NFS mount as depicted in 

Figure 7.22. 

• test - HyperTermin 
File Edit View Call Tran 

D G» *; S * S if 

* j ; ," . ; ' ! 

5fw help 

[11] 
Command: ifconfig ethO 192.168.0.128 
Command: boa -c /etc 8: 
[13] 
Command: portmap & 
[14] 
Command: ps 
PID PORT STAT SIZE SHARED %CPU COMMAND 
1 S 37K 0K 33.3 init 
2 S OK OK 0 
3 S OK OK 0 
4 S OK OK 0 
5 S 0K OK 0 
6 S 0K OK 0 
7 R 72K OK 78 
11 Z OK OK 45 
13 S 136K OK 0 
14 S 91K OK 0 

0 keventd 
0 ksoftirqd_CPU0 
0 kswapd 
0 bdflush 
0 kupdated 
5 /bin/sh /etc/rc 
0 dhcpcd 
0 boa -c /etc 
0 portmap 

Command: busybox mount -t nfs -o rsize=1024,wsize=1024 192.168.0.20:/opt/test /v 
ar/tmp 
Execution Finished, Exiting 

Sash command shell (version 1.1.1) 
/> _ 

Connected 0:02:38 Auto detect i 115200 8-N-l NUM 

.*v-

:̂ 

Figure 7.22. Mount network files for the NFS client. 
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Mount the network file system for NFS client (i.e., ARM board) using the 

following command: 

busybox mount - t n f s - o r s i z e = 1 0 2 4 , w s i z e = 1 0 2 4 

1 9 2 . 1 6 8 . 0 . 8 : / o p t / t e s t / v a r / t m p 

where 192.168.0.8 is the IP address of NFS server; /opt/test is the exported 

directory; and /var/tmp is the local directory on NFS client. 

Ping the ARM board from the Linux machine and vice versa. 

| g haan@hoan: ~ 

file Edit ifiew Terminal Tabs Jdelp 
hoant«oan:~$ ping mi:m.v:m 
PING 192.168.6.128 (192.168 
64 bytes from 192.168.8.128 
64 bytes from 192.168.8.128 
54 byles Hum 192.168.9.128 
64 bytes from 192.168.6.128 

8.128) 56(8-1) bytes of data. 
lcmp_seq=l ttl=255 tisse=l.47 ms 
icmp_seq=2 t t 1=255 twe=1.36 ms 
leap seq=3 LLl=255 Uine=1.41 mi 
icmp seq=4 tt1=255 time=1.4B ms 

--• 197.168.6.178 ping statist ics ---
4 packets transmitted, 4 received, ®% packet loss, time 3 
rtt min/avg/iBax/rsdev = 1.368/1.417/1.479/8.948 as 
hoan@hoan:--$ | 

Figure 7.23. Ping ARM board from the Linux machine. 

I Oil hiypL i Icirmiidl 

File Edit View CaB Transfer Help 

D G? aa f 
/bin> ping 192.168.0.8 
PING 192.168.0.8 (192.168 
64 bytes from 192.168. 
64 bytes from 192.168. 
64 bytes from 192.168. 
64 bytes from 192.168. 
64 bytes from 192.168. 
64 bytes from 192.168. 
64 bytes from 192.168. 
64 bytes from 192.168. 
64 bytes from 192.168. 
64 bytes from 192 
— 192.168.0.8 ping s 
59 packets transmitted 
round-trip min/aug/max 
/bin> 

0.8): 
icmp 
icmp. 
icmp. 
icmp. 
icmp. 
icmp. 
icmp. 
icmp. 
icmp. 

56 dat 
_seq=0 
_seq=l 
_seq=2 
_seq=3 
_seq=4 
_seq=5 
_seq=6 
_seq=7 
_seq=8 

a bytes 
ttl=64 t 
ttl=64 t 
ttl=64 t 
ttl=64 t 
ttl=64 t 
ttl=64 t 
ttl=64 t 
ttl=64 t 
ttl=64 t 

ime=20 
ime=10 
ime=10 
ime=10 
ime=10 
ime=10 
ime=10 
ime=10 
ime=10 

.0 ms 

.0 ms 

.0 ms 

.0 ms 

.0 ms 

.0 ms 

.0 ms 

.0 ms 

. 0 ms 

tatistics 
59 packets received, 
10.0/10.1/20.0 ms 

0JS packet loss 

Figure 7.24. Ping the Linux machine from the ARM board. 
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8) A user using a web browser to open the main GUI page of the Boa web 

server at the URL location <http://l 92.168.0.128/embedded_adaptive_ 

controller.html>. 

Main GUI of Embedded Adaptive Controller - Mozilla Firefox 
File Edit View History Bookmarks lools (Help 

$01 * C s- J http//192168.0^ 

J Main GUI of Embedded ... 

SAN iOSfe STA' 
OHIVERSiTY 

Embedded Adaptive Controller 

Please enter adaptive mechanism parameters. 

Sampling time (T, msec) 110 

Adaptive factor (gamma) 11000 

Run! Reset 

Done 

Figure 7.25. Open the main page of Boa web server. 

9) Set sampling time and adaptation rate y and click "Run" to submit 

information to the CGI program. 

10) At the same time, run the plant simulator on a Windows/ Linux computer 

and start testing the embedded adaptive system as shown in Figure 7.26. 
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t ie edit View Terminal TaJ3s 

hcangftoaa : - / t hes i s^P lan ts i i » i 
Time = 6T: 
Plant parameters: 
A = -7.129180 -6.954586 
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u l [ 8 ] = 0.517838 
IIJ [HI = (J.iHHHhH 
xi[8] = B.Eeeese 
x2[ei = s.csesas 
M l [8] - 6.666960 
atr ia l = e.eeeooo 
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Plant parameters: 
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. / adap t i vecamro l 
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6,66G855 
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-0.629683 
H HHI-li4*s 

Figure 7.26. Start the plant simulator in a Linux machine. 

11) The testing results can be observed at either the web browser (Figure 7.27) 

or the plant simulator's consol (Figure 7.28). 
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Figure 7.27. Testing result displayed on the web browser. 
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file Edit \/iew Terminal tabs Help 

Get t i i i ie: :Fress any key to con t inue . . . . 2} 
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Figure 7.28. Testing result displayed on the plant simulator's monitor. 

7.7.2. Test Results 

As aforementioned, all testing outputs are stored in the shared database, which 

can be accessed from any computer of the LAN network. The output data files are listed 

in Table 7.3. 

Table 7.3. Structured output data files. 

No. 

1 

2 

3 

4 

5 

6 

7 

8 

File name 

t_x.dat 

t_xm.dat 

t_e.dat 

t_uc.dat 

t_u.dat 

t_theta.dat 

t_y.dat 

t_ym.dat 

Data description 

Plant state x\ and X2. 

Reference state xm\ andxm2-

Error variables e\ and ej. 

Reference signals uc\ and uci-

Control signals u\ and U2. 

Adaptive gains 6\ - 0%. 

Controlled outputs y\ and_y2. 

Reference outputs ym\ and_yOT2-
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The plant simulator has varying dynamics by randomized parameters and 

interfered by unpredictable disturbances. The embedded adaptive controller synthesizes 

adaptive gains at every step time. We find that the plant states always keep track of the 

reference states all the testing time as shown in Table 7.4. 

Table 7.4. Output data of state variables. 

k 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

Time 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 

1.1 

1.2 

1.3 

1.4 

1.5 

1.6 

1.7 

1.8 

X\ 

0.00000 

-0.00521 

-0.00667 

-0.00817 

-0.00764 

-0.00770 

-0.00815 

-0.00738 

-0.00650 

-0.00665 

-0.00641 

-0.00623 

-0.00645 

-0.00594 

-0.00587 

-0.00551 

-0.00514 

-0.00587 

-0.00641 

X2 

0.00000 

-0.00037 

-0.00151 

-0.00291 

-0.00447 

-0.00580 

-0.00713 

-0.00862 

-0.00986 

-0.01091 

-0.01202 

-0.01313 

-0.01403 

-0.01503 

-0.01586 

-0.01667 

-0.01748 

-0.01817 

-0.01903 

%m\ 

0.00000 

-0.00523 

-0.00687 

-0.00730 

-0.00731 

-0.00719 

-0.00702 

-0.00685 

-0.00669 

-0.00652 

-0.00637 

-0.00622 

-0.00608 

-0.00595 

-0.00582 

-0.00569 

-0.00558 

-0.00546 

-0.00536 

Xm2 

0.00000 

-0.00039 

-0.00153 

-0.00289 

-0.00427 

-0.00563 

-0.00693 

-0.00817 

-0.00936 

-0.01049 

-0.01158 

-0.01261 

-0.01359 

-0.01453 

-0.01543 

-0.01628 

-0.01710 

-0.01788 

-0.01862 
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19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

1.9 

2 

2.1 

2.2 

2.3 

2.4 

2.5 

2.6 

2.7 

2.8 

2.9 

3 

3.1 

3.2 

3.3 

3.4 

3.5 

3.6 

3.7 

3.8 

3.9 

4 

4.1 

4.2 

4.3 

4.4 

4.5 

4.6 

-0.00522 

-0.00480 

-0.00564 

-0.00550 

-0.00539 

-0.00547 

-0.00528 

-0.00496 

-0.00503 

-0.00430 

-0.00472 

-0.00441 

-0.00491 

-0.00511 

-0.00390 

-0.00446 

-0.00383 

-0.00369 

-0.00381 

-0.00435 

-0.00441 

-0.00439 

-0.00447 

-0.00373 

-0.00418 

-0.00404 

-0.00373 

-0.00440 

-0.01982 

-0.02051 

-0.02115 

-0.02190 

-0.02251 

-0.02311 

-0.02367 

-0.02427 

-0.02476 

-0.02525 

-0.02558 

-0.02603 

-0.02641 

-0.02687 

-0.02732 

-0.02756 

-0.02781 

-0.02813 

-0.02832 

-0.02862 

-0.02894 

-0.02916 

-0.02952 

-0.02980 

-0.02995 

-0.03014 

-0.03035 

-0.03052 

-0.00526 

-0.00516 

-0.00507 

-0.00498 

-0.00489 

-0.00481 

-0.00474 

-0.00466 

-0.00460 

-0.00453 

-0.00447 

-0.00440 

-0.00435 

-0.00429 

-0.00424 

-0.00419 

-0.00414 

-0.00410 

-0.00405 

-0.00401 

-0.00397 

-0.00393 

-0.00390 

-0.00386 

-0.00383 

-0.00380 

-0.00377 

-0.00374 

-0.01933 

-0.02000 

-0.02065 

-0.02126 

-0.02185 

-0.02241 

-0.02294 

-0.02345 

-0.02394 

-0.02440 

-0.02484 

-0.02526 

-0.02566 

-0.02605 

-0.02641 

-0.02676 

-0.02710 

-0.02741 

-0.02772 

-0.02800 

-0.02828 

-0.02854 

-0.02879 

-0.02903 

-0.02926 

-0.02948 

-0.02969 

-0.02989 
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47 

48 

49 

50 

4.7 

4.8 

4.9 

5.0 

-0.00453 

-0.00436 

-0.00385 

-0.00428 

-0.03078 

-0.03109 

-0.03139 

-0.03161 

-0.00371 

-0.00369 

-0.00366 

-0.00364 

-0.03007 

-0.03025 

-0.03043 

-0.03059 

0 

-0 01 
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Figure 7.29. Variable states during simulation of the embedded adaptive controller. 

As introduced in Sec.7.1.2, the output data of the embedded adaptive controller 

will be compared with the result of software models, the MATLAB Simulink program 

and the C++ executable. We note that MATLAB and C++-based simulation programs 

have the same results. The comparison result is shown in Table 7.5. We find that all data 

are almost identical. 
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Table 7.5. Comparison result between the embedded and software models. 

k 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

Time 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 

1.1 

1.2 

1.3 

1.4 

1.5 

1.6 

1.7 

1.8 

1.9 

2 

2.1 

2.2 

2.3 

2.4 

2.5 

Ax\ 

0.0000 

0.0007 

0.0006 

-0.0006 

-0.0009 

-0.0011 

-0.0008 

0.0005 

0.0004 

-0.0001 

0.0001 

-0.0004 

-0.0008 

-0.0001 

0.0000 

0.0003 

0.0006 

0.0002 

-0.0002 

0.0006 

0.0002 

-0.0005 

-0.0004 

-0.0005 

-0.0004 

-0.0008 

A*2 

0.0000 

0.0000 

0.0001 

0.0001 

-0.0001 

-0.0002 

-0.0002 

-0.0003 

-0.0003 

-0.0002 

-0.0002 

-0.0003 

-0.0002 

-0.0003 

-0.0003 

-0.0003 

-0.0002 

-0.0001 

-0.0002 

-0.0002 

-0.0002 

-0.0002 

-0.0002 

-0.0002 

-0.0002 

-0.0002 

Axm\ 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

Axm2 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 
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26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

2.6 

2.7 

2.8 

2.9 

3 

3.1 

3.2 

3.3 

3.4 

3.5 

3.6 

3.7 

3.8 

3.9 

4 

4.1 

4.2 

4.3 

4.4 

4.5 

4.6 

4.7 

4.8 

4.9 

5.0 

-0.0010 

-0.0009 

0.0004 

0.0002 

-0.0001 

-0.0009 

-0.0006 

0.0006 

0.0001 

0.0005 

0.0008 

0.0006 

-0.0005 

-0.0001 

-0.0008 

-0.0013 

0.0003 

-0.0002 

-0.0004 

-0.0007 

-0.0014 

-0.0006 

-0.0007 

-0.0001 

-0.0010 

-0.0003 

-0.0004 

-0.0005 

-0.0003 

-0.0003 

-0.0003 

-0.0004 

-0.0004 

-0.0002 

-0.0001 

-0.0002 

0.0000 

0.0000 

0.0000 

0.0001 

-0.0001 

-0.0002 

-0.0002 

-0.0002 

-0.0002 

-0.0003 

-0.0005 

-0.0006 

-0.0008 

-0.0008 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 
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CHAPTER 8 

CONCLUSION AND FUTURE WORK 

8.1. Conclusion 

Adaptive control is applied for solving the control problem of the gasoline 

refinery with high nonlinearity and unpredictable disturbances. For this class of control 

problems, conventional controllers are very limited and have a lot of deficiencies. 

The adaptive mechanism governed by an adaptation law is the heart of any 

adaptive controller. We establish the adaptation law for the plant control system using 

Lyapunov stability theory. This adaptation law is accurate for a generic second order 

plant; hence, it is obviously applicable for adaptive control of other second order systems 

in different realms such as chemical industry, military industry, and robotics. 

Adaptive control system design is much complicated than conventional controller 

design due to the complexity of adaptive structure and the issue of unknown or time-

varying parameters. We use an effective methodology for system modeling and design 

using state space. All computational works are based on matrix manipulation, which is 

fully supported by MATLAB. We can apply this methodology to extend the result to 

higher order systems. 

We have shown the design - verification flow with various phases: 1) 

mathematical model; 2) process calculation and modeling; 3) controller design in both 

continuous-time and discrete spaces; 4) controller simulation; and 5) in-hardware 

implementation and testing. The mathematical model, which is given in term of a set of 

mathematical equations of energy and material balances, provides insightful 
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understanding of the dynamic behaviors of the plant. The process calculation is 

necessary to obtain steady-state data for control system design in later phases. The 

reference model is constructed with mathematical approach and proven to be stable and 

ensure the plant's steady-state properties. 

We design the adaptive controller in continuous-time space and then convert it 

into discrete-time space using z- transform. The discrete-time version must be 

accomplished prior to implementation of the adaptive design on digital computers. We 

successfully design and implement the embedded adaptive controller using ARM 

processor. We apply the state-of-the-art testing technique in which we employ NFS and 

concept of distributed system over an Ethernet network. We have overcome the new 

challenges, which require a reliable closed control loop and real-time data transfer 

between the controller and the plant simulator. As a result, the embedded adaptive 

controller remotely controls the plant simulator on a network node. 

8.2. Future Work 

First, we can design embedded adaptive controllers using combination of 

Lyapunov theory and hyperstability concept, which give better rejection of disturbances 

and time-varying parameter problems [34]. Many authors concern this perspective, for 

example, Nguyen and Nitin [10] design an adaptive control system with hyperstability in 

continuous-time space. We can extend the existing works to discrete-time space and use 

the same methodology proposed in the thesis to carry out in-hardware implementation. 

Second, we can build a real pilot plant. It is costly; however, we can carry out 

experiments and measure actual control performance. The experimental scheme is 
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proposed as displayed in Figure 9.1. Ideally, the composition is continuously measured 

by an online analyzer or gas chromatography. However, we can select tray temperatures 

as secondary measurements, which indicate product concentration in an indirect way. 

The reason is to reduce equipment cost. Temperatures Ta and Tp are the most sensitive 

temperatures, which are best related to product concentrations x# and x/> 
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Figure 9.1. Block diagram of the experimental pilot plant. 

The proposed scheme includes three main parts. The first part is a distillation 

column in laboratory. The second part is an embedded adaptive controller implemented 

in a PC or microcontroller. The third part is a programmable logic controller (PLC) 

system for handling control valves Vi and V2. 
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Third, adaptive mechanism can be programmed in a PLC. By using this concept, 

we can upgrade existing conventional controllers using PLCs just by modification of their 

programs. This is important to save equipment and engineering cost. 
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B, x. 
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measurement 

J 

Figure 9.2. Adaptive mechanism programmed in a PLC. 

Fourth, we can design adaptive controller as System on a Chip (SoC) which 

contains the complete system. SoCs are developed with Verilog or any HDL language 

and can be implemented using a Field-Programmable Gate Array (FPGA) such as an 

Ethernet-supported Xilinx FPGA board. 
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Figure 9.3. Integrated testing environment for SoCs and other digital systems. 

Finally, we can extend testing environment introduced in Sec. 7.1.3 by integrating 

SoC adaptive controller and pilot plant as shown in Figure 9.3. The embedded adaptive 

controller remotely controls the pilot plant over the LAN network. Obviously, we can 

deploy this testing methodology for validation of SoCs and other digital systems, 

particularly distributed systems. 
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APPENDIX A: DISTILLATION CONTROL TECHNIQUES 

A.l. Column Pressure Control 

Most distillation control systems, either conventional or advanced, assume that 

distillation columns operate at a constant pressure. Maintaining constant operation gives 

stable operation and increases overall plant profit. 

It is important to prevent pressure of a distillation column from changing rapidly, 

either up or down. Sudden decreases in pressure can cause flashing of the liquid on the 

trays; and the excessive vapor rate can flood the column. Sudden increase in pressure can 

cause condensation of vapor; and the low vapor rates can cause weeping and dumping of 

trays. 

We consider again the schematic of distillation column, as shown in Figure 2.1. 

The overhead vapor after being heat removal in the condenser will consist of two phases, 

liquid and vapor. The objective is to condense maximum quantity of distillate (i.e., 

maximize the profit) at its true boiling point to minimize the energy cost for condenser 

duty. There is a pressure balance established between the column top and the reflux 

drum for the purpose of stabilizing the column pressure. Several common types of 

column pressure control are described in the following sections. 

A.l.l. Coolant Manipulation 

As shown in Figure A. 1, the condenser is normally a heat exchanger using coolant 

(e.g., cooling water or refrigerant). The control valve adjusts the flow rate of coolant to 

obtain the desired condenser duty. 
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Figure A. 1. Column pressure control using coolant manipulation. 

Pressure signal from the pressure sensor installed in the overhead vapor flow is 

transmitted to the pressure controller. The control output, which is a function of the error 

signal based on the deviation of the measured pressure from the set point, supplies 

controlled pressurized air (20.7 - 103.4 kPa) to the pneumatic valve actuator. As the 

result, the coolant flow rate is adjusted to the desired value. If the overhead flow rate 

increases (or decreases), the coolant flow rate will increase (or decrease) 

correspondingly. This maintains the column pressure stable. 

A. 1.2. Vent-bleed 

As shown in Figure A.2, inert gas is added or bled from the system using a dual 

split-ranged valve system so that under normal conditions, both control valves are closed. 

The reflux flow must be considerably sub-cooled in order to keep the product 

concentration in the vent gas stream low. The reflux temperature is directly affected by 

the coolant temperature. 
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Figure A.2. Column pressure control using vent bleed. 

The cooling capacity of condenser is preset. When the vapor rate increases 

significantly, it is not totally condensed. As a consequence, the pressure in the reflux 

drum will increase. To stabilize it, the pressure controller will command the control 

valve VI to vent the exceed vapor. 

In contrast, the vapor rate is condensed too much, which causes a pressure drop at 

the top column section. Consequently, the control valve VI is gradually closed; and the 

control valve V2 is slightly open. 

A.2. Column Level Control 

The two liquid levels that must be controlled are in the reflux drum and column 

base. The levels are controlled in different ways, depending on a number of factors [35]. 

If the column is part of a series of units in a plant, it is usually important from a 

plant-wide control viewpoint to use the liquid levels as surge capacities to reduce effect 

of disturbances. In such an environment, it is usually preferable to control the base level 

with the bottoms flow and the reflux drum level with the distillate flow. 
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Figure A.3. Some typical types of reboiler. 

In high reflux ratio columns (i.e., LID > 5), using distillate stream to control level 

would require large changes in D for fairy small changes in L or V. Thus, the 
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disturbances would be amplified in the distillate flow rate. The reflux drum level should 

be controlled by reflux in accordance with the Richardson's rule-we always control level 

with the level with the largest stream [36]. 

In practice, we should care of potential problems with "inverse response" that 

may happen and cause the plant unstable. An increase in reboiler heat input can quickly 

increase the fraction of vapor. In a thermo-siphon reboiler, this can push liquid back into 

the base of the column, resulting in a momentary increase in the liquid level in the 

column base. In a kettle reboiler, the increase in vapor fraction causes the material in the 

reboiler to swell and more liquid flows over the outlet weir into the surge volume in the 

end of the reboiler. Therefore, the liquid level in this section momentarily increases. 

Various reboiler types are shown in Figure A.3. 

A.3. Methods of Distillation Column Control 

A.3.1. Degrees of Freedom of Distillation Process 

The degrees of freedom of a processing system are the independent variables that 

must be specified in order to define the process completely. Consequently, the desired 

control of a process will be achieved when and only when all the degrees of freedom 

have been specified. 

The mathematical approach to finding the degrees of freedom of any process is to 

total all the variables and subtract the number of independent equations [12]. However, 

there is a simple approach developed by Luyben [35]. In Figure 2.1, there are five 

control valves, one on each of the following streams: distillate, reflux, coolant, bottoms, 

and heating medium. The feed stream is considered being set by the upstream process. 
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So this column has five degrees of freedom. But inventories in any process always must 

be controlled. Inventory loops involve liquid levels and pressures. This means that the 

liquid level in the reflux drum, the liquid level in the column base; and the column 

pressure must be controlled. 

If we subtract the three variables that must be controlled from five, we end up 

with two degrees of freedom. Thus, there are two and only two additional variables that 

can be controlled in the distillation column. 

Notice that we have made no assumptions about the number or type of chemical 

components being distilled. Therefore, a simple, ideal, binary system has two degrees of 

the freedom; and a complex, multi-component, non-ideal distillation system also has two 

degrees of freedom. 

A.3.2. Control Structures 

The manipulated variables and controlled variables of a distillation column are 

displayed in Table A. 1. 

Table A. 1. Manipulated variables and controlled variables of a distillation column. 

1 

2 

3 

4 

5 

Controlled variables 

Concentration (temperature) of distillate 

Concentration (temperature) of bottoms 

Column pressure 

Liquid level in the column base 

Liquid level in the reflux drum 

Manipulated 

variables 

Reflux flow rate 

Reboiler duty 

Condenser duty 

Bottoms flow rate 

Distillate flow rate 

Control valve 

location 

Reflux flow (VI) 

Heat flow (V4) 

Coolant flow (V3) 

Bottoms flow (V5) 

Distillate flow (V2) 
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The column has 2 degrees of freedom; hence, a control structure is a selective 

combination of two manipulated variables. As shown in Table A.2, there are many 

common control structures are used in practical distillation [37]. 

Table A.2. Typical column control structures. 

1 

2 

3 

4 

5 

6 

7 

8 

Control Structure 

D-V(or D-QB) 

L-V(or L-QB) 

L-B 

L/D-V 

L/D-B 

D-V/B 

L-V/B 

L/D-V/B 

Role of valve 

D 

(V2) 

SC 

IC 

IC 

IC 

IC 

SC 

IC 

IC 

L 

(VI) 

IC 

SC 

SC 

SC 

SC 

IC 

SC 

SC 

QB 

(V4) 

SC 

SC 

IC 

SC 

IC 

SC 

SC 

SC 

B 

(V5) 

IC 

IC 

SC 

IC 

SC 

IC 

IC 

IC 

Manipulated variable 

Inventory 

Control (IC) 

L, B 

D,B 

D,V 

D,B 

D,V 

L,B 

D,B 

D,B 

Separation 

Control (SC) 

D,V 

L,V 

L, B 

L/D,V 

L/D, B 

D,V/B 

L,V/B 

L/D, V/B 

For a binary distillation, the most common structures are the energy balance 

structure, L-V, and the material balance structure, D-V and L-B. Most industrial 

distillation columns on two-point control are probably operated by one of these control 

structures. 

Selecting a control structure is a complicated problem with many facets. It 

requires looking at the column control problem from several perspectives: 

1) A local perspective considering the steady state characteristics of the column; 

2) A local perspective considering the dynamic characteristics of the column; 
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3) A global perspective considering the interaction of the column with other 

units in the plant. 

A.3.3. Energy Balance Structure 

As shown in Figure A.4, the energy balance structure, which is usually called L—V 

structure, can be considered to be the standard control structure for dual composition 

control of distillation. In this control structure, the reflux flow rate L and the boilup 

manipulator V are used to control the "primary" outputs associated with the product 

specifications. The liquid holdups in the reflux drum and in the column base, known as 

the "secondary" outputs, are usually controlled by distillate flow rate D and the bottoms 

flow rate B. 

Cf 

I » - § I -

N/1 

<M^ 
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-© 

1XB 

D y-r 

Figure A.4. Energy balance structure. 
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A.3.4. Material Balance Structure 

Two other common control structures are the material balance structures D-V and 

L-B. As shown in Figure A.5, the D-V structure seems very similar to the L—V structure. 

The only one difference between the L-Vand D-V structures is that the roles of L and D 

are switched. 

Figure A.5. D-V control structure. 

The L-B structure is depicted in Figure A.6. There exists a possibility to occur an 

inverse response between reboiler liquid level and boilup flow, which causes difficulties 

for inventory control in the bottom section. This structure is very sensitive to 

disturbances in feed. 
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Figure A.6. L-B control structure. 
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APPENDIX B: PROCESS CALCULATION 

B.l. Basic Engineering Data 

The plant feed stock is condensate, whose actual composition always fluctuates 

around the average composition as shown in Table B.l [44]. 

Table B.l. Condensate composition analyzed by gas chromatography. 

Component 

Propane 

Normal Butane 

Isobutane 

Isopentane 

Normal Pentane 

Hexane 

Heptane 

Octane 

Nonane 

Normal Decane 

n-CHH24 

n-C12H26 

Cyclopentane 

Methylclopentane 

Benzene 

Toluen 

O-Xylene 

E-Benzene 

Mole % 

0.01 

19.99 

26.65 

20.95 

10.05 

7.26 

3.23 

1.21 

0.0 

0.0 

1.94 

2.02 

1.61 

2.02 

1.61 

0.00 

0.00 

0.00 
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Table B.2. Distillation data. 

Cut point 

(%) 

0.00 

1.00 

2.00 

5.00 

7.50 

10.00 

15.00 

20.00 

25.00 

30.00 

35.00 

40.00 

45.00 

50.00 

55.00 

60.00 

65.00 

70.00 

75.00 

80.00 

85.00 

90.00 

95.00 

98.00 

99.00 

100.00 

TBP 

(°C) 

-1.44 

-0.80 

1.61 

10.56 

18.02 

24.67 

29.57 

31.58 

33.59 

35.99 

39.12 

43.94 

50.00 

58.42 

66.23 

69.51 

70.77 

75.91 

86.06 

98.63 

100.57 

115.54 

131.07 

148.30 

159.91 

168.02 

ASTM D86 

(°C) 

31.22 

31.63 

32.94 

37.72 

40.29 

45.29 

47.84 

48.86 

49.89 

51.09 

52.92 

55.83 

59.64 

65.19 

70.38 

72.55 

73.34 

76.68 

84.11 

94.20 

95.91 

109.54 

124.024 

140.20 

146.78 

156.75 
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Product specifications are given in Table B.3 [44]. 

Table B.3. Gasoline quality requirement. 

Properties 

1. Octane Number 

2. Lead Content (g/1) 

3. Distillation (deg C) : 

IBP 

10% vol 

50% vol 

90% vol 

FBP 

Residue (% vol) 

4. Corrosion. 3h/50°C 

5. Existent Gum (mg/100ml) 

6. RVP @37.8 deg C (kPa) 

7. Total sulfur content (%wt) 

8. Oxidation stability (min) 

9. Density at 15 deg C (g/cm3) 

Testing method 

ASTM D2699 

ASTMD3341 

ASTM D86 

ASTM D130 

ASTMD381 

ASTM D323 

ASTM D1266 

ASTM D525 

ASTMD1298 

Requirements 

min 87 

max 0.15 

max 70 

max 120 

max 190 

max 210 

max 2.0 

maxN-1 

max 4.0 

min 43 

max 80 

max 0.15 

min 240 

0.70 - 0.74 

The plant's nominal capacity is 130,000 tons of raw condensate/year based on 24 

operating hours per day and 350 working days per year. The plant capacity is quite low 

due to depending on upstream processes. The plant equipment is specified with a design 

margin of 10% above the nominal capacity and turndown ratio is 50% of the nominal 

capacity. 
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8.2. Distillation Process Calculation 

B.2.1. Equilibrium Flash Vaporization Curves 

According to W. C. Edmister method [45], the equilibrium flash vaporization 

(EFV) curve is converted from the data of true boiling point (TBP). For example, we 

perform calculation for the 50-percent point as follows: 

tso% (TBP) = 58.42 C 

t(30%- io%) (TBP) = 35.99-24.67=11.32 °C. 

Look up TBP-EFV chart, the temperature difference is determined as 

t50% (EFV-TBP) = 1-5 C . 

Therefore, 

tso% (EFV) = 58.42+1.5=59.62 °C. 

Repeat the procedure above for all TBP temperatures to determine EFV (1 atm) 

temperatures. Then convert the EFV (1 atm) data into the EFV (4.6 atm) data by using 

the Cox chart [46]. The results are shown in Table B.4. 

Table B.4. Relationship between ASTM, TBP, and EFV. 

%vol. 

I.B.P. 

5 

TBP 

t°C 

-1.44 

10.56 

At 

12 

14.11 

EFV (1 atm) 

At 

1.5 

4 

t°C 

41.62 

43.12 

EFV (4.6 atm) 

t°C 

93 

95 
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10 

20 

30 

40 

50 

60 

70 

80 

90 

24.67 

31.58 

35.99 

43.93 

58.42 

69.51 

75.91 

98.63 

115.54 

6.91 

4.41 

7.95 

14.48 

11.09 

6.40 

22.72 

16.91 

3 

2.5 

5 

6 

5.5 

6.5 

7.5 

7 

47.12 

50.12 

52.62 

57.62 

63.62 

69.12 

75.62 

83.12 

90.12 

102 

106 

110 

116 

125 

132 

141 

150 

158 

B.2.2. Yield of Fractions 

Based on the TBP data, the yield of fractions for the gasoline plant can be 

determined as shown in Figure B.l. 
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Figure B. 1. Yield curve. 

B.2.3. Operating Pressure 

The column is designed 14 trays; and the pressure drop across each tray is 

estimated approximately 80 kPa. Therefore, the pressures at the feed section and the top 

section are 4.6 atm and 4 atm, respectively. 

B.3. Calculation for the Feed Section 

B.3.1. Description 

The pre-heater rises the feed temperature towards the expected temperature at 

which the required phase equilibrium is established. As a result, the feed split specified 

by the yield curve is obtained. 

The key parameters will be determined as follows: 

1) Equilibrium phase flows into the feed section; 
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2) Material balance at the feed section; 

3) The feed temperature. 

B.3.2. Calculation 

The feed has liquid-gas equilibrium with gas percentage of 38% volume. 

However, it is usually to deeply cut more 4% (the unexpected heavy component will be 

condensed and refluxed to the column). Thus there are two equilibrium phase flows: 1) 

vapor VF = 38+4 = 42(%); and 2) liquid LF =100 - 42 = 58(%). 

The phase equilibrium is depicted in Figure B.2. 

fe>e>d f l ow 

tray f 

42% 

J 

i 
' V f 

0 
58% 

1 

R f 

Figure B.2. Equilibrium phase flows at the feed section. 

The heavy fraction flow LF dissolved a small amount of light components is 

descending to the column bottom. These undesirable light components shall be caught by 
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the vapor flow Vf arising to the top column. The vapor flow Vf can be assigned as 28% 

vol. 

The bottom product is determined by the yield curve as 62%vol; hence, the 

internal reflux across the feed section can be calculated: 

Rf= B-LF+ Vf= 62 - 58 + 28 = 32% vol. 

Look up the EFV curve (4.6 atm) of the feed section, the required feed 

temperature is 118°C corresponding to the point of 42% vol. 

Table B.5. Material balances for the feed section. 

Stream 

vF 

v f 

Rf 

Total light 

fractions E S D 

L F 

v f 

Rf 

Bottoms B 

Volume fraction 

vol% 

42 

28 

-32 

38 

58 

-28 

32 

62 

Liquid flow rate 

m3/h 

9.7015 

6.4677 

-7.3916 

8.7775 

13.3973 

-6.4677 

7.3916 

14.3213 

Liquid density 

ton/m 

0.591 

0.598 

0.615 

0.577 

0.726 

0.598 

0.615 

0.727 

Mass flow rate 

ton/h 

5.7336 

3.8677 

-4.5458 

5.0651 

9.7264 

-3.8677 

4.5458 

10.4046 

B.4. Calculation for the Stripping Section 

B.4.1. Description 

In the stripping section, liquid flows, which are descending from the feed section, 

include the equilibrium phase flow LF and the internal reflux flow RE. They are 

contacting with the arising vapor flow Vffox heat transfer and mass transfer. The result is 
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that all undesirable light components should be completely removal from the bottoms. 

This process is accomplished with the aid of heat flow supplied by the reboiler. 

The main parameters should be determined as follows: 

1) The bottoms temperature; 

2) The reboiler duty QB. 

B.4.2. Calculation 

The column base pressure is approximately the pressure at the feed section (4.6 

bars) because the pressure drop across this section can be neglected. 

The phase equilibrium is shown in Figure B.3. 

stripping 
section 

Figure B.3. Equilibrium phase flows at the stripping section. 
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Look up the EFV curve (1 atm) of the stripping section and the Cox chart, the 

equilibrium temperature at this section (4.6 atm) is 144 °C. 

The reboiler duty is equal to the heat input, which generates boilup and increases 

the temperature of the stripping section by an increment of 144-118=26°C. 

Table B.6. Material and energy balances of the stripping section. 

INLET 

LF 

Rf 

Total 

ton/h 

9.73 

4.55 

14.27 

kcal/kg 

68 

69 

OUT] 

v f 

B 

Total 

ton/h 

3.87 

10.40 

14.27 

kcal/kg 

165 

82 

kcal/h.lOJ 

661.40 

313.66 

975.06 

kJ/h.l0 j 

2768.60 

1313.00 

4081.61 

LET 

kcal/h.lOJ 

638.16 

853.18 

1491.34 

kJ/h.l0J 

2671.36 

3571.41 

6242.80 

As a result, the reboiler duty is QB = (6242.8 - 4081.61) 103 = 2161190 kJ/h. 

B.5. Calculation for the Rectifying Section 

B.5.1. Description 

The overhead vapor flow, which includes F/rfrom the feed section and V/from the 

stripping section, passes through the condenser (to remove heat) and then enter into the 

reflux drum. There exist two equilibrium phases: 1) liquid (butane); and 2) vapor 

(propane vapor and dry gas). The liquid from the reflux drum is partly pumped back into 
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the top tray as the reflux flow L and partly removed from the system as the distillate flow 

D. 

The liquid is still dissolved a very small amount of light components. Therefore, 

the reflux flow whilst entering into the top tray will receive heat to vaporize completely 

all light component dissolved; and the liquid remained will be collected as the internal 

reflux flow. 

B.5.2. Calculation 

The top pressure is 4 atm due to pressure drop across the rectifying section. 

The dew point of distillate is correspondingly the point 100% of the EFV curve of 

rectifying section. Based on the Cox chart, the top section temperature is determined as 

46°C. 

The equilibrium phase flows at the stripping section are display in Figure B.4. 

Stage 15 
(tray 14) 

»- Uncondensed Gas 
(small quantity) 

D 
Distillate 

Figure B.4. Equilibrium phase flows at the rectifying section. 
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Table B.7. Material and energy balances around the boundary (A). 

INLET 

VF+Vf 

Ro 

Total 

ton/h 

9.611 

Ro 

9.611+Ro 

kcal/kg 

115 

24 

OUT! 

ZSD+Ro 

Rf 

Total 

ton/h 

5.065+Ro 

4.546 

9.611+Ro 

kcal/kg 

97 

16 

kcal/h.lOJ 

1105.3 

24 Ro 

1105.3+24 R0 

kJ/h.lOJ 

4626.6 

100.5 R0 

4626.3+100.5 R0 

LET 

kcal/h.103 

491.31+97Ro 

72.73 

564.05+ 97R0 

kJ/h.l0J 

2056.65+406R0 

304.46 

2361.11+406R0 

Based on the energy balance, we find the solution of R0: 

4626.3+100.5 Ro= 2361.11+406 Ro 

Therefore, 

Ro= 7.415 (ton/h). 

We now calculate the (external) reflux flow L. Enthalpy data of the reflux flow L, 

looked up the experimental chart for petroleum's enthalpy, are corresponding to the 

liquid state of 40°C (liquid inlet at the top tray) and the vapor state of 46°C (vapor outlet 

at the column top). 

L inlet at 42°C: Hiiqujd (inlet) = 22 kcal/kg 

L outlet at 46°C: Hvapor (ou,iet) = 106 kcal/kg 

We find the solution of the energy balance equation: 

AHRo.R0= AHL.L 
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(115-24) (7.42) = (106-22) I 

Therefore, 

L = 8.04 (ton/h). 

B.6. Calculation Results 

B.6.1. Raw Gasoline Property 

The bottom product, named raw gasoline, is the major blend for manufacturing 

the finished gasoline. The distillation data of the raw gasoline is shown in Table B.8. 

Table B.8. ASTM distillation curve of the raw gasoline. 

% vol 

0 

5 

10 

20 
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50 

60 

70 

80 

90 

100 

Boiling point (°C) 

41.68 

44.51 

46.23 

48.10 

50.14 

55.72 

66.24 

72.13 

80.98 

95.07 

122.81 

161.34 

B.6.2. Main Stream Property 

The specification of the finished gasoline product is presented in Table B.9. 
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Table B.9. Main streams of the plant. 

Stream 

Temperature (C) 

Pressure (atm) 

Density (kg/m ) 

Volume flow rate (m /h) 

Mass flow rate (kg/h) 

Mass flow rate (ton/year) 

Stream 

Temperature (C) 

RVP (kPa) 

Volume flow rate (m /h) 

Density (kg/m ) 

Mass flow rate (kg/h) 

Mass flow rate (ton/year) 

Condensate 

118 

8.6 

670 

227.6 

15480 

130000 

Reformate 

30 

105 

16.58 

789.8 

12500 

105000 

LPG 

46 

4.0 

585 

8.78 

5061 

43000 

MTBE 

30 

105 

2.39 

746 

1800 

15000 

Raw gasoline 

144 

4.6 

727 

21.88 

10405 

87000 

Gasoline 

30 

105 

39.18 

752 

29800 

250000 

B.7. Process Description 

B.7.1. Simplified Process Flow Diagram 

The simplified process flow diagram is shown in Figure B.5. The gasoline plant 

consists of many apparatuses and facilities, for instance, the distillation column, the 

mixer, and storage tanks. 
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Figure B.5. Simplified process flow diagram of the gasoline plant. 

B.7.2. Distillation Column 

Condensate is fed using feed pumps (P-01 A/B) through the feed/bottoms heat 

exchanger (E-01) to the distillation column (C-01). The column (C-01) plays a very 

important role in the plant. Here, condensate after processing in the column (called 

naphtha or raw gasoline) is cut off the light fraction having a boiling point of less than 

40°C. The raw gasoline then mixes with Reformate or MTBE to produce the finished 

gasoline. 

The column has 24 actual trays (equivalent to 14 theoretical trays). Condensate is 

fed to the seventh tray and the raw gasoline is withdrawn off from the column base. The 
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operating pressure is 4.6 atm. The top temperature is 46°C; and the bottom temperature 

is 128°C. 

The raw gasoline (naphtha) is sent to the raw gasoline tanks (TK-11 A/B). Its 

heat has been removed by the feed/bottoms heat exchanger and cooled by the raw 

gasoline cooler (E-04). A part of the bottom stream is heated up in the reboiler furnace 

(H-01) and returned to the distillation column to supply required heat for distillation. 

The distillation column overhead vapor is cooled at the column overhead 

condenser (E-03) to produce the uncondensed gas, so called, off-gas, and the reflux 

liquid. The former is mainly burnt off at the reboiler furnace and the remaining amount 

for controlling the reflux drum pressure is burnt at flare. The latter accumulated at the 

reflux drum (V-01) is returned to the column at the top tray, under controlled flow rate, 

for maintaining stable operations and maximizing the recovery of naphtha. 

B.7.3. Blending System and Product Distribution 

The blending system consists of an in-line static mixer, an on-line multi-property 

analyzer, ratio control with DCS, and an off-line blend simulator. 

The blending system will perform the following functions: 

1) Continuous ratio control of blend header qualities to meet specification with 

minimum deviation from optimal recipe; 

2) Continuous monitoring of blends using infra-red analyzers and tracking 

integrated blend quality; 
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3) Offline optimization of header quality control and recipe targets based on 

reconciled blend models and integrated blend results to optimally meet 

scheduler-specified blend order quality recipe and inventory targets. 

Based on the quality requirements of gasoline as specified standard, the off-line 

simulator calculates precisely the necessary flow rate of octane booster to blend the 

whole volume of raw gasoline. 

The other additives (detergent, color, anti-oxidation, and metal deactivator) are 

injected in a pre-determined amount directly into the raw gasoline stream just before the 

mixer. 

Gasoline product blended at the gasoline mixer is analyzed with a multi-property 

analyzer and sent to the gasoline storage tanks (TK-13 A/B). In case of low quality, the 

gasoline will be pumped to off-spec storage tank and then returned to the mixer. The off-

spec product tank is designed for 12 production hours. 

From the gasoline storage tanks, gasoline after being checked the quality is 

pumped out the plant through the tank truck filling station or through the jetty to load in 

tankers. 

B.7.4. Feed Control 

The feed section has several components: 

1) A local flow controller (FC-11) to control the feed flow rate; 

2) A local controller for feed pumps; 

3) A local pressure controller (PIC-13) to keep the pressure of the feed flow at 

4.6 atm. 

135 



HXH 

i T C - 1 r 

TC-2; 

—I— 
I 

--© 

,5/B, 

l-M—J 

To 
Column 

Figure B.6. A local control devices for feed pumps. 

B.7.5. Top Column Section 

Column pressure control includes: 1) vapor bypass line; and 2) vent line to flare. 

If there is a pressure drop in reflux drum (V-01), the local pressure controller commands 

to slightly open the control valve upstream (E-03) and gradually close the control valve in 

the vent line. If column pressure increases, the local pressure controller commands to 

gradually close the vapor bypass flow and open more flow to flare. 

B.7.6. Bottom Section 

The reboiler is a forced-circulation typed reboiler including pumps (P-08/09) and 

a heater (H-01). The discharge of the pump is split as two streams: 1) a part is withdrawn 

as raw gasoline; and 2) a part is heated up in the heater to generate vapor back to the 

column base. When the temperature in the bottom section is changed, the local 

temperature controller TIC-34 will adjust the rate of fuel gas into the heater. 
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APPENDIX C: MATHEMATICAL MODEL 

C.l. Introduction 

Distillation process is very complicated. So we develop its mathematical model 

to study its dynamics and then select appropriate control strategy. The mathematical 

model of distillation process is established on dynamic continuity equations of mass and 

energy for trays, condenser, reflux drum, and reboiler. 

In general, the dynamic continuity equations state that the rate of accumulation of 

mass or energy in a system is equal to the mass or energy flows entered and generated, 

less the amount leaving and consumed within the system. The accumulation term is a 

first order time derivatives of the total mass or energy. The flow terms are algebraic. 

Therefore, the results are first order ordinary differential equations that are usually non

linear. 

The liquid rates throughout the column will not be the same dynamically. They 

will depend on the fluid mechanics of the tray. Often a simple Francis weir formula 

relationship is used to relate the liquid holdup on a tray to the liquid flow rate L„ over the 

outlet weir: 

M„ = f(LJ. (C.l) 

We now develop the state equations that will describe the dynamic behavior of a 

distillation column. The fundamental quantities are total mass and mass of the light 

component, which is the more volatile component. 
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C.2. Dynamic Study of Distillation Process 

C.2.1. Generic Trays 

A general tray is an nth stage such that n = 1, 2, ...,Nand n *f. 

The total mole holdup in the nth tray M„ is considered constant, but the imbalance 

in the input and output flows is accounted for in the component and heat balance 

equations: 

d(M„) 

dt 
= Z„+I - L„ + VnA - V„ =Z„+ 1 -L„. (C.2) 

Table C. 1. Parameters of a generic tray. 

INLET 

OULET 

Phase 

Liquid 

Vapor 

Vapor 

Liquid 

Flow rate 

Ln+1 

v„., 
Vn 

Ln 

Concentration 

Xn+1 

Yn-1 

Yn 

Xn 

staae n 

Figure C. 1. A generic tray. 

The rate of change of holdup in the «th tray results in the change of exit liquid 

flow after a hydraulic lag [38] or hydraulic time constant [35]: 
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dL. 1 dM„ 
dt x dt 

(C.3) 

where r is hydraulic time constant. 

The hydraulic lag can be treated as a liquid level problem, which is, complicated 

somewhat by the change in level across the plate. At the center of a tray, the average 

depth of clear liquid is usually less than at the either end and may even be less than the 

weir height, as shown in Figure C.2. 

Foam height 
h height abova weir 

Depth of clear liquid! 

^ ^ 1-
hj : average depth of clear liquid 

Figure C.2. Variation of liquid depth across a generic tray. 

The hydraulic time constant can be calculated with the formula [38]: 

dh, dM„ 
x = A-

dL„ dL 
(C.4) 

where r is hydraulic lag for 1 plate; M„ is holding of liquid per plate; and Ln is liquid rate. 

Component balance is given by 

d(M„x„) 
dt 

L„+iXn+] + V„A ynA - Lnxn - V„ yn. (C.5) 
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By differentiating and substituting for the term, we obtain: 

dXn = 4+1 X«+\ + Vn -1 y„ -1 - (4 + l + Vn-X K - K (y„ ~ Xn ) 

dt M„ 
(C.6) 

Energy balance is given by 

d(Mnhn) 
dt 

= hn+]Ln+l+HH_lVH_i-hnL„-HllVn (C.7) 

or, 

at dt n+\ n+\ « - l n—\ n n n n* 
(C.8) 

Because the — - term is approximately zero, substituting for the change of the 
dt 

holdup term, we obtain: 
dt 

V = 
H-h 

(C.9) 

C.2.2. Feed Tray 

The feed section includes the feed tray, as shown in Figure C.3. 

F,c, 

stage / 
(feed tray; 

Lf,..,Xr„ 

I-v. v> 
Lr.Xf 

V!:Vr. 

Figure C.3. Feed section. 
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Total mass balance is given by 

d(Mf) 

dt 
= F + Lf+] +VfA -Lf-Vf=F + Lf+] -Lf. 

Component balance is given by the following equations: 

d(Mfxf) 

dt 
Fcf +Lf+xxf+x+VfAyfA -Lfxf-Vfyf 

or, 

dx„ _ 4+1x„+, + V„., yn., - (Ln+l + V„_x )x„ - Vn {yn - xn) 

dt M„ 

Energy balance is given by 

= KF +hn+]Ln+] +Hn_xVn_x -hnLn -HnVn 

d(Mfhf) 

dt 

or, 

V = 
h,,F +/z„+,4+, +HnAVn_, -{L^+V^K 

H-h 

(CIO) 

(C.ll) 

(C.12) 

C.2.3. Top Section 

The top section consists of the top tray and the reflux drum, as shown in Figure 

C.4. 

V«„ 

U: 

11 
V:,: 
M*1 

v„ 

Qc 

Stage N+1 
(Nth Tray) Mo 

L.XD 

Figure C.4. Top section. 

D.Xc 
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Total mass balance of the top tray is determined as 

or, 

d(MN+l) _ (C 13) 
dt 

Component balance of the top tray is characterized as 

d(M XN+])=Lx^ + y L _ y ( C 1 4 ) 

at 

Energy balance for the top tray is given by the following equations: 

d { M ^ ) = hDL + HNVN -hN+lLN+i -HN+]VN+I (C.15) 
at 

y =hDL + HNVN-(L + VN)hN+l (Q { 6 ) 
N+] H -h 

11 N+\ nN+\ 

Total mass balance for the reflux drum and condenser is given by 

= VN+, -L -D. {CM) 
d{Mn) _ 

dt 

Component balance for the reflux drum and condenser is determined as 

^MDXD) = VN+xyN+x -{L + D)xD. (C.18) 

dt 

We now define energy balance around condenser. The condenser duty Qc is 

equal to the latent heat required to condense the overhead vapor to its bubble point: 
Qc = HmVw -houlLoul = VN(HN -hN). (C. 19) 
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C.2.4. Bottom Section 

i 

l I 
l I 

-t4----K--
I 1 st tray f« = 2) 

<HXr-
B . x F 

Figure C.5. Bottom section. 

Total mass balance for the bottom tray is given by 

d(M2) 
dt 

L3-L2+ VB -V2. 

Component balance for the bottom tray is given by 

= L3x3+VByB-L2x2 - V2y2. 
d{M2x2) 

dt 

Energy balance for the bottom tray is as follows: 

d{MRhB) 
dt 

= /23Z3 +HBVB- h2L2 - H2V2. 

Therefore, 

V2 = 
h3L,+HBVB-(L3+VB)h2 

H2 -h2 

(C 

(C 

(C 

The base of the column has some particular characteristics as follows: 

1) There is a reboiler heat flux QB to produce the boilup vapor flow VB. 
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or, 

2) The holdup is a sensitive variable; hence, changes in sensible heat cannot 

be neglected. 

3) The outflow of liquid from the bottoms B is determined externally. 

Total mass balance for the column base is given by the following equation: 

d{MB) = L 2 _ V B B ( C 2 3 ) 

dt 

Component balance for the column base is determined as 

J ( M g X / i ) = L2x2-VByB-B xB. (C.24) 
dt 

Energy balance for the column base is as follows: 

d(MBhB) 

dt 
= h2L2+QB-hBB-HBVB (C.25) 

IT ^ i r> dh„ , dMR 

h2L2+QH-hBB-MB-^--hB—f-
VB = & 2L-. (c.26) 

HB 

All the equations above are state equations and describe the dynamic behavior of 

the distillation column. The state variables of the model are: 

1) Liquid hold ups M\, M2, ...,Mf, ..., MN+2, 

2) Liquid concentrations x\,x2, ...,x/, ..., xN+\. 

When all the equations above are resolved, we find how the flow rate and 

concentrations of the two product streams (distillate product, bottoms product) change 

with time, in the presence of changes in the various input variables. 
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3. Mathematical Model of Distillation Process 

4. Simplified Model 

To simplify the model, we make the following assumptions [35]: 

1) The relative volatility a is constant throughout the column. 

2) The vapor - liquid equilibrium relationship can be expressed by 

yn = ̂ r\\ (C27) 

\ + (a-l)x„ 

where x„ is the liquid composition on rath stage; y„ is the vapor composition on 

nth stage; and a is the relative volatility. 

3) The overhead vapor is totally condensed in the condenser. 

4) The liquid holdups on each tray, condenser, and the reboiler are constant and 

perfectly mixed (i.e., the same immediate liquid response, dLi = dL?, = ...= 

aZyv+2 = dL). 

5) The holdup of vapor is negligible throughout the system (i.e., the same 

immediate vapor response, dV\ = dVj = ...= dV^+i = dV). 

6) The molar flow rates of the vapor and liquid through the stripping and 

rectifying sections are constant: 
Vi = V2=...= VN+i; 

L,2= LT,~ ...= LN+2-

7) The column is numbered from bottom, e.g., n — 1 for reboiler, n = 2 for first 

tray, n =/for feed tray, n = N+\ for top tray, and n = N+2 for condenser. 
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Under these assumptions, the dynamic model can be expressed by the following 

equations [12]: 

1) Condenser (n = N+2): 

MDxn =(V + V„,)y^ - Lxn - Dxn. (C.28) 

2) Tray n(n=f+2, ...,N+1): 

M xn = (V + VF)(yn_, - yj + L(xn+] - xj. (C.29) 

3) Above feed location (n=f+l): 

Mxn=(V + V,.)(yn^ - yj + L(xn+, - xj + VFyF. (C.30) 

4) Below feed location (n=f): 

M Xn=(V + Vf)(y^ -yJ + L(x„+l -x„) + LFxF. (C.31) 

5) Tray n(n = 2, . . . , / - l) : 

M xn = F6v, - yj + (L + LF)(xn+x - xj. (C.32) 

6) Reboiler («=1): 

MBX] =(L + LF)X2 - Vy, - fix,. (C.33) 

Flow rate are assumed as constant molar flows: 

1) LF=qFF; 

2) VF = F-LF; 

3) D=VN-L=V+VF-L (assuming condenser holdup constant); 

4) B = L2-V] = L + LF-V(assuming boiler holdup constant); 

Composition xF and yF in the liquid and vapor phase of the feed are obtained by 

solving the flash equations: 
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FcF = LFxF + VFyF (C.34) 

y, = , r\\ • (C35) 

1 + \a - \)Xj, 

Although the model order is reduced, the representation of the distillation system 

is still nonlinear due to the vapor liquid equilibrium relationship between y„ and x„ in 

(C.27). 

C.5. Mathematical Model of the Gasoline Refinery 

In this section, we use some data obtained by process calculation described in 

Appendix B to plug in generic equations above. As the result, the mathematical model of 

the plant is completely defined. 

C.5.1. Relative Volatility 

Using the formula ajJ = Kj/Kj and looking up data in the handbook [39] for the 

operating range of temperature and pressure, the relative volatility is estimated as a- 5.68. 

C.5.2. Latent Heat and Boilup 

The heat input of QB (reboiler duty) to the reboiler is to increase the temperature 

of stripping section and generate boilup Vo [40]: 

v^=QH-BcH(tH-tF) ( C 3 6 ) 

A 

where A is the latent heat or heat of vaporization; B is the flow rate of bottom product 

(kg); CB is the specific heat capacity (kJ/kg.°C); tF is the inlet temperature (°C); and ts is 

the outlet temperature (bottoms temperature, °C). 
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The latent heat at any temperature is described in terms of the latent heat at the 

normal boiling point [40]: 

X = yXB^- (C.37) 
-*« 

where L is the latent heat at absolute temperature T (°R); LB is the latent heat at absolute 

normal boiling point TB (°R); and y is the correction factor obtained from the empirical 

chart. 

The calculation results are summarized as follows: 

A = 730 (kJ/kg); 

V0= 3909.8 (kg/h) or 66.8871 (kmole/h). 

The average vapor flow rate arising in the stripping section is calculated as 

V = 0+ ' = 66.3407 (kmole/h). 

C.5.3. Liquid Holdups on Tray and Column Base 

Liquid holdups are calculated with the methods proposed by McCabe [42] and 

Joshi [43]. 

Velocity of vapor phase arising in the column: 

ffl^^M (C.38) 

V Pc, 

where pi is the density of liquid phase; pv is the density of vapor phase; and C is a 

correction factor depending flow rates. 

The actual velocity co is normally selected that co = (0.80^0.85)con for paraffinic 

vapor. 
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The diameter of the column is calculated with the following formula: 

4V 
Dk = J — (C.39) 

where Vm is the mean flow of vapor in the column. 

The height of the column is calculated on distance of trays. The tray distance is 

selected on basis of the column diameter. 

The holdup in the column base is given by 

M ^ « A ^ (C40) 
B 4 WB 

where HNB is normal liquid level in the column base (m); Wg is molar weight of the 

bottom product (kg/kmole); and de is density of the bottom product (kg/m ). 

As a result, the holdup in the column base is calculated as 

3.14(1.75X1-4)' Z ^ = 24.88 (kmole). 
B 4 78.6 

The holdup on each tray is given by 

t , 0.957ch,D2
k dr 

M = —-—-
4 Wr 

where hr is average depth of clear liquid on a tray; Wj is molar weight of the liquid 

holdup on a tray; and dr is the mean density of the liquid holdup on a tray. 

Therefore, the holdup on each tray is calculated as 

0.95(3.14)(0.28)(1.75)2 680 
M = = 5.80 (kmole). 

4 75 
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C.5.4. Liquid Holdup in Reflux Drum 

The retention time of distillate in the reflux drum is selected as 5 minutes. 

Liquid holdup MD is equal to the quantity of distillate contained in the reflux 

drum: 

MD = 5iL + D) (C.41) 

D 60 

where MD is holdup in the reflux drum; L is the reflux flow rate; and D is the distillate 

flow rate. 

As the result, the liquid holdup in reflux drum is calculated as 
. . 5(75.30 + 82.15) 1 / i m . , . 
Mn= — = 14.03 (kmole). 

" 6 0 

C.6. Basic Mathematical Model of the Plant 

Material balances for change in holdup of light component on each tray are as 

follows: 

Condenser (n = 16): MDx]6 =(V + VF)y]5 - Zx16 - Dxl6 

Tray 14 («= 15): Mx]5=(V+ VF)(yH-y]5) + L(x]6-x]5) 

Tray 13 (n = 14): Mx]4 = (V + V,.)(yu -yH) + L(x,s -x1 4) 

Tray 12 (n = 13): Mxu=(V+ VF)(yu -yu) + L(xu -x]3) 

Tray 11 (w= 12): Mxn=(V+ VF\yu-yn) + L{xn-xu) 

TraylO(»=ll): Mxu = (V + V„ ){yw -yu) + L(xu -xu) 

Tray 9(n= 10): Mxw=(V + VF)(y9 -y]0) + L(xu -xl0) 

Tray 8 (n = 9): Mx9 = VFyF +Vys-(V + VF )y9 + L(x]0 - x9) 
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Tray 7 (n = 8): Mxg = V(y7 - y%) + Lxg + LFxF - (Z + LF )x8 

Tray 6 (n = 7): M;7 = F(>6 - j/7) + (Z + LF )(x8 - x7) 

Tray 5 (n = 6): M:6 = F(^5 - y6) + (Z + LF )(x7 - x6) 

Tray 4 (w = 5): Mx5 = V(y4 -y5) + (L +LF)(x6 - xs) 

Tray 3 (n = 4): M;4 = F(^3 - >;4) + (Z + ZF )(x5 - x4) 

Tray 2 (« = 3): Mc3 = F(^2 - y3) + (Z + LF )(x4 - x3) 

Tray 1 (« = 2): Mc2 = F(j>, - ^2) + (Z + Z/r )(x3 - x2) 

Reboiler (n = 1): MBi, = (Z + Zf )x2 -Vyx- Bxl. 

Process data are summarized as follows: 

• The liquid holdups: MD = 14.03 (kmole), M = 5.80 (kmole), and MB = 

24.88 (kmole); 

• Feed flow rates: LF= 104.2491 (kmole/h) and VF = 98.5152 (kmole/h); 

• Flow rates above the feed location: Z9 = ...= Z)5 = Z = 75.6380 (kmole/h) 

and V9 = ...= Fi5= V+ VF= 66.1139+ 98.5152 = 164.6291 (kmole/h); 

• Flow rates below the feed location: L\ = ...= Zg = Z + LF = 75.6380 + 

104.2491= 179.8871 (kmole/h) and V\ = ...= V%= V= 66.1139 (kmole/h); 

• Distillate flow rate: D = 92.7597 (kmole/h); 

• Bottoms flow rate: B = 110.9235 (kmole/h); 

• Solving flash equations: xF = 0.2609 and yF = 0.6672. 

In summary, the dynamic model is represented by a set of 31 nonlinear 

differential and algebraic equations: 
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14.03 x16 =164.6291 y]5 - 75.6380x,6 -92.7597x,6 

5.8x15 = 164.6291(y14 -y ] 5) + 75.6380(x,6 -x l 5) 

5.8x,4 = 164.6291(7,3->>,4) + 75.6380(x,5-x,4) 

5.8x13 = 164.6291(712 - yn) + 75.6380(xl4 - x13) 

5.8x12 =164.6291(j; |l-j;12) + 75.6380(x13-x12) 

5.8*,, = 164.6291(710 -yu) + 75.6380(x,2 -x , , ) 

5.8x,0 = 164.6291(79-^,0) + 75.6380(x,,-x,0) 

5.8x9 = 66.1 \39ys -156.38>-9 + 75.6380(xl0 -x 9 ) + 59.95 

5.8x8 = 66.1139(y7 -ya) + 75.6380 x9 - 188.59x8 + 33.99 

5.8x7 = 66.1139(.y6-.y7) +179.887 l (x 8-x 7) 

5.8x6 = 66.1 \39(y5-y6) + 179.887 l (x 7 -x 6 ) 

5.8x5 = 66.1139(j/4 - y5) +179.8871 (x6 - x5) 

5.8x4 =66.1139(^3 -yA) + \ 79.887 l (x 5-x 4) 

5.8x3 = 66.1 139(^2 - y 3 ) + l79.8871 (x4 - x3) 

5.8x2 =66.1139(j, -y2) +179.8871 (x 3 -x 2 ) 

24.88x, = 179.8871 x2 -110.9235x, -66.1139^,. (C.42) 

Vapor liquid equilibrium (VLE) relationship on each tray is given as 

5.68x, 
y' ~ l + 4.68x, 
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y2 = 
5.68x2 

1 + 4.68x, 

^ 1 5 = 

5.68x, 

l + 4.68x, 
(C.43) 
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APPENDIX D: DYNAMIC SIMULATION 

D.l. Modular Decomposition of the Column 

Modular decomposition of the column is depicted in Figure D.l. The column is 

divided into two groups: 1) rectifying section; and 2) stripping section. 
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Figure D. 1. Modular decomposition scheme for the distillation column. 
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D.2. Simulation with MATLAB Simulink 

For convenience, the simulation program is organized as a hierarchical structure 

with three levels, as depicted in Figure D.2. The lowest-level modules actually represent 

differential and algebraic equations. 

1 COLUMN BASE 
R REBOILER 

STRIPPING 
SECTION 

GENERAL TRAY 

COLUMN 

1 

1 
TRAY 7 

1 
TRAYS 

RECTI FYINO 
SECTION 

GENERAL TRAY 
1 

CONDENSER & 
REFLUX DRUM 

Figure D.2. Hierarchical structure of the simulation program. 

The highest level of the simulation program in MATLAB Simulink is shown in 

Figure D.3. 

Step 

GASOLINE REFINING PLANT 
Distillation Column Dynamic Simulation 

Operational Objectives : 
Purity of LPG xD > 98% 
Impurity in Raw Gasoline xB < 2% 

- w i 1.3411 ;: 

yF'VF 

~W 4.6804 ". 

xF'LF 

RECTIFYING 
SECTION 

' • • l n 1 Out1 

— • In2 Out2 

STRIPPING 
SECTION 

• : XD 

To Workspacel 

-4L 
Scope 1 

Raw Gasoline 

• | xB 

To Workspace 

H! 
Scope 

Figure D.3. Main program in MATLAB Simulink. 
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The second-level modules include the rectifying section, as shown in Figure D.4, 

and the stripping section, as shown in Figure D.5. 

In20ut2 
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Figure D.4. Module of the rectifying section. 

156 



1 } 

In1 

,_2 ..}— 

In2 

t 

| 

! 

i 

' 

I 
[ 

• 

f • 

, n 1 n n H I .W>' A 

In 2 Ol l t l 

In 3 

Tray 7 

— • 

• 

In 10ut1 \ 

In20ut2 

Tray 6 

' — • i n l O u t l j-

- > In20ut2 \ 

Tray 5 

In lOut l -

• ln20ut2 

Tray 4 

• in lOut l 

• 

i 

1 • 

• 

In20ut2 

Tray 3 

In lOut l 

In20ut2 [ 

Tray 2 

t-> 

[ • 

In lOut l H 

In20ul2 | 

1 Tray 1 

__* 
Out1 

• In1 

Out2 -> <_2_> 

Column base 
and Reboiler 

Figure D.5. Module of the stripping section. 
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The third-level modules include some special components and generic trays as 

depicted in the following figures. 

x2 

O •'7.2302 

Outi 

COLUMN BASE « REBOILER (Stage n*1) 

471 r 
Integrator 2 

• XI 

To Workspace2 

• 

Scope 2 

K 2 : 
Olit2 

2.T899 ^ 
Function 

VLE equation 

Figure D.6. Module of the column base and reboiler. 
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Figure D.7. Module of a generic tray. 
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Figure D.8. Module of the feed tray. 
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Figure D.9. Module of the eighth tray. 
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Figure D. 10. Module of the condenser and reflux drum. 
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APPENDIX E: CONSTRUCTION OF REFERENCE MODEL 

E.l. Model Construction 

This section describes construction of full order model. The outputs of interest 

are the purity of overhead and bottom products. These quantities are desired to be kept 

within prescribed limits (XD ^ 98% and XB < 2%) under disturbances of the feed streams 

or environment. The selected control structure is L-V structure, in which the reflux flow 

L at the column top and the boilup rate in the column bottom V are the manipulated 

inputs. 

Consider the nonlinear equations represented for a generic tray: 

Figure E. 1. Model of a generic tray. 

Material balance is determined as follows: 

ACCUMULATION = INLET - OUTLET 
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MnXn = (F„_,F„_1+4+,Xn+1) (VnYn+LnXn) 

or, 

V 
X=^^Y. M„ n-\ — Y. + ^±LX, 

L 

M. M. 
n+\ M„ 

'-X. (E.l) 

where I i = ...= L* = L + LF = L+ 104.2491; L9= ...= Ll5 = L; V\ = ...= V8= F;and V9 

= ...= V15= F+ VF = V+ 98.5152. 

Vapor liquid equilibrium relationship at each tray is given by 

aX„ 5.68X. K = 
" l + ( a - l ) x „ 1 + 4.68X„ 

Vw = l 15. (E.2) 

Therefore, the concentrations of liquid on each tray are a vector function/of state 

vector x and manipulated input vector u: 

X = f(X,u,t) 

where X = (X,,X2,...,X,6)T; and u = (L, V)r. 

The above nonlinear system can be linearized around the steady state value at the 

nominal operating point (X*, u). We define the perturbed states and control inputs as 

dX = X-X* 

du = u - u 

The linearized equations are given by: 

dX \df] 
_<3x_ 

dX + \8f] _du_ 
du 
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where df IdX stands for the Jacobian of the vector function / with respect to the state 

vector x; and df I du stands for the Jacobian of the vector function/with respect to the 

manipulated input vector u. 

Make differentiation of (E.l) as follows: 

dXn = ̂ =LdYn_x +^dVn , n-dYn ~-Z^dVn 

Mn Mn Mn Mn 

T* X* T* X* 
+ -*±dXn+, + ̂ *±dLn+] --^dXn

 n-dL. 

Mn "+1 Mn "+1 Mn " Mn " 

Substituting for terms of dYmd regrouping the equation give the following result: 

T* T* -t- V V* K V* 

dXn=^dX„+] -L»+K»y» dXn+^^t±dXn, Y* — Y* V* — V* 
+ A"-' A"-]dL- " "~]dV 

(E.3) 

where dL„ = dL, for all n=\, ..., 15; dVn = dV, for all n = 1, ,15; K„ is the linearized 

VLE constant; and y„ ,x„ , L„ and V„ are the steady-state values at the nominal operating 

point. 

In addition, we make linearization for some special stages as follows: 

1) Reboiler(« = 1) 

dX, = -^dX2 + ̂ dL-^dY, -^-dV-—dXv 

2) Condenser (n = 16) 

dXl6 =^dYi5 +-^dV--^dXl6 -^dL-—dX]6. 
Mi6 Ml6 M 1 6 M 1 6 M]6 

As a result, the model is represented in state space in terms of deviation variables: 

i ( 0 = Ax(t) + Bu(t) (E.4) 
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and 

y(t) = Cx(t) (E.5) 

where x - [dx\ dx2 ... dx\e]r is the vector of composition deviations; and u = [dx\ dxj ... 

dx\<$ is the vector of manipulated inputs; and y = [CIXB dXo]J = \dX\ dX\^ is the vector 

of controlled outputs. 

The algorithm for calculating state matrix elements A (16x16) is described as 

follows: 

1) Collect flow rates data: 

L{ =..=LS* = 179.8871 (kmole/h), 

L9* =. . .= Z15*= 75.6380 (kmole/h), 

V* = ...= V%* = 66.1139 (kmole/h), 

V9* = ...= V]5* = 164.6291 (kmole/h). 

2) Collect liquid holdups data: 

MX=MB = 24.88 (kmole), 

M2 = M3 = ... = Mi5 = 5.80 (kmole), 

M16 = MB = 24.88 (kmole). 

3) Calculate K\, K2, ..., K\6. 

4) Calculate the state matrix elements: 

/ i - l . f l , , - — , a]2- — 
M, M} 

_KK _ (L]+K2V*) _ L* 
2,1 M2

 2'2 M2
 2'3 M 2 
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*-,C „ (K+KX) „ _ ^ y\ • ,7 — f ' ~ ' " - | /y — \ f l " " / ft — ff + ' 
" • " « , n - l , , ' un,n ~ , , ' ","+1 j t M„ M„ M„ 

w = 1 6 : a , 6 1 5 = — — ^ , a ] 6 1 6 = — . 
^ , 6 A*16 

As a result, the state matrix 4̂ (16x16) is tri-diagonal: 

-23.0 

61.4 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

7.3 

-83.2 

52.1 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

31.0 

-70.5 

39.5 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

31.0 

-59.0 

27.9 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

31.0 

-51.4 

20.4 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

31.0 

-47.5 

16.5 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

31.0 

-45.7 

14.7 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

31.0 

-44.9 

13.9 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

13.0 

-44.9 

31.9 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

13.0 

-41.6 

28.5 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

13.0 

-35.6 

22.5 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

13.0 

-28.3 

15.2 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

13.0 

-22.7 

9.7 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

13.0 

-19.9 

6.9 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

13.0 

-18.7 

2.4 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

13.0 

-12.( 

The algorithm for calculating input matrix elements B (16x2) is as follows: 
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1) Collect data: 

LPG product purity: XD* = X]6* =0.9851=98.51%; 

Raw Gasoline product purity: \-XB* = 1 - X,* = 0.989 = 98.9%. 

2) Calculate the state matrix elements: 

w = 1 : ^ 1 = 7 Z ' 6 i . 2=TT 

w =2: h _{xlZx2) , _-fe-i;) 
2 J ~ M2 ' 2<2~ M2 

» * „ ,2 = 
-te-^.) 

« - 1 6 : 6,6>i = '6 , ft162 
^ 1 6 

The input matrix B (16x2) is: 

B = 

_ K 
M16 

[0.0012 0.0063 0.0091 0.0098 0.0076 0.0044 0.0022 0.0021 0.0048 

0.0111 0.0216 0.0306 0.0285 0.0178 0.0086 -0.0702; 

-0.0024 -0.0157 -0.0237 -0.0254 -0.0196 -0.0116 -0.0058 -0.0027 -0.0024 

-0.0050 -0.0097 -0.0138 -0.0128 -0.0080 -0.0039 0.0704]r. 

The output matrix C (2x16) is 

C = 
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0' 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
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E.2. Stability Test 

The stability of the system can be determined by using the Lyapunov direct 

method. Let us assume that the quadratic Lyapunov function is 

V(x)=xTPx (E.6) 

where P is a symmetric, positive definite matrix. 

The time derivative of V is 

V(x) = xT Px + xTP x. (E. 7) 

Since the system homogeneous differential equation x=Ax and (Ax)T = xTAT, we 

have 

V(x) = (AxfPx + xrP x 

V(x) = xTATPx + xTPAx = xT(ATP + PA)x. (E.8) 

If A P + PA = -Q for some positive definite matrix Q, then the system is 

asymptotically stable. 

We choose Q = I, where / i s the identity (16x16) matrix. The symmetric matrix P 

is determined by solving the following equation: 

ATP + PA = -I (E.9) 

where A is the state matrix. The system is asymptotically stable when matrix P is 

positive definite. 

The system stability test can be done with the following MATLAB program: 

% The condition V(0,t) = 0 is obviously satisfied. 

P = lyap(A,I); 

% Determinants of the principal minors: 

for i=l:16 
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Pi = P (1: i, 1: i) ; 

det(Pi) ; 

detPi=['det(P' int2str(i) ') = ' num2str(det(Pi))]; 

d i s p ( d e t P i ) ; 

end 

The results show that all principal minors are positive: 

d e t ( P l ) = 0 . 0 3 2 8 3 1 

d e t ( P 2 ) = 0 . 0 0 0 9 0 8 4 9 

d e t ( P 3 ) = 2 . 4 4 4 3 e - 0 0 5 

d e t ( P 4 ) = 5 . 5 4 7 6 e - 0 0 7 

d e t ( P 5 ) = 1 . 0 1 5 2 e - 0 0 8 

d e t ( P 6 ) = 1 . 6 2 0 8 e - 0 1 0 

d e t ( P 7 ) = 2 . 3 0 2 5 e - 0 1 2 

d e t ( P 8 ) = 2 . 6 1 8 3 e - 0 1 4 

d e t ( P 9 ) = 4 . 1 9 5 9 e - 0 1 6 

d e t ( P l O ) = 1 . 2 8 8 6 e - 0 1 7 

d e t ( P l l ) = 6 . 7 8 4 7 e - 0 1 9 

d e t ( P 1 2 ) = 3 . 9 1 6 e - 0 2 0 

d e t ( P 1 3 ) = 1 . 8 3 0 8 e - 0 2 1 

d e t ( P 1 4 ) = 7 . 0 8 9 e - 0 2 3 

d e t (P15) = 2 . 4 8 7 6 e - 0 2 4 

d e t ( P 1 6 ) = 8 . 4 6 1 2 e - 0 2 6 

The symmetric matrix P is positive definite; hence, the system is asymptotically 

stable. 
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APPENDIX F: SOURCE CODE 

F.l. Adaptive Mechanism 

#include <iostream> 

#include <stdlib.h> 

#include "AdaptiveMech.h" 

using namespace std; 

AdaptiveMech::AdaptiveMech() { 

} 

AdaptiveMech::-AdaptiveMech() { 

} 

void AdaptiveMech::getAdapMechPkt(int k, Pkt x_kml, Pkt e_kml, 

Pkt uc_kml, thetaPkt th_kml) { 

if(k != x_kml.k+l) 

printf("AdaptiveMech::getAdapMechPkt=>Wrong x(k-l) time 

stamp!\n"); 

if(k != e_kml.k+l) 

printf("AdaptiveMech::getAdapMechPkt=>Wrong e(k-l) time 

stamp!\n"); 

if(k != uc_kml.k+l) 

printf("AdaptiveMech::getAdapMechPkt=>Wrong uc(k-l) time 

stamp!\n"); 

this->x_kml = x_kml; 

this->e_kml = e_kml; 

this->uc_kml = uc_kml; 

this->th_kml = th_kml; 

return; 

} 

void AdaptiveMech::genAdapMechPkt(int k, thetaPkt &th_k) { 

// generate adaptive gains 

th k.k = k; 
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t h _ k . t h l = t h_kml . t h l + T*gamma*(bll*e_kml.pi + 

b21*e_kml.p2)*x_kml.pl,• 

t h_k . t h2 = th_kml. th2 + T*gamma*(bll*e_kml.pi + 

b21*e_kml.p2)*x_kml.p2; 

t h _ k . t h 3 = th_kml . th3 + T*gamma*(bl2*e_kml.pi + 

b22*e_kml.p2)*x_kml.pl; 

t h_k . th4 = th_kml. th4 + T*gamma*(bl2*e_kml.pi + 

b22*e_kml.p2)*x_kml.p2; 

t h _ k . t h 5 = th_kml . th5 - T*gamma*(bll*e_kml.pi + 

b21*e_kml.p2)*uc_kml.pl; 

t h _ k . t h 6 = th_kml . th6 - T*gamma*(bll*e_kml.pi + 

b21*e_kml.p2)*uc_kml.p2; 

t h_k . t h7 = th_kml. th7 - T*gamma*(bl2*e_kml.pi + 

b22*e_kml.p2)*uc_kml.pl; 

t h_k . t h8 = th_kml. th8 - T*gamma*(bl2*e_kml.pi + 

b22*e_kml.p2)*uc_kml.p2; 

r e t u r n ; 

} 

F.2. Plant Model 

#include <iostream> 

#include <stdlib.h> 

#include "PlantModel.h" 

using namespace std; 

Plant::Plant() { 

all = -6.7941 + 0.67*(rand()%2-0.5) 

al2 = -0.9095 + 0.09*(rand()%2-0.5) 

a21 = 1.4686 + 0.15*(rand()%2-0.5) 

a22 = -0.2497 + 0.02*(rand()%2-0.5) 

bll = -0.1461 + 0.014*(rand()12-0.5); 

bl2 = 0.2073 + 0.02*(rand()%2-0.5); 

b21 = -0.0021 + 0.0002*(rand()12-0.5); 

b22 = -0.0281 + 0.003*(rand()%2-0.5); 
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ell = -0.0624 + 0.006*(rand()%2-0.5); 

cl2 = -0.0281 + 0.003*(rand()%2-0.5); 

c21 = 0.2458 + 0.025*(rand()%2-0.5); 

c22 = 0.0009 + 0.00009*(rand()%2-0.5); 

printf("A = %f\t %f\t %f\t %f\t\n", all, al2, a21, a22; 

printf("B = %f\t %f\t %f\t %f\t\n", bll, bl2, b21, b22; 

printf("B = %f\t %f\t %f\t %f\t\n", ell, cl2, c21, c22; 

} 

Plant::~Plant () { 

void Plant::getPlantPkt(int k, Pkt u_k, Pkt x_k) { 

if(k != u_k.k) 

printf("Plant::getPlantPkt => Wrong u(k) time stamp!\n"); 

this->u_k = u_k; 

this->x_k = x_k; 

return; 

} 

void Plant::genPlantPkt(int k, Pkt &x_kpl) { 

//compute plant states 

x_kpl.pl = (l+all*T)*x_k.pl + al2*T*x_k.p2 + bll*T*u_k.pl + 

bl2*T*u_k.p2; 

x_kpl.p2 = a21*T*x_k.pl + (l+a22*T)*x_k.p2 + b21*T*u_k.pl + 

b22*T*u_k.p2; 

x_kpl.k = k+1; 

r e t u r n ; 

} 

F.3. Reference Model 

#include <iostream> 

#include <stdlib.h> 

#include "ReferenceModel.h" 

using namespace std; 

Refmdl::Refmdl() { 
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} 

Refmdl::~Refmdl() { 

} 

void Refmdl::refmdlGetPkt(int k, Pkt uc_k, Pkt xm_k) { 

if(k != uc_k.k) 

printf("Refmdl::refmdlGetPkt => Wrong uc(k) time 

stamp!\n"); 

this->uc_k = uc_k; 

if(k != xm_k.k) 

printf("Refmdl::refmdlGetPkt => Wrong xm(k) time 

stamp!\n"); 

this->xm_k = xm_k; 

return; 

} 

void Refmdl::genRefPkt(int k, Pkt &xm_kpl) { 

// compute reference states 

xm_kpl.k = k+1; 

xm_kpl.pl = (l+amll*T)*xm_k.pl + aml2*T*xm_k.p2 + 

bmll*T*uc_k.pl + bml2*T*uc_k.p2; 

xm_kpl.p2 = am21*T*xm_k.pl + (l+am22*T)*xm_k.p2 + 

bm21*T*uc_k.pl + bm22*T*uc_k.p2; 

return; 

} 

F.4. Linear Controller 

#include <iostream> 

#include <stdlib.h> 

#include "LinearControl.h" 

using namespace std; 

Linctrl: : Linctrl() { 

} 

Linctrl: :-Linctrl () { 
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} 

void Linctrl::getLinctrlPkt(int k, thetaPkt th_k, Pkt uc_k, Pkt 

x_k) { 

if(th_k.k ! = k) printf("Linctrl::getLinctrlPkt => Wrong th(k) 

time stamp!\n"); 

this->th_k = th_k; 

if(k != uc_k.k) printf("Linctrl::getLinctrlPkt => Wrong uc(k) 

time stamp!\n"); 

this->uc_k = uc_k; 

if(k != x_k.k) printf("Linctrl::getLinctrlPkt => Wrong x(k) 

time stamp!\n"); 

this->x_k = x_k; 

return; 

} 

void Linctrl::genLinctrlPkt(int k, Pkt &u_k) { 

//produce control signals 

u_k.pl = th_k.th5*uc_k.pl + th_k.th6*uc_k.p2 - th_k.thl*x_k.pl 

- th_k.th2*x_k.p2; 

u_k.p2 = th_k.th7*uc_k.pl + th_k.th8*uc_k.p2 - th_k.th3*x_k.pl 

- th_k.th4*x_k.p2; 

u_k.k = k; 

return; 

} 

F.5. Comparator 

#include <iostream> 

#include <stdlib.h> 

#include "Comparator.h" 

using namespace std; 

Comparator::Comparator() { 

} 

Comparator::~Comparator() { 

} 
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void Comparator::getCmprPkt(int k, Pkt x_k, Pkt xm_k) { 

if(k != x_k.k) printf("Comparator::Wrong x(k) time stamp!\n"); 

this->x_k = x_k; 

this->xm_k = xm_k; 

return; 

} 

void Comparator::genCmprPkt(int k, Pkt &e_k) { 

//compute errors 

e_k.pl = x_k.pl - xm_k.pl; 

e_k.p2 = x_k.p2 - xm_k.p2; 

e_k.k = k; 

r e t u r n ; 

} 

F.6. Controlled Output 

#include <iostream> 

#include <stdlib.h> 

#include "ControlledOutput.h" 

using namespace std; 

ControlledOutput::ControlledOutput() { 

} 

ControlledOutput::-ControlledOutput() { 

} 

void ControlledOutput::getRefOutPkt(int k, Pkt x_k) { 

if(k != x_k.k) printf("ControlledOutput::Wrong x(k) time 

stamp!\n"); 

this->x_k = x_k; 

return; 

} 

void ControlledOutput::genRefOutPkt(int k, Pkt &y_k) { 

//produce controlled outputs 

y_k.pl = cll*x_k.pl + cl2*x_k.p2; 

y_k.p2 = c21*x_k.pl + c22*x_k.p2; 
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y_k.k = k; 

return; 

} 

F.7. Reference Outputs 

#include <iostream> 

#include <stdlib.h> 

#include "ReferenceOutput.h" 

using namespace std; 

RefOutput::RefOutput() { 

} 

RefOutput: :-RefOutput() { 

} 

void RefOutput::getRefOutPkt(int k, Pkt xm_k) { 

if(k != xm_k.k) printf("RefOutput::getRefOutPkt => Wrong xm(k) 

time stamp!\n"); 

this->xm_k = xm k; 

return; 

} 

void RefOutput::genRefOutPkt(int k, Pkt &ym_k) { 

ym_k.pl = cmll*xm_k.pl + cml2*xm_k.p2; 

ym_k.p2 = cm21*xm_k.pl + cm22*xm_k.p2; 

ym_k.k = k; 

ym_k.pi = ym_k.pi; 

ym_k.p2 = ym_k.p2; 

r e t u r n ; 

} 

F.8. CGI Program 

#inc lude <s td io .h> 

# inc lude < s t d l i b . h > 

# inc lude <ctype.h> 

ttinclude < a s s e r t . h > 
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#include 

#include 

#include 

#include 

#include 

#include 

#include 

#include 

#include 

#include 

<errno.h> 

<string.h> 

<stdio.h> 

<unistd.h> 

<fcntl.h> 

<string.h> 

<sys/socket.h> 

<sys/types.h> 

<netinet/in.h> 

<arpa/inet.h> 

#define DATA_PORT 2534 

#define CLIENTIP"192.168.0.8' 

#define LINELEN 1024 

struct valinfo 

{ 

unsigned char *name; 

unsigned char *text; 

}; 

struct thetaPkt 

{ 

int 

int 

int 

int 

int 

int 

int 

int 

int 

k; 

thl 

th2 

th3 

th4 

th5 

th6 

th7 

th8 



struct Pkt 

{ 

int k; 

int pi; 

int p2; 

}; 

static const int MAXSIZE = 2000; 

//static const int T = 0.1; 

static const int Tgamma = 1; 

static const int MAXPKT = 11; 

static const int ucl = 500; 

static const int uc2 = 100; 

static 

static 

static 

static 

static 

static 

static 

static 

static 

static 

static 

static 

static 

static 

static 

static 

static 

static 

const 

const 

const 

const 

const 

const 

const 

const 

const 

const 

const 

const 

const 

const 

const 

const 

const 

const 

int 

int 

int 

int 

int 

int 

int 

int 

int 

int 

int 

int 

int 

int 

int 

int 

int 

int 

amll = 

ami 2 = 

am21 = 

am22 = 

bmll = 

bml2 = 

bm21 = 

bm22 = 

cmll = 

cml2 = 

cm21 = 

cm22 = 

all = -

al2 = -

a21 = 

a22 = -

bll = -

bl2 = 

-67 94; 

-910; 

1469; 

-2410; 

-146; 

207; 

-2; 

-2 8; 

-62; 

-2 8; 

246; 

l; 

-6712; 

-897; 

1559; 

-158; 

-8 3; 

235; 



static 

static 

static 

static 

static 

static 

static 

static 

static 

static 

static 

static 

static 

static 

const 

const 

const 

const 

const 

const 

const 

const 

const 

const 

const 

const 

const 

const 

int 

int 

int 

int 

int 

int 

int 

int 

int 

int 

int 

int 

int 

int 

b21 

b22 

ell 

cl2 

c21 

c22 

thO_ 

thO_ 

thO_ 

thO_ 

thO_ 

thO_ 

thO_ 

thO 

= 

= 

= 

= 

= 

= 

_1 

2 

3 

_4 

_5 

_6 

7 

8 

8; 

27; 

-62; 

-2 8; 

246; 

1; 

= 371; 

= -510; 

= 280; 

= -310; 

= 1044; 

= -42; 

= 0; 

= 1006; 

unsigned char *getval(unsigned char * ) ; 

static int gotvals=0; 

static int nvals=0; 

static struct valinfo *vals; 

static int hextobin(unsigned char) ; 

static unsigned char *httpunescape(unsigned char * ) ; 

static int getvals(void); 

static void getAdapMechPkt(int k, struct Pkt *x_kml, struct Pkt 

*e_kml, struct Pkt *uc_kml, struct thetaPkt *th_kml); 

static void fwritethpkt(char* fname, struct thetaPkt* th); 

static void fwritepkt(char* fname, struct Pkt* pkt); 

void itoch(int xl, unsigned char* c, int* len, unsigned char* 

sign); 

unsigned char *getval(unsigned char *name) 

{ 

int i; 
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if (!gotvals) 

{ 

nvals = getvals(); 

gotvals = 1; 

} 

if (nvals == 0) return NULL; 

for (i=0;i<nvals;i++) 

{ 

if(strcmp((const char *)name, (const char 

*)vals[i].name)==0) 

return vals[i].text; 

} 

return NULL; 

} 

/* =============== httpunescape =========== */ 

static unsigned char *httpunescape(unsigned char *sis) 

{ 

unsigned char *siptr; 

unsigned char *soptr; 

unsigned char *sos; 

sos = (unsigned char *) calloc (strlen((char *)sis)+1,sizeof 

(unsigned char) ) ; 

if(sos == NULL) return NULL; 

soptr = sos; 

siptr = sis; 

while (*siptr) 

{ 

if(*siptr == '%' ) 

{ 

int c = 0, i; 
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for (i=0;i<2;i++) 

{ 

int h; 

siptr++; 

if (*siptr == ' \0') break; 

if ( (h=hextobin(*siptr)) == -1) break; 

c = c«4 + h; 

} 

if (i != 2) 

{ 

free(sos); 

return NULL; 

} 

*soptr++ = (unsigned char) c; 

} else if (*siptr == '+') 

*soptr++ = ' '; 

else 

*soptr++ = *siptr; 

siptr++; 

} 

*soptr = '\0' ; 

strcpy ((char *)sis, (const char *)sos); 

free (sos); 

return sis; 

} 

/* =============== hextobin ================= */ 

static int hextobin(unsigned char c) 

{ 

if(isdigit(c)) 

return c-'0'; 

else if (isxdigit(c)) 
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return tolower(c) - 'a' + 10; 

else 

return -1; 

/* =============== getvals =================== */ 

static int getvals(void) 

{ 

int i; 

int vent = 0; 

unsigned char *vstr; 

unsigned char *vptr; 

unsigned char *eptr; 

unsigned char *aptr; 

vstr = (unsigned char *) getenv ( "REQUEST_METHOD"); 

if(vstr == NULL) return 0; 

if(stremp((const char *)vstr,"POST") == 0) 

{ 

int 1, cl; 

vstr = (unsigned char *) getenv("CONTENT_LENGTH"] 

if (vstr == NULL | | strlen( (const char *)vstr) == 

return 0; 

if ((cl = atoi((const char *)vstr)) == 0) 

return 0; 

vstr = (unsigned char *)malloc(cl+2); 

if(vstr == NULL) 

return 0; 

fgets( (char *)vstr,cl + 1,stdin); 

1 = strlen((const char *)vstr); 

if(vstr[l-l] == '\n') 

vstr[l-l]='\0'; 
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else 

{ 

vstr = (unsigned char *) getenv("QUERY_STRING"); 

if(vstr == NULL) return 0; 

} 

vptr = vstr; 

while (*vptr) 

if(*vptr++ == '&') vcnt++; 

vcnt++; 

vals = (struct valinfo *)calloc(vent,sizeof (struct 

valinfo)); 

if(vals == NULL) return 0; 

vptr = vstr; 

for (i=0;i<vcnt;i++) 

{ 

eptr = (unsigned char *)strchr((const char *)vptr,'='); 

aptr = (unsigned char *)strchr((const char *)vptr,'&'); 

if (eptr == NULL) 

return 0; 

*eptr = '\0'; 

vals[i].name = httpunescape(vptr); 

if (vals[i].name == NULL) return 0; 

if (aptr) 

{ 

*aptr = '\0'; 

vptr = aptr+1; 

} 

vals[i].text = httpunescape(eptr+1); 
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if(vals [i] .text == NULL) return 0; 

} 

return vent; 

} 

/* =============== write adaptive gains =================== */ 

static void fwritethpkt(char* fname, struct thetaPkt* th){ 

unsigned char *c; 

unsigned char *cs; 

int fd, len; 

fd=open(fname,0_WRONLY | 0_CREAT, 0 666); 

if((fd==-l)){ 

printf("Can't write %s\n", fname); 

exit (1); 

} 

c = (unsigned char*) malloc(20); 

cs = (unsigned char*) malloc(2); 

itoch(th->k, c, &len, cs) ; 

write(fd, c, len); 

write(fd, "\t", 1); 

free((void*) c); 

free((void*) cs); 

c = (unsigned char*) malloc(20); 

cs = (unsigned char*) malloc(l); 

itoch(th->thl, c, &len, cs); 

write(fd, cs, 1); 

write(fd, c, len); 

write(fd, "\t", 1); 

free((void*) c); 
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free((void*) cs); 

c = (unsigned char*) malloc (20); 

cs = (unsigned char*) malloc(l); 

itoch(th->th2, c, &len, cs); 

write(fd, cs, 1); 

write(fd, c, len); 

write(fd, "\t", 1); 

free((void*) c); 

free((void*) cs); 

c = (unsigned char*) malloc (20); 

cs = (unsigned char*) malloc(1); 

itoch(th->th3, c, &len, cs) ; 

write(fd, cs, 1); 

write(fd, c, len); 

write(fd, "\t", 1); 

free((void*) c); 

free((void*) cs) ; 

c = (unsigned char*) malloc(20); 

cs = (unsigned char*) malloc (1); 

itoch(th->th4, c, &len, cs); 

write(fd, cs, 1); 

write(fd, c, len); 

write(fd, "\t", 1); 

free((void*) c); 

free((void*) cs); 

c = (unsigned char*) malloc (20); 

cs = (unsigned char*) malloc(l); 

itoch(th->th5, c, &len, cs); 

write(fd, cs, 1); 

write(fd, c, len); 
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write(fd, "\t", 1); 

free((void*) c); 

free((void*) cs); 

c = (unsigned char*) malloc (20); 

cs = (unsigned char*) malloc (1); 

itoch(th->th6, c, &len, cs); 

write(fd, cs, 1); 

write(fd, c, len); 

write(fd, "\t", 1); 

free((void*) c); 

free((void*) cs); 

c = (unsigned char*) malloc (20); 

cs = (unsigned char*) malloc (1); 

itoch(th->th7, c, Slen, cs); 

write(fd, cs, 1); 

write(fd, c, len); 

write(fd, "\t", 1); 

free((void*) c); 

free((void*) cs); 

c = (unsigned char*) malloc(20); 

cs = (unsigned char*) malloc(1); 

itoch(th->th8, c, &len, cs); 

write(fd, cs, 1); 

write(fd, c, len); 

write(fd, "\t", 1); 

free((void*) c); 

free((void*) cs); 

close(fd); 

return; 
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/* =============== write signals =================== */ 

static void fwritepkt(char* fname, struct Pkt* pkt){ 

unsigned char *c; 

unsigned char *cs; 

int fd, len; 

fd=open(fname,OJAJRONLY | 0_CREAT, 0 666); 

//fd=open("adap.out",0_WRONLY, 0666); 

if((fd==-l)){ 

printf("Can't write %s\n", fname); 

exit(1); 

} 

c = (unsigned char*) malloc(20); 

cs = (unsigned char*) malloc(2); 

itoch(pkt->k, c, &len, cs); 

write(fd, c, len); 

write(fd, "\t", 1); 

free((void*) c); 

free((void*) cs); 

c = (unsigned char*) malloc (20); 

cs = (unsigned char*) malloc(1); 

itoch(pkt->pl, c, &len, cs); 

write(fd, cs, 1); 

write(fd, c, len); 

write(fd, "\t", 1); 

free((void*) c); 

free((void*) cs); 

c = (unsigned char*) malloc(20); 

cs = (unsigned char*) malloc(1); 
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itoch(pkt->p2, c, &len, cs); 

write(fd, cs, 1); 

write(fd, c, len); 

write(fd, "\t", 1); 

free((void*) c); 

free((void*) cs); 

close(fd); 

return; 

} 

/* =============== write a signal =================== */ 

static void fwritesig(char* fname, int sig){ 

unsigned char *c; 

unsigned char *cs; 

int fd, len; 

fd=open(fname,0_WRONLY | 0_CREAT, 0666); 

//fd=open("adap.out",0_WRONLY, 0666); 

if((fd==-l)){ 

printf("Can't write %s\n", fname); 

exit (1); 

} 

c = (unsigned char*) malloc(20); 

cs = (unsigned char*) malloc(2); 

itoch(sig, c, &len, cs); 

write(fd, cs, 1); 

write(fd, c, len); 

write(fd, "\t", 1); 

free((void*) c); 

free((void*) cs); 
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close(fd); 

return; 

} 

/* =============== getsignal =================== */ 

static void getsig(char* fname, int* signal){ 

int fn, s, i, m, sn, 1; 

unsigned char* buf; 

buf = (unsigned char*) malloc(20); 

//printf("<p> Opening the input file\n"); 

fn = open(fname, 0_RDONLY); 

//make sure it was really opened 

if(fn==-l) 

{ 

printf ("<p> Cannot open the fn.dat file.\n"); 

//exit(1) ; 

return; 

} 

read(fn, buf, 20); 

s = atoi((const char*) buf); 

*signal = s; 

free((void*) buf); 

close(fn); 

return;// s; 

} 

/* =============== get ascii signal =================== */ 

static int getcsig (char* fname, int* signal)! 

int fn, s, i, m, sn, 1; 

unsigned char* buf; 

buf = (unsigned char*) malloc(20); 

//printf("<p> Opening the input file\n"); 

fn = open(fname, 0_RDONLY); 
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//make sure it was really opened 

if(fn==-l) 

{ 

printf ("<p> Cannot open the input file %s.\n", fname); 

//exit (1); 

return 0; 

} 

read(fn, buf, 20); 

s = atoi((const char*) buf); 

*signal = s; 

free((void*) buf); 

close(fn); 

return 1; 

} 

/* =============== settime =================== */ 

static void settime(char* fname, int k){ 

int f; 

int t=0; 

unsigned char *c; 

unsigned char *cs; 

int len; 

f=open(fname, 0_WRONLY I 0_CREAT, 0666); 

// if((f==-l)){ 

// printf("Can't write %s\n", fname); 

// exit(l); 

// } 

while(f==-l &&t<10000){ 

printf("<p>t=%d: cannot open %s\n", t++, fname); 

} 

if(t>=10000) exit(l); 

c = (unsigned char*) malloc(20); 
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cs = (unsigned char*) malloc(2); 

itoch(k, c, &len, cs); 

write(f, c, len); 

write(f, "\t", 1); 

free((void*) c); 

free((void*) cs); 

close (f); 

return; 

} 

/* =============== Wait =================== */ 

static void wait(int n) { 

int i=0; 

while(i++<n); 

} 

/* =============== gettime =================== */ 

static void gettime(int* kT){ 

int k; 

//Use for testing CGI running on ARM 

getsig("/var/tmp/fkt.dat", &k); 

//clear signals 

//clearsig("/var/tmp/fkt.dat"); 

*kT = k; 

//printf("<p> x(k-l).k = %d\n", k); 

//Write to files 

fwritesig("/var/tmp/chk_kT.dat", k); 

return; 

} 

/* =============== clear signal =================== */ 

static void clearsig(char* fname){ 

int fn; 

//printf ("<p> Opening the input file\n"); 
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fn = open(fname, 0_WRONLY, 0 666); 

//make sure it was really opened 

if(fn==-l) 

{ 

printf("<p> Cannot open the input file %s.\n", fname); 

exit(1); 

return; 

} 

write(fn,"",20); 

close(fn); 

return; 

} 

/* =============== integer to character =================== */ 

void itoch(int xl, unsigned char* c, int* len, unsigned char* 

sign){ 

int i ; 

unsigned char* ch; 

ch = (unsigned char*) malloc(128); 

i=-l; 

if (xl==0) 

{ 

ch[0] = '0'; 

*len = 1; 

} 

if(xl<0){ 

xl = -xl; 

sign[0] = '-'; 

} else { 

sign[0] = '+'; 

} 

191 



while(xl>0) 

{ 

i++; 

ch[i] = '0' + xl%10; 

xl=xl/10; 

} 

*len=i+l; 

for(i=0; i<*len; i++) 

{ 

c[i] = (const char) ch [*len-i-l]; 

} 

free((void*) ch); 

return; 

} 

/* =============== getAdapMechPkt =================== */ 

static void getAdapMechPkt(int k, struct Pkt *x_kml, struct P 

*e_kml, struct Pkt *uc_kml, struct thetaPkt *th_kml){ 

int kx, xl, x2, ke, el, e2, kuc, ucl, uc2, kth, thl, th2, 

th4, th5, th6, th7, th8; 

int outfile; 

//Receive signals 

getsig("/var/tmp/fkx.dat", &kx); 

getsig("/var/tmp/fxl.dat", &xl); 

getsig("/var/tmp/fx2.dat", &x2); 

getsig("/var/tmp/fke.dat", &ke); 

getsig("/var/tmp/fel.dat", &el); 

getsig("/var/tmp/fe2.dat", &e2); 

getsig("/var/tmp/fkuc.dat", &kuc); 

getsig("/var/tmp/fucl.dat", &ucl); 
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getsig 

getsig 

getsig 

getsig 

getsig 

getsig 

getsig 

getsig 

getsig 

getsig 

"/var/tmp/fuc2, 

"/var/tmp/fkth. 

"/var/tmp/fthl, 

"/var/tmp/fth2. 

"/var/tmp/fth3. 

"/var/tmp/fth4, 

"/var/tmp/fth5. 

"/var/tmp/fth6. 

"/var/tmp/fth7. 

"/var/tmp/fth8. 

dat", 

dat", 

dat", 

dat", 

dat", 

dat", 

dat", 

dat", 

dat", 

dat", 

&uc2) 

&kth) 

&thl) 

&th2) 

&th3) 

&th4) 

&th5) 

&th6) 

&th7) 

&th8) 

//Display on HTML page 

printf("<h3> Embedded Adaptive Controller: input signals 

received.</h3>\n"); 

printf 

printf 

printf 

printf 

printf 

printf 

printf 

printf 

printf 

printf 

printf 

printf 

printf 

printf 

printf 

printf 

printf 

printf 

printf 

'<h3> Time = %dT </h3>\n", k) ; 

'<p> x(%d).k = %d\n", k-1, kx) ; 

'<p> xl(%d) = %d\n", k-1, xl); 

'<p> x2(%d) = %d\n", k-1, x2); 

'<p> e(%d).k = %d\n", k-1, ke) ; 

'<p> el(%d) = %d\n", k-1, el) ; 

'<p> e2(%d) = %d\n", k-1, e2); 

<p> uc(%d).k = %d\n", k-1, kuc) ; 

'<p> ucl 

'<p> uc2 

'<p> thl 

'<p> thl 

'<p> th2 

'<p> th3 

'<p> th4 

'<p> th5 

'<p> th6 

'<p> th7 

'<p> th8 

%d) = %d\n", k-1, ucl) ; 

%d) = %d\n", k-1, uc2); 

%d).k = %d\n", k-1, kth); 

%d) = %d\n", k-1, thl) 

%d) = %d\n", k-1, th2) 

%d) = %d\n", k-1, th3) 

%d) = %d\n", k-1, th4) 

%d) = %d\n", k-1, th5) 

%d) = %d\n", k-1, th6) 

%d) = %d\n", k-1, th7) 

%d) = %d\n", k-1, th8) 
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x_kml->k = kx; 

x_kml->pl = xl; 

x_kml->p2 = x2; 

e_kml->k = ke; 

e_kml->pl = el; 

e_kml->p2 = e2; 

uc_kml->k = kuc; 

uc_kml->pl = ucl; 

uc_kml->p2 = uc2; 

th_kml->k = kth; 

th_kml->thl = thl 

th_kml->th2 = th2 

th_kml->th3 = th3 

th_kml->th4 = th4 

th_kml->th5 = th5 

th_kml->th6 = th6 

th_kml->th7 = th7 

th kml->th8 = th8 

//Write to files 

fwritepkt("/var/tmp/chk_x.dat", x_kml); 

fwritepkt("/var/tmp/chk_e.dat", e_kml); 

fwritepkt("/var/tmp/chk_uc.dat", uc_kml); 

fwritethpkt("/var/tmp/chk_th.dat", th_kml); 

return; 

} 

/* =============== genAdapMechPkt =================== */ 

void genAdapMechPkt(int k, struct Pkt* x_kml, struct Pkt* e_kml, 

struct Pkt* uc_kml, struct thetaPkt* th_kml, struct thetaPkt 

*th k){ 

th k->k = k; 
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th_k->thl = th_kml->thl + Tgamma*(bll*e_kml->pl + b21*e_kml-

>p2)*x_kml->pl/10000000; 

th_k->th2 = th_kml->th2 + Tgamma*(bll*e_kml->pl + b21*e_kml-

>p2)*x_kml->p2/10000000; 

th_k->th3 = th_kml->th3 + Tgamma*(bl2*e_kml->pl + b22*e_kml-

>p2)*x_kml->pl/10000000; 

th_k->th4 = th_kml->th4 + Tgamma*(bl2*e_kml->pl + b22*e_kml-

>p2)*x_kml->p2/10000000; 

th_k->th5 = th_kml->th5 - Tgamma*(bll*e_kml->pl + b21*e_kml-

>p2)*uc_kml->pl/10000000; 

th_k->th6 = th_kml->th6 - Tgamma*(bll*e_kml->pl + b21*e_kml-

>p2)*uc_kml->p2/10000000; 

th_k->th7 = th_kml->th7 - Tgamma*(bl2*e_kml->pl + b22*e_kml-

>p2)*uc_kml->pl/10000000; 

th_k->th8 = th_kml->th8 - Tgamma*(bl2*e_kml->pl + b22*e_kml-

>p2)*uc_kml->p2/10000000; 

// Write to files 

fwritethpkt("/var/tmp/adapout.dat", th_k); 

settime("/var/tmp/fka.dat", k) ; 

return; 

/* =============== main ============ 

main () 

{ 

unsigned char *strl,*str2, *cmd; 

int valid; 

int stime, gamm; 

int i=0; 

int k, kT; 

int kmax=2; 
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struct Pkt x_kml; 

struct Pkt e_kml; 

struct Pkt uc_kml; 

struct thetaPkt th_kml; 

struct thetaPkt th_k; 

int getkt=0; 

int getkmax=0; 

cmd = getval((unsigned char *)"cmd"); 

printf ("Content-type: text/html\n\n"); 

printf("<html> <head> <title> Web Server of Embedded Adaptive 

Controller </title> 

</head>\n"); 

if(strcmp((const char *)cmd, "run") == 0){ 

strl = getval((unsigned char*)"sptime"); 

str2 = getval((unsigned char*)"gamma"); 

printf("<body><hl>Embedded Adaptive Controller</hl>\n"); 

k=l; 

while(!getkmax){ 

getkmax=getcsig("/var/tmp/fkmax.dat", &kmax); 

wait(5000); 

} 

printf("<p> Maximal step size kmax = %d\n", kmax); 

while(k< kmax){ 

printf("<h2> Time = %dT:</h2>\n", k) ; 

//Waiting for Plant Simulator sending signals 

printf("<p> Waiting for Plant Simulator sending 

signals.\n"); 

while(Igetkt){ 

getkt = getcsig("/var/tmp/fkt.dat", &kT); 

wait (5000); 

} 
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printf("<p> kT = %d, k = %d\n", kT, k); 

while(k!=kT){ 

getsig("/var/tmp/fkt.dat", &kT) ; 

wait(10000); 

} 

printf("<p> Adaptive Mech receiving input 

signals...\n"); 

getAdapMechPkt(k, &x_kml, &e_kml, &uc_kml, &th_kml); 

printf("<p> Adaptive Mech synthesizing adaptive 

gains...\n"); 

genAdapMechPkt(k, &x_kml, &e_kml, &uc_kml, &th_kml, 

&th_k); 

k++; 

} 

} else { 

printf ("<p>Sorry, the request is invalid.\n") ; 

} 

printf ("</body></html>\n"); 

exit (0); 

} 
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APPENDIX G: MATLAB/C++ SIMULATION OUTPUT FILES 

The simulation programs written in MATLAB and C++ give the same results, 

which are stored in output files. The results are shown in the following tables. 

G.l. State Variables Files 

The content of state variables data files is shown in Table G. 1. 

Table G. 1. Simulation result of state variables. 

k 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

t 

0.000000 

0.100000 

0.200000 

0.300000 

0.400000 

0.500000 

0.600000 

0.700000 

0.800000 

0.900000 

1.000000 

1.100000 

1.200000 

1.300000 

1.400000 

1.500000 

1.600000 

1.700000 

1.800000 

xl 

0.000000 

-0.005938 

-0.007274 

-0.007525 

-0.006703 

-0.006552 

-0.007393 

-0.007877 

-0.006929 

-0.006522 

-0.006511 

-0.005794 

-0.005655 

-0.005802 

-0.005829 

-0.005804 

-0.005700 

-0.006102 

-0.006161 

x2 

0.000000 

-0.000402 

-0.001596 

-0.002967 

-0.004377 

-0.005628 

-0.006885 

-0.008274 

-0.009549 

-0.010673 

-0.011823 

-0.012844 

-0.013834 

-0.014738 

-0.015578 

-0.016366 

-0.017279 

-0.018029 

-0.018812 

xml 

0.000000 

-0.005232 

-0.006874 

-0.007297 

-0.007309 

-0.007186 

-0.007024 

-0.006854 

-0.006686 

-0.006524 

-0.006369 

-0.006221 

-0.006080 

-0.005945 

-0.005816 

-0.005693 

-0.005576 

-0.005464 

-0.005358 

xm2 

0.000000 

-0.000386 

-0.001531 

-0.002888 

-0.004274 

-0.005626 

-0.006927 

-0.008172 

-0.009360 

-0.010494 

-0.011576 

-0.012609 

-0.013594 

-0.014533 

-0.015429 

-0.016284 

-0.017099 

-0.017877 

-0.018620 
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19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

1.900000 

2.000000 

2.100000 

2.200000 

2.300000 

2.400000 

2.500000 

2.600000 

2.700000 

2.800000 

2.900000 

3.000000 

3.100000 

3.200000 

3.300000 

3.400000 

3.500000 

3.600000 

3.700000 

3.800000 

3.900000 

4.000000 

4.100000 

4.200000 

4.300000 

4.400000 

4.500000 

4.600000 

-0.005840 

-0.005030 

-0.005135 

-0.005074 

-0.004855 

-0.005031 

-0.004512 

-0.004009 

-0.004133 

-0.004671 

-0.004958 

-0.004323 

-0.003983 

-0.004546 

-0.004544 

-0.004603 

-0.004297 

-0.004450 

-0.004369 

-0.003873 

-0.004316 

-0.003581 

-0.003195 

-0.004056 

-0.004004 

-0.003677 

-0.003060 

-0.002967 

-0.019639 

-0.020340 

-0.020948 

-0.021660 

-0.022270 

-0.022872 

-0.023498 

-0.023983 

-0.024360 

-0.024769 

-0.025263 

-0.025755 

-0.026125 

-0.026483 

-0.026923 

-0.027330 

-0.027685 

-0.027977 

-0.028329 

-0.028643 

-0.028964 

-0.029283 

-0.029457 

-0.029607 

-0.029793 

-0.029938 

-0.030105 

-0.030178 

-0.005256 

-0.005159 

-0.005067 

-0.004979 

-0.004894 

-0.004814 

-0.004737 

-0.004664 

-0.004595 

-0.004528 

-0.004465 

-0.004404 

-0.004346 

-0.004291 

-0.004239 

-0.004189 

-0.004141 

-0.004095 

-0.004052 

-0.004010 

-0.003971 

-0.003933 

-0.003897 

-0.003863 

-0.003830 

-0.003798 

-0.003769 

-0.003740 

-0.019327 

-0.020003 

-0.020647 

-0.021262 

-0.021848 

-0.022407 

-0.022941 

-0.023449 

-0.023935 

-0.024398 

-0.024840 

-0.025261 

-0.025663 

-0.026047 

-0.026413 

-0.026762 

-0.027095 

-0.027412 

-0.027715 

-0.028004 

-0.028280 

-0.028543 

-0.028794 

-0.029033 

-0.029261 

-0.029479 

-0.029687 

-0.029885 
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47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 

66 

67 

68 

69 

70 

71 

72 

73 

74 

4.700000 

4.800000 

4.900000 

5.000000 

5.100000 

5.200000 

5.300000 

5.400000 

5.500000 

5.600000 

5.700000 

5.800000 

5.900000 

6.000000 

6.100000 

6.200000 

6.300000 

6.400000 

6.500000 

6.600000 

6.700000 

6.800000 

6.900000 

7.000000 

7.100000 

7.200000 

7.300000 

7.400000 

-0.003945 

-0.003632 

-0.003741 

-0.003254 

-0.004091 

-0.003652 

-0.004092 

-0.004512 

-0.003289 

-0.002858 

-0.002967 

-0.003991 

-0.003572 

-0.003271 

-0.003674 

-0.003566 

-0.003464 

-0.003407 

-0.002696 

-0.002674 

-0.003472 

-0.003254 

-0.003053 

-0.003501 

-0.003466 

-0.003658 

-0.002994 

-0.003796 

-0.030245 

-0.030477 

-0.030604 

-0.030814 

-0.030945 

-0.031179 

-0.031310 

-0.031532 

-0.031857 

-0.031948 

-0.031971 

-0.032005 

-0.032227 

-0.032303 

-0.032298 

-0.032383 

-0.032482 

-0.032554 

-0.032590 

-0.032534 

-0.032468 

-0.032440 

-0.032512 

-0.032535 

-0.032586 

-0.032618 

-0.032758 

-0.032787 

-0.003713 

-0.003687 

-0.003662 

-0.003639 

-0.003616 

-0.003595 

-0.003574 

-0.003555 

-0.003536 

-0.003519 

-0.003502 

-0.003485 

-0.003470 

-0.003455 

-0.003441 

-0.003428 

-0.003415 

-0.003403 

-0.003391 

-0.003380 

-0.003370 

-0.003360 

-0.003350 

-0.003341 

-0.003332 

-0.003324 

-0.003316 

-0.003308 

-0.030074 

-0.030254 

-0.030426 

-0.030590 

-0.030747 

-0.030896 

-0.031039 

-0.031175 

-0.031304 

-0.031428 

-0.031546 

-0.031659 

-0.031766 

-0.031868 

-0.031966 

-0.032059 

-0.032148 

-0.032233 

-0.032314 

-0.032391 

-0.032465 

-0.032535 

-0.032602 

-0.032666 

-0.032727 

-0.032785 

-0.032840 

-0.032893 
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75 

76 

77 

78 

79 

80 

81 

82 

83 

84 

85 

86 

87 

88 

89 

90 

91 

92 

93 

94 

95 

96 

97-

98 

99 

100 

7.500000 

7.600000 

7.700000 

7.800000 

7.900000 

8.000000 

8.100000 

8.200000 

8.300000 

8.400000 

8.500000 

8.600000 

8.700000 

8.800000 

8.900000 

9.000000 

9.100000 

9.200000 

9.300000 

9.400000 

9.500000 

9.600000 

9.700000 

9.800000 

9.900000 

10.000000 

-0.004422 

-0.003688 

-0.002866 

-0.003432 

-0.003142 

-0.002693 

-0.003564 

-0.003913 

-0.004231 

-0.004049 

-0.003128 

-0.002355 

-0.002156 

-0.002358 

-0.002603 

-0.003386 

-0.004014 

-0.004132 

-0.003349 

-0.003703 

-0.003246 

-0.003219 

-0.003219 

-0.002317 

-0.002500 

-0.003393 

-0.032935 

-0.033168 

-0.033314 

-0.033233 

-0.033228 

-0.033288 

-0.033206 

-0.033185 

-0.033216 

-0.033382 

-0.033535 

-0.033510 

-0.033344 

-0.033200 

-0.033080 

-0.032950 

-0.032966 

-0.033023 

-0.033146 

-0.033219 

-0.033293 

-0.033271 

-0.033284 

-0.033355 

-0.033271 

-0.033212 

-0.003301 

-0.003294 

-0.003287 

-0.003281 

-0.003275 

-0.003269 

-0.003264 

-0.003259 

-0.003254 

-0.003249 

-0.003244 

-0.003240 

-0.003236 

-0.003232 

-0.003228 

-0.003225 

-0.003221 

-0.003218 

-0.003215 

-0.003212 

-0.003209 

-0.003207 

-0.003204 

-0.003202 

-0.003199 

-0.003197 

-0.032944 

-0.032992 

-0.033038 

-0.033082 

-0.033124 

-0.033164 

-0.033202 

-0.033238 

-0.033272 

-0.033306 

-0.033337 

-0.033367 

-0.033396 

-0.033423 

-0.033449 

-0.033474 

-0.033498 

-0.033520 

-0.033542 

-0.033563 

-0.033582 

-0.033601 

-0.033619 

-0.033636 

-0.033652 

-0.033668 
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G.2. Reference and Controlled Outputs 

The content of simulation data files for reference and controlled outputs is shown 

in Table G.2. 

Table G.2. Simulation result of reference and controlled outputs. 

k 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

t 

0.000000 

0.100000 

0.200000 

0.300000 

0.400000 

0.500000 

0.600000 

0.700000 

0.800000 

0.900000 

1.000000 

1.100000 

1.200000 

1.300000 

1.400000 

1.500000 

1.600000 

1.700000 

1.800000 

1.900000 

2.000000 

yi 

-0.000000 

0.000365 

0.000479 

0.000535 

0.000528 

0.000556 

0.000643 

0.000713 

0.000694 

0.000703 

0.000737 

0.000724 

0.000745 

0.000781 

0.000807 

0.000829 

0.000850 

0.000896 

0.000923 

0.000928 

0.000901 

y2 

0.000000 

-0.001534 

-0.001880 

-0.001946 

-0.001735 

-0.001697 

-0.001915 

-0.002042 

-0.001798 

-0.001694 

-0.001692 

-0.001508 

-0.001472 

-0.001511 

-0.001519 

-0.001513 

-0.001487 

-0.001592 

-0.001608 

-0.001525 

-0.001317 

yml 

-0.000000 

0.000337 

0.000472 

0.000536 

0.000576 

0.000607 

0.000633 

0.000657 

0.000680 

0.000702 

0.000723 

0.000742 

0.000761 

0.000779 

0.000796 

0.000813 

0.000828 

0.000843 

0.000858 

0.000871 

0.000884 

ym2 

0.000000 

-0.001286 

-0.001691 

-0.001796 

-0.001800 

-0.001771 

-0.001733 

-0.001692 

-0.001652 

-0.001613 

-0.001576 

-0.001540 

-0.001507 

-0.001474 

-0.001443 

-0.001414 

-0.001386 

-0.001359 

-0.001334 

-0.001309 

-0.001286 
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21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

2.100000 

2.200000 

2.300000 

2.400000 

2.500000 

2.600000 

2.700000 

2.800000 

2.900000 

3.000000 

3.100000 

3.200000 

3.300000 

3.400000 

3.500000 

3.600000 

3.700000 

3.800000 

3.900000 

4.000000 

4.100000 

4.200000 

4.300000 

4.400000 

4.500000 

4.600000 

4.700000 

0.000925 

0.000943 

0.000948 

0.000976 

0.000964 

0.000948 

0.000967 

0.001011 

0.001042 

0.001019 

0.001010 

0.001054 

0.001067 

0.001082 

0.001075 

0.001092 

0.001098 

0.001078 

0.001114 

0.001080 

0.001062 

0.001117 

0.001120 

0.001105 

0.001073 

0.001070 

0.001130 

-0.001344 

-0.001329 

-0.001273 

-0.001319 

-0.001185 

-0.001056 

-0.001088 

-0.001228 

-0.001302 

-0.001139 

-0.001051 

-0.001197 

-0.001197 

-0.001212 

-0.001134 

-0.001173 

-0.001153 

-0.001025 

-0.001139 

-0.000950 

-0.000851 

-0.001073 

-0.001060 

-0.000975 

-0.000816 

-0.000792 

-0.001045 

0.000896 

0.000908 

0.000919 

0.000930 

0.000940 

0.000950 

0.000959 

0.000968 

0.000977 

0.000985 

0.000992 

0.001000 

0.001007 

0.001013 

0.001020 

0.001026 

0.001032 

0.001037 

0.001042 

0.001047 

0.001052 

0.001057 

0.001061 

0.001065 

0.001069 

0.001073 

0.001077 

-0.001264 

-0.001243 

-0.001223 

-0.001203 

-0.001185 

-0.001168 

-0.001151 

-0.001135 

-0.001120 

-0.001105 

-0.001091 

-0.001078 

-0.001066 

-0.001054 

-0.001042 

-0.001031 

-0.001021 

-0.001011 

-0.001001 

-0.000992 

-0.000984 

-0.000976 

-0.000968 

-0.000960 

-0.000953 

-0.000946 

-0.000940 
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48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 

66 

67 

68 

69 

70 

71 

72 

73 

74 

4.800000 

4.900000 

5.000000 

5.100000 

5.200000 

5.300000 

5.400000 

5.500000 

5.600000 

5.700000 

5.800000 

5.900000 

6.000000 

6.100000 

6.200000 

6.300000 

6.400000 

6.500000 

6.600000 

6.700000 

6.800000 

6.900000 

7.000000 

7.100000 

7.200000 

7.300000 

7.400000 

0.001118 

0.001128 

0.001105 

0.001159 

0.001140 

0.001170 

0.001201 

0.001138 

0.001115 

0.001123 

0.001184 

0.001166 

0.001150 

0.001174 

0.001170 

0.001167 

0.001166 

0.001125 

0.001122 

0.001167 

0.001153 

0.001144 

0.001171 

0.001170 

0.001183 

0.001147 

0.001196 

-0.000964 

-0.000992 

-0.000867 

-0.001083 

-0.000970 

-0.001084 

-0.001192 

-0.000877 

-0.000766 

-0.000794 

-0.001058 

-0.000950 

-0.000873 

-0.000977 

-0.000949 

-0.000922 

-0.000908 

-0.000724 

-0.000718 

-0.000925 

-0.000868 

-0.000816 

-0.000932 

-0.000923 

-0.000973 

-0.000801 

-0.001009 

0.001080 

0.001084 

0.001087 

0.001090 

0.001093 

0.001095 

0.001098 

0.001100 

0.001103 

0.001105 

0.001107 

0.001109 

0.001111 

0.001113 

0.001115 

0.001116 

0.001118 

0.001120 

0.001121 

0.001123 

0.001124 

0.001125 

0.001126 

0.001128 

0.001129 

0.001130 

0.001131 

-0.000934 

-0.000928 

-0.000922 

-0.000917 

-0.000911 

-0.000907 

-0.000902 

-0.000897 

-0.000893 

-0.000889 

-0.000885 

-0.000882 

-0.000878 

-0.000875 

-0.000871 

-0.000868 

-0.000865 

-0.000863 

-0.000860 

-0.000857 

-0.000855 

-0.000853 

-0.000851 

-0.000848 

-0.000846 

-0.000845 

-0.000843 
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75 

76 

77 

78 

79 

80 

81 

82 

83 

84 

85 

86 

87 

88 

89 

90 

91 

92 

93 

94 

95 

96 

97 

98 

99 

100 

7.500000 

7.600000 

7.700000 

7.800000 

7.900000 

8.000000 

8.100000 

8.200000 

8.300000 

8.400000 

8.500000 

8.600000 

8.700000 

8.800000 

8.900000 

9.000000 

9.100000 

9.200000 

9.300000 

9.400000 

9.500000 

9.600000 

9.700000 

9.800000 

9.900000 

10.000000 

0.001238 

0.001201 

0.001156 

0.001188 

0.001170 

0.001145 

0.001195 

0.001215 

0.001235 

0.001229 

0.001178 

0.001132 

0.001115 

0.001123 

0.001134 

0.001176 

0.001214 

0.001223 

0.001180 

0.001203 

0.001178 

0.001176 

0.001176 

0.001125 

0.001133 

0.001185 

-0.001170 

-0.000981 

-0.000769 

-0.000915 

-0.000840 

-0.000724 

-0.000949 

-0.001039 

-0.001121 

-0.001074 

-0.000837 

-0.000637 

-0.000585 

-0.000637 

-0.000701 

-0.000903 

-0.001065 

-0.001095 

-0.000893 

-0.000985 

-0.000867 

-0.000860 

-0.000860 

-0.000627 

-0.000674 

-0.000905 

0.001132 

0.001133 

0.001134 

0.001134 

0.001135 

0.001136 

0.001137 

0.001137 

0.001138 

0.001139 

0.001139 

0.001140 

0.001140 

0.001141 

0.001141 

0.001142 

0.001142 

0.001143 

0.001143 

0.001144 

0.001144 

0.001144 

0.001145 

0.001145 

0.001145 

0.001146 

-0.000841 

-0.000839 

-0.000838 

-0.000836 

-0.000835 

-0.000833 

-0.000832 

-0.000831 

-0.000830 

-0.000829 

-0.000827 

-0.000826 

-0.000825 

-0.000825 

-0.000824 

-0.000823 

-0.000822 

-0.000821 

-0.000820 

-0.000820 

-0.000819 

-0.000818 

-0.000818 

-0.000817 

-0.000817 

-0.000816 
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Plant Error 

The content of simulation data file for plant error is shown in Table G.3. 

Table G.3. Simulation result of plant errors. 

k 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

t 

0.000000 

0.100000 

0.200000 

0.300000 

0.400000 

0.500000 

0.600000 

0.700000 

0.800000 

0.900000 

1.000000 

1.100000 

1.200000 

1.300000 

1.400000 

1.500000 

1.600000 

1.700000 

1.800000 

1.900000 

2.000000 

2.100000 

ei 

0.000000 

-0.000706 

-0.000400 

-0.000229 

0.000606 

0.000634 

-0.000368 

-0.001023 

-0.000243 

0.000002 

-0.000142 

0.000427 

0.000425 

0.000143 

-0.000013 

-0.000110 

-0.000124 

-0.000638 

-0.000803 

-0.000584 

0.000129 

-0.000068 

e2 

0.000000 

-0.000016 

-0.000065 

-0.000079 

-0.000103 

-0.000002 

0.000042 

-0.000102 

-0.000189 

-0.000179 

-0.000247 

-0.000236 

-0.000241 

-0.000205 

-0.000149 

-0.000082 

-0.000180 

-0.000152 

-0.000193 

-0.000312 

-0.000337 

-0.000301 
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22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

2.200000 

2.300000 

2.400000 

2.500000 

2.600000 

2.700000 

2.800000 

2.900000 

3.000000 

3.100000 

3.200000 

3.300000 

3.400000 

3.500000 

3.600000 

3.700000 

3.800000 

3.900000 

4.000000 

4.100000 

4.200000 

4.300000 

4.400000 

4.500000 

4.600000 

4.700000 

4.800000 

-0.000096 

0.000040 

-0.000217 

0.000226 

0.000656 

0.000462 

-0.000143 

-0.000493 

0.000081 

0.000364 

-0.000255 

-0.000305 

-0.000414 

-0.000157 

-0.000355 

-0.000318 

0.000137 

-0.000345 

0.000352 

0.000702 

-0.000194 

-0.000175 

0.000122 

0.000709 

0.000773 

-0.000232 

0.000055 

-0.000399 

-0.000422 

-0.000465 

-0.000557 

-0.000534 

-0.000425 

-0.000371 

-0.000423 

-0.000494 

-0.000462 

-0.000436 

-0.000510 

-0.000569 

-0.000590 

-0.000565 

-0.000614 

-0.000639 

-0.000684 

-0.000740 

-0.000663 

-0.000574 

-0.000531 

-0.000459 

-0.000418 

-0.000293 

-0.000171 

-0.000223 

207 



49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 

66 

67 

68 

69 

70 

71 

72 

73 

74 

4.900000 

5.000000 

5.100000 

5.200000 

5.300000 

5.400000 

5.500000 

5.600000 

5.700000 

5.800000 

5.900000 

6.000000 

6.100000 

6.200000 

6.300000 

6.400000 

6.500000 

6.600000 

6.700000 

6.800000 

6.900000 

7.000000 

7.100000 

7.200000 

7.300000 

7.400000 

-0.000078 

0.000385 

-0.000474 

-0.000057 

-0.000518 

-0.000957 

0.000247 

0.000660 

0.000534 

-0.000505 

-0.000102 

0.000184 

-0.000232 

-0.000138 

-0.000049 

-0.000004 

0.000696 

0.000707 

-0.000103 

0.000106 

0.000297 

-0.000160 

-0.000134 

-0.000334 

0.000322 

-0.000488 

-0.000177 

-0.000224 

-0.000198 

-0.000283 

-0.000271 

-0.000357 

-0.000553 

-0.000520 

-0.000425 

-0.000347 

-0.000461 

-0.000434 

-0.000332 

-0.000324 

-0.000333 

-0.000321 

-0.000276 

-0.000143 

-0.000003 

0.000095 

0.000090 

0.000130 

0.000141 

0.000167 

0.000082 

0.000106 
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75 

76 

77 

78 

79 

80 

81 

82 

83 

84 

85 

86 

87 

88 

89 

90 

91 

92 

93 

94 

95 

96 

97 

98 

99 

100 

7.500000 

7.600000 

7.700000 

7.800000 

7.900000 

8.000000 

8.100000 

8.200000 

8.300000 

8.400000 

8.500000 

8.600000 

8.700000 

8.800000 

8.900000 

9.000000 

9.100000 

9.200000 

9.300000 

9.400000 

9.500000 

9.600000 

9.700000 

9.800000 

9.900000 

10.000000 

-0.001121 

-0.000394 

0.000422 

-0.000151 

0.000133 

0.000576 

-0.000300 

-0.000655 

-0.000977 

-0.000800 

0.000116 

0.000885 

0.001080 

0.000874 

0.000625 

-0.000161 

-0.000792 

-0.000914 

-0.000134 

-0.000491 

-0.000037 

-0.000012 

-0.000015 

0.000884 

0.000699 

-0.000196 

0.000008 

-0.000176 

-0.000276 

-0.000152 

-0.000104 

-0.000124 

-0.000005 

0.000053 

0.000056 

-0.000076 

-0.000198 

-0.000143 

0.000052 

0.000223 

0.000369 

0.000524 

0.000532 

0.000498 

0.000396 

0.000343 

0.000289 

0.000330 

0.000335 

0.000281 

0.000381 

0.000456 
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Adaptive Gains 

The content of simulation data file for adaptive gains is shown in Table G.4 

Table G.4. Simulation result of adaptive gains. 

k 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

Time 

0.000 

0.100 

0.200 

0.300 

0.400 

0.500 

0.600 

0.700 

0.800 

0.900 

1.000 

1.100 

1.200 

1.300 

1.400 

1.500 

1.600 

1.700 

1.800 

1.900 

2.000 

2.100 

2.200 

ei 

0.372 

0.372 

0.372 

0.372 

0.371 

0.372 

0.372 

0.372 

0.371 

0.371 

0.371 

0.371 

0.371 

0.371 

0.371 

0.371 

0.371 

0.371 

0.371 

0.371 

0.371 

0.371 

0.371 

92 

-0.511 

-0.511 

-0.511 

-0.511 

-0.511 

-0.511 

-0.511 

-0.511 

-0.511 

-0.511 

-0.511 

-0.511 

-0.511 

-0.511 

-0.511 

-0.511 

-0.511 

-0.511 

-0.511 

-0.511 

-0.511 

-0.511 

-0.511 

93 

0.281 

0.281 

0.281 

0.281 

0.281 

0.281 

0.281 

0.281 

0.281 

0.281 

0.281 

0.281 

0.281 

0.281 

0.281 

0.281 

0.281 

0.281 

0.281 

0.281 

0.281 

0.281 

0.281 

94 

-0.310 

-0.310 

-0.310 

-0.310 

-0.310 

-0.310 

-0.310 

-0.310 

-0.310 

-0.310 

-0.310 

-0.310 

-0.310 

-0.310 

-0.310 

-0.310 

-0.310 

-0.310 

-0.310 

-0.310 

-0.309 

-0.309 

-0.309 

95 

1.044 

1.044 

1.039 

1.036 

1.035 

1.039 

1.044 

1.041 

1.034 

1.032 

1.032 

1.031 

1.034 

1.037 

1.038 

1.038 

1.037 

1.036 

1.032 

1.026 

1.022 

1.023 

1.022 

96 

-0.043 

-0.043 

-0.044 

-0.044 

-0.045 

-0.044 

-0.043 

-0.043 

-0.045 

-0.045 

-0.045 

-0.045 

-0.045 

-0.044 

-0.044 

-0.044 

-0.044 

-0.044 

-0.045 

-0.046 

-0.047 

-0.047 

-0.047 

97 

0.000 

0.000 

0.007 

0.011 

0.013 

0.007 

0.001 

0.005 

0.015 

0.017 

0.016 

0.017 

0.013 

0.008 

0.007 

0.007 

0.008 

0.008 

0.015 

0.022 

0.027 

0.026 

0.026 

98 

1.007 

1.007 

1.008 

1.009 

1.009 

1.008 

1.007 

1.007 

1.009 

1.010 

1.010 

1.010 

1.009 

1.008 

1.008 

1.008 

1.008 

1.008 

1.009 

1.011 

1.012 

1.012 

1.012 
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23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

2.300 

2.400 

2.500 

2.600 

2.700 

2.800 

2.900 

3.000 

3.100 

3.200 

3.300 

3.400 

3.500 

3.600 

3.700 

3.800 

3.900 

4.000 

4.100 

4.200 

4.300 

4.400 

4.500 

4.600 

4.700 

4.800 

4.900 

5.000 

0.371 

0.371 

0.371 

0.371 

0.371 

0.371 

0.371 

0.371 

0.371 

0.371 

0.371 

0.371 

0.371 

0.371 

0.371 

0.371 

0.371 

0.371 

0.371 

0.371 

0.371 

0.371 

0.371 

0.371 

0.371 

0.371 

0.371 

0.371 

-0.511 

-0.511 

-0.511 

-0.511 

-0.511 

-0.511 

-0.511 

-0.511 

-0.511 

-0.511 

-0.511 

-0.511 

-0.511 

-0.511 

-0.511 

-0.512 

-0.512 

-0.512 

-0.512 

-0.511 

-0.511 

-0.511 

-0.511 

-0.511 

-0.511 

-0.511 

-0.511 

-0.511 

0.281 

0.281 

0.281 

0.281 

0.281 

0.281 

0.281 

0.281 

0.281 

0.281 

0.281 

0.281 

0.281 

0.281 

0.281 

0.281 

0.281 

0.281 

0.281 

0.281 

0.281 

0.281 

0.281 

0.281 

0.281 

0.281 

0.281 

0.281 

-0.309 

-0.309 

-0.309 

-0.310 

-0.310 

-0.310 

-0.310 

-0.310 

-0.310 

-0.310 

-0.310 

-0.310 

-0.310 

-0.310 

-0.310 

-0.309 

-0.310 

-0.309 

-0.310 

-0.310 

-0.310 

-0.310 

-0.310 

-0.311 

-0.311 

-0.311 

-0.311 

-0.311 

1.022 

1.022 

1.020 

1.022 

1.026 

1.030 

1.028 

1.025 

1.025 

1.028 

1.026 

1.024 

1.021 

1.020 

1.017 

1.015 

1.016 

1.013 

1.016 

1.021 

1.019 

1.018 

1.019 

1.024 

1.029 

1.027 

1.028 

1.027 

-0.047 

-0.047 

-0.047 

-0.047 

-0.046 

-0.046 

-0.046 

-0.047 

-0.046 

-0.046 

-0.046 

-0.047 

-0.047 

-0.048 

-0.048 

-0.049 

-0.048 

-0.049 

-0.048 

-0.047 

-0.048 

-0.048 

-0.048 

-0.047 

-0.046 

-0.046 

-0.046 

-0.046 

0.026 

0.025 

0.027 

0.024 

0.016 

0.011 

0.012 

0.016 

0.015 

0.011 

0.012 

0.015 

0.018 

0.019 

0.021 

0.023 

0.021 

0.024 

0.019 

0.011 

0.012 

0.013 

0.011 

0.004 

-0.004 

-0.002 

-0.003 

-0.003 

1.012 

1.012 

1.012 

1.011 

1.010 

1.009 

1.009 

1.010 

1.009 

1.009 

1.009 

1.009 

1.010 

1.010 

1.011 

1.011 

1.011 

1.011 

1.010 

1.009 

1.009 

1.009 

1.009 

1.007 

1.006 

1.006 

1.006 

1.006 
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51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 

66 

67 

68 

69 

70 

71 

72 

73 

74 

75 

76 

77 

78 

5.100 

5.200 

5.300 

5.400 

5.500 

5.600 

5.700 

5.800 

5.900 

6.000 

6.100 

6.200 

6.300 

6.400 

6.500 

6.600 

6.700 

6.800 

6.900 

7.000 

7.100 

7.200 

7.300 

7.400 

7.500 

7.600 

7.700 

7.800 

0.371 

0.371 

0.371 

0.371 

0.371 

0.371 

0.371 

0.371 

0.371 

0.371 

0.371 

0.371 

0.371 

0.371 

0.371 

0.371 

0.371 

0.371 

0.371 

0.371 

0.371 

0.371 

0.371 

0.371 

0.371 

0.371 

0.371 

0.371 

-0.511 

-0.511 

-0.511 

-0.511 

-0.512 

-0.511 

-0.511 

-0.511 

-0.511 

-0.511 

-0.511 

-0.511 

-0.511 

-0.511 

-0.511 

-0.511 

-0.511 

-0.511 

-0.511 

-0.511 

-0.511 

-0.511 

-0.511 

-0.511 

-0.511 

-0.511 

-0.512 

-0.511 

0.281 

0.281 

0.281 

0.281 

0.281 

0.281 

0.281 

0.281 

0.281 

0.281 

0.281 

0.281 

0.281 

0.281 

0.281 

0.281 

0.281 

0.281 

0.281 

0.281 

0.281 

0.281 

0.281 

0.281 

0.281 

0.281 

0.281 

0.281 

-0.311 

-0.311 

-0.311 

-0.311 

-0.310 

-0.310 

-0.311 

-0.311 

-0.311 

-0.311 

-0.311 

-0.311 

-0.311 

-0.311 

-0.311 

-0.311 

-0.312 

-0.312 

-0.312 

-0.312 

-0.312 

-0.312 

-0.312 

-0.312 

-0.311 

-0.311 

-0.310 

-0.311 

1.030 

1.026 

1.026 

1.022 

1.016 

1.017 

1.022 

1.026 

1.022 

1.021 

1.023 

1.021 

1.020 

1.020 

1.019 

1.024 

1.029 

1.028 

1.029 

1.031 

1.030 

1.029 

1.027 

1.029 

1.026 

1.018 

1.015 

1.018 

-0.046 

-0.046 

-0.046 

-0.047 

-0.048 

-0.048 

-0.047 

-0.046 

-0.047 

-0.047 

-0.047 

-0.047 

-0.048 

-0.048 

-0.048 

-0.047 

-0.046 

-0.046 

-0.046 

-0.045 

-0.046 

-0.046 

-0.046 

-0.046 

-0.046 

-0.048 

-0.048 

-0.048 

-0.007 

-0.003 

-0.002 

0.002 

0.011 

0.008 

0.001 

-0.005 

-0.001 

-0.000 

-0.003 

-0.001 

-0.000 

-0.000 

-0.001 

-0.008 

-0.015 

-0.014 

-0.015 

-0.018 

-0.016 

-0.014 

-0.011 

-0.014 

-0.009 

0.002 

0.006 

0.001 

1.005 

1.006 

1.006 

1.007 

1.009 

1.008 

1.007 

1.005 

1.006 

1.006 

1.006 

1.006 

1.006 

1.006 

1.006 

1.005 

1.003 

1.004 

1.004 

1.003 

1.003 

1.004 

1.004 

1.004 

1.005 

1.007 

1.008 

1.007 
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79 

80 

81 

82 

83 

84 

85 

86 

87 

88 

89 

90 

91 

92 

93 

94 

95 

96 

97 

98 

99 

100 

7.900 

8.000 

8.100 

8.200 

8.300 

8.400 

8.500 

8.600 

8.700 

8.800 

8.900 

9.000 

9.100 

9.200 

9.300 

9.400 

9.500 

9.600 

9.700 

9.800 

9.900 

10.000 

0.371 

0.371 

0.371 

0.371 

0.371 

0.371 

0.371 

0.371 

0.371 

0.371 

0.371 

0.371 

0.371 

0.371 

0.371 

0.371 

0.371 

0.371 

0.371 

0.371 

0.371 

0.371 

-0.511 

-0.511 

-0.511 

-0.511 

-0.512 

-0.512 

-0.512 

-0.512 

-0.512 

-0.511 

-0.511 

-0.511 

-0.511 

-0.511 

-0.512 

-0.512 

-0.512 

-0.512 

-0.512 

-0.512 

-0.512 

-0.511 

0.281 

0.281 

0.281 

0.281 

0.281 

0.281 

0.281 

0.281 

0.281 

0.281 

0.281 

0.281 

0.281 

0.281 

0.281 

0.281 

0.281 

0.281 

0.281 

0.281 

0.281 

0.281 

-0.311 

-0.311 

-0.311 

-0.311 

-0.311 

-0.310 

-0.309 

-0.309 

-0.310 

-0.311 

-0.311 

-0.312 

-0.312 

-0.311 

-0.310 

-0.310 

-0.310 

-0.310 

-0.310 

-0.310 

-0.310 

-0.311 

1.017 

1.018 

1.022 

1.020 

1.015 

1.009 

1.003 

1.004 

1.010 

1.017 

1.024 

1.028 

1.027 

1.021 

1.015 

1.014 

1.011 

1.011 

1.011 

1.011 

1.017 

1.022 

-0.048 

-0.048 

-0.047 

-0.048 

-0.048 

-0.050 

-0.051 

-0.051 

-0.050 

-0.048 

-0.047 

-0.046 

-0.046 

-0.047 

-0.049 

-0.049 

-0.049 

-0.049 

-0.049 

-0.049 

-0.048 

-0.047 

0.002 

0.001 

-0.005 

-0.002 

0.005 

0.014 

0.022 

0.021 

0.012 

0.001 

-0.007 

-0.013 

-0.010 

-0.002 

0.008 

0.010 

0.015 

0.016 

0.017 

0.017 

0.009 

0.003 

1.007 

1.007 

1.006 

1.006 

1.007 

1.009 

1.011 

1.011 

1.009 

1.007 

1.005 

1.004 

1.004 

1.006 

1.008 

1.008 

1.010 

1.010 

1.010 

1.010 

1.008 

1.007 
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APPENDIX H: HARDWARE VALIDATION OUTPUT FILES 

H.l. Validation Output Files of State Variables 

The content of state variable data files is shown in Table H.l. 

Table H. 1. Validation result of state variables. 

k 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

t 

0.000000 

0.100000 

0.200000 

0.300000 

0.400000 

0.500000 

0.600000 

0.700000 

0.800000 

0.900000 

1.000000 

1.100000 

1.200000 

1.300000 

1.400000 

1.500000 

1.600000 

1.700000 

1.800000 

1.900000 

2.000000 

Xl 

0.000000 

-0.005213 

-0.006672 

-0.008169 

-0.007644 

-0.007699 

-0.008154 

-0.007384 

-0.006498 

-0.006647 

-0.006411 

-0.006230 

-0.006451 

-0.005944 

-0.005865 

-0.005507 

-0.005139 

-0.005865 

-0.006413 

-0.005215 

-0.004796 

X2 

0.000000 

-0.000372 

-0.001506 

-0.002906 

-0.004473 

-0.005796 

-0.007132 

-0.008622 

-0.009855 

-0.010913 

-0.012023 

-0.013130 

-0.014033 

-0.015028 

-0.015859 

-0.016666 

-0.017478 

-0.018174 

-0.019033 

-0.019821 

-0.020508 

xmi 

0.000000 

-0.005232 

-0.006874 

-0.007297 

-0.007309 

-0.007186 

-0.007024 

-0.006854 

-0.006686 

-0.006524 

-0.006369 

-0.006221 

-0.006080 

-0.005945 

-0.005816 

-0.005693 

-0.005576 

-0.005464 

-0.005358 

-0.005256 

-0.005159 

Xm2 

0.000000 

-0.000386 

-0.001531 

-0.002888 

-0.004274 

-0.005626 

-0.006927 

-0.008172 

-0.009360 

-0.010494 

-0.011576 

-0.012609 

-0.013594 

-0.014533 

-0.015429 

-0.016284 

-0.017099 

-0.017877 

-0.018620 

-0.019327 

-0.020003 
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21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

2.100000 

2.200000 

2.300000 

2.400000 

2.500000 

2.600000 

2.700000 

2.800000 

2.900000 

3.000000 

3.100000 

3.200000 

3.300000 

3.400000 

3.500000 

3.600000 

3.700000 

3.800000 

3.900000 

4.000000 

4.100000 

4.200000 

4.300000 

4.400000 

4.500000 

4.600000 

4.700000 

-0.005636 

-0.005499 

-0.005389 

-0.005468 

-0.005280 

-0.004964 

-0.005034 

-0.004301 

-0.004719 

-0.004414 

-0.004911 

-0.005111 

-0.003898 

-0.004461 

-0.003833 

-0.003692 

-0.003811 

-0.004348 

-0.004405 

-0.004391 

-0.004473 

-0.003726 

-0.004176 

-0.004041 

-0.003734 

-0.004398 

-0.004528 

-0.021153 

-0.021902 

-0.022509 

-0.023112 

-0.023668 

-0.024270 

-0.024759 

-0.025247 

-0.025581 

-0.026025 

-0.026411 

-0.026873 

-0.027315 

-0.027557 

-0.027813 

-0.028126 

-0.028324 

-0.028620 

-0.028935 

-0.029157 

-0.029522 

-0.029797 

-0.029945 

-0.030135 

-0.030351 

-0.030524 

-0.030781 

-0.005067 

-0.004979 

-0.004894 

-0.004814 

-0.004737 

-0.004664 

-0.004595 

-0.004528 

-0.004465 

-0.004404 

-0.004346 

-0.004291 

-0.004239 

-0.004189 

-0.004141 

-0.004095 

-0.004052 

-0.004010 

-0.003971 

-0.003933 

-0.003897 

-0.003863 

-0.003830 

-0.003798 

-0.003769 

-0.003740 

-0.003713 

-0.020647 

-0.021262 

-0.021848 

-0.022407 

-0.022941 

-0.023449 

-0.023935 

-0.024398 

-0.024840 

-0.025261 

-0.025663 

-0.026047 

-0.026413 

-0.026762 

-0.027095 

-0.027412 

-0.027715 

-0.028004 

-0.028280 

-0.028543 

-0.028794 

-0.029033 

-0.029261 

-0.029479 

-0.029687 

-0.029885 

-0.030074 
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48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 

66 

67 

68 

69 

70 

71 

72 

73 

74 

4.800000 

4.900000 

5.000000 

5.100000 

5.200000 

5.300000 

5.400000 

5.500000 

5.600000 

5.700000 

5.800000 

5.900000 

6.000000 

6.100000 

6.200000 

6.300000 

6.400000 

6.500000 

6.600000 

6.700000 

6.800000 

6.900000 

7.000000 

7.100000 

7.200000 

7.300000 

7.400000 

-0.004364 

-0.003851 

-0.004275 

-0.003488 

-0.004129 

-0.003415 

-0.002908 

-0.003426 

-0.002905 

-0.002945 

-0.002959 

-0.003857 

-0.004283 

-0.003904 

-0.003717 

-0.003901 

-0.004434 

-0.003717 

-0.003381 

-0.002788 

-0.003621 

-0.003745 

-0.003136 

-0.003398 

-0.003197 

-0.003819 

-0.003593 

-0.031089 

-0.031392 

-0.031608 

-0.031867 

-0.031972 

-0.032127 

-0.032175 

-0.032197 

-0.032248 

-0.032252 

-0.032197 

-0.032162 

-0.032284 

-0.032490 

-0.032604 

-0.032713 

-0.032914 

-0.033116 

-0.033278 

-0.033267 

-0.033253 

-0.033342 

-0.033419 

-0.033342 

-0.033439 

-0.033512 

-0.033652 

-0.003687 

-0.003662 

-0.003639 

-0.003616 

-0.003595 

-0.003574 

-0.003555 

-0.003536 

-0.003519 

-0.003502 

-0.003485 

-0.003470 

-0.003455 

-0.003441 

-0.003428 

-0.003415 

-0.003403 

-0.003391 

-0.003380 

-0.003370 

-0.003360 

-0.003350 

-0.003341 

-0.003332 

-0.003324 

-0.003316 

-0.003308 

-0.030254 

-0.030426 

-0.030590 

-0.030747 

-0.030896 

-0.031039 

-0.031175 

-0.031304 

-0.031428 

-0.031546 

-0.031659 

-0.031766 

-0.031868 

-0.031966 

-0.032059 

-0.032148 

-0.032233 

-0.032314 

-0.032391 

-0.032465 

-0.032535 

-0.032602 

-0.032666 

-0.032727 

-0.032785 

-0.032840 

-0.032893 
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75 

76 

77 

78 

79 

80 

81 

82 

83 

84 

85 

86 

87 

88 

89 

90 

91 

92 

93 

94 

95 

96 

97 

98 

99 

100 

7.500000 

7.600000 

7.700000 

7.800000 

7.900000 

8.000000 

8.100000 

8.200000 

8.300000 

8.400000 

8.500000 

8.600000 

8.700000 

8.800000 

8.900000 

9.000000 

9.100000 

9.200000 

9.300000 

9.400000 

9.500000 

9.600000 

9.700000 

9.800000 

9.900000 

10.000000 

-0.003756 

-0.004296 

-0.003310 

-0.003600 

-0.003684 

-0.004076 

-0.003503 

-0.003989 

-0.004075 

-0.004365 

-0.003148 

-0.004010 

-0.003440 

-0.003184 

-0.003502 

-0.004142 

-0.004063 

-0.003750 

-0.003078 

-0.003062 

-0.003270 

-0.004051 

-0.003045 

-0.003074 

-0.003973 

-0.003841 

-0.033687 

-0.033717 

-0.033822 

-0.033808 

-0.033813 

-0.033915 

-0.034075 

-0.034090 

-0.034174 

-0.034355 

-0.034481 

-0.034367 

-0.034446 

-0.034452 

-0.034402 

-0.034367 

-0.034495 

-0.034588 

-0.034652 

-0.034570 

-0.034511 

-0.034490 

-0.034669 

-0.034609 

-0.034624 

-0.034750 

-0.003301 

-0.003294 

-0.003287 

-0.003281 

-0.003275 

-0.003269 

-0.003264 

-0.003259 

-0.003254 

-0.003249 

-0.003244 

-0.003240 

-0.003236 

-0.003232 

-0.003228 

-0.003225 

-0.003221 

-0.003218 

-0.003215 

-0.003212 

-0.003209 

-0.003207 

-0.003204 

-0.003202 

-0.003199 

-0.003197 

-0.032944 

-0.032992 

-0.033038 

-0.033082 

-0.033124 

-0.033164 

-0.033202 

-0.033238 

-0.033272 

-0.033306 

-0.033337 

-0.033367 

-0.033396 

-0.033423 

-0.033449 

-0.033474 

-0.033498 

-0.033520 

-0.033542 

-0.033563 

-0.033582 

-0.033601 

-0.033619 

-0.033636 

-0.033652 

-0.033668 
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H.2. Reference and Controlled Outputs 

The content of simulation data files for reference and controlled outputs is shown 

in Table H.2. 

Table H.2. Simulation result of reference and controlled outputs. 

k 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

time 

0.000000 

0.100000 

0.200000 

0.300000 

0.400000 

0.500000 

0.600000 

0.700000 

0.800000 

0.900000 

1.000000 

1.100000 

1.200000 

1.300000 

1.400000 

1.500000 

1.600000 

1.700000 

1.800000 

1.900000 

2.000000 

2.100000 

yi 

-0.000000 

0.000320 

0.000436 

0.000563 

0.000573 

0.000611 

0.000674 

0.000668 

0.000648 

0.000685 

0.000701 

0.000719 

0.000756 

0.000753 

0.000770 

0.000770 

0.000770 

0.000832 

0.000887 

0.000837 

0.000830 

0.000897 

y2 

0.000000 

-0.001217 

-0.001558 

-0.001908 

-0.001787 

-0.001802 

-0.001909 

-0.001731 

-0.001525 

-0.001561 

-0.001507 

-0.001466 

-0.001518 

-0.001401 

-0.001383 

-0.001300 

-0.001215 

-0.001386 

-0.001514 

-0.001235 

-0.001138 

-0.001335 

ymi 

-0.000000 

0.000337 

0.000472 

0.000536 

0.000576 

0.000607 

0.000633 

0.000657 

0.000680 

0.000702 

0.000723 

0.000742 

0.000761 

0.000779 

0.000796 

0.000813 

0.000828 

0.000843 

0.000858 

0.000871 

0.000884 

0.000896 

ym2 

0.000000 

-0.001286 

-0.001691 

-0.001796 

-0.001800 

-0.001771 

-0.001733 

-0.001692 

-0.001652 

-0.001613 

-0.001576 

-0.001540 

-0.001507 

-0.001474 

-0.001443 

-0.001414 

-0.001386 

-0.001359 

-0.001334 

-0.001309 

-0.001286 

-0.001264 
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22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

2.200000 

2.300000 

2.400000 

2.500000 

2.600000 

2.700000 

2.800000 

2.900000 

3.000000 

3.100000 

3.200000 

3.300000 

3.400000 

3.500000 

3.600000 

3.700000 

3.800000 

3.900000 

4.000000 

4.100000 

4.200000 

4.300000 

4.400000 

4.500000 

4.600000 

4.700000 

4.800000 

0.000909 

0.000919 

0.000940 

0.000943 

0.000940 

0.000958 

0.000927 

0.000961 

0.000954 

0.000994 

0.001018 

0.000958 

0.000998 

0.000968 

0.000967 

0.000980 

0.001020 

0.001031 

0.001036 

0.001051 

0.001014 

0.001045 

0.001042 

0.001029 

0.001073 

0.001088 

0.001086 

-0.001304 

-0.001279 

-0.001298 

-0.001254 

-0.001181 

-0.001198 

-0.001027 

-0.001125 

-0.001054 

-0.001171 

-0.001218 

-0.000935 

-0.001067 

-0.000921 

-0.000888 

-0.000916 

-0.001041 

-0.001055 

-0.001052 

-0.001071 

-0.000897 

-0.001002 

-0.000971 

-0.000900 

-0.001055 

-0.001086 

-0.001048 

0.000908 

0.000919 

0.000930 

0.000940 

0.000950 

0.000959 

0.000968 

0.000977 

0.000985 

0.000992 

0.001000 

0.001007 

0.001013 

0.001020 

0.001026 

0.001032 

0.001037 

0.001042 

0.001047 

0.001052 

0.001057 

0.001061 

0.001065 

0.001069 

0.001073 

0.001077 

0.001080 

-0.001243 

-0.001223 

-0.001203 

-0.001185 

-0.001168 

-0.001151 

-0.001135 

-0.001120 

-0.001105 

-0.001091 

-0.001078 

-0.001066 

-0.001054 

-0.001042 

-0.001031 

-0.001021 

-0.001011 

-0.001001 

-0.000992 

-0.000984 

-0.000976 

-0.000968 

-0.000960 

-0.000953 

-0.000946 

-0.000940 

-0.000934 
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49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 

66 

67 

68 

69 

70 

71 

72 

73 

74 

4.900000 

5.000000 

5.100000 

5.200000 

5.300000 

5.400000 

5.500000 

5.600000 

5.700000 

5.800000 

5.900000 

6.000000 

6.100000 

6.200000 

6.300000 

6.400000 

6.500000 

6.600000 

6.700000 

6.800000 

6.900000 

7.000000 

7.100000 

7.200000 

7.300000 

7.400000 

0.001064 

0.001095 

0.001055 

0.001096 

0.001057 

0.001029 

0.001060 

0.001030 

0.001033 

0.001032 

0.001085 

0.001113 

0.001096 

0.001088 

0.001102 

0.001139 

0.001102 

0.001086 

0.001050 

0.001100 

0.001109 

0.001075 

0.001089 

0.001079 

0.001118 

0.001109 

-0.000928 

-0.001027 

-0.000844 

-0.000993 

-0.000827 

-0.000709 

-0.000830 

-0.000708 

-0.000718 

-0.000721 

-0.000930 

-0.001030 

-0.000941 

-0.000898 

-0.000941 

-0.001066 

-0.000899 

-0.000820 

-0.000682 

-0.000876 

-0.000905 

-0.000763 

-0.000824 

-0.000777 

-0.000923 

-0.000870 

0.001084 

0.001087 

0.001090 

0.001093 

0.001095 

0.001098 

0.001100 

0.001103 

0.001105 

0.001107 

0.001109 

0.001111 

0.001113 

0.001115 

0.001116 

0.001118 

0.001120 

0.001121 

0.001123 

0.001124 

0.001125 

0.001126 

0.001128 

0.001129 

0.001130 

0.001131 

-0.000928 

-0.000922 

-0.000917 

-0.000911 

-0.000907 

-0.000902 

-0.000897 

-0.000893 

-0.000889 

-0.000885 

-0.000882 

-0.000878 

-0.000875 

-0.000871 

-0.000868 

-0.000865 

-0.000863 

-0.000860 

-0.000857 

-0.000855 

-0.000853 

-0.000851 

-0.000848 

-0.000846 

-0.000845 

-0.000843 
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75 

76 

77 

78 

79 

80 

81 

82 

83 

84 

85 

86 

87 

88 

89 

90 

91 

92 

93 

94 

95 

96 

97 

98 

99 

100 

7.500000 

7.600000 

7.700000 

7.800000 

7.900000 

8.000000 

8.100000 

8.200000 

8.300000 

8.400000 

8.500000 

8.600000 

8.700000 

8.800000 

8.900000 

9.000000 

9.100000 

9.200000 

9.300000 

9.400000 

9.500000 

9.600000 

9.700000 

9.800000 

9.900000 

10.000000 

0.001119 

0.001152 

0.001096 

0.001113 

0.001118 

0.001144 

0.001114 

0.001144 

0.001151 

0.001173 

0.001104 

0.001152 

0.001121 

0.001106 

0.001123 

0.001160 

0.001159 

0.001143 

0.001105 

0.001101 

0.001112 

0.001158 

0.001103 

0.001103 

0.001157 

0.001153 

-0.000908 

-0.001034 

-0.000804 

-0.000872 

-0.000892 

-0.000983 

-0.000849 

-0.000963 

-0.000983 

-0.001051 

-0.000767 

-0.000968 

-0.000835 

-0.000775 

-0.000849 

-0.000999 

-0.000980 

-0.000908 

-0.000751 

-0.000747 

-0.000796 

-0.000978 

-0.000743 

-0.000750 

-0.000960 

-0.000929 

0.001132 

0.001133 

0.001134 

0.001134 

0.001135 

0.001136 

0.001137 

0.001137 

0.001138 

0.001139 

0.001139 

0.001140 

0.001140 

0.001141 

0.001141 

0.001142 

0.001142 

0.001143 

0.001143 

0.001144 

0.001144 

0.001144 

0.001145 

0.001145 

0.001145 

0.001146 

-0.000841 

-0.000839 

-0.000838 

-0.000836 

-0.000835 

-0.000833 

-0.000832 

-0.000831 

-0.000830 

-0.000829 

-0.000827 

-0.000826 

-0.000825 

-0.000825 

-0.000824 

-0.000823 

-0.000822 

-0.000821 

-0.000820 

-0.000820 

-0.000819 

-0.000818 

-0.000818 

-0.000817 

-0.000817 

-0.000816 

221 



H.3. Plant Error 

The content of simulation data file for plant error is shown in Table H.3. 

Table H.3. Simulation result of plant errors. 

k 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

t 

0.000000 

0.100000 

0.200000 

0.300000 

0.400000 

0.500000 

0.600000 

0.700000 

0.800000 

0.900000 

1.000000 

1.100000 

1.200000 

1.300000 

1.400000 

1.500000 

1.600000 

1.700000 

1.800000 

1.900000 

2.000000 

2.100000 

ei 

0.00000 

0.00002 

0.00020 

-0.00087 

-0.00033 

-0.00051 

-0.00113 

-0.00053 

0.00019 

-0.00012 

-0.00004 

-0.00001 

-0.00037 

0.00000 

-0.00005 

0.00019 

0.00044 

-0.00040 

-0.00106 

0.00004 

0.00036 

-0.00057 

e2 

0.00000 

0.00001 

0.00003 

-0.00002 

-0.00020 

-0.00017 

-0.00021 

-0.00045 

-0.00049 

-0.00042 

-0.00045 

-0.00052 

-0.00044 

-0.00049 

-0.00043 

-0.00038 

-0.00038 

-0.00030 

-0.00041 

-0.00049 

-0.00050 

-0.00051 
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22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

2.200000 

2.300000 

2.400000 

2.500000 

2.600000 

2.700000 

2.800000 

2.900000 

3.000000 

3.100000 

3.200000 

3.300000 

3.400000 

3.500000 

3.600000 

3.700000 

3.800000 

3.900000 

4.000000 

4.100000 

4.200000 

4.300000 

4.400000 

4.500000 

4.600000 

4.700000 

4.800000 

4.900000 

-0.00052 

-0.00050 

-0.00065 

-0.00054 

-0.00030 

-0.00044 

0.00023 

-0.00025 

-0.00001 

-0.00057 

-0.00082 

0.00034 

-0.00027 

0.00031 

0.00040 

0.00024 

-0.00034 

-0.00043 

-0.00046 

-0.00058 

0.00014 

-0.00035 

-0.00024 

0.00004 

-0.00066 

-0.00082 

-0.00068 

-0.00019 

-0.00064 

-0.00066 

-0.00071 

-0.00073 

-0.00082 

-0.00082 

-0.00085 

-0.00074 

-0.00076 

-0.00075 

-0.00083 

-0.00090 

-0.00080 

-0.00072 

-0.00071 

-0.00061 

-0.00062 

-0.00065 

-0.00061 

-0.00073 

-0.00076 

-0.00068 

-0.00066 

-0.00066 

-0.00064 

-0.00071 

-0.00083 

-0.00097 
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50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 

66 

67 

68 

69 

70 

71 

72 

73 

74 

75 

76 

77 

5.000000 

5.100000 

5.200000 

5.300000 

5.400000 

5.500000 

5.600000 

5.700000 

5.800000 

5.900000 

6.000000 

6.100000 

6.200000 

6.300000 

6.400000 

6.500000 

6.600000 

6.700000 

6.800000 

6.900000 

7.000000 

7.100000 

7.200000 

7.300000 

7.400000 

7.500000 

7.600000 

7.700000 

-0.00064 

0.00013 

-0.00053 

0.00016 

0.00065 

0.00011 

0.00061 

0.00056 

0.00053 

-0.00039 

-0.00083 

-0.00046 

-0.00029 

-0.00049 

-0.00103 

-0.00033 

0.00000 

0.00058 

-0.00026 

-0.00040 

0.00021 

-0.00007 

0.00013 

-0.00050 

-0.00029 

-0.00046 

-0.00100 

-0.00002 

-0.00102 

-0.00112 

-0.00108 

-0.00109 

-0.00100 

-0.00089 

-0.00082 

-0.00071 

-0.00054 

-0.00040 

-0.00042 

-0.00052 

-0.00055 

-0.00056 

-0.00068 

-0.00080 

-0.00089 

-0.00080 

-0.00072 

-0.00074 

-0.00075 

-0.00061 

-0.00065 

-0.00067 

-0.00076 

-0.00074 

-0.00072 

-0.00078 
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78 

79 

80 

81 

82 

83 

84 

85 

86 

87 

88 

89 

90 

91 

92 

93 

94 

95 

96 

97 

98 

99 

100 

7.800000 

7.900000 

8.000000 

8.100000 

8.200000 

8.300000 

8.400000 

8.500000 

8.600000 

8.700000 

8.800000 

8.900000 

9.000000 

9.100000 

9.200000 

9.300000 

9.400000 

9.500000 

9.600000 

9.700000 

9.800000 

9.900000 

10.000000 

-0.00032 

-0.00041 

-0.00081 

-0.00024 

-0.00073 

-0.00082 

-0.00112 

0.00010 

-0.00077 

-0.00020 

0.00005 

-0.00027 

-0.00092 

-0.00084 

-0.00053 

0.00014 

0.00015 

-0.00006 

-0.00084 

0.00016 

0.00013 

-0.00077 

-0.00064 

-0.00073 

-0.00069 

-0.00075 

-0.00087 

-0.00085 

-0.00090 

-0.00105 

-0.00114 

-0.00100 

-0.00105 

-0.00103 

-0.00095 

-0.00089 

-0.00100 

-0.00107 

-0.00111 

-0.00101 

-0.00093 

-0.00089 

-0.00105 

-0.00097 

-0.00097 

-0.00108 

H.4. Adaptive Gains 

The content of simulation data file for adaptive gains is shown in Table G.4. 
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Table H.4. Simulation result of adaptive gains. 

k 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

time 

0.000 

0.100 

0.200 

0.300 

0.400 

0.500 

0.600 

0.700 

0.800 

0.900 

1.000 

1.100 

1.200 

1.300 

1.400 

1.500 

1.600 

1.700 

1.800 

1.900 

2.000 

2.100 

2.200 

2.300 

2.400 

2.500 

2.600 

2.700 

2.800 

e, 
0.3716 

0.3716 

0.3716 

0.3716 

0.3716 

0.3716 

0.3716 

0.3716 

0.3716 

0.3716 

0.3716 

0.3716 

0.3716 

0.3716 

0.3716 

0.3716 

0.3716 

0.3716 

0.3716 

0.3716 

0.3716 

0.3716 

0.3716 

0.3716 

0.3716 

0.3716 

0.3716 

0.3716 

0.3716 

e2 

-0.5106 

-0.5106 

-0.5106 

-0.5106 

-0.5106 

-0.5106 

-0.5106 

-0.5106 

-0.5106 

-0.5106 

-0.5106 

-0.5106 

-0.5106 

-0.5106 

-0.5106 

-0.5106 

-0.5106 

-0.5106 

-0.5106 

-0.5106 

-0.5106 

-0.5106 

-0.5106 

-0.5106 

-0.5106 

-0.5106 

-0.5106 

-0.5106 

-0.5106 

e3 

0.2806 

0.2806 

0.2806 

0.2806 

0.2806 

0.2806 

0.2806 

0.2806 

0.2806 

0.2806 

0.2806 

0.2806 

0.2806 

0.2806 

0.2806 

0.2806 

0.2806 

0.2806 

0.2806 

0.2806 

0.2806 

0.2806 

0.2806 

0.2806 

0.2806 

0.2806 

0.2806 

0.2806 

0.2806 

e4 

-0.3100 

-0.3100 

-0.3100 

-0.3100 

-0.3100 

-0.3100 

-0.3100 

-0.3100 

-0.3100 

-0.3100 

-0.3100 

-0.3100 

-0.3100 

-0.3100 

-0.3100 

-0.3100 

-0.3100 

-0.3100 

-0.3100 

-0.3100 

-0.3100 

-0.3100 

-0.3100 

-0.3100 

-0.3100 

-0.3100 

-0.3100 

-0.3100 

-0.3100 

e5 

1.0442 

1.0442 

1.0442 

1.0442 

1.0442 

1.0442 

1.0442 

1.0442 

1.0442 

1.0442 

1.0442 

1.0442 

1.0442 

1.0442 

1.0442 

1.0442 

1.0442 

1.0442 

1.0442 

1.0442 

1.0442 

1.0442 

1.0442 

1.0442 

1.0442 

1.0442 

1.0442 

1.0442 

1.0442 

e6 

-0.0427 

-0.0427 

-0.0427 

-0.0427 

-0.0427 

-0.0427 

-0.0427 

-0.0427 

-0.0427 

-0.0427 

-0.0427 

-0.0427 

-0.0427 

-0.0427 

-0.0427 

-0.0427 

-0.0427 
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