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ABSTRACT

HEALTH IMPLICATIONS OF MERCURY, SELENIUM, AND A RED PELAGE IN 
PACIFIC HARBOR SEALS (PHOCA VITULINA RICHARDII) OFF CENTRAL 

CALIFORNIA

by Elizabeth A. McHuron

 San Francisco Bay (SFB) is the largest estuary on the west coast of the United 

States.  It provides habitat for many species, although is heavily urbanized with a history 

of selenium (Se) and mercury (Hg) contamination.  Harbor seals (Phoca vitulina) are 

good indicators of the health of SFB because they are long-lived, upper-level trophic 

consumers, and present in the estuary year-round.  The objective of this study was to 

examine the role of Se and Hg contamination on the health of harbor seals in this region, 

and the role of Se in the development of a red pelage.  Between 2009 and 2011, free-

ranging seals (n = 146) were sampled at three sites off central California.  Harbor seals 

from SFB and Tomales Bay had greater total Hg (THg) and lesser Se concentrations in 

hair than seals from Elkhorn Slough.  Differences in THg concentrations with location 

were likely the result of historic gold and Hg mining.  Lesser Se concentrations in seals 

from SFB and Tomales Bay may indicate that these seals have a greater physiologic 

requirement for Se due to increased Hg exposure.  Concentrations of THg measured in 

this study may be great enough to negatively impact the health of harbor seals; however, 

seals in SFB did not appear to suffer from chronic Se toxicosis.  The development of a 

red pelage may be the result of external iron deposition because of increased dependence 

on benthic prey and does not appear to have any short-term health implications.  
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INTRODUCTION

 San Francisco Bay (SFB) is one of the largest estuaries on the west coast of the 

United States and is located at the mouth of the Sacramento-San Joaquin River system.  

Sources of freshwater inputs include the Sacramento and San Joaquin Rivers, the Santa 

Clara County Water Treatment Plant, and seasonal input from small creeks.  San 

Francisco Bay has been extensively modified by human activity (Nichols et al. 1986) and 

is home to more invasive species than any other estuarine system in the United States 

(Cohen and Carlton 1998).  Inputs of pollutants from municipal and industrial activities 

and runoff from urban and agricultural lands have flowed into the estuary since the 

beginning of the Gold Rush in 1848.  Toxicants present in SFB included polychlorinated 

biphenyls (Davis et al. 2007), organochlorine pesticides, and polycyclic aromatic 

hydrocarbons (Anderson et al. 2007), and widespread sediment toxicity has been 

documented since the mid-1980s (Chapman et al. 1987, Long et al. 1990).  Despite the 

urbanized nature of the estuary, SFB continues to provide habitat for a myriad of species, 

including invertebrates, fish, shorebirds, ducks, and marine mammals.  

  The Pacific harbor seal (Phoca vitulina richardii) is widely distributed along the 

mainland coast, islands, and bays of California.  San Francisco Bay provides critical 

habitat for harbor seals for resting ashore (hauling-out), pupping, social interaction, and 

feeding.  Harbor seals are the most abundant marine mammal in SFB and are present 

year-round (Fancher 1979, Torok 1994, Grigg et al. 2002).  Because of their trophic 
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position (Brookens et al. 2007), ability to accumulate pollutants, and year-round presence 

in SFB, harbor seals are a good indicator and sentinel species of the health of SFB.  

Harbor seals in SFB have been slow to recover despite the passage of the Marine 

Mammal Protection Act in 1972 (Harvey et al. 1990, Jeffries et al. 2003, Brown et al. 

2005).  Between 1970 and 2002, the number of harbor seals in SFB did not increase or 

increased only slightly at specific haul-out sites (Grigg et al. 2004).  In contrast, harbor 

seal populations in California, Oregon, and Washington have increased and/or reached 

carrying capacity since the 1970s (Harvey et al. 1990, Jeffries et al. 2003, Brown et al. 

2005, Lowry et al. 2008).  The number of harbor seals in coastal estuaries in Washington 

increased from 1,694 to 7,117 between 1975 and 1999 (Jeffries et al. 2003).  Between 

1975 and 1983, numbers of harbor seals within bays in Oregon also increased (Harvey et 

al. 1990).  An increase in the number of seals in California and the recovery of harbor 

seals in estuaries in other states indicate that factors unique to SFB may affect the 

reproductive rate or health of harbor seals within the SFB estuary.  Possible factors 

include harassment, a reduction or change in prey resources, and environmental 

contamination (Kopec and Harvey 1995).

The overarching objective of this study was to examine the role of environmental 

contamination of mercury (Hg) and selenium (Se) on the health of harbor seals.  The 

objectives of Chapter I were to: 1) determine whether total mercury (THg) and selenium 

(Se) concentrations in hair differed by location on an individual (i.e., neck vs. mid-

dorsal), 2) compare THg and Se concentrations and the molar ratio of Se:Hg in hair of 
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harbor seals at three locations off central California, 3) determine if THg and Se 

concentrations and the molar ratio of Se:Hg differed with sex, and 4) examine the 

relationship between measures of chemical feeding ecology (carbon, nitrogen, and sulfur 

stable isotopes) and THg and Se concentrations. The objectives of Chapter II were to: 1) 

compile historic and current data on the prevalence of red-coated harbor seals in SFB, 2) 

describe and document changes to keratinized tissues of red-coated harbor seals, 3) 

evaluate hematology and serum chemistries of red-coated and normal-pelaged seals from 

SFB, 4) definitively determine whether a red pelage is the direct result of external iron 

deposition on the hair shaft, and 5) evaluate the hypothesis that chronic Se toxicosis 

predisposes seals in SFB to developing a red pelage.
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Chapter I

Mercury and selenium concentrations in hair and relationship with stable isotopes 
for Pacific harbor seals (Phoca vitulina richardii) off central California
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ABSTRACT

 San Francisco Bay (SFB) is an urbanized estuary with a history of environmental 

contamination, including selenium and mercury.  Pacific harbor seals (Phoca vitulina 

richardii) are year-round residents of SFB, which provides habitat for feeding, resting, 

and pupping.  A proportion of harbor seals in SFB may suffer from chronic selenium 

toxicosis, and the study objective was to evaluate this hypothesis.  Total mercury (THg), 

selenium (Se), the Se:Hg molar ratio, and stable isotopes (!15N, !13C, !34S) were 

measured in hair of harbor seals at three locations off central California.  Total Hg 

concentrations were 2.96 to 144 µg/g, and differed with location (P < 0.01; SFB = 

Tomales Bay > Elkhorn Slough) and sex (P < 0.01; males > females).  Seals had greater 

THg concentrations than previously reported in central California; however, there was no 

relationship between THg concentrations and !15N values (i.e., trophic level).  Selenium 

concentrations in hair ranged from below the detectable limit to 4.93 µg/g, and differed 

among sites (P < 0.01; Elkhorn Slough > SFB = Tomales Bay).  Difference in THg 

concentrations among sites were likely due to contamination from historic mining in SFB 

and Tomales Bay.  Greater THg concentrations in males might be explained by females 

offloading Hg to their developing fetuses, or by foraging differences between males and 

females.  Lesser concentrations of Se and the Se:Hg ratio from seals in SFB and Tomales 

Bay is an important nutritional consideration in the context of Hg.  Results support 

previous interpretations that hair may serve as an important excretory route for some 

toxicants; however, results do not support the chronic Se toxicosis hypothesis.
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INTRODUCTION

 Essential trace elements occur at relatively low levels and are needed in small 

quantities for proper growth, development, and physiology of an organism.  Those 

deemed to have no known biological function are known as non-essential elements.  For 

the essential elements, organisms deficient or containing amounts in excess of what is 

homeostatically required may experience symptoms of deficiency or toxicosis.  Trace 

elements have been well-studied in humans and some other animals (e.g., livestock, 

domesticated animals; Underwood 1977, Roussel et al. 1999); however, less is known 

about baseline values, symptoms of element imbalance, and interactions of trace elements 

in pinnipeds, a diverse group of marine mammals comprised of sea lions, fur seals, and 

true seals.  Some pinnipeds are long-lived, and many are upper-level trophic consumers 

(Pauly et al. 1998), which makes them particularly sensitive to accumulation of essential 

and non-essential elements.  

 Non-essential trace elements, such as mercury (Hg), have been studied because of 

their potential toxic effects on pinnipeds and other vertebrates, including humans that 

depend on pinnipeds for subsistence.  Because they are long-lived, have extensive fat 

stores in the form of blubber, and are upper-level trophic consumers, many species of 

pinnipeds are especially susceptible to accumulating concentrations of trace elements in 

excess of concentrations considered toxic to humans.  Nearshore species (e.g., harbor 

seals) often live in close proximity to dense human populations and forage at a similar 

trophic level as humans, thereby making them good indicators of ecosystem health.  
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Increased concentrations of certain trace elements in pinniped tissues could potentially be 

detrimental, or beneficial, to humans that depend on them for subsistence (Moses et al. 

2009).    

 Mercury is a heavy metal that is widely present in the environment.  Sources of 

Hg pollution in aquatic systems include atmospheric deposition, erosion, urban discharge, 

agricultural materials, mining, and combustion and industrial discharge (Wang et al. 

2004).  Dissolved Hg is present as elemental mercury (Hg0), inorganic mercury (e.g., 

mercuric sulfide, chloride, and oxide), and organic mercury (e.g., dimethyl, ethyl, and 

methylmercury).  The majority of Hg present in aquatic organisms, such as fish, exists as 

monomethyl Hg (MeHg; Harris et al. 2003), a toxic form of Hg that biomagnifies in 

aquatic food webs (Dietz et al. 2000), and can negatively impact neurological, 

immunological, and reproductive systems (Zahir et al. 2005).  

 Selenium (Se) is a naturally occurring essential element possibly providing a 

protective effect against Hg toxicosis (Cuvin-Aralar and Furness 1991, Yang et al. 2008), 

therefore, researchers rarely examine the effects of Hg without also considering Se 

concentrations.  Dissolved selenium is present in several oxidation states including 

selenate (SeVI), selenite (SeIV), elemental selenium (O), and selenide (-II).  Particulate 

selenium can exist as insoluble elemental selenium, selenate, and selenite. Selenium is an 

important component of numerous proteins, including the antioxidant enzyme, 

glutathione peroxidase (GSH-Px), which protects cellular membranes and lipid–

containing organelles from peroxidative damage (Nakane et al. 1998, Behne and 
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Kriakopoulos 2001).  Selenium also competes for binding sites with sulfur, and is 

incorporated into the sulfur-containing amino acids, cystine and methionine (Behne and 

Kyriakopoulos 2001).

 The protective effects of Se against Hg toxicosis have been relatively well-

documented (Cuvin-Aralar and Furness 1991, Yang et al. 2008), and this relationship has 

received particular attention in pinnipeds and other marine mammals because they 

accumulate increased concentrations of Hg with no apparent negative effects.  Mercury 

and Se primarily are acquired through diet, and although the majority of Hg present in 

prey species is MeHg, only a small proportion of MeHg is present in certain marine 

mammal tissues (Reijnders 1980, Ikemoto et al. 2004a).  Selenium plays a role in the 

conversion of MeHg to inorganic Hg (Iwata et al. 1982) and also in the formation of a 

Se-Hg complex in specific tissues (Yoneda and Suzuki 1997, Wang et al. 2001, Ikemoto 

et al. 2004a).  Additional mechanisms for the detoxification of Hg by Se include the 

redistribution of Hg to less sensitive organs/tissues and competition for binding sites 

(Cuvin-Aralar and Furness 1991, Wang et al. 2001).  Researchers reported that Hg and Se 

accumulated in the livers of marine mammals in a 1:1 ratio (Koeman et al. 1973, Smith 

and Armstrong 1978), although more recently published ratios deviated from this, 

especially in young animals (Woshner et al. 2001a, b; Brookens et al. 2007).  Because Se 

can counteract the toxic effects of Hg and reduce the amount of bioavailable Hg, it has 

been suggested that the Se:Hg molar ratio may be a more appropriate measure than total 

concentrations of Hg when assessing potential toxicity (Ralston et al. 2008).  
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 Mercury and Se concentrations can be measured in a variety of tissues, including 

liver, kidney, muscle, hair, and blood.  Hair is increasingly being used to determine trace 

element concentrations in pinnipeds as it is relatively non-invasive, easy to collect, and 

allows for a large sample size and mass.  Hair concentrations reflect element levels in 

circulating blood during the time of hair growth and from external deposition onto the 

hair shaft.  In marine mammals that undergo an annual molt (e.g., pinnipeds), hair may 

serve as an excretory route for trace elements (Wenzel et al. 1993, Saeki et al. 1999, 

Ikemoto et al. 2004b).  The majority of Hg in hair is present in its most toxic form 

(MeHg; Dolbec et al. 2001), therefore, excretion of Hg in hair may be especially 

important for species that live in urbanized areas with increased toxicant inputs.   

 San Francisco Bay (SFB) is the largest estuary in California and has been 

extensively modified by human activity (Nichols et al. 1986).   San Francisco Bay has a 

history of Hg and Se contamination, and portions of the bay are listed as impaired for 

either one or both elements under the Clean Water Act 303(d).  The main source of Hg in 

SFB is from historical mining activities, which allowed Hg to enter the bay from runoff 

or by re-mobilization of contaminated sediments (MacLeod et al. 2005, Conaway et al. 

2008).  Primary sources of Se in SFB have been attributed to discharge from oil refineries 

and wastewater treatment plants (Cutter 1989), riverine inputs (Cutter and Cutter 2004), 

resuspension of estuarine sediments, and phytoplankton production (Doblin et al. 2006). 

 Increased concentrations of Hg and Se in sediments and the water column in SFB 

have led to concerns about potential effects on wildlife inhabiting the bay.  Despite being 
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heavily urbanized, SFB provides habitat for a range of species, including invertebrates, 

shorebirds, ducks, fish, and marine mammals.  Mercury concentrations in excess of 

concentrations of concern for human health (0.23 µg/g wet wt) were detected in all 

samples of leopard shark (Triakis semifasciata) and striped bass (Morone saxatilis) 

collected from SFB, and in a lesser proportion of samples from California halibut 

(Paralichthys californicus), white sturgeon (Acipenser transmontanus), white croaker 

(Genyonemus lineatus), and jacksmelt (Atherinopsis californiensis; Davis et al. 2002).  

Schwarzback et al. (2006) suggested that Hg contamination was adversely affecting 

California Clapper Rail (Rallus longirostris) reproductive success, and Ackerman et al. 

(2007) found that 17% of Black-necked Stilts (Himantopus mexicanus) had blood Hg 

concentrations in excess of concentrations that could impair reproduction (> 3.0 µg/g wet 

wt).  Selenium concentrations in excess of concentrations of concern to public health 

were detected in sportfish from SFB (Greenfield et al. 2005), and increased Se 

concentrations were detected in livers of surfscoters (Melanitta perspicillata) from south 

SFB (Ohlendorf et al. 1986).  Selenium concentrations in the benthic food web increased 

threefold beginning in the early 1990s, which was attributed to the invasion of a non-

native bivalve (Potamocorbula amurensis; Linville et al. 2002).

 Pacific harbor seals (Phoca vitulina richardii) are an important top-level predator 

in the SFB ecosystem, and because they are relatively long-lived and reside in the bay 

throughout the year, may be exposed to increased concentrations of Hg and/or Se.  

Brookens et al. (2007) found that maximum concentrations of total Hg (THg) in hair of 
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harbor seals were greater than previously reported, but found no differences in hair 

concentrations of THg among sites in northern and central California.  Selenium 

concentrations in harbor seals from SFB have not been studied extensively; however, Se 

concentrations in blood of seals from SFB were greater than other locations (Kopec and 

Harvey 1995).  Increased Se concentrations in blood, coupled with hair loss and 

shortened vibrissae (symptoms of Se toxicosis; Raisbeck et al. 1993; O’Toole and 

Raisbeck 1995, 1997), led Kopec and Harvey (1995) to conclude that a proportion of 

harbor seals in SFB may suffer from chronic Se toxicosis.  

 The objectives of this study were to: 1) determine whether THg and Se 

concentrations differed with hair location on an individual (i.e., neck vs. mid-dorsal), 2) 

compare THg and Se concentrations and the molar ratio of Se:Hg in hair of harbor seals 

at three locations off central California, 3) determine if THg and Se concentrations and 

the molar ratio of Se:Hg differed with sex, and 4) examine the relationship between 

measures of chemical feeding ecology (nitrogen, carbon, and sulfur stable isotopes) and 

THg and Se concentrations.  I hypothesized that THg and Se concentrations would not 

differ between the neck and mid-dorsal samples, and that seals captured in SFB would 

have increased concentrations of THg and Se in hair, and a greater Se:Hg molar ratio than 

seals from other locations.  I also hypothesized that adult males would have greater 

concentrations of THg and Se than adult females, and that THg concentrations would be 

greater for seals feeding at an increased trophic level.  Selenium can bioaccumulate 

(Dietz et al. 2000), but because Se is an essential element and homeostatically regulated,  
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I expected that Se concentrations would not differ with tropic level.  A relationship 

between carbon and/or sulfur stable isotopes and THg and Se concentrations may be 

detected if seals consistently used habitats with different inputs of primary productivity. 

METHODS

Sample Collection

 Harbor seals (n = 146) were captured in SFB, Tomales Bay, and Elkhorn Slough 

between August 2009 and February 2011 (Fig. 1).  Samples were not collected during the 

pupping season (March to May) to avoid unnecessary disturbance and/or separation of 

mother-pup pairs.  All samples were collected under permits to either Dr. James T. 

Harvey, Dr. Sarah G. Allen, or Elizabeth A. McHuron (National Marine Fisheries 

Services, NMFS, No. 555-1870, No. 373-1868; US Fish and Wildlife Service, 2009-041, 

2011-002; SJSU IACUC #933).  Seals were captured using tangle nets, salmon nets, or a 

modified beach seine (Jeffries et al. 1993).  Seals were manually restrained for sample 

collection, and when available, were sedated with an IV injection of diazepam (0.2 mg/

kg). 
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Figure 1.  Location and number of harbor seals sampled (denoted by black dots sized 
relative to sample size) in central California between August 2009 and February 2011.

 Standard length (± 1 cm; SL), girth (± 1 cm), mass (± 1 kg), age class, and sex 

were determined for all seals sampled.  Age class was determined based upon length and 

weight (Bigg 1969), body condition, and date of capture.  Age classes included pup 

(young of the year), yearling (1 to 2 years), subadult (2 years to adult), and adult 

(females, 3+ years; males, 5+ years).  Individuals were tagged (flipper and PIT tags) to 

avoid resampling the same seal, and photographed for future use if necessary.
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 An approximate 15 x 15 cm patch of hair was shaved from the right side of the 

neck using an Oster® Pro battery-operated shaver with a size 40 cryotech stainless steel 

blade that had been cleaned in acetone.  Hair samples also were collected from the mid-

dorsal region and left pelvic area in case additional hair was needed for analyses.  Hair 

samples were stored on ice until transported to a -80°C freezer at Moss Landing Marine 

Laboratories (MLML).  

Sample Analysis 

 Hair samples were analyzed for THg and Se concentrations in the Wildlife 

Toxicology Lab at the University of Alaska Fairbanks.  Before analysis, external dirt, 

debris, and oil were removed by soaking hair in a 1% solution of Triton® X-100 for 15 

minutes, followed by multiple rinses with ultrapure water (NANOpure Model D4751, 

Barnstead International, Dubuque, Iowa).  Hair samples were then frozen and freeze-

dried for a minimum of 24 hours to remove water before weighing.  Data for THg and Se 

concentrations are presented on a dry-weight basis. 

 Total Hg concentrations were measured in hair (0.003 to 0.01 g) on a DMA-80 

Direct Mercury Analyzer (Milestone Inc, Shelton, Connecticut).  Samples were run in 

duplicates or triplicates, depending on the amount of hair available, and the mean THg 

concentration was calculated for each individual.  Quality controls (blanks, liquid 

standards, standard references) were run in triplicates at the beginning of each batch of 

samples.  The liquid standard contained 1.04 mg THg/kg, and the standard reference was 
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human hair IAEA-085 (23.2 ± 0.08 mg THg/kg, International Atomic Energy Agency, 

Vienna, Austria).  Total Hg concentrations were determined using a 16-point calibration 

curve (30.1 to 452.9 ng/g).  Mean recoveries for quality controls were 103% (liquid 

standard) and 99.8% (standard reference), and the coefficient of variation for all but one 

replicate was less than 14%.  Total Hg concentrations reported are representative of the 

MeHg concentration because the majority (> 80%) of Hg present in hair is in the 

methylated form. 

 Samples for Se analysis were prepared using a two-step digestion in a 

PerkinElmer Multiwave 3000 microwave oven.  Hair (0.027 to 0.19 g) was placed in a 

3:1 nitric acid (NO3): hydrogen peroxide (H2O2; v/v) solution and heated to 170°C for 15 

minutes.  Digested samples were transferred into a 50 mL pre-weighed polyethylene vial 

and diluted to 20 mL with ultrapure water.  A sub-sample (2 mL) of the diluted digest 

underwent a second digestion (heated to 95°C for 60 minutes) with excess hydrochloric 

acid (HCl; 1:1, v/v) to reduce Se (VI) to Se (IV).  Quality control samples (blanks, spikes, 

duplicates, matrix spikes, and standard reference materials) were included in each 

digestion batch.  Standard reference materials included human hair IAEA-086 (1.00 ± 

0.20 mg Se/kg, International Atomic Energy Agency, Vienna, Austria), and fish protein 

DORM-3 (3.3 mg Se/kg, National Research Council Canada, Institute for National 

Measurement Standards, Ottawa, Canada).  

 Selenium concentrations were determined using a mercury/hydride system-flame 

ionization atomic spectrometry (MHS-FIAS) on a PerkinElmer AAnalyst 800 atomic 
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absorption spectrometer (AAS) and a six point calibration curve (0.0968 to 4.64 ng/g). 

Sodium borohydride (0.2% NaBH4 in 0.05% NaOH) was used as the reductant in a 10% 

HCl carrier solution.  Detection limits (0.002 to 0.089 ng/g) varied as new calibration 

curves were created every 32 samples.  The mean percent recoveries were 83% (spikes), 

86% (spiked samples), 90% (duplicates), 71% (DORM-3), and 75% (SRM-086).  

Decreased recoveries for standard reference materials may indicate that measured Se 

concentrations were less than actual concentrations; however, this should not have 

affected overall conclusions as samples were randomized among runs and recoveries 

were relatively consistent among runs.  

 Hair samples collected from SFB were analyzed for nitrogen, carbon, and sulfur 

stable isotopes at the USGS Stable Isotope Laboratory in Denver, Colorado.  Hair was 

washed, cleaned, and freeze-dried as described above, and approximately 0.1 mg of hair 

was placed in an aluminum foil square.  Vanadium oxide (V2O5; 0.1 to 0.2 mg) was 

included with hair samples for sulfur analysis.  Prepared samples were analyzed by 

continuous-flow isotope ratio mass spectrometry using an elemental analyzer coupled to 

a mass spectrometer (Fry et al. 1992).   Analytical sequences included laboratory 

standards, and reproducibility of results was generally better than 0.1‰ for nitrogen and 

carbon, and 0.3‰ for sulfur based on repeated analyses of standards and samples.

 The ratio of stable isotopes is expressed in delta (!) notation and calculated as:

 !X = [(Rsample /Rstandard) - 1]*1000
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 where X = 15N, 13C, or 34S, and R = 15N/14N, 13C/12C, or 34S/32S in the sample and 

standard.  Standards used to normalize isotope data were: USGS 40 (!13C = "26.24‰) 

and USGS 41 (!13C = "37.76‰; relative to Vienna-Pee Dee Belemnite), !15N = "4.52 

and 47.57‰ (relative to air), and NBS127 (!34S = 21.1) and IAEA-SO-6 (!34S = 

"34.05‰; relative to Vienna-Canyon Diablo troilite).  

Data Analysis

 All statistical analyses were conducted using PASWStatistics (version 18.0, IBM, 

2010).  Assumptions of parametric tests were met before analysis unless otherwise stated 

and all results are presented using untransformed data.  Concentrations of THg and Se did 

not differ between years or location within SFB (north vs. south SFB), therefore, samples 

from multiple years and sites within SFB were pooled.  Mean concentrations of THg and 

Se were calculated for seals that were captured in successive years to avoid problems 

with pseudoreplication.  Three seals captured in SFB had Se concentrations below the 

detectable limit (bdl), therefore, were excluded from all Se analyses and any analysis 

where Se was used as a covariate. 

     A paired samples t-test was used to determine whether THg and Se concentrations 

differed with hair location.  Concentrations of THg and Se were determined in a subset of 

individuals (THg, n = 17; Se, n = 13).  Samples collected from the mid-dorsal region and 

neck were used in the analysis. 
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 Analysis of Covariance (ANCOVA) was used to determine if THg and Se 

concentrations and the Se:Hg molar ratio varied with the fixed factors of location and 

sex.  Covariates included SL, THg, and Se.  Standard length was included as a covariate 

to remove any variation in THg and/or Se concentrations associated with age, and THg 

and Se were considered as covariates in the analysis of the other element because of their 

antagonistic interaction (Cuvin-Aralar and Furness 1991).  Total Hg concentrations and 

the Se:Hg molar ratio were log transformed to meet the assumption of equal variances.  

Post-hoc comparisons were made using a Ryan’s Q test with a Kramer modification to 

correct for unequal sample sizes (Day and Quinn 1989).

 Stable isotope data were analyzed to determine whether differences in sex, 

location (north vs. south SFB), and age existed, and whether these data could explain any 

of the variability in THg and Se concentrations.  Pups (n = 3) were excluded from the 

analysis as the stable isotope signatures of pups were representative of their mother’s diet 

during lactation.  Eight seals were excluded from sulfur analyses because of poor yield of 

!34S.  Analysis of Covariance was used to determine whether !15N, !13C, and !34S values 

differed with the fixed factors of location and sex, and SL was included as a covariate of 

interest.  The significance value of the location*sex interaction was 0.05.  Because this 

interaction was only mildly significant, and was most likely affected by females from 

south SFB, the main effects were still interpreted for this analysis.   Linear regression was 

used to examine the relationship between !15N and SL, !13C, and !34S.  Stepwise linear 

regression was used to determine whether any variability in THg and Se concentrations 
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could be explained by !15N, !13C, and !34S values.  Additional variables included in the 

analysis were %N, %C, %S, SL, THg (Se analysis), and Se (THg analysis).  Predictor 

variables were removed from the model if P > 0.05.  Problems with multicollinearity 

were assessed if multiple variables were present in the final model.  

RESULTS

 Concentrations of THg and Se differed between the neck and the mid-dorsal 

region, therefore, only hair samples collected from the neck region were used in further 

analyses.  Hair samples from the mid-dorsal region had greater concentrations of THg (t 

= 2.458, P = 0.024) and Se (t = 1.899, P = 0.082) than samples from the neck, but the 

magnitude of this difference was relatively small (THg = 1.68, Se = 0.55 µg/g dry wt). 

  Mean THg concentrations differed with location (F = 10.939, P < 0.001) and sex 

(F = 22.355, P < 0.001; Fig. 2).  Selenium and SL were included as covariates, although 

these variables only explained a relatively small proportion of the total variability, 

especially in seals from SFB and Tomales Bay (Fig. 3, 4, and 5).  Total Hg concentrations 

in SFB (22.20 ± 2.79; x µg/g dry wt ± SE) and Tomales Bay (20.83 ± 1.17) were greater 

than Elkhorn Slough (13.03 ± 1.31), and males had greater concentrations of THg than 

females at all locations (Table 1).  Seals from SFB also had greater variability in THg 

concentrations (CV = 0.92) than seals from Elkhorn Slough (0.57) and Tomales Bay 

(0.42).  A proportion of seals had THg concentrations that exceeded hair concentrations 

associated with sub-clinal effects of Hg toxicosis in polar bears (5.4 µg/g dry wt; Basu et 

19



al. 2009), maternal ranges of concern for human fetal neurodevelopment (10 to 20 µg/g 

dry wt; WHO 1990), and the lower (20 µg/g dry wt; Thompson et al. 1996) and upper 

neurological effects limits for fish-eating wildlife (30 µg/g dry wt; Evers et al. 2007; 

Table 2).  Mean THg concentrations of seals from Elkhorn Slough exceeded the 5.4 and 

10 threshold limits, whereas mean THg concentrations in seals from SFB/Tomales Bay 

exceeded the lower neurological effect limit for fish-eating wildlife (Fig. 6). 
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Figure 2.  Mean total mercury concentrations (THg; µg/g dry wt) in hair of harbor seals 
from Elkhorn Slough (ES), San Francisco Bay (SFB), and Tomales Bay (TB).  Males are 
represented by gray bars and females by black bars.  Sample sizes are presented in 
parentheses above standard error lines.  
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Figure 3.  Relationship between total mercury concentration (THg; µg/g dry wt) in hair 
and standard length (cm) in harbor seals from San Francisco Bay and Tomales Bay 
(r2 = 0.006, P = 0.420).  Males are represented by closed and females by open circles.
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Figure 4.  Relationship between total mercury concentration (THg; µg/g dry wt) in hair 
and standard length (cm) in harbor seals from Elkhorn Slough (r2 = 0.116, P = 0.056).  
Males are represented by closed and females by open circles.
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Figure 5.  Relationship between total mercury (THg) and selenium concentrations (µg/g 
dry wt) in hair of harbor seals from San Francisco Bay and Tomales Bay (open circles, 
dotted line; r2 = 0.022, P = 0.130), and Elkhorn Slough (closed circles, solid line; 
r2 = 0.122, P = 0.05).

Table 1.  Mean total mercury concentrations (µg/g dry wt ± SE), ranges, and samples 
sizes in hair of male and female harbor seals from Elkhorn Slough, San Francisco Bay, 
and Tomales Bay, 2009 to 2011.

Location Male Female

Elkhorn Slough 17.98 ± 2.00
6.27 - 30.31

n = 14

9.18 ± 1.09
3.87 - 20.45

n = 18

San Francisco Bay 31.91 ± 8.83
9.83 - 144.31

n = 15

18.00 ± 1.34
2.96 - 36.70

n = 37

Tomales Bay 28.61 ± 6.35
11.25 - 126.09

n = 19

17.05 ± 0.99
9.00 - 33.81

n = 36
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Table 2.  The percentage of harbor seals with total mercury concentrations in hair 
exceeding hair concentrations associated with sub-clinical effects of Hg toxicosis in polar 
bears (5.4; Basu et al. 2009), maternal ranges of concern for human fetal 
neurodevelopment (10 to 20; WHO 1990), and the lower (20; Thompson 1996) and upper 
(30; Evers et al. 2007) neurological threshold limits for fish-eating wildlife.

Percentage exceeding hair effects level for 
other species (µg/g dry wt) 

Percentage exceeding hair effects level for 
other species (µg/g dry wt) 

Percentage exceeding hair effects level for 
other species (µg/g dry wt) 

Percentage exceeding hair effects level for 
other species (µg/g dry wt) 

Percentage exceeding hair effects level for 
other species (µg/g dry wt) 

Percentage exceeding hair effects level for 
other species (µg/g dry wt) 

Percentage exceeding hair effects level for 
other species (µg/g dry wt) 

Location n 5.4 10 20 30

Elkhorn Slough 32 94 53 22 3

San Francisco Bay 52 96 87 44 12

Tomales Bay 55 100 96 33 9
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Figure 6.  Mean total mercury concentrations (THg; "g/g dry wt ± SE) in hair of 
pinnipeds.  Dotted lines correspond to hair concentrations ("g/g dry wt) associated with 
sub-clinical effects of Hg toxicosis in polar bears (5.4; Basu et al. 2009), maternal ranges 
of concern for human fetal neurodevelopment (10 to 20; WHO 1990), and the lower (20; 
Thompson et al. 1996) and upper (30; Evers et al. 2007) neurological threshold limits for 
fish-eating wildlife.  * corresponds to concentrations presented as wet wt.  a Freeman and 
Horne 1973, b Bacher 1985, c Wenzel et al. 1993, d Yediler et al. 1993, e Medvedev et al. 
1997, f Wiig et al. 1999, g Ikemoto et al. 2004b, h Brookens et al. 2007, i Gray et al. 2008, 
j Aubail et al. 2011, k Agusa et al. 2011.
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 Mean Se concentrations differed with location (F = 5.036, P = 0.008).  Selenium 

concentrations were greater in seals from Elkhorn Slough (2.00 ± 0.19; x µg/g dry wt ± 

SE) than SFB (1.50 ± 0.12) or Tomales Bay (1.44 ± 0.14; Fig. 7).  A proportion of seals 

had Se concentrations below concentrations in hair associated with deficiency in 

livestock and humans; however, some individuals also had Se concentrations in hair 

greater than those associated with toxicosis in cattle and pigs (Table 3).  Mean Se 

concentrations in seals were greater than mean hair concentrations in humans from 

regions in China with known Se deficiency, concentrations associated with deficiency in 

livestock, and concentrations associated with toxicosis in cattle (Fig. 8).  There also was a 

locational difference in the Se:Hg molar ratio (F = 15.411; P < 0.001), with seals from 

Elkhorn Slough having a greater Se:Hg molar ratio (0.48 ± 0.058; x ± SE) than seals 

from SFB (0.26 ± 0.034) and Tomales Bay (0.21 ± 0.020).  Females also had a greater 

Se:Hg molar ratio than males at all locations (F = 5.221, P = 0.024; Fig. 9).  
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Figure 7.  Mean selenium concentrations in hair (µg/g dry wt) of harbor seals from 
Elkhorn Slough (ES), San Francisco Bay (SFB), and Tomales Bay (TB).  Sample sizes 
are presented in parentheses above standard error lines.

Table 3.  The percentage of harbor seals with selenium (Se) concentrations in hair less 
than (deficiency) or in excess of (toxicosis) hair effects levels for cattle (0.23, 1.4), pigs 
(4.0), and horses (0.50, 7.0; Puls 1994). The effects level of 0.304 corresponds to mean 
hair concentrations in humans from Se-deficient regions in China (Fordyce et al. 2000).  

Percentage below (deficiency) or exceeding 
(toxicosis) hair effects level for other species (µg/g 

dry wt) 

Percentage below (deficiency) or exceeding 
(toxicosis) hair effects level for other species (µg/g 

dry wt) 

Percentage below (deficiency) or exceeding 
(toxicosis) hair effects level for other species (µg/g 

dry wt) 

Percentage below (deficiency) or exceeding 
(toxicosis) hair effects level for other species (µg/g 

dry wt) 

Percentage below (deficiency) or exceeding 
(toxicosis) hair effects level for other species (µg/g 

dry wt) 

Percentage below (deficiency) or exceeding 
(toxicosis) hair effects level for other species (µg/g 

dry wt) 

Percentage below (deficiency) or exceeding 
(toxicosis) hair effects level for other species (µg/g 

dry wt) 

Percentage below (deficiency) or exceeding 
(toxicosis) hair effects level for other species (µg/g 

dry wt) 

Percentage below (deficiency) or exceeding 
(toxicosis) hair effects level for other species (µg/g 

dry wt) 

Percentage below (deficiency) or exceeding 
(toxicosis) hair effects level for other species (µg/g 

dry wt) 

Percentage below (deficiency) or exceeding 
(toxicosis) hair effects level for other species (µg/g 

dry wt) 

DeficiencyDeficiencyDeficiencyDeficiencyDeficiency ToxicosisToxicosisToxicosisToxicosisToxicosis

Location n 0.23 0.304 0.50 1.4 4.0 7.0

Elkhorn Slough 32 0 0 0 63 3 0

San Francisco Bay 52 6 8 15 50 2 0

Tomales Bay 55 4 4 16 35 5 0
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Figure 8.  Mean selenium concentrations in hair ("g/g dry wt ± SE) of pinnipeds.  
Rectangle corresponds to a range of hair concentrations that resulted in deficiency in 
livestock, and humans in China from known Se-deficient areas (0.18 to 0.5; Puls 1994, 
Fordyce et al. 2000).  Dotted lines correspond to mean hair concentrations associated 
with toxicosis in cattle (1.4), pigs (4.0), and horses (7.0; Puls 1994).
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 Stable isotopes were measured in 51 unique adults and juveniles (subadults and 

yearlings) from SFB (Table 4).  No differences in sex or location (north vs. south SFB) 

were detected for any of the stable isotopes; however, the significance value for the 

location factor for !15N was 0.066.  Standard length was included as a covariate in !15N 

and !34S analyses, with !15N values increasing with SL, and !34S values decreasing with 

SL.  Therefore, adults had greater !15N values (+1.7‰), and lesser !34S values than 

juveniles (-1.3‰; Table 4).  Greater than 50% of the variability in !15N values was 

explained by !34S and !13C values (F = 29.586, P < 0.001); however, this relationship 

primarily was driven by !34S values (Fig. 10).  Stepwise linear regression revealed that a 

model containing !34S was the best predictor of THg concentrations (F = 6.349, P = 
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0.017; Fig. 10).  A relatively small amount of variability was explained by !34S (r2 = 

0.161), although this relationship improved when extreme values (n = 2) were removed 

from the dataset (r2 = 0.330).  None of the predictor variables explained a significant 

amount of variability in Se concentrations.  

Table 4.  Mean values (‰ ± SE) of stable isotopes of nitrogen, carbon, and sulfur for 
seals captured in San Francisco Bay separated by sex and age.  Juvenile age class 
represents subadults and yearlings.    

 !15N !15N !15N !13C!13C!13C  !34S !34S !34S

Age class Male Female Male Female Male Female

Adult 19.50 
(0.77)

19.18  
(0.54)

-14.26  
(0.38)

-14.49  
(0.25)

16.06  
(0.79)

16.75 
(0.42)

Juvenile 17.57  
(0.60)

17.66 
(0.30)

-14.35  
(0.33)

-14.51 
(0.25)

17.45 
(0.33)

18.04 
(0.20)
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Figure 10.  Relationship between !15N and !34S (black; r2 = 0.598, P < 0.001), and total 
mercury concentrations (THg; µg/g dry wt) and !34S (gray; r2 = 0.161, P = 0.017) in hair 
of harbor seals from San Francisco Bay.  Adult values are represented with closed and 
subadults and yearlings with open circles.

DISCUSSION

 The use of hair to determine trace element concentrations in marine mammals has 

been used since the 1980s (Bacher 1985, Wenzel et al. 1993, Yediler et al. 1993), but its 

frequency of use appears to be increasing (Brookens et al. 2007, Elorriaga-Verplanken 

and Aurioles-Gamboa 2008, Gray et al. 2008, Aubail et al. 2011).  Hair concentrations 

represent element levels circulating in blood at the time of hair growth, which spans one 

to two months in harbor seals (Ashwell-Erickson et al. 1986, Daniel et al. 2003).  Molt 
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progression in harbor seals typically begins around the face, neck, flippers and body 

openings followed by the ventrum, dorsum, and lastly the dorsal-lateral sides (Ashwell-

Erickson et al. 1986, Daniel et al. 2003).  Researchers have addressed whether element 

concentrations differ with type of hair (molt vs. new; Wenzel et al. 1993, Gray et al. 

2008), but to my knowledge no studies have addressed whether concentrations differ with 

hair location.  Total Hg and Se concentrations in this study were greater in samples 

collected from the mid-dorsal region than neck, although this trend was not observed in 

all seals.  Because harbor seals do not molt all at once, differences in THg and Se 

concentrations between samples collected from different locations were likely the result 

of differences in the timing of molt.  Individual variability in molt progression likely 

contributed to the lack of, or the opposite trend in differences in THg and Se 

concentrations between the neck and mid-dorsal for some seals.  Differences in THg and 

Se concentrations with hair location may be species-specific, as the length of molt varies 

among pinnipeds.  These differences have implications for sample design, comparisons 

within and among studies, and relationships between tissue types (e.g., hair vs. blood).  

This may be especially important to address for studies that rely on hair collected from 

the substrate of haul-out sites (e.g., Yediler et al. 1993, Gray et al. 2008), or for studies 

where the trace element/s measured may be present in relatively low concentrations.  

   The overall mean concentration of THg in hair (19.60 ± 1.44; µg/g dry wt ± SE)

and locational means were greater than previously reported for central California (11.3 ± 

0.797; Brookens et al. 2007), and greater than most previously published values for 
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pinnipeds (e.g., Watanabe et al. 1996, Medvedev et al. 1997, Wiig et al. 1999, Ikemoto et 

al. 2004b, Gray et al. 2008).  The maximum THg concentrations in hair from SFB and 

Tomales Bay seals also were greater than published concentrations for harbor seals and 

other pinniped species (e.g., Watanabe et al. 1996, Medvedev et al. 1997, Wiig et al. 

1999, Ikemoto et al. 2004b, Gray et al. 2008).  Differences in mean THg concentrations 

in hair between seals in this study and Brookens et al. (2007) could be due to a number of 

factors, including an increase in Hg input into the system, differences in the foraging 

behavior of seals or their prey, and differences in data collection and/or analysis.  

 Variability in Hg input into an ecosystem can occur over a variety of time scales, 

including long-term (years), annually, or seasonally.  No long-term increases in THg 

concentrations in sediments nor fish were detected in SFB (Greenfield et al. 2005, 

Conaway et al. 2007, Greenfield et al. 2011).  Significant decreases in THg sediment 

concentrations between 1993 and 2001 were detected at eight stations in SFB, which 

were attributed to the transport of relatively cleaner sediment into the bay (Conaway et 

al. 2007).  Corresponding decreases in THg concentrations of forage fish did not occur 

(Greenfield et al. 2005, 2011), although sediment was considered a primary source of Hg 

to the nearshore food web (Gehrke et al. 2011).  Although interannual variation in THg 

concentrations were observed in striped bass (Greenfield et al. 2005) and Mississippi 

silverside (Menidia audens; Greenfield et al. 2011), seasonal variation and site location 

explained the majority of variability in THg concentrations.  Although long-term 

increases in THg concentrations in sediment and forage fish have not been detected, the 
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decoupling between sediment and forage fish indicate that other factors influence how Hg 

is transferred through the food web (Conaway et al. 2007).  Therefore, it is possible that 

the observed differences in THg in harbor seal hair between 2005 to 2007 (Brookens et 

al. 2007) and 2009 to 2011 (present study) could be the result of long-term increases in 

Hg concentrations in harbor seals in SFB.  Interannual variation in Hg concentrations in 

prey could have contributed to the increase, but this hypothesis could not be tested 

because studies were not conducted during the molt period and because THg 

concentrations for common prey items of harbor seals were not collected during the time 

of these studies (2004 to 2010).  Because hair is molted at approximately the same time 

every year, seasonal variation is an unlikely cause of the increase.  

 Total Hg concentrations in this region vary not only with time, but also with 

location and prey species (Conaway et al. 2007, Heim et al. 2007, Greenfield and Jahn 

2010, Ridolfi et al. 2010).  Spatial variations of sediment THg concentrations and species 

differences in THg concentrations occurred in SFB and Tomales Bay (Conaway et al. 

2007, Heim et al. 2007, Ridolfi et al. 2010); however, Hg has received more attention, 

therefore, has been well-researched in SFB.  Concentrations of THg in sediments in SFB 

were greatest at the southern tributaries (including the Guadalupe River), followed by the 

south bay and northern estuary (San Pablo and Suisan Bays), the central bay, and the San 

Joaquin and Sacramento Rivers (Conaway et al. 2007).  These spatial variations were 

reflected in THg concentrations in forage fish, with the greatest concentrations detected 

in fish at sites closest to the Guadalupe River (Greenfield and Jahn 2010).  Additionally, 
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increased THg concentrations were found in wetland, mudflat, and tidal species 

compared with offshore species (Greenfield and Jahn 2010).  These spatial gradients were 

consistent despite differences in THg concentrations among years and fish species, and 

were likely to be less pronounced in species with large home ranges, variable movement 

patterns, and/or seasonal migration such as striped bass and salmon (Greenfield et al. 

2005).  Total Hg concentrations also varied among prey species and were less in species 

such as the bay goby (16 ± 8; x  ng/g wet wt ± SD), Pacific herring (Clupea pallasii; 17 

± 1), and yellowfin goby (33 ± 7), and greater in northern anchovy (Engraulis mordax; 45 

± 21) and staghorn sculpin (Leptocottus armatus; 50 ± 9; Greenfield and Jahn 2010).     

 Because of this variability, differences in foraging patterns or habitat use by prey, 

or in the size, location, or type of prey eaten by harbor seals may have resulted in 

increased THg concentrations in harbor seals from this study.  A greater dependence of 

seals on prey with greater THg concentrations (e.g., striped bass, northern anchovy, 

staghorn sculpin) than prey with lesser THg concentrations (e.g., bay goby, Pacific 

herring) would likely result in the observed differences.  Gobies are an important prey 

source for harbor seals (Torok 1994, Gibble 2011), and increased abundance of recent 

invasive species, such as the shimofuri goby (Tridentiger bifasciatus), that have greater 

concentrations of THg than other species of gobies also could result in the increased THg 

in harbor seals from this study (Greenfield and Jahn 2010).  Diet data are not available 

for either time period (2005 to 2007, 2009 to 2010), therefore, it is unknown whether the 

diet of harbor seals differed between 2005/2007 and 2009/2010.  Differences in diet 
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between these periods is feasible given that harbor seals are generalist predators and that 

the diet of seals in SFB changed between the early 1990s and late 2000s, with an 

increased dependence on invasive species in later years (Torok 1994, Gibble 2011).  

Increased THg concentrations in seals from this study also could be the result of 

interannual variation in prey THg concentrations, particularly if prey had greater THg 

concentrations during the years of this study than the previous study (Brookens et al. 

2007).  A greater dependence by harbor seals on prey with increased THg concentrations, 

or a combination of these factors also could be responsible for the observed differences. 

 Collection and analysis techniques differed slightly between this study and 

Brookens et al. (2007), which could have contributed to the observed differences.  Total 

Hg concentrations in hair samples differed with location in this study (e.g., neck vs. mid-

dorsal), therefore, it is not easy to compare samples collected in this study (neck) with 

those from the previous study (pelvic region).  Samples from northern California were 

included in Brookens et al. (2007), whereas samples from northern California were not 

collected in this study.  Whereas different methods (DMA-80 vs. AAS) and labs were 

used to determine THg concentrations, it is unlikely that this had a significant effect as 

the concentration of Hg measured was relatively high, differences in concentrations 

measured among labs and between methods were relatively low (Butala et al. 2006), and 

quality assurance/control criteria were met for both studies.  Discrepancies in data 

analysis methodology may have contributed to the difference in THg concentrations 

between studies, as samples from Brookens et al. (2007) were pooled for all locations in 
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northern and central California, whereas samples were separated by location for this 

study.  Because no samples were collected from northern California sites in this study, the 

addition of these data in the previous study may have resulted in decreased mean THg 

concentrations if THg concentrations in northern California were less than concentrations 

in other areas.  Despite this, it is unlikely that the inclusion of data from northern 

California significantly affected the mean THg concentration because no significant 

differences among locations were detected during the previous study.

 Multiple factors may have contributed to the increased mean THg concentrations 

in seals from this study compared with Brookens et al. (2007), and given the available 

data, it is not possible to definitively determine whether this increase was real, an artifact 

of differences in sampling design and analysis, or a combination of both.  Despite this, 

the maximum concentration of THg measured in this study was 52 "g/g greater than 

concentrations from the previous study (Brookens et al. 2007), indicating that it is 

unlikely that differences in sample design and analysis were solely responsible for the 

increase.  This issue deserves further attention because increases in THg concentrations, 

whether interannual or long-term, places seals in this region at greater risk for Hg 

toxicosis, and also has implications for water quality standards and the choice of target 

species used to determine and evaluate the effectiveness of these standards.  

 Fine-scale locational differences in trace element concentrations often are difficult 

to detect and previously have not been found for harbor seals off central and northern 

California (Brookens et al. 2007).  Differences among sites were detected in this study, 
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with increased mean THg concentrations in seals captured in SFB and Tomales Bay 

compared with Elkhorn Slough.  These differences were likely the result of increased Hg 

input due to historical gold and mercury mining activities in the Sierra Nevada and Coast 

Range.  Although atmospheric inputs, storm-water runoff, and geologic weathering also 

contribute to Hg input, the fluxes into SFB are largely dominated by contamination from 

historic mining (Conaway et al. 2003, Alpers et al. 2005).  Data regarding Hg 

concentrations are lacking for the Elkhorn Slough/Monterey Bay region; however, Hg 

concentrations in sediment and fish tissues were less in Monterey Bay compared with 

samples from SFB (Meador et al. 1998, 2005).    

 The lack of difference in THg concentrations in harbor seal hair between SFB and 

Tomales Bay may be a combination of similar levels of environmental contamination and 

movement of seals between these regions.  Whereas harbor seals exhibit strong site 

fidelity to several resting (haul-out) sites and make predominantly short-distance 

movements, long-distance movements among sites does occur (Harvey 1987, Yochem et 

al. 1987, Torok 1994).  Torok (1994) found that seals tagged in SFB made frequent trips 

to the outer coast, traveling south to Pillar Point and north to Point Reyes.  Eleven seals 

tagged in Tomales Bay and five seals tagged in SFB used haul-out sites in other locations; 

however, the majority of individuals moved among local haul-out sites (< 10 km; Harvey 

and Goley 2011).  Nickel (2003) found that 9 out of 10 seals tagged in SFB used areas 

within 10 km of a known haul-out site, and foraged one to five km from this site.  Seals 

in Elkhorn Slough mainly moved and foraged within Monterey Bay, although one female 
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seal tagged in Elkhorn Slough moved north to SFB, presumably to pup (Oxman 1995, 

Trumble 1995, Eguchi 1998, Greig 2002).  Whereas it was possible for harbor seals 

sampled in this study to travel among all site locations, previous telemetry work indicated 

that overlap of foraging habitat was more likely for seals using SFB and Tomales Bay.      

 Differences in THg concentrations between sexes also were found in this study, 

with males at all locations having greater concentrations than females.  Differences in 

THg concentrations with sex in hair of pinnipeds varies (e.g., Gray et al. 2008, Aubail et 

al. 2011), and may be species-specific given that life history characteristics differ among 

pinnipeds.  Brookens et al. (2007) also detected increased THg concentrations in hair of 

adult males compared with adult females, which was attributed to a female’s ability to 

offload Hg to her pup during fetal development and lactation.  Although Wenzel et al. 

(1993) found greater mean concentrations of THg in hair of female harbor seals found 

dead along the northern coast of Germany, differences between sexes were not significant 

because of increased variability in THg concentrations.  Because adult females were able 

to transfer Hg to their developing fetuses (Wagemann et al. 1988), this likely contributed 

to the observed difference between males and females in central California; however, it 

also is possible that other factors may have contributed to this difference.    

 Additional factors that may have resulted in the observed differences in THg 

concentrations between male and females include physiological differences that affect Hg 

toxicodistribution and differences in foraging behavior.  There was no consistent pattern 

with sex in the relationship between THg and SL (e.g., THg concentrations of males > 
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females at all size classes).  Therefore, it is more likely that foraging differences, and not 

physiology, may have contributed to the observed differences in THg concentrations 

between males and females.  The foraging behavior of pinnipeds often differs with sex 

and tends to be more pronounced in species with extreme sexual dimorphism (Le Boeuf 

et al. 1993, Beck et al. 2003).  Foraging behavior may vary with time, location, depth, 

prey type, and prey size, but determining differences between sexes is difficult, though 

not impossible, using traditional diet methods such as scat collection.  

 Stable isotope analysis has proved useful in detecting differences in diet among 

age classes and between sexes as certain elements have multiple isotopes that vary 

predictably as they cycle through an ecosystem (Peterson and Fry 1987, Newsome et al. 

2010).  Nitrogen is typically representative of trophic level, with increasing !15N values 

indicative of increasing trophic levels.  Additionally,  !15N values also change with 

latitude and nutritional status (Newsome et al. 2010).  Carbon often is used to determine 

the source of primary production input, and nearshore areas tend to have increased (less 

negative) !13C values compared with offshore areas, and temperate systems are more 

enriched than high latitude systems.  The use of sulfur stable isotopes to distinguish the 

contributions of different producers to food webs primarily has been confined to estuarine 

systems, and sulfur is not often measured in marine mammals (Connelly et al. 2004).  As 

a general rule, marine sources of primary productivity tend to be more enriched in 34S 

(greater !34S values) than estuarine and marsh plants, and pelagic, offshore sources tend 
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to be more enriched than benthic, inshore sources (Peterson et al. 1985, Peterson and 

Howarth 1987, Barros et al. 2010).

 Differences in stable isotope values with age were detected in seals from SFB.  

Adults had greater !15N values than juvenile animals, potentially indicating adults 

foraged on species occupying greater trophic levels than juveniles.  Oates (2005) found 

that newly-weaned harbor seals off Monterey primarily fed on shrimp, small schooling 

fishes, and small cephalopods before switching to larger schooling fishes, cephalopods, 

and benthic fishes as their foraging and diving skills developed.  Newly-weaned pups 

were not included in my study; however, several diet studies from SFB indicated that 

seals of unknown age classes and sexes fed on a variety of prey, including several species 

of gobies, northern anchovy, striped bass, staghorn sculpin, and crangonid shrimp (Torok 

1994, Gibble 2011).  Germain et al. (2011) found that seals between age one and two had 

lesser !15N values in blood than seals greater than two years, which indicated that 

younger animals were feeding at a trophic level slightly less than older animals.     

 Enrichment of 15N also is influenced by nutritional status, and !15N values tend to 

increase in fasting animals (Hobson et al. 1993, Cherel et al. 2005).  Nutritional stress 

may have contributed to increased !15N values in this study because adults are at their 

poorest body condition following breeding when new hair is forming (Coltman et al. 

1996, Greig 2002).  Several seals in this study had !15N values equivalent to or greater 

than values found in hair of polar bears, a predator of seals (Cardona-Marek et al. 2009).  

These !15N values were more than 3‰ greater than prey species found in SFB, further 
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supporting the conclusion that during molt adult seals may be catabolizing their own 

tissues (Hobson et al. 1996, Stewart et al. 2004).  

 Adult seals also had lesser !34S values than juveniles, which could be the result of 

differences in foraging locations or diet during the time period when seals were molting.  

During molt, adult seals may forage in locations within the bay, whereas juveniles may 

depend more on foraging areas outside of the bay.  Locational foraging differences with 

age have not been detected in seals tagged in SFB; however, juvenile harbor seals in 

Prince William Sound had larger home ranges than adults (Lowry et al. 2001), and all 

long distance movements made by subadult harbor seals in Monterey Bay occurred 

before or during the breeding season (Oates 2005).  Juveniles may choose to forage in 

areas outside of SFB during breeding to reduce competition with adults and also to avoid 

confrontations with adult males patrolling aquatic territories (Hayes et al. 2004, Boness et 

al. 2006).  Sulfur stable isotopes also are affected by the protein content of the diet, with 

a greater trophic shift between prey and consumer with greater protein quality of the prey 

(McCutchan et al. 2003).  Despite this, it is unlikely that differences in !34S values were 

the result of greater juvenile dependence on prey with a greater protein content than prey 

of adult seals because juveniles from other areas had a greater dependence on crustaceans 

and smaller forage fish than adults (Oates 2005).

 More recently, stable isotopes have been used to examine trophic relationships 

and trace metal transfer (Dehn et al. 2006, Cardona-Marek et al. 2009), which was the 

primary purpose of this study.  No relationship between THg and !15N was detected, 
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indicating that biomagnification of Hg was not the primary reason for the variation in 

THg concentrations in harbor seals.  Previous studies on the relationship between THg 

and trophic level produced mixed results.  Aubail et al. (2011) found a positive 

correlation between THg and !15N in hair of seven species of phocids, although this 

relationship only was assessed among and not within a species.  This relationship may 

have been driven primarily by the fact that species were from vastly different locations 

(Antarctic and Arctic) and foraged at a greater range of trophic levels than harbor seals in 

this study, as the relationship within a species appeared much less clear or even absent.  

Cardona-Marek et al. (2009) found no direct relationship between THg concentrations in 

hair of polar bears and !15N values, although a model including !15N and !13C was a good 

predictor of THg concentrations among bears.  Mercury concentrations in harbor seal 

prey species in SFB do not always increase with trophic level, and similar species (e.g., 

gobies) may have a wide range of Hg concentrations.  Spatial variations in Hg 

concentrations within a species also exist in SFB, which likely contributed to the lack of a 

relationship between THg concentrations and !15N values.  There was a weak relationship 

between THg concentrations and !34S, which could be the result of locational foraging 

differences, especially if juveniles were feeding on prey species outside of SFB where Hg 

concentrations may be less.  

 Stable isotopes only explained approximately 20% of the variability in THg 

concentrations in seal hair, and because no differences in nitrogen, carbon, nor sulfur 

were detected between sexes, other factors likely contributed to the observed differences 
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between males and females.  Total Hg concentrations in hair of harbor seals represents 

blood concentrations during molt, which follows reproduction and typically spans June 

and July in SFB.  Whereas data on the age- and sex-specific timing of molt for seals in 

SFB were not available, studies in other regions indicated that juveniles molted first, 

followed by adult females, and lastly adult males (Thompson and Rothery 1987, Daniel 

et al. 2003, Reder et al. 2003).  Differences in the timing of molt may ultimately be the 

result of differences in energetic costs associated with reproduction.  Males and females 

tend to lose mass during reproduction (Coltman et al. 1996, Greig 2002); however, the 

energetic costs associated with lactation may be greater than costs incurred by males 

while patrolling aquatic territories.  Thompson et al. (1989) found that female harbor 

seals in Scotland spent more time at sea during the period before molt, and suggested that  

the need to feed intensively after weaning a pup outweighed the benefits associated with 

a slower molt.  Harbor seals in the high Arctic displayed a similar pattern, with adult 

males hauling-out regularly for extended periods of time at the beginning of molt, 

whereas females spent a greater time at sea following lactation and did not spend 

extended periods of time hauled-out during molt (Reder et al. 2003).  

 The later occurrence of molt in male harbor seals, coupled with changes in 

foraging behavior between males and females may result in differences in THg intake.  

Males could be foraging on different prey than females, or prey concentrations of THg 

may be increased during the time when adult males are molting.  Greenfield et al. (2011) 

found that THg concentrations in the arrow goby (Clevelandia ios) in SFB were greatest 
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in late July and into August, but the timing of seasonal peaks was strongly dependent on 

location.  Kopec and Harvey (1995) found that male harbor seals captured in SFB 

between May 1989 and September 1992 had greater Hg concentrations in blood than 

females, indicating that differences in foraging behavior may not be confined to molt.  

Thompson et al. (1998) found that male harbor seals made significantly longer trips than 

females and that mean foraging ranges were greater for males than females, indicating 

that foraging differences can exist in the absence of extreme sexual dimorphism.  

Additional data on sex- and age-specific diet in harbor seals from central California, 

coupled with fine-scale movement patterns and behavior, THg concentrations, and stable 

isotope values of prey are needed to elucidate whether foraging differences contributed to 

the differences in THg concentrations between male and female seals.

 In contrast to Hg, Se has not been as extensively studied in marine mammals and 

often is not measured in studies examining hair concentrations of trace elements in 

pinnipeds.  Selenium concentrations measured in this study ranged from bdl to 4.53 µg/g, 

and mean concentrations in seals at all locations were less than those reported for 

Weddell seals (Leptonychotes weddellii), Baikal seals (Pusa sibirica), Caspian seals 

(Pusa caspica), northern fur seals (Callorhinus ursinus), and harbor seals from Elkhorn 

Slough (Moser 1996, Ikemoto et al. 2004b, Gray et al. 2008).  The decreased 

concentrations of Se in seals at all locations and greater concentrations in seals from 

Elkhorn Slough compared with elsewhere were unexpected, especially because elevated 
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Se concentrations have been detected in surfscoters and sportfish from SFB (Ohlendorf et 

al. 1986, Greenfield et al. 2005). 

   The molar ratio of Se:Hg may be an important indicator of element status, as Se 

ameliorates the toxic effects of Hg, therefore, Se:Hg may approach 1:1 in certain tissues 

of adult animals (Koeman et al. 1973, Brookens et al. 2007).  Deviations from this 1:1 

ratio have been observed, and were attributed to several factors including: 1) Hg and Se 

only may occur in a consistent proportion when a physiologic threshold is surpassed, 

thereby stimulating Se uptake and binding, 2) adherence to a 1:1 ratio is not necessary to 

protect against Hg toxicosis, 3) alternative detoxification mechanisms exist, and 4) the 

Se:Hg ratio may be species- or age-specific (Woshner et al. 2001a, b; Brookens et al. 

2007).  Molar ratios in my study deviated from this relationship; however, because the 

majority of Hg present in hair is MeHg and hair is not a likely target tissue for 

accumulation of a Se-Hg complex, adherence to a 1:1 ratio in hair is not expected.  The 

Se:Hg molar ratios were less in seals from SFB and Tomales compared with Elkhorn 

Slough, which was expected given increased THg and decreased Se concentrations in 

seals from SFB and Tomales Bay.  The physiologic need for Se in animals from sites with 

increased Hg may be greater because Se is needed to bind to Hg and maintain normal 

selenoenzyme activities, thereby resulting in lesser Se concentrations and a lesser Se:Hg 

ratio in hair.   

 Marine mammals often accumulate concentrations of trace elements in excess of 

what is considered safe for humans and domestic animals without any apparent negative 
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effects.  Seals captured in this study appeared in relatively good health with no noticeable 

signs of illness, indicating that Hg concentrations were not great enough to induce health 

problems, that Se concentrations were sufficient to mitigate effects of Hg, or that 

symptoms were not severe enough to be detected via external examination.  Several 

threshold limits were used to assess whether seals in this study were at risk for Hg 

toxicosis, including the mean concentration in hair of polar bears with sub-clinical effects 

associated with Hg toxicosis (5.4 µg/g dry wt; Basu et al. 2009), and the lower (20 µg/g 

dry wt; Thompson et al. 1996) and upper neurological thresholds for fish-eating wildlife 

(30 µg/g dry wt; Evers et al. 2007).  Use of these threshold limits were not meant to 

imply that harbor seals were suffering from Hg toxicosis, but simply to place values in 

context in the absence of threshold limits for phocids.  Because mean THg concentrations 

in seals from all locations exceeded 5.4 µg/g, seals in central California may potentially 

be at risk for Hg toxicosis.  Seals in SFB are likely the most at risk given that 44% of 

seals had THg concentrations in hair that exceeded 20 µg/g and 12% had concentrations 

that exceeded 30 µg/g.  Although harbor seals in this study appeared in good health, the 

amount of Hg they were exposed to may be great enough to induce sub-clinical, and in 

some instances neurological effects.  Pups may be at an increased risk during gestation 

and lactation via milk, as they may represent a sink for Hg, and appear unable to 

demethylate it as efficiently as adults (van de Ven et al. 1979, Wagemann et al. 1988, 

Brookens et al. 2008).  An assessment of these risks requires further attention and should 

be evaluated in future studies.  
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 Results from this study do not support the chronic Se toxicosis hypothesis 

previously suggested by Kopec and Harvey (1995), and decreased concentrations of Se 

and a Se:Hg molar ratio indicate that seals from SFB and Tomales Bay may potentially be 

at risk for Se deficiency.  Examining Se concentrations in hair is an important first step in 

determining exposure and whether concentrations are of concern; however, future 

research should focus on measuring the activity of selenium-dependent proteins, such as 

GSH-Px, to determine the Se status of harbor seals.  This may be especially important as 

large-scale tidal restoration of salt ponds in south SFB may result in increased Hg input 

to the estuary and increased MeHg production at these sites (Davis et al. 2003).  

Increased Hg input, coupled with increased MeHg production, could result in increased 

Hg uptake by seals foraging in south SFB, thereby increasing their risk for Hg toxicosis.  

As top-level predators and a critical component of the SFB ecosystem, it is important to 

continue to monitor and understand how future changes in Hg and Se concentrations will 

affect harbor seals both in the context of Hg toxicosis and/or Se deficiency.
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Chapter II

Red-coated harbor seals (Phoca vitulina richardii) in San Francisco Bay: prevalence, 
potential causes, and health implications
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 ABSTRACT

 A proportion of harbor seals (Phoca vitulina) in San Francisco Bay (SFB) 

accumulate iron on their hair, thereby resulting in a rusty coloration to their pelage.  

Previous research indicated that selenium (Se) toxicosis may play a role in the 

development of a red pelage, therefore, the main study objective was to evaluate this 

hypothesis.  Additional objectives were to examine trends with time, whether foraging 

differences existed between red- and normal-pelaged seals, and whether there were health 

implications associated with the development of a red pelage.  Data were compiled from 

aerial and land counts to evaluate trends in the proportion of red-coated harbor seals with 

time.  Samples were collected from seals captured in SFB between 2009 and 2011 (n = 

57).  The proportion of red-coated harbor seals increased between the early 1970s and 

1980s, but was relatively stable from 1984 to 2010.  Red-coated seals had hair loss (n = 

6), shortened vibrissae (n = 5), and nose lesions (n = 6), but were of similar body 

condition and had similar concentrations of Se in hair as normal-pelaged seals.  

Differences in blood variables (cholesterol, phosphorous, MCV, and SDH), mercury 

concentrations (females), and chemical measures of feeding ecology (nitrogen and sulfur 

stable isotopes) were detected between red- and normal-pelaged seals.  Results do not 

support previous suggestions that chronic Se toxicosis predisposed seals to developing a 

red pelage and instead support the conclusion that exposure to iron in sediments due to 

increased dependence on benthic prey may be the cause.  There do not appear to be any 

serious short-term health implications associated with a red pelage. 
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INTRODUCTION

 Population censuses of harbor seals in San Francisco Bay (SFB) began in the late 

1960s (Fancher 1979, Risebrough et al. 1980), and in 1968 the first known observation of 

“rust-colored” seals was documented (Paulbitski 1971 as cited in Kopec and Harvey 

1995).  Allen et al. (1993) found that between 1979 and 1985, red-coated harbor seals 

accounted for 4 to 32% of the total number of seals counted, and suggested that the 

prevalence of red-coated harbor seals in SFB was one of the greatest world-wide.  

Between 1989 and 1992, greater than 20% of seals at the seven primary haul-out sites in 

SFB had a red pelage (Kopec and Harvey 1995).  Red pelage was observed equally 

among all sex and age classes, with the exception of pups (Allen et al. 1993, Kopec and 

Harvey 1995).  Allen et al. (1993) reported that the percentage of red-coated harbor seals 

was greatest at haul-out sites in north SFB; however, Kopec and Harvey (1995) observed 

a greater proportion of red-coated seals at haul-out sites in south SFB.  The percentage of 

red-coated harbor seals increased until the time of molt (late June to early August), with 

some harbor seals completely red by June (Kopec and Harvey 1995).

 Red-coated harbor seals have been observed in other locations and red pelage has 

been documented in several other phocids.  A lesser number of red-coated harbor seals 

have been observed at haul-out sites in nearby Tomales Bay (pers. observ.) and also at a 

haul-out site in Humboldt County (Neumann and Schmahl 1999).  Lydersen et al. (2001) 

found that bearded seals (Erignathus barbatus), and a lesser number of ringed seals 

(Phoca hispida), in Norway had a rusty coloration on their faces and foreflippers.  
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 Red pelage is not believed to be a normal color morph in harbor seals because the 

red coloration disappeared following molt, the number of red-coated seals increased until 

the time of molt, and the spatial area of the body covered by red pelage progressed 

posteriorly until the time of molt (Allen et al. 1993, Kopec and Harvey 1995).  Normal 

pelage in harbor seals ranges from a dark or light background with various dark or light 

spotting patterns.  Allen et al. (1993) suggested that the red coloration was not the result 

of diet or algal growth, and scanning-electron-microscopy (SEM) micrographs of the hair 

shaft revealed layered deposits that were not present on hair of normal-pelaged seals 

(Allen et al. 1993, Moser 1996).  Elemental analyses revealed that the red was the result 

of iron oxide precipitates on the hair shaft (Allen et al. 1993); however, another study in 

this region found similar amounts of iron on hair shafts of red-coated and normal-pelaged 

seals (Moser 1996).  Lydersen et al. (2001) found increased concentrations of iron, 

vanadium, and manganese on hair of red-coated bearded and ringed seals. Whereas all the 

above studies had small sample sizes (n # 4), it was generally agreed that one or more 

elements were responsible for the red coloration. 

The mechanism of element deposition may differ among species and/or areas and 

is not entirely understood.  Allen et al. (1993) suggested that conditions unique to SFB 

allowed for the resuspension of sediments that were then deposited on the pelage of seals 

by either flocculation or precipitation.  This suggestion was criticized by Neumann and 

Schmahl (1999) as unlikely because this would require supersaturation of the water by 

iron, which would likely result in widespread precipitation of iron oxides on haul-out 
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sites and beaches.  They suggested that the red coloration on harbor seals hauled-out at 

the Mad River in Humboldt County was the result of direct contact with sediment on the 

haul-out site that contained increased levels of iron oxide and hydroxide particles.  The 

deposition of elements on the pelage of bearded and ringed seals in Norway was believed 

to be from direct contact while feeding in soft-bottom sediments (Lydersen et al. 2001).  

Lydersen et al. (2001) suggested that while feeding, the face and flippers of seals came 

into contact with rich deposits of iron monosulfide that oxidized when exposed to the air. 

There were a greater number of red-coated bearded than ringed seals, which was 

explained by the greater dependence of bearded seals on benthic prey (Lydersen et al. 

2001).  

 Few researchers have investigated why some seals develop a red pelage and 

others do not.  Kopec and Harvey (1995) suggested that chronic selenium (Se) toxicosis 

may play a role in the development of a red pelage by causing degradation of the hair 

shaft, thereby providing a greater surface area for element deposition.  Although selenium 

toxicosis has not been documented in free-ranging marine mammals, symptoms of 

chronic Se toxicosis were similar among other species and included emaciation and 

changes to keratinized tissues (Raisbeck et al. 1993; O’Toole and Raisbeck 1995, 1997).  

Selenium toxicosis was implicated as the causative agent in the deaths of three captive 

California sea lions (Zalophus californianus); however, this diagnosis was based on 

comparisons with concentrations associated with toxicosis in livestock (cattle, sheep, and 

horses; Edwards and Whitenack 1989), which may not be valid.  Concentrations of Se in 

64



the liver and kidney of free-ranging pinnipeds were similar or greater than concentrations 

reported by Edwards and Whitenack (1989), therefore, it is unlikely that Se toxicosis was 

the causative agent in the the deaths of these captive sea lions. 

 Selenium is an essential element that is an important component of many proteins 

(Behne and Kriakopoulos 2001) and may provide a protective effect against mercury 

(Hg) toxicosis (Cuvin-Aralar and Furness 1991, Yang et al. 2008).  One of the primary 

mechanisms that Se mitigates the toxic effects of Hg (and vice versa) is through the 

formation of a non-toxic Se-Hg complex (Yoneda and Suzuki 1997, Wang et al. 2001, 

Ikemoto et al. 2004).  Previous researchers have suggested that the Se:Hg molar ratio 

may be a more appropriate measure than total concentrations of Hg when assessing 

potential toxicity (Ralston et al. 2008). The use of this ratio only may be appropriate for 

certain tissue types given that this complex does not appear to accumulate in all tissues 

(e.g., Dietz et al. 2000).  

 Assessing the elemental status of free-ranging pinnipeds is difficult because the 

range encompassing deficiency and toxicity for Se and Hg is unknown.  Therefore, 

researchers often make comparisons among regions to determine the potential risk for Se 

and/or Hg toxicosis.  Increased Se concentrations in whole blood were detected in harbor 

seals from SFB compared with seals from Monterey County, Puget Sound, and San 

Nicolas Island (Kopec and Harvey 1995).  Moser (1996) found no significant difference 

between Se concentrations in liver and hair of red- and normal-pelaged seals, but sample 

size thus power were minimal.  Some red-coated harbor seals also had shortened 
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vibrissae and noticeable hair loss around the eyes, face, throat, and body (Kopec and 

Harvey 1995).  Shortened vibrissae and hair loss were not observed in seals with normal 

pelage (Kopec and Harvey 1995), nor have they been reported in red-coated seals from 

other locations.  Despite the fact that Se toxicosis has not been documented in free-

ranging marine mammals, the increased Se concentrations and changes to keratinized 

tissues warrant investigation of the hypothesis that chronic Se toxicosis may predispose 

seals in SFB to developing a red pelage. 

 Whereas several studies have addressed the phenomenon of red-coated harbor 

seals in SFB, it remains unclear as to why some seals develop a red pelage, what the 

exact method of iron accumulation is, and whether there are significant health 

implications associated with the development of a red pelage.  The objectives of this 

study were to: 1) compile historic and current data on the prevalence of red-coated harbor 

seals in SFB, 2) describe and document changes to keratinized tissues of red-coated 

harbor seals, 3) evaluate hematology and serum chemistries of red-coated and normal-

pelaged seals from SFB, 4) definitively determine whether iron is the direct cause of the 

red pelage, and 5) evaluate the hypothesis that chronic Se toxicosis is a contributing 

factor in the development of a red pelage.  Specific hypotheses included: 1) red-coated 

harbor seals would have changes to keratinized tissues, including hair loss, shortened and 

brittle vibrissae, and greater damage to hair shafts than normal-pelaged seals, 2) 

differences in hematology between red-coated and normal-pelaged seals would exist, 

with red-coated seals showing signs of decreased immunity or immune stress, 3) red-
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coated seals would have increased concentrations of iron on their hair shafts compared 

with normal-pelaged seals, and 4) red-coated seals would have increased Se 

concentrations and/or an increased Se:Hg molar ratio in hair compared with normal-

pelaged seals, and that histologic lesions typical of selenium toxicosis (Green and Albers 

1997) would be present in areas of hair loss in red-coated seals.  

METHODS

Prevalence 

 Data on the prevalence of red-coated seals at the three main haul-out sites in SFB 

(Castro Rocks, Yerba Buena Island (YBI), and Mowry Slough; Fig. 1) were compiled 

from previous publications and reports (Fancher 1979, Risebrough 1980, Allen et al. 

1993, Kopec and Harvey 1995, Green et al. 2006) and from recent, unpublished counts 

conducted by The Marine Mammal Center and the National Parks Service (2007 to 2010; 

Castro Rocks and YBI), and myself (2009 to 2010; Mowry Slough).  The resulting 

dataset included counts conducted between 1972 and 2010.  There were occasional 

reports of red-coated seals from other haul-out sites within SFB, but these observations 

only spanned one to several years, therefore, were not included in the dataset.  Counts 

conducted for the purposes of this project were in accordance with permits (IACUC 

#2009-E, US Fish and Wildlife Service, 2009-041) and authorizations (CalTrans, US 

Coast Guard, Cargill Salt Company).  
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 Data on the number of seals hauled-out were primarily from land counts, with the 

exception of counts conducted via aerial surveys between 1979 and 1984.  During land 

counts, the total number of seals hauled-out and the number of seals with red pelage were 

determined using binoculars or a spotting scope from nearby vantage points.  Counts 

were conducted at Castro Rocks and YBI from an observation area above the haul-out 

site, whereas counts at Mowry Slough were conducted from levees bordering the slough.  

These levees had to be accessed through the Cargill Salt Company or the TriCities 

Sanitary Waste and Recycling Facility and could not be accessed during or several days 

after periods of moderate to heavy rain.  Surveys at Castro Rocks and YBI primarily were 

conducted at low tide, whereas surveys at Mowry Slough were conducted at varying tide 

levels depending upon the study and time of year.  Counts at Castro Rocks were 

conducted aperiodically (1979 to 1980, 1984, 1989 to 1992), monthly (1974 to 1975), 

bimonthly (2007 to 2010), and several times per week (1999 to 2005), whereas counts at 

YBI were conducted aperiodically (1989 to 1992), several times per week (1999 to 

2005), and bimonthly (2007 to 2010).  Because of the logistical difficulty in accessing 

Mowry Slough, counts were conducted aperiodically (1972 to 1975, 1979, 1980, 1984, 

1989 to 1992), several times per month (1999 to 2005), and bimonthly (2009 to 2010).  

  Data are presented as the proportion of red-coated seals to the total number of 

seals hauled-out.  Pups were not included in the total count for data collected between 

2007 and 2010.  When multiple surveys were conducted per year, the mean proportion 

and standard error (SE) were calculated.  Counts conducted at Mowry Slough represent a 
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minimum number of red-coated seals as the observer distance from the haul-out site is 

greater than the other two sites and seals are frequently covered in mud, which obscures 

the red coloration.  Because harbor seals molt in late June through early August, counts 

for any given year were from August to July of the following year.  For example, data 

presented for 2009 represent counts conducted in August 2009 through July 2010.  Raw 

count data from 1989 to 1992 (Kopec and Harvey 1995) and 1999 to 2005 (Green et al. 

2006) were not available, therefore, the mean for each year range was used.  Counts 

conducted between 1999 and 2005 classified Newark Slough and Mowry Slough as one 

haul-out site (termed Mowry Slough), despite the fact that these two areas typically are 

considered separate haul-out sites.  This may have resulted in an overestimation of the 

proportion of red-coated seals present as Kopec and Harvey (1995) found that a greater 

proportion of harbor seals hauled-out out at Newark Slough were red; however, it was not 

possible to separate counts from the two sites.  Counts only were included in the dataset 

if greater than five animals were present at the haul-out site, except for data collected 

between 1989 and 1992 because that information was not available (Kopec and Harvey 

1995).

Sample Collection 

 Harbor seals were captured in SFB as described in Chapter I.  Samples in addition  

to those described in Chapter I (hair, morphometrics) were collected, including vibrissae 

and vibrissae measurements, blood samples, and skin biopsies.  Individuals with a red 
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pelage were photographed, and the severity of hair loss and amount of red coloration was 

determined as percentage cover for each individual.  Location of hair loss and other 

lesions also were documented with photographs.

 

Figure 1.  Capture locations and the number of harbor seals captured in San Francisco 
Bay between 2009 and 2011.  Circles are proportional to sample size, and samples sizes 
are listed in parentheses following the haul-out site.  The number of red-coated seals 
(white) in relation to the number of normal-pelaged seals (black) is presented.  
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 Three vibrissae were measured from the left and the right side of the face from a 

pre-selected location.  Every attempt was made to measure vibrissae from the same 

location on each individual. This was not always possible because seals were alert and 

often tried to bite.  One vibrissa was collected by cutting as close to the base as possible, 

and vibrissae were stored in polyethylene bags in a -80°C freezer at Moss Landing 

Marine Laboratories (MLML).    

 Blood samples were collected from the extradural invertebral sinus with an 18 

gauge sterile needle into one 3.5 ml BD Vacutainer® tube containing a clot activator, and 

one 3 ml BD Vacutainer® tube containing an anti coagulant (K2EDTA).  Every effort was 

made to obtain one tube type for each seal captured; however, this was not always 

possible due to difficulty in locating the invertebral sinus, or because of concern about 

stress to the individual.  Blood samples were stored on ice until transported to The 

Marine Mammal Center (TMMC) in Sausalito, CA, where they were refrigerated until 

processed.  

 One 6 mm sterile biopsy punch of the dermis and epidermis was collected from 

the left side of the neck and stored in a container with 10% buffered formalin.  The neck 

was chosen as a biopsy site as this was a likely region where red pelage would occur, and 

was safer to biopsy than an area closer to the face.  An additional biopsy punch was taken 

from individuals with hair loss or other lesions at the interface (margin) of the area of 

alopecia/lesion when possible.  It was not possible to biopsy individuals with hair loss 
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around their face as this would have caused undue pain to the seal and a danger to the 

individual collecting samples.

 All statistical analyses were conducted using PASWStatistics (version 18.0, IBM, 

2010) and assumptions of parametric tests were met before analysis unless otherwise 

stated.  All results are presented using untransformed data unless otherwise stated. 

Morphometric Analyses

 Differences in body condition with coat color were analyzed with an Analysis of 

Covariance (ANCOVA).  The residuals from the regression of mass (kg) versus standard 

length (cm; SL) were used as an index of body condition (BCI), as the residuals represent 

all of the variability in mass not explained by length.  Additional individuals captured 

outside of the study period (n = 17; July 2011) were included in the body condition 

assessment to increase sample size.  Month of capture was considered as a covariate 

because body condition of adult harbor seals fluctuates throughout the year due to 

reproductive costs (Coltman et al. 1996, Greig 2002).  Males and females were analyzed 

separately because of a significant sex*coat interaction, and the BCI for males was log 

transformed to meet assumptions of equal variances.

 Differences in vibrissae length with coat color were assessed using a Welch’s one-

tailed independent samples t-test.  The mean of the two outermost vibrissae (left and right 

side) was used for each individual as these were the longest, easiest, and most 
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consistently measured vibrissae.  A Welch’s t-test was used because of unequal variances 

that could not be corrected with transformations. 

  The brittleness of vibrissae were analyzed using a custom-built device at MLML 

designed to test the force (g) required to break an individual vibrissa.  Length (mm), 

width (mm), and thickness (mm) of each vibrissa were measured using digital calipers, as 

vibrissae were of varying lengths.  The difference in strength of vibrissae with coat color 

was analyzed using an ANCOVA, with coat color as a fixed factor and height as a 

covariate.  Height of vibrissae was chosen as the only covariate because it explained a 

significant amount of variation in force, and explained more variability than the other two 

measurements (all three were strongly correlated).

 Blood Analyses

 Blood samples were analyzed for hematology and serum chemistries within 24 to 

48 hours after collection.  The only exception to this was blood from two individuals that 

was accidentally frozen before analysis, therefore, serum chemistries were conducted on 

serum that had been frozen for approximately two months.  Two seals were recaptured 

during the course of this study, one within the same year (ID# 1781/1780), and one the 

following year (ID# 1764/1754).  Blood was not collected a second time from 1781/1780, 

although blood was collected both times from 1764/1765.  To avoid pseudoreplication, 

blood collected in 2010 from 1764/1765 was excluded from the dataset because it was 

lipemic, which can affect blood parameter values (see below). 
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 Before analyzing differences in coat color, blood variables were assessed to 

determine if samples that were hemolyzed, lipemic, or clotted affected any of the blood 

values.  Hemolyzed samples have ruptured red blood cells that have leaked into the 

surrounding fluid.  The level of hemolysis varies, and is characterized by pale to cherry 

red serum.  Lipemic samples have an excess of lipids in the blood, characterized by milky  

white serum.  Hematology parameters were analyzed using a three-factor ANOVA with 

hemolyzed, lipemic, and clots as fixed factors after testing for homogeneity and 

heterozygosity.  If the assumptions were not met, a non-parametric bootstrap analysis 

using the R programming language (http://www.r-project.org; R Development Core 

Team, 2011) was used.  Ninety-five percent confidence intervals (CI) were created from 

data of seals whose blood samples were not hemolyzed, lipemic, or clotted.  Mean values 

for each parameter of hemolyzed, lipemic, and clotted samples were calculated, and if 

they fell within the 95% CI values for that parameter, were retained in the dataset.  Serum 

chemistries were analyzed using the same method, with the exception that lipemic and 

hemolyzed were the only fixed factors. 

 Blood variables of subadult and adults were analyzed with ANCOVA and 

Analysis of Variance (ANOVA).  Pups and yearlings were excluded from the analysis to 

minimize difference in blood variables with age, and because no red-coated pups were 

captured.  Fixed factors included sex and coat color, and SL and BCI were included as 

covariates as needed.  Standard length and body condition were chosen as covariates 

because age and body condition affect some blood parameters (Greig et al. 2010).  
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Season can affect certain blood variables (Kopec and Harvey 1995, Trumble et al. 2006); 

however, neither season nor date of capture were included in the analysis because the 

majority of captures in SFB occurred during winter, with only six animals caught in May 

and June.  Neutrophils (band) were not included in the analysis because of a large number 

of zeros in the dataset.  Males and females were analyzed separately for mean cell 

volume (MCV) and total iron because of a significant sex*coat color interaction.  

 Blood parameters were grouped into related dependent variables (hematology, 

protein, energy, minerals, kidney function, liver function, and other) to assess condition 

within different physiological systems (Hall et al. 2007).  As described by Hall et al. 

(2007), these groupings were not intended to be diagnostic in veterinary terms, but to 

allow for the interpretation of trends with respect to coat color.

Skin Biopsies

 Skin biopsies were analyzed for all red-coated seals and a randomly selected 

subset of biopsies from normal-pelaged seals that matched sex/age class combinations of 

red-coated seals.  Biopsy samples were prepared at the California Department of Fish and 

Game (CDFG), and sent to UC Davis to be embedded in paraffin, sectioned, and stained.  

Samples were stained for hemotoxylin and eosin, Pearl’s (iron), Fontana Masson 

(melanin), Von Kossa (calcium), and copper.  Slides were read by Dr. Melissa Miller, a 

pathologist at CDFG.  Slides were initially read without knowing sex, age, animal ID, or 

coat color.  
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Hair Analyses

 The structure of the hair shafts of red-coated seals and a randomly selected subset 

of hair shafts from normal-pelaged seals that matched sex/age class combinations of red-

coated seals was examined using a SEM (S-3400N, Hitachi).  Hair shafts were rinsed in 

MilliQ® water to remove any sand or mud present on the sample, dried, and placed on a 

SEM stub.  Because of the possibility that the structure of the hair shaft would be 

obscured by deposits (e.g., iron), hair shafts were cleaned with approximately 10 mL of 

30 mM ascorbic acid, and placed in a sonicator for one hour (Moser 1996).  Samples 

were subsequently rinsed with MilliQ® water, dried, and placed on the same stub as the 

uncleaned hair.  A mark was used to divide the stub so that it was possible to determine 

which samples had been cleaned.  Each stub was labeled with the seals ID number, and 

contained approximately five to ten hairs of each type (cleaned and uncleaned).  Stubs 

were gold-coated, and individually cleaned hair shafts were examined for signs of 

damage, including upturned cuticle edges and pitting (Wyatt et al. 1972, Weisel et al. 

2005).  

 The external composition of elements on the hair shafts was determined using X-

ray microanalysis (20 mm2 X-Max SDD, Oxford Instruments).  Hair shafts were treated 

as described above for the uncleaned hair, and three shafts from each individual were 

placed on stubs that were subsequently gold-coated.  The composition of external 

elements was determined for an approximate 100 x 100 µm square of hair, and a mean 

value was calculated for each individual seal.  Differences in the amount of sulfur, silica, 
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and aluminum with coat color were determined using a two-tailed independent samples t-

test.  Differences in the amount of iron with coat color were assessed with a one-tailed 

one sample t-test with zero as the comparison value because iron was not detected on hair 

samples from normal-pelaged seals.  Differences were not analyzed for magnesium, 

chloride, phosphorous, calcium, bromide, and copper as these elements were measured in 

only one or two animals.  The relationship between the amount of iron on hair and the 

percentage of the body covered with red pelage was assessed using linear regression. 

 Hair samples were analyzed for total mercury (THg), selenium (Se), and stable 

isotopes (nitrogen, carbon, and sulfur) as described in Chapter I.  Because there were no 

differences in hair THg and Se concentrations between seals from SFB and Tomales Bay 

(Chapter I), samples from these locations were combined.  Pups were removed from the 

dataset as they were underrepresented (n = 3) and no red-coated pups were captured.  

Differences in THg concentrations were analyzed separately for each sex because the 

assumptions of ANCOVA were not met when sexes were combined.  Coat color was 

considered a fixed factor, with SL and Se included as covariates.  An ANCOVA was used 

to determine whether Se or Se:Hg differed with coat color, with SL and THg (Se analysis 

only) included as covariates.  Differences in stable isotopes with location (north vs. south 

SFB), coat color, and sex were analyzed using ANCOVA. 
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 RESULTS

 The greatest number of red-coated seals were observed at Castro Rocks (n = 69; 

2007 to 2010), followed by YBI (n = 33; 2007 to 2010) and Mowry Slough (n = 17; 2009 

to 2010).  The greatest proportion of red-coated seals were observed at Castro Rocks, 

followed by Mowry Slough, and YBI (Fig. 2).  The mean proportion of red-coated seals 

for all years was 0.19 (SE = 0.034; Castro Rocks), 0.17 (0.03; Mowry Slough), and 0.097 

(0.02; YBI).  There was an increasing trend in the proportion of red-coated harbor seals at  

Castro Rocks between the early 1970s and 1980s, with the proportion increasing from 

approximately 0.01 in 1974 to 0.4 in 1984.  The proportion of red-coated seals at Castro 

Rocks stabilized around 0.2 from the late 1980s onward, although there was variability 

among years.  The proportion of red-coated seals at YBI was relatively constant across 

years, with the exception of 1999 to 2005 when the proportion increased to 0.2.  An 

increasing trend also was observed at Mowry Slough, although the proportion appeared 

to stabilize around 0.2 in 1984, with the exception of 1999 to 2005 when the proportion 

of red-coated seals increased above 0.3 (Fig. 2).
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Figure 2.   The proportion of red-coated harbor seals to the total number of seals present 
ashore through time (1972 to 2010) at Castro Rocks (a), Yerba Buena Island (b), and 
Mowry Slough (c).  The mean proportion, sample size, and associated standard error 
(black line) are presented when available.  
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 Fifty-seven harbor seals were captured in SFB, of which 14 individuals had red 

pelage (Fig. 1).  Additionally, 56 seals were captured in nearby Tomales Bay, of which 

one individual had red pelage.  One seal was captured in successive years and at both 

times had a red pelage.  The greatest proportion of red-coated seals in SFB were captured 

at Corkscrew Slough (0.55), followed by Mowry Slough (0.30) and Castro Rocks (0.16).  

The percentage of red pelage varied from 5 to 100%, and appeared to begin around the 

head, neck, and foreflippers.  Some red-coated seals had noticeably shortened vibrissae

(n = 6; Fig. 3) and hair loss (n = 5; Fig. 4).  Hair loss typically occurred around the face, 

although one individual had patchy hair loss over much of her body.  Red-coated seals 

(n = 6) also had lesions on their noses of varying severity not believed to be associated 

with capture (Fig. 4).

Figure 3.  Shortened (left) and normal-sized vibrissae (right) in harbor seals from San 
Francisco Bay. 
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Figure 4.  Hair loss (left) and nose lesions (right) from two red-coated seals captured in 
San Francisco Bay.  Arrows point to affected areas.

 Several morphometric measurements differed with coat color.  Whereas the body 

condition of females did not differ with coat color (F = 0.200, P = 0.656), body condition 

was greater in red-coated than normal-pelaged males (F = 8.425, P = 0.012).  Vibrissae of 

red-coated seals were shorter ( x = 6.4 cm ± 1.3 (SE), t = 2.331, P = 0.0165) than normal 

pelaged seals (9.6 cm ± 0.4), but did not require less force to break (F = 0.02, P = 0.969).   

 Hematology (n = 43) and serum chemistry variables (n = 46) were analyzed for 

adult and subadult seals from SFB, and one red-coated seal from Tomales Bay.  Blood 

variables that were affected by hemolysis included: creatine kinase, chloride, blood urea 

nitrogen (BUN), triglycerides (TRIG), red cell distribution width, mean cell hemoglobin 

concentration (MCHC), and glucose (GLU).  Blood variables that were affected by 

lipemia included: BUN, total protein, TRIG, MCHC, and globulin.  Total iron values 
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were affected by samples that were hemolyzed and lipemic.  Platelets were the only 

variable affected by clotted blood.      

 There were four blood variables that differed with coat color (Table 1).  Mean 

values of total cholesterol, phosphorous, and sorbitol dehydrogenase (SDH) were less in 

red-coated than normal-pelaged seals.  Female red-coated seals had greater MCV values 

than normal-pelaged females; however, the reverse relationship was true for males. 

Table 1.  Blood variables for adult and subadult seals from San Francisco Bay that 
differed with coat color.  Estimated marginal means ± standard error (SE), and sample 
size (n) are presented.  Values for females (F) and males (M) are presented when 
appropriate.  Only variables with P < 0.1 are shown.

Blood variable x ± SEx ± SE P value

Normal 
n = 17 (F), n = 9 (M)  

Red 
n = 8 (F), n = 2 (M)  

Hematology

MCV (fl) 118.16 ± 0.69 (F)
119.60 ± 0.98 (M)

121.27 ± 1.12 (F) 
115.52 ± 1.70 (M) 

0.027 (F)  
0.068 (M)

Energy

Total cholesterol (mg/dl) 211 ± 6.17 180 ± 9.3 0.009

Kidney function

Phosphorous (mg/dl) 5.05 ± 0.36 3.76 ± 0.56 0.060

Liver function

SDH (U/l) 41.83 ± 4.71 24.74 ± 7.44 0.061
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 External damage to the hair shaft was observed in all hair shafts, regardless of 

coat color.  The type of damage included cuticular scaling, erosion and splitting 

(longitudinal erosion), and breakage of the hair shaft (Fig. 5).  There were no apparent 

trends in damage with respect to coat color.

a

b

c

Figure 5.   Examples of damage observed in harbor seals hairs including erosion (a), 
breakage (b), and cuticular flaking (c).
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 Twelve elements were detected on harbor seal hair shafts, with carbon and  

oxygen comprising the greatest percentage weight of all detected elements.  In general, 

more elements were detected on hair shafts of red-coated seals than normal-pelaged seals 

(Fig. 6).  No differences with coat color were detected for sulfur (t = 0.631, P = 0.538), 

silica (t = -1.635, P = 0.124), or aluminum (t = -1.235, P = 0.237).  The amount of iron on 

hair shafts of red-coated seals was greater than zero (t = 2.661, P = 0.0149; Fig. 6), and 

there was a significant relationship between the amount of iron on hair shafts and the 

percentage of the body covered by a red pelage (P = 0.045, r2 = 0.460).  
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Figure 6.  Percentage weight of elements (± SE) other than carbon and oxygen detected 
on red-coated (black; n = 8) and normal-pelaged seals (gray; n = 8).  
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 Histology samples were analyzed for 28 seals and included four biopsies from 

areas of hair loss, one of which was a biopsy from a normal-pelaged seal.  A yellow-

brown refractile coating was found on the hair shafts of 11/14 biopsies from red-coated 

seals, and the severity of the coating ranged from mild to marked (Fig. 7).  This outer 

coating was not present on hair from red-coated seals that did not have a red pelage at the 

biopsy site.  All slides showed non-specific staining with respect to the Fontana Masson, 

Von Kossa, and copper stains.  The coating observed on the hair shafts of some red-

coated seals stained positive for iron (Fig. 7).  Hairs just emerging did not stain as 

strongly for iron (Fig. 7), and hairs beneath the surface of the skin also did not stain 

positive for iron.  

Figure 7.  Yellow-brown refractile coating found on the hair shaft of red-coated harbor 
seals (left), and positive Pearl’s iron staining indicated in blue on the hair of a biopsy 
from a red-pelaged seal (right).
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 There were no differences in Se concentrations (F = 0.149, P = 0.709) nor the 

molar ratio of Se:Hg (F = 2.198, P = 0.141) with coat color; however, 

differences between red-coated and normal-pelaged seals were detected for THg 

concentrations and stable isotopes.  Female red-coated seals had lesser THg 

concentrations (11.63 ± 2.0; x "g/g dry wt ± SE) than normal-pelaged females (18.27 ± 

0.86; F = 4.236, P = 0.043), although no difference with coat color was detected for male 

seals (F = 0.001, P = 0.972).  Red-coated seals had greater !15N values than normal-

pelaged seals (F = 9.006, P = 0.005), and seals in south SFB had greater !15N values than 

seals in north SFB (F = 5.930, P = 0.019; Fig. 8).  No differences in !13C values with coat 

color were detected (F = 1.563, P = 0.217; Fig. 8).  Mean !34S values were less in red-

coated seals (F = 10.935, P = 0.002) compared with normal-pelaged seals (Fig. 9). 
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Figure 8.  Mean !15N and !13C values (‰ ± SE) for red-coated (R; gray) and normal-
pelaged seals (N; black) in the north (NB; circles) and south bay (SB; diamonds).  
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DISCUSSION

 Red discoloration of the fur or feathers has been observed in a number of species, 

including several species of birds and pinnipeds (Allen et al. 1993, Lydersen et al. 2001, 

Delhey et al. 2007).  Red-coated seals first were observed in SFB in 1968, but given that 

this coincided with increased survey effort of harbor seals, it is possible that red-coated 

seals were present in the area before this time.  Although observations before the late 

1960s did not mention red-coated seals, these were not comprehensive surveys of SFB 

and were of one harbor seal haul-out site or all pinnipeds along the entire California coast 

(Bonnot 1928, Bartholomew 1949).  The number and proportion of red-coated seals in 
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SFB increased dramatically between 1972 and 1984, therefore, if red-coated seals were 

present before 1968, it likely was in decreased numbers.  There were annual fluctuations 

in the proportion of red-coated seals between 1984 and 2010; however, these were 

probably the result of differences in survey method (aerial vs. ground), the number of 

surveys per year, and differences in how seals were classified as red-coated.  This was 

apparent in counts conducted between 1999 and 2005 because the proportion of red-

coated seals at all haul-out sites increased during this time period.  Between 1999 and 

2005, seals were classified as red-coated if they had a slight tinge of red to their pelage, 

compared with recent counts where only individuals with obvious red pelage were 

classified as red-coated (D. Greig, pers. comm).  Despite annual fluctuations in the 

number of red-coated seals, SFB continues to have some of the greatest numbers and 

proportions of red-coated seals world-wide (Allen et al. 1993).

 Differences in the proportion of red-coated seals among haul out-sites have 

previously been detected (Allen et al. 1993, Kopec and Harvey 1995).  Allen et al.  

(1993) found a greater proportion of red-coated seals at haul-out sites in north SFB, but a 

later study found a greater proportion in south SFB (Kopec and Harvey 1995).  Recent 

land-based surveys indicated that the proportion at Castro Rocks was similar to the 

proportion at Mowry Slough; however, estimates of red-coated seals in south SFB likely 

were underestimated as seals often were covered in mud and the observer distance was 

much greater than for other haul-out sites.  There may be a greater proportion of red-

coated seals at less-monitored haul-out sites in south SFB given that greater than 50% of 
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seals at Corkscrew Slough were red-coated (Kopec and Harvey 1995).  The greatest 

proportion of red-coated seals in this study were captured in south SFB, supporting the 

conclusion that a greater proportion of red-coated seals occurred at haul-out sites in south 

SFB.  The lesser proportion of red-coated seals at YBI compared with other haul-out sites 

may be an important indicator of how a red pelage is acquired, as this site is closer to the 

mouth of the bay and outer coastline. 

 Although red-coated seals have been observed in other areas, the pattern of 

coloration and changes to keratinized tissues in red-coated seals from SFB are unique 

(Kopec and Harvey 1995).  Whereas the initial pattern of red coloration (face and 

foreflippers) was consistent with bearded and ringed seals from Svalbard, some seals in 

this study had red pelage covering greater than 50% of their body.  Red-coated harbor 

seals at the Mad River in northern California had red pelage over their entire body; 

however, the red was more prominent on the ventral surface and sides of the seals than on 

their back, head, and neck (Neumann and Schmahl 1999).  The presence of hair loss and 

shortened vibrissae have previously been noted in harbor seals from SFB, but have not 

been mentioned in red-coated seals from other areas (Kopec and Harvey 1995).  In this 

study, hair loss was concentrated around the face, and shortened vibrissae were observed 

in some, but not all red-coated seals.  These observations were consistent with those 

made by Kopec and Harvey (1995), although some red-coated seals in this study also had 

nose lesions of varying severity likely not associated with capture.  Hair loss, shortened 

vibrissae, and nose lesions appeared to be more common in seals with a greater 
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percentage of red pelage, and were not observed in animals that had less than 

approximately 30% of their body covered by red pelage.

 Hair loss in pinnipeds can be caused by a wide range of conditions, and by itself 

is not diagnostic of any one causative agent (Dierauf and Gulland 2001).  Additionally, 

pinnipeds either continuously or annually shed and regrow hair (molt).  Although harbor 

seals undergo an annual molt where hair is shed and replaced by new hair in a period of 

one to two months (Thompson and Rothery 1987), it is unlikely that molt was the cause 

of hair loss in red-coated seals.  Molt in SFB primarily occurs during late June through 

early August, and new hair is typically exposed when the old hair is shed (Ashwell-

Erickson et al. 1986).  Histology revealed the presence of a previously undescribed 

nematode worm (in harbor seals) in the hair follicles of the red-coated seal from Tomales 

Bay that had patchy hair loss over her entire body.  This nematode was not found in any 

of the other biopsies, and histology revealed no noticeable differences between areas of 

hair loss and normal growth nor between red-coated and normal-pelaged seals.  The lack 

of any histopathological changes could be because biopsies were not collected from areas 

where hair loss was most prominent (e.g., face), although in most cases biopsies were 

collected from areas close to the face (e.g., neck).  Results from histopathology were 

inconclusive in that they did not reveal any clear health condition responsible for the hair 

loss, and the cause may be related to the observed vibrissal changes.

 Shortened vibrissae have previously been observed in red-coated harbor seals 

from SFB.  Researchers suggested that vibrissae were more brittle, therefore, were more 
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susceptible to breaking than vibrissae of normal-pelaged seals (Kopec and Harvey 1995).  

Vibrissal breakage was observed in at least one red-coated seal in this study; however, the 

amount of force required to break an individual vibrissa did not differ with coat color.  

The force required to break each vibrissa may not have been an accurate indication of 

brittleness because breakage likely occurred towards the end of the vibrissae, and not at 

the base where force was measured in this study.  The majority of short vibrissae did not 

appear to be broken and came to a taper at the end, indicating that either vibrissae were 

breaking and then being worn, or that some other mechanism contributed to shortness, 

such as slower growth or increased loss of vibrissae.  Harbor seal vibrissae are shed 

annually and undergo periods of rapid growth followed by inactivity (Hirons et al. 2001).  

Because red-coated and normal-pelaged seals were captured at similar times throughout 

the year, it is unlikely that annual shedding of vibrissae was the cause of the shortened 

vibrissae.  Despite that data from this study did not support the hypothesis that vibrissae 

of red-coated seals were more brittle than normal-pelaged seals, atypical breakage 

remains the most plausible explanation for shortened vibrissae.  It may be that vibrissae 

were breaking, sometimes to the point where the entire vibrissa fell out, and subsequently 

regrew, which would account for the tapered appearance of shortened vibrissae.  

 Vibrissae play an important role in foraging (Denhardt et al. 2001), and harbor 

seals with shortened vibrissae may have decreased foraging efficiency.  Harbor seals were 

able to detect and follow hydrodynamic fish trails by protracting vibrissae forward and 

performing lateral head movements (Denhardt et al. 2001).  Harbor seals with 
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experimentally shortened vibrissae spent more time pursuing prey in turbid water 

conditions (Renouf 1980), indicating that vibrissae may be especially important in SFB 

where the water is relatively shallow and cloudy from sediment resuspension.  Despite 

this, red-coated seals in SFB were of similar or better body condition than normal-

pelaged seals, indicating that the lack of vibrissae did not impact foraging success.  Red-

coated males were likely in better body condition than normal-pelaged males because the 

largest male was red-coated (49 kg > than the next largest male), which influenced the 

estimation of the mean given the small sample size (n = 3).  Trumble et al. (2003) found 

that captive harbor seals maintained their supply of energy and nutrients when fed diets 

of differing prey quality.  Therefore, similar BCIs between red-coated and normal-

pelaged seals are not necessarily indicative that seals ate the same type and quality of 

prey.    

 Hematology and serum chemistries typically are used to assess the health of free-

ranging and captive pinnipeds; however, blood variables also can reflect differences in 

diet, such as nutritional intake and diving behaviors related to prey capture (Thompson et 

al. 1997, Melish et al. 2006, Trumble et al. 2006).  Trumble et al. (2006) found that 

alanine aminotransferase, aspartate aminotransferase, $-glutamyltransferase, creatine, and 

BUN:creatine differed among harbor seals fed a diet of pollock, herring, or a mix of the 

two prey types.  Another study found that cholesterol, total protein, and globulins 

increased between intake and release in captive Steller sea lions (Eumetopias jubatus) 

that participated in feeding studies.  Thompson et al. (1997) found significant differences 
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in leukocyte and erythrocyte parameters, including MCV, in free-ranging seals in relation 

to diet composition.  Mean cell volume increased during periods when seals preyed on 

more benthic gadoids (e.g., whiting, sandeels) compared with periods when the diet was 

dominated by clupeids (e.g., herring, sprat), indicating that MCV values were affected by 

diving behavior specific to certain prey types or nutritional quality of different prey 

(Thompson et al. 1997).  

 The majority of blood variables in this study did not differ between red-coated 

and normal-pelaged seals, and almost all variables fell within the 90% CI of values 

reported for subadult and adult harbor seals from SFB and Tomales Bay (Greig et al. 

2010).  Exceptions to this included magnesium for both red-coated and normal-pelaged 

seals, and total protein and globulin for red-coated seals.  The lack of differences in blood 

variables with coat color that have been associated with clinically sick pinnipeds do not 

support the hypothesis that an underlying health condition was responsible for the 

development of a red pelage (Roletto 1993).  The differences in MCV and cholesterol 

between red-coated and normal-pelaged seals, coupled with the fact that total protein and 

globulin for red-coated seals were outside the range for free-ranging seals from the same 

area, indicated that there may be differences in the nutritional quality of prey consumed 

between red-coated and normal-pelaged seals.  

 Although it has been suggested that an underlying health condition may 

predispose seals in SFB to developing a red pelage, the actual presence of a red pelage is 

not believed to be detrimental to an individuals health.  Several researchers found that the 
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red coloration was from deposition of iron oxide precipitates (Allen et al. 1993, Lydersen 

et al. 2001), although an alternative study found no difference in the amount of iron on 

the hair shaft between red-coated and normal-pelaged seals (Moser 1996).  Results from 

this study support the conclusion that external deposition of iron followed by oxidation 

was the cause of the red pelage.  Iron was not detected on hair shafts of normal-pelaged 

seals, nor on red-coated seals that were not red where the hair or biopsy sample was 

collected.  The fact that hairs below the surface did not stain positive for iron, and hairs 

just emerging stained mildly positive, supports the conclusion that deposition occurred 

externally and not internally.  The significant relationship between the amount of iron on 

the hair and the percentage of the body covered by red pelage indicate that the pattern of 

coloration may be related to the frequency of exposure to iron.

     External exposure to iron could occur through a number of mechanisms, 

including suspended sediments in the water column (Allen et al. 1993), contact with 

sediments on the haul-out site (Neumann and Schmahl 1999), or through contact with 

sediments during benthic foraging (Lydersen et al. 2001).  Neumann and Schmahl (1999) 

suggested that it was unlikely that iron from the water precipitated directly onto hair 

shafts as this would require supersaturation of the water with respect to iron, and would 

result in widespread precipitation of iron oxides on haul-out sites.  Although iron oxides 

were deposited on one haul-out site in Humboldt County, they were visible and believed 

to be from weathering of rocks from a man-made reinforcement of the river bank 

(Neumann and Schmahl 1999).  These reinforcements are not present near haul-out sites 
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in SFB, nor have iron oxide deposits on haul-out sites been observed, making contact 

with sediments on the benthos the most likely exposure mechanism.  The amount of iron 

in sediments has not been measured specifically at sites where harbor seals foraged; 

however, previous studies indicated that iron concentrations in sediment were similar 

among sites in SFB and Tomales Bay (Chapman et al. 1987, Long et al. 1990, 

Hornberger et al. 1999).  Therefore, it is unlikely that red-coated seals are more abundant 

in SFB simply because of greater iron concentrations in sediment, indicating that other 

conditions unique to SFB may be the driving factor for the development of a red pelage.  

 Research on red-coated seals primarily has focused on the cause of the red 

coloration and not why some seals develop a red pelage and others do not.  Kopec and 

Harvey (1995) hypothesized that chronic Se toxicosis predisposed seals in SFB to 

developing a red pelage because seals in this region had greater Se concentrations in 

whole blood than seals from other regions, and changes to keratinized tissues.  Chronic 

Se toxicosis affects keratinized tissues, such as hair and vibrissae (Raisbeck et al. 1993; 

O’Toole and Raisbeck 1995, 1997), which may result in external damage to hair shafts, 

thereby creating a greater surface area for iron accumulation (Kopec and Harvey 1995).  

In this study, seals from SFB had similar Se concentrations and Se:Hg molar ratios in hair 

as seals from nearby Tomales Bay, and lesser concentrations than seals from Elkhorn 

Slough (Chapter I).  Additionally, no differences in Se concentrations and Se:Hg molar 

ratio were detected with coat color, and SEM micrographs revealed that all seals had 

damage to their hair shafts, regardless of coat color. 
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 The locational differences in Se and Se:Hg molar ratio found in this study 

(Chapter I) were not in agreement with results from Kopec and Harvey (1995), which 

may be due to a number of factors, including differences in tissue type (hair vs. blood), 

and time between studies.  Elemental concentrations in blood represent dietary intake 

over a period of a week or two, whereas hair concentrations are representative of blood 

concentrations during the time of hair growth (one to two months).  Because of this, hair 

collected throughout the year always represents concentrations during the months of 

molt, whereas blood concentrations of certain elements may vary seasonally.  Kopec and 

Harvey (1995) found that Se concentrations were greater in the winter than in the 

summer; however, samples only were collected from seals in other regions in May (Puget 

Sound), June (San Nicolas Island), and September (Monterey).  In contrast, samples were 

collected from seals in SFB in August, September, December, and February, which may 

have contributed to the increased Se concentrations in whole blood in seals from SFB 

compared with these other regions.  Additionally, these studies were conducted almost 20 

years apart, and action has been taken in the last decade by the San Francisco Bay 

Regional Water Quality Board to reduce agricultural and refinery discharges of Se to the 

bay.  Therefore, even though Kopec and Harvey (1995) found increased Se concentration 

in whole blood of seals from SFB, results from this study indicate that the development 

of a red pelage is not a bioindicator of chronic Se toxicosis because red-coated harbor 

seals are still present in SFB even in the absence of increased Se concentrations.      
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 The development of a red pelage in bearded and ringed seals from Norway has 

been attributed to benthic foraging activity (Lydersen et al. 2001); however, deposition of 

iron from sediment during foraging has not previously been suggested as a reason for red-

coated harbor seals in SFB.  This may be a viable explanation given that harbor seals 

primarily forage on benthic and schooling fishes in areas close to haul-out sites (10 to 20 

km; Tollit et al. 1998, Nickel 2003, Orr et al. 2004).  Harbor seals typically are 

considered generalist, opportunistic predators, although individuals may display 

specificity for certain locations and/or prey types.  Although harbor seals in Scotland and 

Norway foraged on a variety of prey, individuals consistently returned to the same 

foraging areas (Bjørge et al. 1995, Tollit et al. 1998).  Movements of seals in SFB were 

variable; however, seals also consistently returned to one or several foraging areas 

(Nickel 2003).  The use of different foraging areas may result in differences in diet 

among seals, such as differences in prey species or prey type (i.e., schooling fishes vs. 

benthic prey).

 Seals in SFB primarily preyed on juvenile benthic and schooling fish, and diet 

differed with location (north vs. south SFB) and season (March to May vs. June to March; 

Gibble 2011).  During the non-pupping season (June to March), when a red pelage 

primarily is acquired, the diet of seals in south SFB was dominated by yellowfin goby 

(Acanthogobius flavimanus), with several other species of gobies constituting a lesser 

proportion of the diet.  In contrast, the diet of seals in north SFB primarily consisted of 

northern anchovy (Engraulis mordax), followed by plainfin midshipman (Porichthys 
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melanostictus), and yellowfin goby (Gibble 2011).  Harbor seals generally preyed on the 

most abundant species, although several species that were abundant in trawls were 

noticeably absent or found in reduced numbers in the diet of harbor seals (Torok 1994, 

Gibble 2011).  This could be the result of biases in trawl data, minimal overlap between 

fish habitat and harbor seal foraging areas, or selectivity by harbor seals for certain 

species.  Whereas the first two explanations are more likely, the fidelity of individual 

harbor seals to specific foraging and haul-out sites coupled with differences in movement 

patterns among individuals are indicative of individual preference for certain locations 

and potentially certain prey types.  Because it has been suggested that contact with iron-

rich sediments can result in a red pelage, harbor seals that have a greater dependence on 

benthic species may be more likely to develop a red pelage.  

 Stable isotope data support this hypothesis that differences in diet exist between 

red-coated and normal-pelaged seals.  Red-coated seals had significantly greater !15N and 

lesser !34S values than normal-pelaged seals; however, because both isotopes were likely 

influenced by a number of factors (Chapter I), it is impossible to determine the specific 

cause of these changes without additional data.  Excluding red-coated seals from south 

SFB, all seal groups had mean !15N values approximately 2 to 3‰ greater than mean 

!15N values of known prey items in SFB (Stewart et al. 2004), which is consistent with 

captive studies that demonstrated a !15N diet to tissue fractionation of 3‰ in harbor seal 

hair (Hobson et al. 1996).  The locational differences in !15N values found in this study 

were likely a result of dietary differences because differences in harbor seal diet between 
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north and south SFB previously have been detected (Gibble 2011); therefore, differences 

in !15N values with coat color also could be the result of diet.  Differences in !34S 

between red-coated and normal-pelaged seals were relatively small (~1.6‰) compared 

with differences between bottlenose dolphins (Tursiops truncatus) that depended on 

estuarine vs. offshore food webs (~9.4‰; Barros et al. 2010).  This indicates that 

differences in !34S values in this study may be statistically, but not biologically 

significant.  Habitat use of harbor seals in this study overlapped, whereas bottlenose 

dolphins in the Barros et al. (2010) study exhibited a distinct inshore to offshore gradient;  

therefore, the difference in !34S values between red-coated and normal-pelaged seals 

likely were relatively small because of the potential for overlap in foraging habitat.    

 Comprehensive data on the stable isotope composition of harbor seal prey items 

are lacking, although !15N and !13C values have been measured in northern anchovy and 

yellowfin goby, which were the most important prey items for seals in north (anchovy) 

and south SFB (yellowfin goby) from June to March (Gibble 2011).  The mean !15N 

value in muscle of northern anchovy collected at the Farallon Islands was 13.9 ± 0.8 (SD; 

Sydeman et al. 1997), whereas the approximate mean !15N value in muscle of yellowfin 

goby in SFB was 16 ± 1 (Stewart et al. 2004).  Because seals in south SFB depended 

more on yellowfin goby and had increased !15N values compared with seals in north 

SFB, increased !15N values may be indicative of a diet rich in yellowfin goby.

 The yellowfin goby is native to estuarine waters of Asia and is an invasive species 

in SFB.  The first two specimens were detected in SFB in 1963 (Brittan et al. 1963), and 
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by 1966 the species had spread throughout the bay (Brittan et al. 1970).  The number of 

yellowfin goby in SFB increased greatly after 1966 when they became widely established 

throughout the bay (Brittan et al. 1970).  They are the largest goby in SFB and are 

primarily benthic omnivores that feed on a variety of prey, including polychaetes and 

crustaceans (Kanou et al. 2005, Cohen and Bollens 2008).  

 The occurrence and subsequent increase of yellowfin goby in SFB in the late 

1960s, followed closely by an increase in the number and proportion of red-coated seals 

in the 1970s, may indicate that development of a red pelage is a direct result of increased 

benthic foraging, primarily on yellowfin goby.  Differences in the proportion of red-

coated seals among haul-out sites, coupled with differences in blood variables, THg 

concentrations, and stable isotope values between red-coated and normal-pelaged seals 

all support the conclusion that foraging differences exist between these two groups.  The 

greater proportion of red-coated seals in south SFB may be because benthic prey, such as 

yellowfin goby, are a more important component of the diet of seals in south SFB 

compared with seals in north SFB.  It also may be because of differences in the type of 

foraging habitat exploited by seals using north and south SFB.  It remains unclear as to 

why some red-coated seals had hair loss, shortened vibrissae, and nose lesions, and 

histopathology of skin biopsies from areas of hair loss did not provide any insight.  Given 

that blood, THg, and stable isotope data indicate that foraging differences may exist 

between red-coated and normal-pelaged seals, these symptoms may be the result of 

differences in nutritional quality of prey, such as protein content.  The concentration of 

101



symptoms to the face and neck may indicate that external forces, such as contact with the 

benthos, possibly contribute to the development of hair loss, shortened vibrissae, and 

nose lesions. 

 The development of a red pelage does not appear to affect short-term survival 

because red-coated seals were in good body condition and the majority of blood variables 

fell within ranges reported for seals from this region; however, it is possible that long-

term survival may be affected.  Data on the movements and foraging behavior (diet, 

foraging sites, and foraging tactics) of red-coated harbor seals in SFB are needed to 

determine whether the development of a red pelage is truly the result of benthic foraging, 

and whether their diet is of differing nutritional quality than normal-pelaged seals.  The 

long-term survival and reproductive success of red-coated seals also should be assessed 

to determine if the development of a red pelage affects the long-term survival or fitness of 

these individuals.  
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CONCLUSIONS

 Harbor seals play an important role in the nearshore ecosystems, both as predator 

and prey for fish and larger marine mammals.  Therefore, understanding concentrations 

and effects of toxicants (e.g., Hg, Se) and other factors potentially influencing health and 

survival of harbor seals (e.g., development of a red pelage) is important in understanding 

the health of the nearshore ecosystem.  This may be especially critical in areas, such as 

SFB, where seals are in close proximity to dense human populations, and the number of 

seals has failed to increase since the passage of the Marine Mammal Protection Act in 

1972.  

 Results from this study indicated that seals from SFB and Tomales Bay had 

increased THg and decreased Se concentrations in hair compared with seals from Elkhorn 

Slough.  It is unknown whether these concentrations were great enough to cause Hg 

toxicosis; however, concentrations in some seals exceeded concentrations or effects 

levels associated with Hg toxicosis in other species.  In contrast, mean Se concentrations 

in seals from SFB and Tomales Bay were less than concentrations measured in hair of 

other pinnipeds, and may indicate that the physiologic need for Se in animals from sites 

with increased Hg may be greater because Se is needed to bind to Hg as well as maintain 

normal selenoenzyme activities.  Future researchers should continue to investigate 

concentrations of THg and Se in seals from SFB and Tomales Bay to understand how  

future changes in Hg and Se concentrations will affect harbor seals both in the context of 

Hg toxicosis and/or Se deficiency.
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  San Francisco Bay continues to have one of the greatest prevalences of red-

coated seals world-wide, and because upwards of 20% of seals at haul-out sites in SFB 

had a red pelage, understanding this phenomenon and its effect on harbor seal health 

deserves attention.  The development of a red pelage appeared to be the result of iron 

accumulation, possibly as a result of contact with sediment during benthic foraging.  This 

did not appear to affect the short-term survival of seals, but it remains unknown if the 

development of a red pelage affects long-term survival or fitness.  Because some red-

coated seals had shortened vibrissae, understanding what predisposes a seal to developing 

a red pelage and the foraging implications this may have (e.g., diet diversity, nutritional 

quality of prey), is an important component in evaluating the health of harbor seals 

inhabiting SFB.  
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