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ABSTRACT 

PARTITION NOISE EXTRACTION USING TCAD SIMULATIONS 

by Carol Cui Lan Lin 

     As Complementary Metal Oxide Semiconductor (CMOS) technology scales down, 

partition noise may start to play a bigger role in reducing the signal-to-noise ratio (SNR) 

in sample-and-hold circuits and other capacitive sensing circuits that reset the voltage 

across a capacitor.  Previous studies on partition noise lack a reliable and accurate 

measurement method to quantify partition noise.  In our study, we have developed a 

method using Technology Computer Aided Design (TCAD) simulations to estimate 

partition noise.  Through simulation, we determined the transistor dimensions and sense 

capacitance required to measure partition noise.  Furthermore, we designed a test circuit 

based on our simulation results with the flexibility to study partition noise.  The test 

circuit has a buffer that allows us to measure partition noise without interference from 

test measurement equipments.  Finally, we presented a method to measure and extract 

partition noise using our test circuit.   
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CHAPTER ONE: INTRODUCTION 

 

1.1 Statement of the Problem 

     One of the major obstacles of designing analog and mixed-signals circuits is in 

maintaining signal integrity by reducing noise.  Noise in analog and mixed-signal circuits 

can degrade signals and cause issues in aspects such as accuracy and performance.  

Consumer electronics such as digital cameras and personal music devices use mixed 

signal circuits to convert analog signals such as light and sound into digital signals as 

bits.  Any type of noise that distorts the signal will limit the performances of these 

devices.  For example, noise introduced to a signal in an active pixel sensor will reduce 

the signal to noise ratio (SNR).  These problems are more apparent now as technology 

scales down.  As we scale down the technology, we must lower the power supply level, 

which in turn reduces the dynamic range of the signal stored and results in a lower SNR. 

     In particular, reset noise is a major problem in modern analog and mixed signal 

circuits.  For example, sample-and-hold circuits use a transistor as a switch to set a 

voltage across a capacitor.  Therefore, reducing reset noise directly affects these types of 

circuits.  Specific circuits that are especially limited by reset noise are sample-and-hold 

circuits, CMOS active pixel sensors (APS), switch capacitor circuits, and analog to 

digital converters (ADC), to name a few, require setting a signal of a capacitor.  Ideally, 

when a capacitor (charge storage device) is reset to a specific voltage, the voltage across 

the capacitor should be the same each time.  However, because of the random distribution 

of charge under the reset transistor gate, that is not the case.  Instead, it causes random 

variation of the voltage across the capacitor.  For circuits such as APS, which is found 
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commonly in digital cameras, variation in the charge transferred to the sense node causes 

fixed pattern noise, which translates to poor picture quality output.   

 

1.2 Objectives 

     In this work, we studied partition noise of a reset transistor.  Due to the nature of 

partition noise’s small quantity, it is very difficult to distinguish partition noise from 

other noise sources.  Therefore, we attempted to measure partition noise by designing a 

circuit to amplify the partition noise such that it is a measurable quantity through 

technology computer aided design (TCAD) simulations.  We designed a circuit and a 

method to extract partition noise.  

 

1.3 Research Question 

     Partition noise is relatively small compared to the Johnson noise theory of modeling 

reset noise of a series RC circuit.  What are the design and test setup requirements to 

study and extract partition noise in a short channel N-channel Metal Oxide 

Semiconductor (NMOS)? 

 

1.4 Research Significance 

     In order to reduce reset noise, we tried to reduce all aspects of reset noise, that is, 

Johnson thermal noise and partition noise.  In general, the only way to reduce reset noise 

is by increasing the capacitance.  However, that is not always an option in technologies 

such as active pixel sensors where signal to noise ratio is crucial.  In this study, we 
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developed the design requirements to amplify partition noise so that it is a measurable 

quantity to characterize it further. 

 

1.5 Relevant Definitions/Glossary 

Some definitions of terms used in the paper include: 

Charge injection:  Charge pump from inversion channel to the source or drain as the 

transistor changes from an on-state (i.e., saturation or linear operating region) to the off-

state (i.e., sub-threshold operation region).  Charge injection is the resulting voltage 

difference between the desired reset-voltage to the final voltage across the capacitor to be 

charged. 

Fall-time:  The time it takes the transistor gate to switch from on-state to the transistor’s 

threshold voltage. 

Partition noise:  The variation in charge injection across the sense capacitor upon reset. 

Reset noise:  The variation in charge across a capacitor from successive charge-up 

through a non-ideal switch such as a transistor. 

Signal to noise ratio (SNR):  It is the ratio of signal power to total noise power.  It is 

expressed in decibels. 

Thermal noise:  Current fluctuation from thermal agitation in a resistive path. 

 

1.6 Methodology 

     In this study, we used TCAD simulations to estimate the number of residual electrons 

in the reset transistor channel when transitioning to sub-threshold operation.  Based on 

previous partition noise models, we can estimate the partition noise from the residual 
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electrons.  We simulated a range of transistor lengths and capacitances to determine the 

length and to sense the capacitance required to generate a measurable amount of partition 

noise.  A second stage source follower is used to isolate the sense capacitance from any 

load from measurement instruments. 

 

1.7 Scope/Limitations 

     To simplify the problem at hand, our simulations on TCAD assumed a noiseless 

system-ideal transistor and voltage source.  Our transient simulation of the transistor from 

the on-state to the off-state assumed a quasi-static operation.  Using a typical 0.18um 

process, the simulation results serve as a rough estimate of the residual charge under the 

channel at the verge of operating at sub-threshold.   

     In our partition noise calculations, we assumed the inversion channel is uniform 

before operating below sub-threshold region.  When the transistor is operated in the linear 

region, the voltage across the drain and source should be zero, given that enough time has 

passed by to charge up the sense capacitance to the same voltage as the drain.  The 

channel profile is uniform until the gate voltage is below threshold voltage.  Therefore, 

we can safely assume a uniform channel profile in our calculation. 

  

1.8 Overview of Remaining Chapters 

     In the following chapters, we will discuss previous studies on partition noise, the 

simulation environment, design architecture, and results.  In Chapter Two, we will 

discuss the relationship of partition noise to reset noise and the derivation of partition 

noise.  In Chapter Three, we will describe our methodology, simulation environment and, 
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circuit design.  In Chapter Four, we will discuss in detail the design of our partition noise 

test circuit.  In Chapter Five, we will discuss our findings and results.  In Chapter Six, we 

provided a method of measuring and extracting partition noise from the partition noise 

test circuit.  In Chapter Seven, we will discuss our conclusions and future work. 
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CHAPTER TWO: OVERVIEW OF PARTITION NOISE 

 

2.1 Introduction 

     In this section, we discuss reset noise derivation based on Nyquist Theory of Johnson 

Noise and the derivation of partition noise.  We present the most recent studies on 

partitioning noise, and reset noise reduction techniques.  Finally, we will summarize 

partition noise derivation using basic statistics. 

 

2.2 Overview of Noise 

     An extensive amount of research on reducing reset noise exists.  Most literature on 

reset noise characterizes the dependence on capacitance and focuses on circuit design 

solutions that use negative feedback to reduce reset noise such as capacitive control, 

bandwidth control, and charge control method [1].  Correlated double sampling is another 

technique used to reduce reset noise with an added improvement of reducing 1/f noise 

and charge injection error [2].  However, the study on Charged Coupled Devices (CCD) 

reset noise by Carnes and Kosonoscky [3] shows that reset noise also depend on the reset 

transistor’s channel length that was later proven by Teranishi and Mutoh [4].  This aspect 

of reset noise is known as partition noise. 

     Traditionally, reset noise is derived using Johnson Noise Theory that attributes to a 

thermal noise source.  The reset noise in a series resistor and capacitor (RC) circuit is due 

to the thermal noise from the resistor.  By treating the resistor and capacitor as impedance 

as shown in Figure 1, the RC circuit looks similar to a resistive divider.  Equations 1 to 5 

show the derivation for reset noise of a RC circuit.  
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Figure 1-Capacitive reset circuit. 

 

    (1)

 

     (2)

 

Since thermal noise is a white noise, the noise equivalent bandwidth (NEB) is  

        (3)
 

So that the spectral density root mean square can be re-written as 
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 , 
 (4)

 

       (5)
 

The resulting reset noise is a function of capacitance [5].  When the reset circuit 

MOSFET is used as an on-off switch, the inversion channel acts as the resistor in a series 

RC circuit.  That means the Johnson Noise Theory Derivation of Reset Noise does not 

take into account the transistor size in its calculation.  However, empirical data by 

Kosonoscky [4] shows the reset noise increases with transistor length, and the term 

partition noise was coined to represent this unknown noise source. 

     An explanation of the transistor length affecting reset noise was not given until 

Nobukazu Teranishi and Nobuhiko Mutoh [6] performed a study on charge-coupled 

detector (CCD) reset noise.  In their study, they discovered another noise source on top of 

the reset noise due to thermal noise of the resistive inversion channel.  This noise source 

is from the variation in charge injection as the transistor changes from the on-state to the 

off-state, specifically, from the linear region to sub-threshold, and partition noise is the 

variation in charge injection.  Their study provided a derivation of partition noise by 

modeling the charge injection as a binomial distribution with a uniform inversion channel 

charge profile.  In doing so, the resulting partition noise is a function of channel length, 

and the total reset noise is the sum of both the reset noise derived from the Johnson Noise 

Theory and the partition noise.   

     Since Teranishi and Mutoh’s study, only one other study on partition noise has 

surfaced.  The study by Lai et al. [6] found that the transition rate of the MOSFET’s 
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switch from on to off state also affects partition noise.  At a faster transition rate, the 

residual charger in the inversion channel is larger than that of a slower transition rate 

because of the charge profile.  Teranishi and Mutoh [4] used a uniform and a sinusoidal 

charge profile to calculate the expected residual charge.  Lai showed that by accurately 

modeling the channel charge profile, we would have a more accurate residual charge.  

With Teranishi and Mutoh’s derivation of partition noise, they showed the expected 

partition noise is within 10% of the measured values.   

     In the following sub-section, we will explore the derivation of partition noise theory. 

   

2.3 Partitioning Noise 

     Partition noise is caused by the variation in charge distribution from the inversion 

channel when a transistor is used as a switch to charge up a capacitor.  The way the 

charge distributes depends on the electron transport mechanism, and the two mechanisms 

of carrier transport are drift and diffusion.  When the transistor turns off and the gate 

voltage is above the threshold voltage, carrier movement is mainly caused by self-

induced drift.  Below the threshold voltage, diffusion is the dominant carrier transport 

mechanism.   

     To illustrate, Figure 2 shows how the channel profile changes as the reset transistor 

changes from the on-state to off-state.  The resulting charge will either settle to the 

source, drain, or recombine with the substrate.  To simplify the model, we neglected the 

channel charge recombination with substrate in our study.  This is a valid assumption 
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when the fall-time is much slower than the carrier transit time [7].  With this assumption, 

we used probability theory to derive the expected partition noise. 

 

 

 

Figure 2-Channel profile changes as the reset transistor changes from on-state to off-state. 

 

From the probability theory, carrier distribution can be modeled as a binomial process in 

which the event of a carrier settling to the capacitor has probability  

       (6) 

 and settling to the drain has probability  
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      (7) 

then the event of carrier distribution is a binomial random variable.  Partition noise can be 

modeled as the variance of the binomial random variable, x, the event of carrier 

distribution.  The amount of charge transferred to the capacitor, then, is the product of the 

probability of charge moving to the capacitor, the probability of not moving to the 

capacitor, and the total number of carriers in the channel when dominant mechanism for 

electron transport switches from drift to diffusion.  Since the number of carriers can be 

obtained by integrating the carrier profile in the channel over length of the channel, 

partition noise is proportional to the channel length.  The partition noise voltage can be 

represented by Equation 8 

    (8) 

where W is width, L is length, n(x) is the charge profile of one unit area, psource(x) is the 

probability of charge moving to the capacitor, and pdrain(x) is the probability of charge 

moving to the source [8].  psource(x) is a function of the electron’s distance from the 

capacitor.  Since the total probability should equal to 1, pdrain(x) is the difference of 1- 

psource(x).   

     Assuming that the channel is uniform, and diffusion is the only mechanism that 

contributes to partition noise, partition noise can be expressed as a function of the 

transistor dimensions and the initial charge density, n0 [8] 

       (9) 
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is our partition noise voltage, while W and L are the width and length of the 

transistor.  The accuracy of this model depends on a realistic charge profile, and hence a 

better estimate of the total charge in the inversion layer.   

     Modeling partition noise as a binomial distribution has been shown to match empirical 

data.  The accuracy of this model depends on the initial calculation of channel charge.  

The more accurate model of the inversion channel profile, the more accurate the model is 

in determining partition noise.   

     Previous studies have also shown that partition noise is sensitive to the operating 

frequency and transistor size.  Furthermore, operating at higher frequencies and larger 

transistor lengths have shown to increase partition noise.  This can be explained by 

diffusion as the dominant mechanism for charge movement in sub-threshold operation.  

Diffusion is gradient-based, so that the ratio of capacitance on the source and drain node 

will affect psource(x) and pdrain(x) as well.  In addition, the initial residual inversion channel 

charge will affect the resulting partition noise added to the sense capacitor.  Hence, for 

faster transition rate from linear to sub-threshold operation, the residual inversion channel 

charge is larger, and thus, a larger partition noise. 

 

2.4 Summary 

     In this section, we have shown that there are two contributing noise sources to reset 

noise: thermal noise from the inversion channel and partition noise from residual 

inversion channel charge when the reset transistor is operated in sub-threshold.  A 

majority of reset noise is due to thermal noise.  Partition noise is minuscule compared to 
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the thermal noise component of reset noise, but it takes into account the reset transistor 

length’s effects on reset noise.   
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CHAPTER THREE: SIMULATION 

 

3.1      Introduction 

     In this section, we provide details on our TCAD simulations.  Our simulations of the 

active reset circuit in Figure 2 will determine both the size of the capacitor and the 

transistor.  Our simulations provide an estimate on the number of electrons in the 

inversion channel for different transistor lengths.  Simulation results are used to design 

the reset transistor and sense capacitor size and test setup requirements.   

     Based on previous studies in [4][6], a linear increase in residual electrons in the 

inversion channel is expected with increasing transistor length while the width is held 

constant.  In general, we can assume that the channel is uniform when the MOSFET is 

operating in the linear region.  Thus, scaling the transistor length is the same as scaling 

the gate area when the width stays the same.  Based on [6], we can also expect partition 

noise to scale linearly with transistor length.  We neglect varying the transistor width to 

maintain the same overlap capacitance between gate to source and drain.   

     Although TCAD can simulate noise, it is limited to flicker noise, shot noise, thermal 

noise, and reset noise.  These noise sources have been studied in-depth and well modeled 

in most circuit simulators.  However, partition noise has yet to be significant source of 

noise, and no known circuit simulators that have incorporated its affect.  Our TCAD 

simulations assume all voltage sources are ideal and noiseless to simplify results, which 

are only used as an approximation. 
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3.2   Simulation Setup 

     Simulation is performed on Synopsis TCAD.  A NMOS is designed with a typical 

0.18 !m process.  From the TCAD device simulator, we can generate the current and 

voltage characteristics that will be used to extract the transistor’s threshold voltage and 

the total number of charge in the channel when the device is operating at the threshold 

voltage.  Our goal is to extract the total channel charge that will contribute to partition 

noise.   

 

3.3   MOSFET Fabrication Process 

     In the process of fabricating our NMOS with a threshold voltage of 550 mV, we used 

a typical 0.18 !m CMOS process flow.  We will begin with the formation of the P-well, 

followed by the gate oxide and the poly gate. 

     First, we define the p-well for an N-channel MOSFET by doping the silicon bulk with 

boron at 1016/cm3 concentration.  Next, a 50 Å of silicon oxide (SiOx2) layer is deposited 

on top of the bulk through thermal oxidation at 1000°C for 90 minutes.  Orientation is 

<100>.  The poly gate is deposited with a thickness of 210 nm.  A 70 Å of poly oxidation 

is deposited for 8 minutes at 900°C to smooth out the poly gate surface.  Then, a 1014 

dose of arsenic is implanted in the source drain at 15 keV and annealed at 1000°C as 

Lightly Doped Drain (LDD).  The Shallow Trench Isolation (STI) is created with 400 Å 

of Nitride and etched.  The Source and Drain are created with 1015 dose of Arsenic at 25 

keV.  This is followed by a 10 second anneal at 1000°C follows.  Finally, 30 nm of 

Aluminum is deposited for the contacts.   
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3.4 Extract NMOS Threshold Voltage and Channel Charge Density 

     For our purposes, we must first characterize the voltage and current characteristics of 

our NMOS.  To do so, we extracted the threshold voltage that will allow us to estimate 

the contribution of electrons to partition noise.  The threshold voltage of the MOSFET is 

extracted by setting the source to drain voltage to 250 mV.  The gate is swept from 0 V to 

3 V, and the drain to source current is measured.  Using a linear extrapolation from the Id-

VGS curve to extract the threshold voltage result in a threshold voltage of 587 mV [9].  A 

further analysis of the threshold voltage with body effect uses the charge injection 

voltage results to figure out the correct bias on the source while the drain is held at 1 V.  

The gate is swept from 0 V to 3 V and the drain current is measured.  The resulting 

threshold voltages will be discussed in Chapter Five.   

     The electron density in the channel is integrated as the gate of the reset transistor is 

ramped down from 3.0 V to 0 V.  The total electron density will be integrated from the 

source to drain.  We wanted to integrate the total electron density when the gate is at the 

threshold voltage.  In our case, we used the threshold voltage extracted with body effect.  

Please see appendix for process and simulation files. 

 

3.5     Summary 

     Partition noise, unlike other noise sources, depends on the initial count of electron 

charge in the inversion channel when the gate voltage is the same as the threshold 

voltage.  Our simulations on Synopsis TCAD have extracted the threshold voltage and 

integrated the total channel charge when the reset transistor is operated at the threshold 
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voltage.  This allowed us to calculate the expected partition noise on the sense capacitor 

for different transistor lengths.  With this information, we are able to design the partition 

noise test circuit and the correct test setup required to measure partition noise.   
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CHAPTER FOUR: RESEARCH DESIGN 

 

4.1      Introduction 

     In this section, we discuss the design architecture required to amplify partition noise 

such that it is large enough for us to measure.  Our design will focus on the reset 

transistor size, sense capacitance, and the test circuit as a whole.  The design needs to be 

flexible enough for us to vary the way we test the circuitry.  A source follower is added at 

the output stage to drive a larger load from the test setup.  A combination of transistor 

size and sense capacitors are used to extract partition noise from total reset noise.   

     In the following sub-sections, we will go through the need for each design elements; 

this includes the capacitive reset circuit, the source follower, and the sense capacitor.  

The design will directly affects how much partition noise will be generated, and the test 

setup required to measure partition noise accurately.  

 

4.2      Capacitive Reset Circuit 

     A typical capacitive reset circuit consists of a resistor and a capacitor as shown in 

Figure 1.  The purpose of a reset circuit is to set the voltage across the capacitor.  Based 

on the Nyquist Theory of Johnson Noise [1], thermal noise from the resistor is stored in 

the capacitor as reset noise.  

     Active reset circuits use a transistor as a switch as shown in Figure 3.  The transistor 

acts as a switch between the voltage source and the capacitor to set the capacitor voltage.  
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The resistance in the transistor inversion channel contributes thermal noise to the sense 

capacitor.  

 

 

 

Figure 3-Capacitive reset circuit with transistor as switch. 

 

     We have developed a test circuit to study active reset circuits such as the one in Figure 

3.  Figures 4 and 5 are the schematic and layout diagram of the capacitive reset circuit 

that we developed to study partition noise.  Designed with three reset circuits, each of the 

reset circuits is modified to add more flexibility.  The reset circuits on the left and right 

are used to reset the source and drain voltage of the reset circuit of interest located at the 
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center of the circuit, M8.  The left and right reset circuits also allow us to isolate the 

source and drain from the input.  Various permutations of our test circuit with different 

transistor lengths and sense capacitances were designed and listed in Table 1.  Our test-

circuits share common supply voltages- VDD, VRST1, and VRST2-, reset signals-RST1, 

RST2, and INPUT-, and a DC bias voltage for the source follower-VBIAS. 

 

 

Figure 4-Schematic of partition noise test circuit. 
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Figure 5-Layout of test circuit we designed.  It has a 1 fF sense capacitor connected to the 
source and drain of the transistor Q1 from Figure 3. 
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Table 1-Partition noise test circuit permutations listed with gate length of 
transistor Q1 from Figure 3 and sense capacitances values. 
Test type cell name Pin function pin # 

  Psub 1 
  RST1 2 
  VRST1 3 
  VRST2 4 
  RST2 5 
  VDD 6 
  INPUT 7 

 OUTA1 8 L=0.18 µm, C1=1 fF, C2=0.5 fF 
 OUTA2 9 
 OUTB1 10 L=0.4 µm, C1=1 fF, C2=0.5 fF 
 OUTB2 11 
 OUTC1 12 L=0.8 µm, C1=1 fF, C2=0.5 fF 
 OUTC2 13 

L=1.6 µm, C1=1 fF, C2=0.5 fF  OUTD2 14 
   15 
L=1.6 µm, C1=1 fF, C2=0.5 fF  OUTD1 16 

 OUTE1 17 L=1.6 µm, C1=0.5 fF, C2=0.5 fF 
 OUTE2 18 
 OUTF1 19 L=1.6 µm, C1=2 fF, C2=0.5 fF 
 OUTF2 20 
 OUTG1 21 L=1.6 µm, C1=4 fF, C2=0.5 fF 
 OUTG2 22 

  VBIAS 23 
L=3.2 µm, C1=1 fF, C2=2 fF  OUTH2 24 

 OUTJ1 25 L=3.2 µm, C1=1 fF, C2=0.5 fF 
 OUTJ2 26 
 OUTK1 27 L=3.2 µm, C1=1 fF, C2=1 fF 
 OUTK2 28 
 OUTL1 29 L=3.2 µm, C1=1 fF, C2=4 fF 
 OUTL2 30 
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     In addition, the sense capacitors are connected to a source follower with active load.  

The source follower serves to isolate the sense capacitance from the load.  Without the 

source follower, test equipment such as scope probes will add more capacitance to the 

sense capacitance nodes.  The source follower gain is designed to be as close to one as 

possible.  The load from test equipments such as scope probes limits the source follower 

bandwidth.   

     Our design has taken account of parasitic capacitance, test requirements, and partition 

noise expected.  This ensures our circuit is testable and partition noise is large enough to 

be measured. 

   

4.3 Sense Capacitor 

     One of our main concerns in designing this test structure was to maintain a relatively 

small area.  For this reason, we have used metal-insulator-metal (MIM) capacitor to 

reduce the size of our test circuit.  MIM capacitors are constructed with a thin insulation 

so that the distance of the dielectric is small.  The outcome is a larger capacitor in a small 

device area.   

     For our purposes, we chose capacitor sizes 0.5 fF, 1 fF, 2 fF, and 4 fF.  The capacitors 

have a 1 to 2 ratio for symmetry reasons.  As a result, we designed a 1 µF capacitor to 

construct the different capacitances.  Two 1 µF capacitors are connected in parallel to 

make the 2 fF capacitor, and two 1 µF capacitors are connected in series to make the 0.5 

µF capacitor.  This will ensure that even with process variation, the three capacitors have 

the ratios 1 to 2, and 1 to 4.   
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     In our layout of the sense capacitor, we have made the capacitor in the shape of a 

hexagon shown in Figure 6.  The advantage of a hexagonal capacitor versus a square 

capacitor is a smaller capacitance.  Our process limits the shortest distance from via to 

planar edge, so we removed the corners of the square to meet the criteria [6].  The 

resulting capacitor is an equiangular capacitor to combat process variation and the 

capacitance can be computed using Equation 10. 

    (10) 
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Figure 6-Diagram of the hexagonal capacitor. 
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4.3      Summary 

     Based on our simulations, we chose five reset transistor lengths to study.  Each reset 

transistor design maintains the same parasitic capacitance and width.  This allowed us to 

extract partition noise from total reset noise through varying only the transistor length.  

We assumed no process variation to simplify the results of our study.  Furthermore, our 

capacitor sizes amplified the carrier fluctuation but maintained a manageable charge 

injection from the reset transistor.   
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CHAPTER FIVE: RESULTS 

 

5.1      Introduction 

     In this chapter, we examine the results from TCAD simulation.  These results will 

determine how to design our test circuit and the test equipment required to measure 

partition noise. 

 

5.2      TCAD Simulation Results 

     We have simulated three reset transistor lengths to help determine the amount of 

partition noise each reset transistor will generate.  Our sense capacitors are 0.5 fF and 1 

fF, and we chose 0.4 µm, 0.7 µm, and 1 µm length transistors for our reset circuit.  We 

applied 1V at the drain.  The source voltage depends on the results from the charge 

injection shown in Figures 7 and 8 for 1 fF and 0.5 fF sense capacitors, respectively.  The 

gate is swept from 0 V to 3.0 V to extract the threshold voltage.  
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Figure 7-The drain is set to 1 V while the gate voltage is swept from 3 V to -0.2 V.  This 
graph shows the charge injection into the source and sense capacitor node.  The voltage 
on the source when Vgate=0 V is used to extract the threshold voltage in simulations.  

This is simulated with a 1 fF sense capacitor. 
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Figure 8-The drain is set to 1 V while the gate voltage is swept from 3 V to -0.2 V.  This 
graph shows the charge injection into the source and sense capacitor node.  The source 

voltage at Vgate=0 V is used to extract the threshold voltage in simulations.  This is 
simulated with a 0.5 fF sense capacitor. 
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     To extract the threshold voltage, we decided to use the ELR method of extrapolating 

the threshold voltage.  That is, we used the linear portion of the drain current, Id, to gate 

to source voltage, VGS, to extrapolate down to x-intercept [9].  The x-intercept is our 

threshold voltage, which in turn is the gate voltage, VG.  Our simulation results are listed 

in Tables 2 and 3 for a 1 fF and 0.5 fF sense capacitors, respectively.      

Table 2-These are the corresponding threshold voltage for 0.4 µm, 0.7 µm, and 1 
µm length transistors with a 1 fF sense capacitor. 

Transistor Length 

[µm] 
Threshold Voltage 

[V] 

0.4 1.578 

0.7 1.557 

1.0 1.532 

 

 

Table 3-These are the corresponding threshold voltage for 0.4 µm, 0.7 µm, and 1 
µm length transistors with a 0.5 fF sense capacitor. 

Transistor Length 

[µm] 
Threshold Voltage 

[V] 

0.4 1.485 

0.7 1.524 

1.0 1.563 

 

 

     To extract the number of residual electron in the channel, the drain is biased at 1 V 

and the gate is biased at 3 V.  The source is at 1 V after all signals are settled.  We swept 

the gate from 3 V to 0 V to perform a transient analysis and integrate the electron density 

in the inversion channel at the same time.  Our TCAD simulation on the total residual 

channel charge is shown in Figures 9 and 10.  Figure 9 shows the simulation result when 

the sense capacitance is 1 fF.  With a 1 fF sense capacitance, the partition noise is l.85 !V 
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for a 0.4 !m length and width transistor.  This means that measuring down to 1.85 !V of 

resolution would require at least a 16 bit resolution in a 50 mV range oscilloscope.  

Figure 10 are results from a 0.5 fF capacitor showing that the partition noise for the same 

transistor size is 3.6 !V.  Most oscilloscopes have resolutions of 8, 12, or 16 bits, as well 

as a combination of the three sometimes.  So, even though the partition noise has almost 

doubled, we still need 16 bits of resolution because 12 bits have a least significant bit 

(LSB) value of 12 !V.  

     Using the channel charge density and threshold voltage results from our TCAD 

simulations, we were able to pinpoint the charge density that will contribute to partition 

noise.  Tables 4 and 5 show the expected partition noise for 0.4 µm to 1 µm transistor 

lengths with 0.4 !m transistor width.  The results in Table 4 are for a 1 fF sense 

capacitor, whereas Table 5 results are from a 0.5 fF sense capacitor.  
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Figure 9-This is the resulting electron density in the inversion channel to gate voltage for 
a 0.4 µm width transistor and 1 fF sense capacitor. 

 

Table 4-Table of transistor length to expected partition noise voltage with 1 fF sense 
capacitor.  N is the expected electron density per square micron in the channel when the 

transistor is operating at the edge of sub-threshold,  is the carrier fluctuation across 

Cs, and  is the expected partition noise voltage. 

Length N   

1.0 !m 929 154 3.96 !V 

0.7 !m 613 102 2.62 !V 

0.4 !m 433 72 1.85 !V 
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Figure 10-This is the resulting electron density in the inversion channel to gate voltage 
for a 0.4 !m width transistor and 0.5 fF sense capacitor. 

 

 

Table 5-Table of transistor length to expected partition noise voltage with 0.5 fF sense 
capacitor.  N is the expected electron density per square micron in the channel when the 

transistor is operating at the edge of sub-threshold,  is the carrier fluctuation across 

Cs, and  is the expected partition noise voltage. 

Length N   

1.0 !m 1178 196 20.1 !V 

0.7 !m 482 80 8.23 !V 

0.4 !m 185 31 3.16 !V 
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     Our simulation results show that the partition noise is less than 2 !V with a 3 ns fall-

time.  This means that in order to have an accurate measurement of partition noise, we 

would need to add a third stage that will gain up our signal of interest. 

     We can further increase the transistor lengths in order to increase partition noise 

generated and use a larger sense capacitor to avoid issues with charge injection.  Another 

option is to further reduce the sense capacitance to amplify the noise signal.  However, 

the second option will also increase the reset noise due to thermal noise.  As previously 

suggested, the use of an external high gain amplifier in combination with option two will 

also reduce measurement error. 

 

5.3 Summary 

     Our TCAD simulations have extracted the threshold voltage and residual channel 

charge that contribute to partition noise.  The results showed that partition noise is a 

relatively small noise source, and it requires a low noise and high-resolution test setup in 

order for it to be accurately measured.   
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CHAPTER SIX: IMPLEMENTATION 

 

6.1 Introduction 

     To measure partition noise, we must also take into account other noise sources such as 

reset noise, sense capacitance, and source follower gain and noise.  In this section, we 

will go through the test setup and requirements to measure and extract partition noise.  

We will take a top-down approach in our test setup.  First, we explain how to measure 

partition noise, source follower noise, and then source follower gain.  Then, the 

mathematical relationship between the measured output noises to partition noise is 

provided below. 

 

6.2 Partition Noise vs. Transistor Length  

     Based on the theory of partition noise, the only way to quantify partition noise would 

be to have a reference point where the transistor length is zero.  Even though that is not 

possible, we can extrapolate down to zero length.  We must measure the reset noise due 

to both thermal noises from the inversion channel and partition noise for various reset 

transistor lengths.   

     We will now cover bias conditions for our test circuit.  For signal references, please 

refer to Figure 4.  The sense capacitors C1 and C2 are reset to 1.5 V minus charge 

injection.  While C1 is held at 1.5 V, RST2 turns off leaving C2 floating, while Q1 gate is 

first ramped from 0 V to 3 V and then back down to 0 V with an approximate fall-time of 

3.75 ns.  A timing diagram with bias conditions is shown in Figure 11.  The noise voltage 
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on C2 is our partition noise plus reset noise.  So, to track partition noise, the length of Q1 

will be varied with all else constant.  However, the noise voltage across C2 is measured at 

the output of the source follower, OUT2.  As a result, we must take into account the 

source follower noise and gain.   

 

      (11)
 

 and  are the source follower noise and gain.   is the noise measured at 

the output of the source follower.   is the total reset noise on across C2 and it has 

taken the source follower gain and noise into account.  Since partition noise cannot be 

measured directly because it is lumped with reset noise, we can extract the increase in 

partition noise contributed from a transistor with length L1 to L2, where L2 is greater than 

L1.  The increase in partition noise with transistor length, , is the difference 

in reset noise,  with the change in transistor length. 

 

     (12) 

We must measure the reset noise of several reset circuits with the same sense capacitance 

for different transistor lengths, and extrapolate reset noise down to L=0 to identify the 

reset noise contributed from thermal noise and partition noise.  
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Figure 11-Timing and bias condition diagram.  The cycle time is 20 ms to make sure all 
signals have settled. 

 

6.3 Source Follower Gain 

     The source follower gain is very important in that it attenuates the signal across C2.  

To measure the gain of the source, VDD and Vbias are biased at 3.3 V and 200 mV, while 

RST2 is turned on.  We performed a sweep on VRST2 from 0 V to 1.5 V.  The slope of 

linear portion of VRST2 to OUT2 is our source follower gain represented in Equation 13.  

The same can be done for the source follower on the left side since the circuit is 

symmetric.  This test will also show the operating range of VRST1 and VRST2. 

 

        (13)
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6.4 Source Follower Noise 

     Source follower noise resulting from electrons colliding with the oxide to bulk 

interface is a white noise.  We measure source follower noise with RST2 set to 3 V and 

VRST2 at 1.5 V.  The source follower noise voltage must take into account of the source 

follower gain as shown in Equation 14.   

 

        (14)

 

ASF is the source follower gain, is the noise voltage measured at the source 

follower output, and is the actual source follower noise.   

 

6.5 Setup Requirements 

     The setup requirement for noise measurements is especially critical.  In general, direct 

current (DC) signals need to have bypass capacitors close to the device under test (DUT) 

to reduce high frequency noise.  Digital signals can also have a low pass filter to reduce 

signal reflection.  Oscilloscope or measurement equipment resolution must be a minimum 

of 16-bit resolution in a 50 mV range for a LSB of 763 nV to measure the partition noise 

of short channel MOSFETS.  Furthermore, measurements on the wafer level require that 

the DUT be inside a Faraday cage, and use battery source instead of a DC supply instead 

of power supplies to reduce noise [10]. 
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6.6 Summary 

     We have provided extensive method and setup requirements to extract partition noise 

using the circuit we designed.  This includes measuring the source follower noise and 

gain.   
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CHAPTER SEVEN: CONCLUSION AND FUTURE WORK 

 

7.1      Conclusion 

     In this work, we have developed a method to measure and characterize partition noise 

of an active reset circuit using TCAD simulations, which were used to extract the 

threshold voltage of a NMOS using the ERL method and to extract the electron charge 

density in the inversion channel during operation.  Using the threshold voltage and 

electron charge density, we estimated the partition noise generated by a short channel 

NMOS.  We found partition noise to be a very minuscule noise source of a few 

microvolts depending on the sense capacitance.  From this information, we have designed 

a test circuit and test methodology to study partition noise.  

 

7.2 Future Work 

     Our work has provided the circuit design and test method to measure partition noise.  

Future work on this subject will characterize the designed circuit as stated in the 

implementation chapter.    

     The testing and measurement of noise in general are difficult without the proper setup.  

The measurement of partition noise can be further improved by adding a second stage 

high gain, low noise amplifier built-in or added externally on a printed circuit board 

(PCB).  The advantage in having a built-in amplifier is that it relaxes the oscilloscope 
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requirement and simplifies the setup.  However, it may take several tries to design and 

fabricate a working amplifier with the specifications required.   

     If the test circuit can be packaged and tested on a PCB, then designing a test board 

with bypass components, filters, and an external amplifier will reduce noise from our 

input signals.  Of course, the PCB should not be limited to just the components we 

suggested.  Careful consideration into the PCB layout is needed to avoid cross coupling 

since we are working with digital signals.   

     As our technology moves to the gigahertz range, further studies into partition noise 

with fall times of less than 1 ns are needed.  Sense capacitance may also be reduced for 

faster charge up time so that partition noise will become a large part of the total reset 

noise.  Although a function generator or an arbitrary waveform generator can control the 

fall-time of our reset signal, they are usually limited to 1 ns.  Instead, an additional driver 

circuit can be added to the input stage to control the fall-time of the input signal.  These 

additions will greatly clarify the effects of partition noise on short channel MOSFETs. 
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APPENDIX A: NMOS FABRICATION CYCLE 

 

Simulation file:  sprocess_lig.cmd defines the NMOS fabrication cycle 
 
 
 
defop Boron_implants () 
{ 
  comment (text : "Boron implants"); 
  implant (species : boron, dose : 4.5e12 /cm2, energy : 5.0 keV, tilt : 0 deg, rotation : 0 
deg, type : default); 
  implant (species : boron, dose : 5.0e11 /cm2, energy : 20 keV, tilt : 0 deg, rotation : 0 
deg, type : default); 
  implant (species : boron, dose : 1.6e13 /cm2, energy : 85 keV, tilt : 0 deg, rotation : 0 
deg, type : default); 
  implant (species : boron, dose : 2.0e13 /cm2, energy : 260 keV, tilt : 0 deg, rotation : 0 
deg, type : default); 
} 
 
defop Growing_gate_oxide () 
{ 
  comment (text : "Growing gate oxide"); 
  insert (dios : " 
 
", sprocess : " 
mgoals accuracy=1e-5 resolution=0.1 minedge=2e-6 normal.growth.ratio=2.0 
min.normal.size=5e-4 
", sde : " 
  
", tsuprem4 : " 
 
"); 
  deposit (material : oxide, thickness : .005 um); 
  anneal (time : 90 min, temperature : 1000 degC); 
} 
 
defop Poly_gate_definition () 
{ 
  comment (text : "Poly Gate definition"); 
  deposit (material : poly, thickness : 0.21 um, deposition_type : isotropic); 
  pattern (layer : "GATE", polarity : light_field); 
  etch (material : poly, thickness : 0.23 um, etch_type : anisotropic, type : default); 
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  etch (material : resist, etch_type : strip); 
} 
 
defop Poly_reoxidation () 
{ 
  comment (text : "Poly reoxidation"); 
  deposit (material : oxide, thickness : .007 um); 
  anneal (time : 8 min); 
} 
 
defop Remeshing_for_LDD () 
{ 
  comment (text : "Remeshing for LDD and halo implants"); 
  insert (dios : " 
 
", sprocess : " 
refinebox silicon min= {0.0 @<0.5*lgate/-0.04>@} max= {0.1 0@<0.5*lgate+0.03>@} 
xrefine= {0.01 0.01 0.01} yrefine= {0.01 0.01 0.01} add 
refinebox remesh 
", sde : " 
  
", tsuprem4 : " 
  
"); 
} 
 
defop LDD_halo_implants () 
{ 
  comment (text : "LDD"); 
  implant (species : arsenic, dose : 1.0e14 /cm2, energy : 15 keV, tilt : 0 deg, rotation : 0 
deg); 
} 
 
defop Spacer_formation () 
{ 
  comment (text : "Spacer formation"); 
  deposit (material : nitride, thickness : .04 um); 
  etch (material : nitride, thickness : .08 um, etch_type : anisotropic); 
} 
 
defop Remeshing () 
{ 
  comment (text : "Remeshing for Source/Drain implants"); 
  insert (dios : " 
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", sprocess : " 
refinebox silicon min= {0.04 @<0.5*lgate-0.04>@} max= {0.18 \$ymax}  xrefine= 
{0.01 0.01 0.01} yrefine= {0.05 0.05 0.05} add 
refinebox remesh 
", sde : " 
  
", tsuprem4 : " 
  
"); 
} 
 
defop Source_Drain_implants () 
{ 
  comment (text : "Source/Drain implants"); 
  implant (species : arsenic, dose : 1.0e15 /cm2, energy : 25 keV, tilt : 0 deg, rotation : 0 
deg); 
  anneal (time : 10 sec, temperature : 1000 degC); 
} 
 
defop Contact_Pads () 
{ 
  comment (text : "Contact pads"); 
  etch (material : oxide, thickness : 0.25 um, etch_type : anisotropic); 
  deposit (material : aluminum, thickness : 30 nm); 
  pattern (layer : "METAL", polarity : light_field); 
  etch (material : aluminum, thickness : 0.25 um, etch_type : anisotropic, type : default); 
  etch (material : aluminum, thickness : 0.02 um, etch_type : isotropic, type : default); 
  etch (material : resist, etch_type : strip); 
} 
 
defop Save_Structure () 
{ 
  comment (text : "Save Structure"); 
  insert (dios : " 
  
", sprocess : " 
transform clip min= {-1 -1} max= {2 10} 
contact name=gate  point x=-0.2 y=0.001 replace 
contact name=drain point x=-0.02 y=\[expr \$ymax - 0.001\] replace 
contact name=substrate box silicon xlo=1.5 ylo=0 xhi=2.5 yhi=\$ymax 
 
set Ygox \[interface oxide /silicon y = 0.001 \] 
set Ypol \[interface poly  /oxide y = 0.001 \] 
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set Ytmp \[expr \$Ygox + 0.005\] 
set Tox  \[expr \$Ygox-\$Ypol\] 
sel z = { NetActive } 
set Xgd \[format %.3e \[lindex \[lsort -real \[interpolate x = \$Ytmp  silicon val=1e15\]\] 
0\]\] 
set Xj  \[format %.3e \[lindex \[lsort -real \[interpolate y = @<0.5*lgate+0.39>@ silicon 
val=1e15\]\] 0\]\] 
 
#set Lgeff x 
puts \"DOE: Lgeff \[format %.3e \[expr 2.0*\$Xgd\]\]\" 
#set Xj    x 
puts \"DOE: Xj    \[format %.3e \$Xj\]\" 
#set Ygox  x 
puts \"DOE: Ygox  \[format %.3e \$Ygox\]\" 
#set Tox  x 
puts \"DOE: Tox   \[format %.3e \$Tox\]\" 
", sde : " 
  
", tsuprem4 : " 
 
"); 
} 
 
environment (title : "2D Process simulation", save : true, grid : true, debug : false, 
check1d : false, analytical : false, simulator : sprocess, region : "SIM2N", output : 
"n@node@", node : "@node@", side : front, graphics : false, depth : 5 um, user_grid : 
"line x location= 0.0      spacing= 1.0<nm>  tag=SiTop 
line x location=50.0<nm>  spacing=10.0<nm> 
line x location= 0.5<um>  spacing=50.0<nm> 
line x location= 2.0<um>  spacing= 0.2<um> 
line x location= 4.0<um>  spacing= 0.4<um> 
line x location=10.0<um>  spacing= 2.0<um>  tag=SiBottom 
 
set ymax @<lgate/2.0+0.4>@ 
line y location=0.0     spacing=\$ymax/8.0   tag=Mid 
line y location=\$ymax  spacing=\$ymax/8.0   tag=Right 
 
region silicon xlo=SiTop xhi=SiBottom ylo=Mid yhi=Right", grid_refinement : Struct { 
  dios : ""; 
  sprocess : ""; 
  sde : ""; 
  tsuprem4 : ""; 
}, tsuprem4_delta_vertical : 0.5 um, tsuprem4_delta_horizontal : 0.5 um, 
tsuprem4_min_vertical : 0.1 um, tsuprem4_min_horizontal : 0.1 um); 
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substrate (dopant : boron, concentration : 1.0e+16 /cm3); 
insert (dios : " 
 
", sprocess : " 
AdvancedCalibration 
", sde : " 
 
", tsuprem4 : " 
 
"); 
insert (dios : " 
 
", sprocess : " 
implant tables = AdvCal 
", sde : " 
 
", tsuprem4 : " 
 
"); 
insert (dios : " 
 
", sprocess : " 
pdbSetSwitch Ox_Si B BoundaryCondition ThreePhaseSegregation 
", sde : " 
 
", tsuprem4 : " 
 
"); 
insert (dios : " 
 
", sprocess : " 
pdbSetDouble Oxide_Silicon B TrappingRate_Silicon  {\[Arr 3.0e-15 2.5\]} 
", sde : " 
 
", tsuprem4 : " 
 
"); 
Boron_implants (); 
Growing_gate_oxide (); 
Poly_gate_definition (); 
Poly_reoxidation (); 
Remeshing_for_LDD (); 
LDD_halo_implants (); 
anneal (time : 10 sec, temperature : 1000 degC); 
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Spacer_formation (); 
Remeshing (); 
Source_Drain_implants (); 
Contact_Pads (); 
Save_Structure (); 
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APPENDIX B:  NMOS LAYOUT AND MESHING 

 
Simulation file:  sde_dvs.cmd defines the NMOS layout and meshing 
 
 
 
#setdep @previous@ 
 
;--- Internal parameters -------------------------------- 
(if (string=? "@Type@" "nMOS")  
 (begin 
  (define DopPol  "ArsenicActiveConcentration") 
 ) 
 (begin  
  (define DopPol  "BoronActiveConcentration") 
 ) 
) 
 
(define Lg      @lgate@)   
(define Xgdo    (* 0.5 @Lgeff|-1@)) 
(define Xj      @Xj|-1@) 
(define Ygox    @Ygox|-1@) 
(define Tox     @Tox|-1@) 
 
(define PNres   0.006) 
(define Xg      (/ Lg 2.0)) 
(define Ypol    (- Ygox Tox)) 
(define dXext   0.01) 
 
(define BNDin  "n@previous@_bnd.tdr") 
(define TDR    "n@previous@_fps.tdr") 
 
;--- Load Boundary----------------------------------------------------- 
(sdeio:read-tdr-bnd  BNDin)  
 
(define Xmin (position:x (car (bbox (get-body-list))))) 
(define Xmax (position:x (cdr (bbox (get-body-list))))) 
(define Ymin (position:y (car (bbox (get-body-list))))) 
(define Ymax (position:y (cdr (bbox (get-body-list))))) 
 
;--- Place sub meshes ------------------------------------------------- 
(sdedr:define-submesh "SubMesh" TDR) 
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(sdedr:define-refinement-window "Win.RightHalf" "Rectangle"  
 (position        -0.01  (- Ymin 0.01) 0.0)   
 (position (+ Xmax 0.01) (+ Ymax 0.01) 0.0))  
 
(sdedr:define-submesh-placement "SubMesh_R" "SubMesh"  
   "Win.RightHalf" "Replace" 
   "AttachPoint" (position 0 0 0) "ToPoint" (position 0 0 0) ) 
 
;--- Meshing ---------------------------------------------------------- 
;-- Meshing Strategy: 
;- Silicon 
(sdedr:define-refinement-size "RSize.Silicon"  
  (/ Xmax 4.0)  (/ Ymax 16.0)  
  (/ Xmax 8.0)  (/ Ymax 18.0) ) 
(sdedr:define-refinement-material "RPlace.Silicon"  
 "RSize.Silicon" "Silicon" ) 
 
;- Source/Drain area 
(define YSDref (* 1.5 Xj)) 
(sdedr:define-refinement-size "RSize.SD"  
  (/ (- Xmax Xg) 12.0) (/ (- YSDref Ygox) 16.0)  
   PNres                PNres ) 
(sdedr:define-refinement-function "RSize.SD"  
 "DopingConcentration" "MaxTransDiff" 1) 
(sdedr:define-refinement-window "RWin.SD"  
 "Rectangle"   
 (position Xg    0.0    0.0)  
 (position Xmax  YSDref 0.0) ) 
(sdedr:define-refinement-placement "RPlace.SD"  
 "RSize.SD" "RWin.SD" ) 
 
; Junctions under the gate 
(sdedr:define-refinement-size "RSize.GD"  
  (* 1.0 PNres)  (* 1.0 PNres) 0.0 
  (* 0.8 PNres)  (* 0.8 PNres) 0.0) 
; Gate-Drain Junction 
(sdedr:define-refinement-window "RWin.GD"  
 "Rectangle"   
 (position (- Xgdo dXext)    Ygox                       0.0)  
 (position (+ Xgdo dXext) (+ Ygox (* 0.35 (- Xj Ygox))) 0.0) ) 
(sdedr:define-refinement-placement "RPlace.GD"  
 "RSize.GD" "RWin.GD" ) 
 
; Channel Multibox 
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(sdedr:define-refinement-window "MBWindow.Channel"  
 "Rectangle"   
 (position  0.0            Ygox      0.0)  
 (position (* 1.1 Xgdo)  (* 0.5  Xj) 0.0) ) 
(sdedr:define-multibox-size "MBSize.Channel"  
  (/ Xg 4.0)  (/ (- Xj Ygox) 4.0) 
  (/ Xg 8.0)    2e-4  
  -1.45         1.45 ) 
(sdedr:define-multibox-placement "MBPlace.Channel"  
 "MBSize.Channel" "MBWindow.Channel" ) 
 
; Gate Multibox 
(sdedr:define-refinement-window "MBWindow.Gate"  
 "Rectangle"   
 (position 0.0 Ymin  0.0)  
 (position Xg  Ypol  0.0) ) 
(sdedr:define-multibox-size "MBSize.Gate"  
  99   (/ (- Ypol Ymin) 4.0) 
  66     3e-4  
  0.0   -1.75 ) 
(sdedr:define-multibox-placement "MBPlace.Gate"  
 "MBSize.Gate"  "MBWindow.Gate" ) 
 
;--- Saving BND file -------------------------------------------------- 
; Saving BND file 
(sdeio:save-tdr-bnd (get-body-list) "n@node@_half_bnd.tdr") 
 
;---------------------------------------------------------------------- 
; Save CMD file 
(sdedr:write-cmd-file "n@node@_half_msh.cmd") 
 
;---------------------------------------------------------------------- 
; Build Mesh  
(system:command "mesh -F tdr n@node@_half_msh") 
 
;---------------------------------------------------------------------- 
; Reflect device 
(system:command "tdx -mtt -x -ren drain=source n@node@_half_msh n@node@_msh") 
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APPENDIX C:  THRESHOLD VOLTAGE EXTRACTION 

 
 
Simulation file:  sdevice_des.cmd is used to extract the threshold voltage 
 
 
 
!(  
if { "@Type@"  == "nMOS" } { 
  set SIGN   1.0   
  set EQNS   "Poisson Electron" 
} else { 
  set SIGN   -1.0 
  set EQNS   "Poisson Hole" 
} 
)! 
 
File { 
   * input files: 
   Grid=   "@tdr@" 
   Parameter="@parameter@" 
   * output files: 
   Plot=   "@tdrdat@" 
   Current="@plot@" 
   Output= "@log@" 
} 
 
Electrode { 
   { Name="source"    Voltage=@Vs@ Resistor=40 } 
   { Name="drain"     Voltage=0.0 Resistor=40 } 
   { Name="gate"      Voltage=0.0 Barrier=-0.55 } 
   { Name="substrate" Voltage=0.0 } 
} 
 
Physics{ 
   EffectiveIntrinsicDensity( OldSlotboom )      
} 
 
Physics(Material="Silicon"){ 
   MLDA 
   Mobility( 
      PhuMob 
      HighFieldSaturation 
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      EnormalHigh 
   ) 
   Recombination( 
      SRH( DopingDep ) 
   )            
} 
 
Insert = "PlotSection_des.cmd" 
Insert = "MathSection_des.cmd" 
 
Solve { 
*- Creating initial guess: 
   Coupled(Iterations=100 LineSearchDamping=1e-4){ Poisson }  
   Coupled { !(puts $EQNS)! } 
 
*- Ramp to drain to Vd 
   Quasistationary(  
      InitialStep=1e-1 Increment=1.35  
      MinStep=1e-5 MaxStep=0.5  
      Goal { Name="drain" Voltage=!(puts [expr $SIGN*@Vd@])! }  
   ){ Coupled { !(puts $EQNS)! } }  
 
*- Vg sweep  
   NewCurrentFile="IdVg_"  
   Quasistationary(  
      DoZero  
      InitialStep=1e-3 Increment=1.35  
      MinStep=1e-5 MaxStep=0.05  
      Goal { Name="gate" Voltage=!(puts [expr $SIGN*@Vdd@])! }  
   ){ Coupled { !(puts $EQNS)! }  
      CurrentPlot( Time=(Range=(0 1) Intervals=30)  ) 
   } 
} 

 
 
 
 
 
 
 
 
 
 



 

 54 

APPENDIX D:  EXTRACT THRESHOLD VOLTAGE WITH INSPECT 

 
Simulation file:  inspect_ins.cmd extracts threshold voltage from Id-Vgs graph. 
 
 
 
#----------------------------------------------------------------------# 
#set Vtgm   x 
#set Vti    x 
#set Id     x 
#set SS     x 
#set gm     x 
 
set N     @node@ 
set i     @node:index@ 
set Lg    @lgate@ 
set Vds   @Vds@ 
set Vg    @Vdd@ 
set Type  @Type@ 
puts "Gate Length: $Lg um" 
 
set ID "$Type" 
set N   ${Type}_${N} 
 
#- Automatic alternating color assignment tied to node index 
#----------------------------------------------------------------------# 
set COLORS  [list green blue red orange magenta violet brown] 
set NCOLORS [llength $COLORS] 
set color   [lindex  $COLORS [expr $i%$NCOLORS]] 
 
#- INSPECT IdVg plotting 
#----------------------------------------------------------------------# 
# Plotting Id vs Vg curves 
gr_setTitleAttr "IdVg Lg=$Lg Vds=$Vds" 
 
proj_load  IdVg_@plot@ PLT($N) 
 
cv_createDS IdVg($N) \ 
 "PLT($N) gate OuterVoltage" "PLT($N) drain TotalCurrent" y 
cv_abs IdVg($N) y 
cv_setCurveAttr IdVg($N) "IdVg $ID" \ 
  $color solid 2 none 3 defcolor 1 defcolor 
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gr_setAxisAttr X  {Gate Voltage (V)}     16  {} {} black 1 14 0 5 0 
gr_setAxisAttr Y  {Drain Current (A/um)} 16  {} {} black 1 14 0 5 1 
 
#- Extraction 
#----------------------------------------------------------------------# 
source EXTRACT_ins.lib 
 
#- Defining current level for Vti extraction 
#----------------------------------------------------------------------# 
set Io    [expr 100e-9/$Lg] ; # [A/um] 
if { $Type == "nMOS" } { set SIGN 1.0 } else { set SIGN -1.0 } 
 
if { $Vds < 0.5 } { 
set Vtb   [ExtractVtgmb Vtgm  IdVg($N) $Type] 
} 
set Vti   [ExtractVti   Vti    IdVg($N) $Io] 
set Idmax [ExtractMax   Id     IdVg($N)] 
set SS    [ExtractSS    SS     IdVg($N) [expr $SIGN*1e-2]] 
set gm    [ExtractGmb   gm     IdVg($N) $Type] 
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APPENDIX E:  CHARGE DENSITY EXTRACTION 

 
Simulation file:  sdevice1_des.cmd extracts the charge density of the inversion channel. 
 
 
 
#setdep @node|-3@ 
 
 
** Comment here 
Device MOS { 
 
 Electrode { 
  { Name="source"    Voltage=0.0 } 
  { Name="drain"     Voltage=0.0 } 
  { Name="gate"      Voltage=0.0 Barrier=-0.55 } 
  { Name="substrate" Voltage=0.0 } 
 } 
  
 File { 
  * input files: 
  Grid=   "@tdr@" 
  *files from NF sample 
  *Grid = "mos_mdr.grd" 
  *Doping = "mos_mdr.dat" 
  *Parameter = "mos" 
  * Parameter="@parameter@" 
  * output files: 
  Plot=   "mos_@tdrdat@" 
  Current="mos_@plot@" 
 } 
 
 Physics { 
  AreaFactor=0.4 
  EffectiveIntrinsicDensity( OldSlotboom ) 
       Noise ( 
     #Hydro#  DiffusionNoise(e_h_Temperature) 
       DiffusionNoise(LatticeTemperature) 
       FlickerGRNoise 
     ) 
 } 
 
 Physics(Material="Silicon"){ 
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  Mobility( 
   PhuMob 
   HighFieldSaturation 
   EnormalHigh 
  ) 
  Recombination( 
   SRH( DopingDep ) 
  ) 
 } 
 
 Physics(MaterialInterface="Silicon/Oxide"){ 
  Charge ( Conc=2.0e10 ) 
 } 
 
 CurrentPlot { 
  eDensity( 
   Integrate(Window[(@<-(lgate-0.02)/2>@ 0.00) (@<(lgate-0.02)/2>@ 0.02)] 
Name=Channel) 
  ) 
 } 
  
 NoisePlot { 
  eeDiffusionLNS eeLNVSD eeDiffusionLNVSD eeFlickerGRLNVSD  
  Grad2PoECACGreenFunction PoECReACGreenFunction 
 } 
  
} 
 
 
  
 
System { 
 
 Vsource_pset v2 (n2 n0) {pwl = (0       3 
                                 50e-9    3 
                                 @time@   -0.2                                  
                                 80e-6 -0.2)} 
                                
 ** Drain :  removed to add cap on drain 
 Vsource_pset v1 (n1 n0) { dc = 1 } 
  
 *reset transistor 
 MOS mos1 ( "drain"=n1 "gate"=n2 "source"=n3 "substrate"=n0) 
 Capacitor_pset c1 (n3 n0) { capacitance = @cap@ } 
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 *source follower 
 *MOS mos2 ("drain"=nsfd "gate"=n3 "source"=nsfs "substrate"=n0)  
 *Vsource_pset v3 (nsfd n0) { dc = 2.7 }  
 *Capacitor_pset c2 (nsfs n0) { capacitance = 1e-12 } 
 *Resistor_pset r1  (nsfs n0) { resistance = 1e6 } 
  
 *initialize (n1 = 1 n2 = 3 n3 = 1) 
  
 set (n0 = 0) 
  
 ** Determining quantities to plot 
 Plot "mos1_n@node@_des.plt" (time() n0 n1 n2 n3 i(c1,n3)) 
} 
 
File { 
 Current="@plot@" 
 Output= "@log@" 
 *would I need to add this to the output files list?  ACExtract="AC_@node@_" 
} 
 
Plot { 
 *--Density and Currents, etc 
 eDensity hDensity 
 TotalCurrent/Vector eCurrent/Vector hCurrent/Vector 
 eMobility hMobility 
 eVelocity hVelocity 
 eQuasiFermi hQuasiFermi 
 
 *--Temperature  
 eTemperature Temperature hTemperature 
 
 *--Fields and charges 
 ElectricField/Vector Potential SpaceCharge 
 
 *--Doping Profiles 
 Doping DonorConcentration AcceptorConcentration 
 
 *--Generation/Recombination 
 SRH Band2Band * Auger 
 * AvalancheGeneration eAvalancheGeneration hAvalancheGeneration 
 
 *--Driving forces 
 eGradQuasiFermi/Vector hGradQuasiFermi/Vector 
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 eEparallel hEparallel eENormal hENormal 
 
 *--Band structure/Composition 
 BandGap  
 BandGapNarrowing 
 Affinity 
 ConductionBand ValenceBand 
 eQuantumPotential hQuantumPotential 
 
 *--Gate Tunneling 
 * eBarrierTunneling hBarrierTunneling  BarrierTunneling 
 * eDirectTunnel hDirectTunnel 
} 
 
Math { 
  
 Extrapolate 
 RelErrControl 
 Notdamped=1000 
 Iterations=15 
 ExitOnFailure 
 Number_of_Threads = 1 
 
*added for transient 
 Digits=5 
 Method = Blocked 
 SubMethod = Pardiso 
 Transient=BE 
 CheckTransientError 
 AutomaticCircuitContact  
    
*added for noise 
 Derivatives 
 NewDiscretization 
 ConstRefPot 
} 
 
Solve { 
 
 NewCurrentPrefix = "ignore_" 
 Coupled { Poisson } 
 Coupled { Poisson Electron Hole Contact Circuit} 
  
  *solve for noise 
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 ACCoupled( 
  StartFrequency=1e0 EndFrequency=1e12 NumberOfPoints = 13 Decade 
  Node( n1 n2 n3 ) ObservationNode( n3  ) Exclude ( v1 v2 ) 
   *CircuitNoise 
 ACExtraction = "n@node@_equi" 
  ## NoisePlot = "n@node@_equi"  
 ){ 
  Poisson Electron Hole Contact Circuit  
  } 
    
 Quasistationary( 
  MaxStep=0.1 MinStep= 0.0001 
  Goal { Parameter = v2.dc value = 3 } 
  ){ Coupled { Poisson Electron Hole Contact Circuit} } 
   
 Quasistationary( 
  MaxStep=0.1 MinStep= 0.0001 
  Goal { Parameter = v1.dc Voltage=1 } 
  ){ Coupled { Poisson Electron Hole Contact Circuit} } 
  
  
  
 NewCurrentPrefix = "" 
 Transient ( 
   InitialTime=0 FinalTime=2e-6 InitialStep=1e-10 MaxStep=2e-7 MinStep=1e-14 
Increment=1.3 
   Plot { Range = (50e-9 @time@) Intervals = 10 } 
 ){ ACCoupled( 
  ACCompute( Time=(@<time+5e-9>@) ) *compute ac analysis 10 ns after the 
transistor is off 
        StartFrequency=1e0 EndFrequency=1e13 NumberOfPoints= 13 Decade  
  Node( n1 n2 n3 ) ObservationNode( n3 ) Exclude ( v1 v2 ) 
        CircuitNoise 
         ACExtraction    = "n@node@_tran" 
        ## NoisePlot       = "n@node@_tran" 
    ){  
        Poisson Electron Hole Circuit Contact    
    } 
 } 
}#end Solve 
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