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ABSTRACT 

WELL CLEAR:  

GENERAL AVIATION AND COMMERCIAL PILOTS’ PERCEPTION OF UNMANNED 

AERIAL VEHICLES IN THE NATIONAL AIRSPACE SYSTEM   

The purpose of this research was to determine how different pilot types 

perceived the subjective concept of the Well Clear Boundary (WCB) and to 

observe if that boundary changed when dealing with manned versus unmanned 

aircraft systems (UAS) as well as the effects of other variables.  Pilots’ 

perceptions of the WCB were collected objectively through simulator recordings 

and subjectively through questionnaires. Together, these metrics provided 

quantitative and qualitative data about pilot WCB perception. The objective 

results of this study showed significant differences in WCB perception between 

two different pilot types, as well as WCB significant differences when comparing 

two different intruder types (manned versus unmanned aircraft). These 

differences were dependent on other manipulated variables, including intruder 

approach angle, ownship speed, and background traffic levels. Subjectively, 

there were evident differences in WCB perception across pilot types; general 

aviation (GA) pilots appeared to trust UAS aircraft slightly more than did the more 

experienced Airline Transport Pilots (ATPs). Overall, it is concluded that pilots’ 

mental models of the WCB are more easily perceived as time-based boundaries 

in front of ownship, while being more easily perceived as distance-based 

boundaries to the rear of ownship.
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Introduction  

Next Generation National Airspace System (NextGen NAS) 

Our NAS is currently undergoing a major transition, as it is upgraded to 

the NextGen environment. Systems are moving away from traditional ground 

radar-based air traffic control to satellite-based systems and data connections for 

air traffic management. This vital upgrade is imperative to our NAS’s future, 

which will face challenges of higher air traffic levels, more congested airports, 

and the need for precise timing and coordination to avoid a “gridlock” scenario in 

the skies (FAA, 2013). The NextGen NAS will allow a higher number of aircraft to 

fly closer together on more direct flight routes with the goal of reducing delays 

and providing unprecedented benefits for the environment and the economy 

through reducing carbon emissions and fuel consumption. It will ensure that our 

nation’s skies have room for continued growth, increased safety, and reduced 

environmental impact (FAA, 2013). 

Unmanned Aerial Systems (UAS) 

Unmanned aerial systems (UAS) consist of an unmanned aircraft (UA) 

and all of the supporting equipment, control stations, data links, telemetry, 

communication links, and navigation equipment that work together to allow the 

UA to operate safely. The UA is piloted by humans working in a ground-control 

station, and other UAs can be controlled autonomously via on-board computers 

or communication links (FAA, 2013). UAS are entering a pivotal stage in their 
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technological advancement with the corresponding need to become integrated 

into civilian operations. Many UAS aircraft originally designed for use in combat 

are now in high demand for use in the current NAS for a multitude of civilian 

and/or less traditional military roles. The potential that such UAS technology 

holds, if safely integrated into the NAS, is tremendous and its use can be highly 

beneficial to many sectors of society.  For example, some of the currently 

proposed civil and commercial applications of UAS include: security awareness, 

disaster response, rescue team search and support, communications and 

broadcast, cargo transport, surface spectral and thermal analysis, vital 

infrastructure monitoring, commercial photography, aerial mapping and charting, 

and aerial advertising (FAA, 2014).  

With their wide range of uses, the safe and proper integration of UAS into 

civilian airspace given current FARs remains largely a work in progress. Current 

ambitions and research initiatives issued to the FAA by the Congressional FAA 

Modernization and Reform Act of 2012 aim to have all regulations for UAS 

integration into the NAS in place by 2015. Section 322 of the House Bill, 

“…requires the Secretary of Transportation to develop a plan, in consultation with 

aviation and Unmanned Aircraft Systems (UAS) industry representatives, within 

nine months of enactment, for the safe integration of civil UASs into the National 

Airspace (NAS). This plan must contain a review of technologies and research to 

assist in this goal, recommendations for rulemaking on the definition of 

acceptable standards, ensure civil UASs have sense and avoid capability, 
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develop standards and requirements for operators and pilots of UASs, and 

recommendations for all aspects of UAS integration. The plan must include a 

realistic time frame for UAS integration into the NAS, but no later than September 

30, 2015” (U.S. House of Representatives, 2012). 

UAS Technological Challenges 

Although the FAA is pushing the future development of our NAS to include 

UASs, large challenges are still quite evident in our efforts to safely integrate 

UASs into our airspace. Perhaps due to the technological complexity of drones 

and their operators, very little media attention has examined the actual feasibility 

of pervasive domestic drone development. The important question to ask is 

whether it is even possible to have thousands of unmanned aircraft operating in 

our domestic airspace, which is already crowded with civilian and commercial air 

traffic. Exploring this feasibility further, it is important to note vulnerabilities UASs 

may have in their inherent architecture. In order to be controlled from a remote 

location, UASs must communicate with pilots on the ground through a data link. 

This link is, as are all wireless communications, vulnerable to electromagnetic 

interference (EMI). One of the major issues surrounding the viability of UAS 

integration is what happens when a link is lost between a UAS ground control 

station (GCS) and its unmanned aircraft? Sometimes the link can be 

reestablished quickly, but there remain many instances in which reconnection 

attempts have failed and have led to unintended consequences (Public 

Intelligence, 2012). This issue of lost-link events is considered “a major concern 
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and failure of communications due to EMI has resulted in numerous UAS 

accidents” (p. 78) according to a 2010 U.S. Army Command and General Staff 

College Report (Major Yochim, 2010). 

As recently as 2011, an unmanned drone collision with a manned aircraft 

occurred in Afghanistan between a RQ-7 Shadow UAV and an Air Force Special 

Operations Command C-130. Luckily, no one was hurt or injured, but the collision 

completely obliterated the UAV and caused major ruptures to the wing fuel tank 

and the wing box of the C-130 (Reed, 2011). Had it not been for the sheer 

difference in size between the small UAV (wingspan: 20’4”, weight: 450lbs) and 

the C-130 (wingspan: 130’, weight: 83,000+ lbs.) the outcome could have been 

catastrophic. It is important to note that the RQ-7 is a relatively small UAV 

compared to most other long distance UAVs; many of the military drones being 

proposed for use in the NAS are closer in size to manned size aircraft. Aside 

from this incident, over 100 other incidents or accidents involving UASs have 

been experienced globally, and this figure continues to rise (Drone Wars UK, 

2013). The majority of these UASs were US Military and/or US manufactured, 

and most incidents and accidents resulted from mechanical failure or loss of 

signal events.  Such occurrences set the stage for a great debate on the safety of 

drone use in domestic airspace and raise important questions about the 

feasibility of successful UAS integration into the NAS. 

Another major challenge facing UAS integration is their unavoidable 

interaction with the most numerous pilot type in our NAS, General Aviation (GA) 
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pilots.  GA is entirely comprised of civil aviation operations, as opposed to 

scheduled air services and non-scheduled air transport operations. GA flights 

include everything from single engine trainer aircraft to small corporate jets. As of 

March 2011, the number of GA certificated pilots in the US was 339,127, more 

than any other pilot type out of the total US pilot population of 627,588.  Of those 

GA pilots, 119,119 of them were student pilots who were learning to fly and had 

very little experience (Aircraft Owners and Pilots Association, 2011). The 

integration of UAS into the NAS poses a great threat to GA pilots, particularly to 

the student pilots still learning how to fly. This is due to the current approach for 

preventing mid-air collisions, which is largely based on a see-and-avoid strategy 

in the GA domain.  

The currently implemented tiers of collision protection include radar, which 

has been in place for decades. Radar essentially provides a bird’s-eye-view of 

surrounding airspace that allows for conflicts to been seen and predicted before 

they occur, allowing pilots to take collision avoidance action if necessary. Aside 

from radar, there are also mandated separation minimums, such as the 1,000ft 

vertical separation for IFR en route traffic that was created so even if one cannot 

see a potential threat, the buffer of space in-between aircraft will help prevent 

collisions (granted the aircraft involved are following FAA regulations). Finally, 

there is also aircraft mounted collision avoidance equipment such as the Traffic 

Collision Avoidance System (TCAS II) that provides traffic or resolution 

advisories that command pilots to maneuver out of the predicted path of other 
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TCAS II enabled aircraft.  The problem is, TCAS II is expensive and not installed 

on most GA aircraft, especially not on student aircraft.  Also, radar is only 

effective if humans are cognitively aware of how to use it and what to do when a 

conflict is detected (Goyer, 2012).  The result is that see-and-avoid strategies are 

still very much in effect for proper collision avoidance, and it is very difficult to 

translate this type of strategy to an automated system in the event of a link-loss. 

Aside from all of these technological challenges that face the integration of UASs 

into the NAS, challenges are compounded by another complex but highly 

imperative factor, the Human Factor.  

UAS Human Factors Challenges 

Human Factors has a, “broad remit, covering all manner of analysis from 

human interaction with devices, to the design of tools and machines… and 

various other general aspects of work and organizational design” (Stanton, 

Salmon, Walker, Baber, & Jenkins, 2005). With regard to aviation, and 

particularly with the control of UASs, many human factors issues can arise. Most 

UASs involve a ground control station (GCS) with an operator, or UAS pilot, 

interacting with displays presenting different flight parameters and current 

conditions of the UAS. One of the big challenges is successfully controlling UASs 

remotely, which includes tasks such as mapping, camera view management, and 

multiple vehicle operations and interfaces. Humans can certainly navigate 

through natural environments with ease, and this is mainly due to the 

sophisticated capabilities of our perceptual mechanisms such as our visual, 
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cognitive, and motor processes. While controlling remote vehicles through 

unfamiliar/unnatural environments, restrictions of available visual information, 

and limitations in perceptual modality, as well as constraints of physiological 

motor movement all result in extreme discontinuities experienced by operators in 

terms of their perception and comprehension of remote spatial information. The 

perceptual issues in controlling UAS through limited GCS displays are so widely 

accepted in the aviation and human factors community that GCS displays have 

been dubbed “soda straw” displays because they limit the operator’s view of the 

world severely, congruent to navigating only being able to look though a soda 

straw. Additionally, research has shown that there are a great deal of individual 

differences in the processing of spatial information , use of wide angle camera 

views, as well as specific impacts associated with multiple vehicles (Cooke, 

2006). This presents a tremendous challenge to the proper design of UAS GCSs.   

At present, the general methodology for developing and incorporating 

UAS technologies into the NAS involves taking current regulations regarding vital 

flight rules and parameters for current manned aircraft, such as safe operating 

distances (i.e. separation assurance), up-to-date regulatory requirements, and 

even emergency procedures, then engineering proper algorithms and intelligence 

logic for unmanned technologies to encompass the aforementioned parameters.  

From a human factors perspective, once it is understood how this process of 

translating current regulation of manned aircraft to unmanned systems works, the 

proper framework for UAS development can be designed to abide by the above 



8 
 

mentioned parameters both manually through the UAS pilot’s GCS, and 

autonomously in the event of a loss of signal (LOS). In this methodology, there 

remain many challenges to be overcome in order to successfully transfer what 

has been up to this point mostly human generated skill, judgment, and 

knowledge in manned aircraft over to the UAS platforms. One particularly 

challenging area of this manned to unmanned conversion is the concept of “Well 

Clear”. 

The Issue at Hand - Well Clear 

The term “Well Clear” originated as a phrase used in Air Traffic Control 

(ATC) environment when interacting with manned aircraft over the radio 

communications. Typically, a controller will issue an alert to pilots over the radio 

that nearby traffic has the possibility of breaching legal separation, or may come 

close to doing so. After notifying pilots of such possible incursions, ATC will then 

ask them to report once they are “Clear” (i.e., “Well Clear”) from the aircraft that 

posed a collision concern.  There are currently no regulated time- or distance-

based standards regarding what it means for two aircraft to be ‘well clear’.” (Lee, 

Park, Johnson, & Mueller, 2013, p. 1). Due to the highly dynamic and ever-

changing flight environment of the NAS, pilots are left on their own to determine 

when and where they feel this “Well Clear” boundary exists, and they must rely 

on their own skills and senses in reporting once they believe a collision is no 

longer possible with the intruding aircraft indicated by ATC. Because there is a 

lack of an objective definition for “Well Clear”, otherwise referred to as the “Well 
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Clear Boundary” (WCB), and because there is wide variability in human 

perception across pilots  (Cooke, 2006), it is highly likely that different pilots have 

different opinions of what the well clear boundary is since it is currently entirely 

subjective in meaning. Additionally, there are also several similar, yet different 

conceptions to the WCB that pilots may use in determining the term’s definition. 

Similar Terms and Concepts.  Since no regulation for the definition of 

the WCB exists, it is conceivable that pilots may use alternate similar, however 

different concepts to help form their mental model of the WCB. Such similar 

concepts include Lateral Separation Minima, Self-Visual Separation Procedures, 

and Collision Avoidance Procedures. Lateral Separation Minima are federal 

regulations in the Federal Aviation Regulations (FARs) governing the horizontal 

distance planes are required to maintain from each other. The FARs for 

Instrument Federal Regulations (IFRs), are rules pilots must follow under 

meteorological conditions that result in poor visibility and necessitate flight 

navigation primarily by flight instruments. They require a 3 mile horizontal and 

1,000 feet vertical separation. FARs for Visual Flight Regulations (VFRs), the 

rules for pilots flying in visibly clear meteorological flying conditions, state that 

between VFR and IFR, as well as between VFR and other VFR aircraft must 

separate themselves based on traffic advisories  and safety alerts (issued by 

ATC over the radios). In en route airspace, these safety alerts are normally given 

when aircraft fly within 3-5 miles of each other, depending on their trajectories 

and speeds (FAA, 2014).  This is different from Well Clear because it enforces 
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measurable distances to maintain for IFR aircraft, and heavily depends on ATC 

for VFR aircraft.  

 Self-Visual Separation Procedures, otherwise known as See and Avoid, 

more typically occur in terminal airspace. These procedures are used when ATC 

instructs a pilot to follow another aircraft in an arrival sequence once the pilot 

confirms that the leading aircraft is in sight. Then, they require the pilot to 

maintain vigilance in constant visual surveillance of the leading aircraft and not 

pass it until it is no longer a factor.  This form of pilot self-spacing relies solely on 

out-the-window (OTW) sightings and is therefore limited to use in good visibility 

conditions. Self-Visual Separation can also incorporate right-of-way compliant 

maneuvers as well.  Self-Visual Separation is different from Well Clear as it is 

purely based on visual contact after confirmed ATC separation has occurred 

(FAA, 2005).  

 Additionally, there are Collision Avoidance Procedures all pilots must 

follow.  These include adhering to all clearances and regulations in the FARs as 

well as various sources of information attempting to advise pilots on proper 

avoidance procedures. These sources include FAR 91.113 (b), “Regardless of … 

IFR or VFR … all pilots will observe “See and Avoid” procedures. There is also 

an Advisory Circular that has not been updated since the early 1980’s, AC 90-

48C entitled “Pilots role in collision avoidance” (FAA, 1983) that outlines various 

effective visual clearing and scanning procedures for see and avoid. These 

scanning techniques are further described in the Airman’s Information Manual 
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(AIM) section 4-4-13(d), and the helpful FAA Library article entitled, “How to 

Avoid a Mid Air Collision - P-8740-51.” (FAA, n.d.)  Additionally, more recent 

flight safety programs and commercial flight operations have used Traffic 

Collision Avoidance Systems (TCAS) and/or a Cockpit Display of Traffic 

Information (CDTI) to help pilots avoid collision. These Collision Avoidance 

Procedures are different from Well Clear since they are defined in a number of 

different locations spanning different time periods and they use different forms of 

collision avoidance assurance.  

Proposed Well Clear Definitions and Values.  At the time the current 

thesis began, there were no accepted time or distance-based standards for the 

definition of the WCB or what it means for an aircraft to remain “well clear.” 

During the final phases of the present research, a special committee for aviation 

standards organization, the Radio Technical Commission for Aeronautics (RTCA 

SC 228), has since settled on an accepted definition which is explained at the 

end of this section. Before this agreement for the WCB definition was reached, 

there were several debated methods of measuring safe separation thresholds to 

apply to UAS automated separation standards. These proposed WCB definitions 

are described in-depth in the closely related research articles entitled, 

“Investigating the Effects of “Well Clear” Definitions on UAS Sense-And-Avoid 

Operations” (Lee, Park, Johnson, & Mueller, 2013), “Establishing a Risk-Based 

Separation Standard for Unmanned Aircraft Self Separation” (Weibel, Edwards, 

& Fernandes, June, 2011), and in SC 228’s consideration material (Cook & 
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Davis, 2013). These sources include three suggested definitions to close the 

WCB knowledge gap.  

The first considers distance to closest point of approach (CPA) between 

two aircraft, combined with time to CPA in order to calculate a CPA boundary. As 

can be seen in the figure below there is a declaration time assigned to intruding 

aircraft and a time to CPA (tCPA) boundary is generated in the shape of an 

ellipsoid whose broad side is parallel with ownship trajectory, which equates to a 

tCPA boundary. This is depicted in Figure 1 below:  

 

 

The second proposed definition is a computational method defined by a 

distance value known as Tau + Distance modification + Horizontal Miss Distance. 

Here, two types of Tau Range, Tau (𝜏range) and Vertical Tau (𝜏vert), are combined 

to give a value. Range Tau is calculated as a ratio of range between aircraft (𝑟), 

to their range rate (ṙ) which is expressed in seconds: 

𝜏range = −
𝑟

ṙ
 

Figure 1. Proposed WCB Definition - CPA and tCPA  
(Cook & Davis, 2013). Reprinted with permission. 
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Range Tau’s counterpart, Vertical Tau, is calculated as the ratio of altitude 

separation (∆ℎ), to the vertical closure rate (ḣ) and is also expressed in seconds: 

𝜏vert= −
∆ℎ

ḣ
 

When combined, these Tau values amount to a positive numerical value when 

intruders converge with a UAS, and a negative value upon their divergence, 

representing an approximation of time to CPA or tCPA. However, this equation 

only works in the case of a direct collision course with a straight line of 

intersection. This Tau concept can be visualized below in Figure 2: 

 

 

The third proposed definition is referred to as the “Ellipsoid defined by Tau 

with tapered vertical separation.” Whereas the previous two definitions can cause 

issues when two aircraft are encountering each other very quickly (due to alerts 

being generated far beyond the range of required action by the pilot as a result of 

the nature of their equations), this ellipsoid uses a tapered vertical separation to 

avoid “nuisance” alerts resulting from intercepting aircraft that may have enough 

Figure 2. Proposed WCB Definition - Tau and Modified Tau 
 (Cook & Davis, 2013). Reprinted with permission. 
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vertical separation to properly evade each other, but still cause alerts to arise on 

displays. In other words, it provides a type of filter similar to TCAS II that 

removes alerts for encounters that will pass more than approximately 1.1nmi 

apart. This is depicted below in Figure 3: 

 

 

Previous research conducted at MIT Lincoln Labs has attempted to 

simulate the WCB in a brute force mathematical model. Their uncorrelated 

encounter model was used to generate millions of statistically representative 

encounters at distances of 3nmi in a Monte Carlo fast-time simulation 

environment. This model was created with one year’s worth of continuous radar 

data from the continental US, and with it they captured the behavior of VFR air 

traffic in ten million complementary pairs of aircraft trajectories.  Their results 

gave the following contours of conditional near mid-air collision (NMAC) risk in 

the horizontal plane, as seen in Figure 4 below: 

Figure 3. Proposed WCB Definition - Ellipsoid defined by Tau with Tapered 
Vertical Separation (Cook & Davis, 2013). Reprinted with permission. 
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Here, each contour indicates the conditional probability of NMAC, and 

NMAC risk contours of 1, 0.5, 0.2, 0.1, and 0.05 are shown (Note - there is a 

probability of 1 that an aircraft is an NMAC within the 500 ft. horizontal boundary 

defining an NMAC and risk decreases as range from the aircraft increases). 

Clearly, the asymmetric collision risk contours for likelihoods below 0.5 suggest 

that conflicts that occur less frequently are dominated by traffic approaching 

head-on. This can be observed as the NMAC contours widen and spread out 

much further from ownship towards the front of the aircraft, i.e. head-on as their 

probability decreases to 0.05. There are also very few overtaking conflicts 

Figure 4. Proposed WCB Definition - Conditional Probability of NMAC 
(Weibel, Edwards, & Fernandes, June, 2011). Reprinted with permission. 
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evident in their simulation analysis. This research suggests the WCB is generally 

represented by the results of their simulation, and the WCB should be defined 

according to their contours (Weibel, Edwards, & Fernandes, June, 2011).  This 

MIT Lincoln Labs WCB explanation was eventually voted upon by SC 228 to 

become the current accepted definition for WCB. However, their “simulation 

encounter models were built from radar-surveyed performance of existing aircraft 

under the current structure of the NAS” (Weibel, Edwards, & Fernandes, June, 

2011), ignoring concepts of future NAS structure and also only consider manned 

aircraft encounters with other manned aircraft.  

Taking these proposed definitions in mind, several recent FAA sponsored 

workshops have provided the following description of Well Clear; “Well Clear is 

the state of being able to maintain a safe distance from other aircraft so as not to 

cause the initiation of a collision avoidance maneuver” (Lee, Park, Johnson, & 

Mueller, 2013). This definition is a step closer to the goal of providing a discrete 

value to what the WCB is and how to measure it.  However, this definition can 

still be extremely subjective in any practical sense. It is likely that pilot perception 

of WCB is different across pilot types due to various skill levels. It is also possible 

that pilot perception of the WCB with regards to a manned aircraft is different 

than their perception of WCB from an unmanned vehicle due to various 

parameters such as size and speed differences, as well as trust in automation 

and/or new technology that has not met to test of time. The current research 

aimed to uncover these differences, if any, and also to determine if UAS aircraft 
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are perceived and/or trusted at different levels than manned aircraft. If there is 

indeed a difference in the perceived WCB between manned and unmanned 

vehicles, then this difference will likely be intensely measured and researched in 

order to be integrated in future UAS transition into the NAS.   

Purpose  

The purpose of this experiment was to explore and measure perceptions 

of “Well Clear” boundaries for both General Aviation and Commercial pilots, and 

to investigate any differences in these perceived boundaries between manned 

and unmanned vehicles operating in the NAS. As mentioned, a recent FAA 

sponsored Sense and Avoid (SAA) Workshop defined well clear as “The state of 

being able to maintain a safe distance from other aircraft so as not to cause the 

initiation of a collision avoidance maneuver.” (Lee, Park, Johnson, & Mueller, 

2013). Aside from this ambiguous definition, it is also unknown whether there are 

differences in the perception of well clear boundaries between different pilot 

types, or between manned and unmanned intruders (aircraft on intercept course 

with a pilot’s ownship). Additionally, it is presently unknown what elements of the 

flight environment may have influence on one’s perception of the WCB. The 

future goal of successfully integrating UAS into the NAS will require an absolute 

definition of well clear in order to safely develop SAA algorithms intelligent 

enough to maintain safe operating distances from other aircraft in a manner that 

makes current manned aircraft feel safe.  The current study attempted to provide 

insight into this absolute definition by measuring and creating a model of the 
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perceived WCB aggregated from participants’ performance, all captured 

quantitatively from a part task simulator environment as well as qualitatively 

through extensive subjective feedback. With many forms of UASs proposed to 

operate in all domains of the current NAS, it is vital that any differences in WCB 

perception between pilot populations and between manned versus unmanned 

aircraft be determined early in the developmental process in order to design 

systems as safely as possible. 

Safety. Safety is the FAA’s top priority, as the FAA currently governs the 

world’s safest aviation system. When faced with the task of safely introducing 

UASs into the NAS, they openly admit it is quite a challenging issue. They claim 

that, “Safe integration of UAS involves gaining a better understanding of 

operational issues, such as training requirements, operational specifications and 

technology considerations.” (FAA, 2014).  In addition to the UAS technological 

challenges mentioned in previous background sections of this research, The 

Washington Post launched an investigation into drone crash accidents. They 

discovered that the number of drone accidents is disproportionately high relative 

to manned aircraft. Since 2001, drones have been involved in more than 400 

major accidents around the world. Their investigative documents describe a 

multitude of costly mistakes by remote-control pilots, not only in combat zones 

overseas, but also in the United States during test and training flights gone wrong 

(The Washington Post, 2014).  
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The Washington Post claims, “In April [2014], a 375-pound Army drone 

crashed next to an elementary-school playground in Pennsylvania, just a few 

minutes after students went home for the day. In Upstate New York, the Air 

Force still cannot find a Reaper that has been missing since November, when it 

plunged into Lake Ontario. In June 2012, a Navy RQ-4 surveillance drone with a 

wingspan as wide as a Boeing 757′s nose-dived into Maryland’s Eastern Shore, 

igniting a wildfire.” According to their investigation, the above crashes resulted 

from issues such as pilot error, mechanical defects, unreliable communication 

links; one of the biggest concerns was the limited ability to detect and avoid 

trouble. “Cameras and high-tech sensors on a drone cannot fully replace a pilot’s 

eyes and ears and nose in the cockpit. Most remotely controlled planes are not 

equipped with radar or anti-collision systems designed to prevent midair 

disasters” (The Washington Post, 2014). 

The present research aimed to help gain higher understanding currently 

needed by the FAA to provide safer integration of UASs into our airspace. By 

collecting empirical data, it is the goal of this research to help better develop 

more intelligent UAS systems that will bring new sensing algorithms and 

successful avoidance techniques from other aircraft through understanding how 

humans perceive and treat them in the skies. By uncovering information of pilot 

perceptions concerning how close they will comfortably operate to UASs in 

current airspace and conveying that information to engineers, the goal is to help 
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design efficient sense-and-avoid technologies to keep manned aircraft safe from 

UASs in the NAS.  

Efficiency.  Aside from safety, the FAA also prides itself on creating and 

maintaining the most efficient aerospace system in the world. As mentioned, the 

projected increase in aviation traffic and the integration of new UAS technology 

into the NAS will create a strong need for extremely efficient airspace spacing 

and operating procedures. Along with the upgrade to NextGen systems, UASs 

need to follow the same course of efficiency in order to properly mesh with our 

new aviation environment. Due to the very nature of UAS and their intelligent 

flight software, they have the potential to fly more efficiently than humans in 

terms of fuel consumption and direct flight paths, and are not subject to the same 

limitations humans experience in terms of g-forces, fatigue, and risk of human 

life. This research will assist in determining how to incorporate the flight paths of 

UASs into the NAS efficiently by measuring perceived safe operating distances 

by manned pilots, while maintaining efficient flight parameters throughout all UAS 

operations by planning accordingly based off this safe operating distance. 
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Methods 

Participants  

A total of 34 participants between the ages of 21 and 69 with a mean age 

of 41 were recruited through the San José State University Research 

Foundation’s (SJSURF) Test Subject Recruitment Office at the NASA 

Ames Research Center. The participants consisted of 3 females and 31 males. 

Collectively, the pilots had a total of 173,405 flight hours, with a total of 78,325 of 

those hours spent in glass cockpits (cockpits with screen displays instead of 

purely gauges to present avionics information). This led to an average of 5,100 

total flight hours, with an average of 2,373 of those hours being in glass cockpits 

per pilot.  In terms of years of experience flying, this study averaged 20 years of 

flight across each pilot.   

Participants were required to be licensed pilots. The experimental design 

for this study is explained in the following section. Because examining 

differences between pilot types involved a direct comparison, an equal number of 

General Aviation (GA) and Commercial/ATP (Airline Transport Pilot) pilots was 

selected, with 17 of each type of pilot. The Commercial/ATP pilots averaged 48 

years of age with 28 years of flying experience. They also averaged 9,627 flight 

hours, averaging 4,533 in glass cockpits. The GA pilots had a mean age of 34, 

averaging 13 years of flying experience.  They averaged 573 flight hours, with a 

mean of 79 hours in glass cockpits.  
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Aside from having a valid FAA Pilots License for their particular pilot group 

(more experienced ATP and less experienced GA pilots), no other experience 

requirements were necessary.  Participants with both regular and corrected 

vision (glasses or contact lenses) were recruited, as long as their vision was 

concordant with current FARs regarding vision proficiency. All participants were 

compensated for their efforts.  

Experimental Design 

The current study used a mixed design; there were several within-subject 

variables with pilot type as a between-subjects variable.  In order to assess 

differences in WCB perception across the two different pilot types, a five-factor 

mixed design was implemented. The between-subjects variable of pilot type was 

the comparison of highest interest in the current study, as it sheds light on 

potential differences in WCB between pilots of different experience levels.  

Interest in the comparison of pilot type was closely followed by the interest in 

comparison of intruder type, which varied between manned and unmanned 

aircraft throughout the experimental scenarios. This variable allowed us to 

observe any differences arising from manned pilots interacting with other 

manned versus unmanned aircraft, an important factor in designing the future 

parameters of our airspace and successfully integrating UASs into the NAS.   

To determine what affects the WCB perception for pilots in the NAS, four 

independent variables were compared across both pilot groups. These repeated 

measures factors were; intruder type (2 levels), intruder aircraft approach 
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geometry (8 levels), background distractor traffic (2 levels: high and low), and 

ownship speed (2 levels). As previously mentioned, the between groups variable 

of pilot type was used in this mixed design, which had two levels as well.  The 

two levels of intruder aircraft type were used to uncover if pilots had differences 

in their opinion of the well clear boundary when interacting with manned vs. 

unmanned intruding aircraft in the NAS. Approach geometries were designed to 

be from 8 different directions surrounding ownship to examine the WCB from 

different approach angles.  The study by Weibel et al. (2011) cited earlier 

suggests an important role for approach geometry in the definition of WCB.  The 

final two independent variables of background traffic level and ownship speed.  

Each had two levels and was used to see if those parameters of the flight 

environment affected the perception of the WCB.  Altogether, this yielded an 

8x2x2x2x2 design.  In order to control for any order and/or learning effects 

resulting from the factorial combination of the four within-subjects variables, 

presentation of all combinations were randomized for all participants. These 

independent variables are discussed in the section below entitled “Stimuli”.   

Due to the constraints of limited pilot availability and research resources, 

the researcher was unable to provide a participant pool large enough to likely 

yield significant results in the comparison of pilot type. Proper statistical 

significance would not likely be present without a pilot sample population size of 

at approximately 240+ participants (as determined through statistical software) 

and simply was not feasible in this research setting. Therefore, it must be noted 
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that all findings for the between-groups variable of pilot types may suffer from a 

low statistical power. However, this research highlights general findings for a 

decent sample size that can be used as future research framework, and sheds 

important light on the unknown subjective and objective pilot definition of WCB.   

Apparatus  

The testing took place in the Flight Deck Display Research Lab (FDDRL) 

at NASA Ames Research Center located in Moffett Field, California. The FDDRL-

developed Cockpit Situational Display (CSD) was used as the primary display for 

this research. The CSD was designed for FDDRL’s advanced Cockpit Display of 

Traffic Information (CDTI) experimental needs, and is configurable to display 

simple and advanced interfaces. For this research, the CSD was configured in a 

simple, 2D top down view mode with conflict detection, flight path predictors, 

weather mapping, and route re-planning disabled to create a bare bones display 

similar to present day traffic collision avoidance systems (TCAS). The CSD was 

displayed on a desktop computer running the Windows 7 operating system. The 

computer had an Intel Core i7-2600K Sandy Bridge 3.4GHz processor, 8GB of 

DDR3 1600 RAM,  utilizing an ASUS P8P67EVO Motherboard, with a Western 

Digital 1TB HDD (7200rpm, 64MB Cache, 6GB/s), and a GIGABYTE GeForce 

GTX 460 video card that had a Dell 3007WFP supporting resolution of 

2560x1600 or better. The computer monitor used measured 19” diagonally and 

had a 4:3 aspect ratio full color flat screen LCD display. Participants were also 

recorded during the open discussion they had with the researcher at the end of 
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the study in order to properly review their subjective feedback. No other form of 

recording or photography took place. For scenario development, the NASA 

Ames-made Multi Aircraft Control Simulator (MACS) software was utilized to 

create conflicts and manage the interaction of aircraft in a high-fidelity simulation 

of local northern California airspace.  

Stimuli 

Simulator Experimental Environment.  The environment in the Multi-

Aircraft Control Simulator (MACS) was modeled after real-world air traffic 

controlled airspace of sectors 40 and 41, centered over the Santa Rosa airport in 

northern California. No out-the-window view was provided, the only display 

available was the Cockpit Situational Display (CSD), which essentially served as 

a Cockpit Display of Traffic Information (CDTI) with a 2-dimensional simplified 

top-down view of the environment surrounding ownship. Flight conditions were 

nominal, with no wind or other weather involved. There were no active air traffic 

controllers speaking with or directing pilots, as pilots had no control over their 

aircraft’s pre-designated flight path and were only flying in the airspace for a 

couple of minutes at a time.  

Pilots viewed the CSD display with their ownship at the center of the traffic 

display. In the MACS environment, there were two types of traffic flying in the 

airspace surrounding ownship, consisting of both distractor traffic and intruder 

traffic. Distractor traffic served the purpose of simulating a regularly-crowded 

airspace typically encountered in routine flights. They were not meant to 
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negatively impact participants’ attention, but served to recreate normal traffic 

levels that any pilot is likely to experience.  The flight path of all distractor traffic 

was designed fly at altitudes different than ownship, so as not to cause any 

conflicts or be confused with intruder traffic. The intruder traffic was of primary 

interest in this research, and there was only one of them displayed on the CSD 

per scenario. The single intruder varied between being a manned or unmanned 

aircraft (indicated by “NASA11” for manned, and “UAS11” for UAS in their data 

tags next to aircraft icon on CSD) per scenario as well. The intruder was on a 

straight and level course that would eventually violate legal separation, and was 

always set to be on a collision course with ownship. See example in Figure 5. 

It is important to note that while observing the CSD, pilots had control over 

range zoom on the display and had the ability to change zoom levels at will. On 

current day traffic and moving map displays, the ability to change range via the 

flick of a knob or button press is standard, as different scenarios call for different 

range views. Pilots dynamically switch ranges to observe different factors of their 

current flight environment, so they were allowed to do this freely in the simulator 

environment. The range rings surrounded ownship position, moving and re-

centering along as the map moved below ownship. They were displayed as 

circles of light grey tint across the black background of the CSD, and can be 

seen in Figure 5 below. 
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Intruder Approach Geometry Levels. The approach geometries of 

intruder aircraft were of particular interest in this study.  This independent 

variable involved intruder aircraft, which varied from being either manned or 

unmanned as counterbalanced throughout scenarios. Intruder aircraft differed 

from distractor traffic in that there was only one intruder aircraft per scenario, and 

the intruder was always aimed at the participant’s ownship and would imminently 

cause a collision (or at the very least cause a severe breach of self-separation 

with ownship). All intruder aircraft were set at co-altitude with ownship. The 

Figure 5: Cockpit Situational Display in simple 2D mode (Alerts Disabled) 
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purpose of the intruder aircraft was to put it on a collision path, then instruct 

participants to press a button to pause the simulation once they felt the intruder 

reached the well clear boundary surrounding ownship. Once the simulation was 

paused, the location of the intruder ship was recorded by the researcher. 

Participants were told how to identify the difference between a manned and 

unmanned aircraft on the CSD, as it was depicted with a different icon on the 

CSD than other traffic. There were eight different approach geometries for the 

intruder aircraft and it approached from one geometry per scenario. The 

geometries are shown below in Figure 6, with four geometries approaching from 

the four cardinal directions (N, S, E, W), and another four set on a 45 offset from 

the original four, dissecting all four quadrants in half, totaling of eight geometries.  

 

Figure 6: Intruder approach angles depicted on CSD 
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Distractor Traffic Levels. There were two levels of the distractor traffic 

variable involved in the scenarios. This air traffic served to create a real-world 

representation of traffic loads that can be typically experienced in the immediate 

surrounding airspace of ownship. This traffic was all flown on pre-designated 

flight plans that were not controlled in real time. These aircraft were all fully 

simulated in the trials and were placed on straight and level flight paths that 

would not cause any conflicts with ownship. To accomplish this, all distractor 

traffic was flown at altitudes at least 2,000 feet above or below ownship, as 

indicated by their data tags on the display.  Depending on the scenario, each trial 

involved either a low level of distractor traffic consisting of 4 planes, or a medium 

level of traffic involving 8 planes. These quantities for traffic density were chosen 

based on previous research conducted with the CSD at NASA Ames, and are 

typical traffic levels for this type of research (Vu, Strybel, Battiste, & Johnson, 

2011; Johnson, Jordan, Liao, & Granada, 2003) 

Ownship Speed Levels. Two different levels of the ownship speed 

independent variable were designed into the scenarios. The goal for this 

independent variable was to test ownship speeds that represented a realistic 

middle ground for what speeds the two different pilot types would typically 

encounter.  Because ATP pilots normally fly at much faster speeds than General 

Aviation pilots, , the high speed selected was 250 knots since this is the 

maximum speed limit for controlled airspace within the NAS, and it is not 

inconceivable for GA pilots to reach these speeds (depending on the aircraft they 
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are piloting). For the lower speed, 150 knots was chosen since this is a bit faster 

than trainer aircraft normally fly, but should be a familiar speed within reach of 

most GA pilots and their typical aircraft. Different speeds for ownship were 

chosen in order to investigate if the WCB changes with the speed of ownship, 

possibly growing at higher speeds since objects in the sky are approaching 

ownship at much higher rates.  

Through the repetitive process of administering intruder aircraft from 

different approach angles surrounding ownship throughout 64 trials, the goal was 

to create a picture of the perceived WCB points for each pilot.  After recording 

the perceived boundary points for each pilot, we averaged the boundary points of 

each pilot type (8 GA pilots averaged across each other, and 8 Commercial pilots 

averaged across each other, separately) to depict the general WCB as perceived 

by that pilot type. We also created two different versions of the averaged WCB 

pictures by intruder aircraft type that is, manned vs. unmanned within each pilot 

type, to discover if intruder type had any impact on the boundary.  

Practice Scenarios.  Before data was collected in the experimental 

scenarios, all pilots had an opportunity to use the CSD through 5 practice 

scenarios. Although many pilots in this study were well familiar with 2-

dimensional traffic displays, these practice trials allowed pilots to better 

comprehend the unique properties of the CSD (such as directional traffic 

information and data tags next to traffic icons) allowing for roughly equal 

experience with   the simulator environment. The practice trials also helped 
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eliminate any simulator adaption issues that may have hindered the results of the 

experimental trials. During practice pilots had constant interaction and feedback 

from the Researcher, who ensured any questions about the display were 

thoroughly answered. In the practice trials, pilots were able to view the normal 

distractor traffic, as well as different scenario recreations with both manned and 

unmanned intruder aircraft in order to help them correctly differentiate the 

different icons representing different types of aircraft.  

Experimental Scenarios.  Once the practice scenarios were complete, 

the experimental trials began. The data from these scenarios were recorded for 

analysis. The experimental trials were created to encompass a full factorial 

design of all combinations of the above mentioned variables (two traffic levels, 

two ownship speeds, two intruder types, and eight intruder aircraft approach 

geometries), which yielded 64 different combinations, each of which were tested 

on each of the 17  participants  in the two pilot groups. Conflicts were pre-

scripted with the intruder aircraft always designed to be on a conflict/collision 

course with the straight and level flight path of ownship in every scenario. All 

scenarios began with ownship traveling at one of the two above mentioned cruise 

speeds, with distractor traffic and an intruder aircraft flying in surrounding 

airspace.  Intruders were designed to come into conflict with ownship within 

approximately two minutes for each scenario, yielding quick and easily 

administered trials. The only objective given to the pilots was to click the right 

mouse button on the computer running the simulation once an intruder aircraft 



32 
 

crossed what they felt was their perceived WCB, and believed the intruder could 

become problematic if it continued on its current trajectory. 

Procedure 

After institutional review board approval the experiment took place in a 

simulator room that was isolated from any distractions. Before beginning, pilots 

signed an informed consent form, then were briefed about the background of the 

study and current FAA regulations/definitions of similar concepts to the WCB 

concept to help differentiate and eliminate possible confusion of terms. Similar 

concepts to well clear included legal separation, collision avoidance procedures, 

and self-separation procedures (all previously explained above in the section 

entitled “Similar Terms and Concepts”).  Following the explanations, pilots were 

then briefed on the best and most recent FAA definition for the concept of well 

clear. After the pre-simulation brief, pilots had an opportunity to ask questions in 

order to clarify their understanding of the definitions of the similar concepts. The 

researcher replied thoroughly with great care given not to contaminate their 

notion of well clear, emphasizing the subjectivity of its current definition. 

After the briefing, pilots were then subjected to a series of trials designed 

to measure perceived WCBs from both manned and unmanned vehicles using a 

single display platform. The primary task accomplished by participants was the 

experimental task. No other tasks such as manual flying or monitoring of any 

other displays were involved, as this was a part task simulator-based study. 

Participants viewed the CSD with ownship located at the center of screen, and 
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other aircraft traffic surrounding their current location. Before data collection 

began, participants first had practice trials that consisted of five scenario runs, 

each lasting approximately 2 minutes. Again, during these practice runs pilots 

had the freedom to ask any questions they wished in order to better acclimate 

themselves to the CSD and the part-task simulator environment. 

After the practice runs, all participants went through a series of 64 

experimental trials in rapid succession, with appropriate breaks given at the 

participants’ discretion. The researcher controlled the initiation of each trial. The 

randomized experimental order allowed for a good distribution of exposure order 

for the different scenarios in this study. Each trial involved either 4 or 8 distractor 

aircraft that were evenly dispersed around the airspace of ownship, and 1 

intruder aircraft showing up from 8 different geometries surrounding ownship (1 

geometry per scenario), and the participants ended the scenario with a mouse 

click once that intruder had breached the WCB. Once each scenario ended, the 

position of each intruder, along with the distance from CPA, and tCPA were all 

recorded by the CSD software. Through this repetitive process we were able to 

create a spatial representation of the averaged WCB directly surrounding 

ownship by combining the WCB positions of all intruder aircraft for each 

participant’s trials and aggregating the measurement data.   

Measures 

Objective Metrics.  The objective metrics collected in this study were 

primarily aimed at measuring the WCB as it was perceived by pilots in all 
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scenarios. The intruder aircraft’s final recorded position, direction and speed in 

the simulator were used to calculate the main objective metrics for the perception 

of well clear. The WCB points were indicated by participants clicking a mouse 

button when the intruder passed what they considered the WCB, allowing for the 

intruder’s distance from ownship and time until CPA to be calculated in feet (all 

regarding the horizontal plane distance only).  The intruder aircraft approached 

ownship from eight different geometries surrounding it, and once all of the 

locations were mapped from all scenarios, an averaged top down view map of 

perceived WCBs for all intruders was created. Multiple WCB maps were created 

with the distance in feet metric, one for each variable collapsed across the 

others, as well as an overall WCB map.  In addition to measuring the WCB in 

distance from ownship (dOWN) in feet, it was also measured in tCPA in seconds. 

The tCPA for each approach angle was calculated as t (time) = d (distance) ÷ r 

(rate) with distance the length of last recorded position of the intruder ship to the 

point where ownship and intruder intersected. The main WCB maps of interest 

were for the two different pilot types, and for the two different intruder types.  The 

result was an accurate measureable comparative representation of different 

pilots’ perception of the WCB for both UAS and manned aircraft in the NAS. 

Subjective Metrics.  The subjective metrics utilized were designed to 

complement the objective metrics, along with providing further insight into the 

concept of the WCB. During the experimental trials, any significant comments 

made by the pilots regarding WCB or their perception of it were recorded by the 
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researcher, and were used to supplement the post-experiment questionnaire.  

There was no post-trial questionnaire administered, since each trial was short, 

and administering a questionnaire after each trial would be intrusive. After all 

experimental trials were complete, a post-experiment questionnaire was 

administered to the participants.  It consisted of 15 open-ended, and 5 rating 

scale questions designed to provide detailed insight about their thoughts and 

interpretations of the WCB (see Appendix D).  A final question asked the pilots to 

illustrate through drawing a picture what they perceived the WCB to be for both 

manned and unmanned aircraft surrounding ownship. The drawing questions 

provided a page with a blank CSD display, with ownship indicated at the center, 

and range unlabeled range rings were provided. They were asked to not only 

draw the shape of the WCB, but also indicate the appropriate range on the range 

rings to more accurately depict their perception. Drawings were done to 

determine if pilots’ perceived WCB matched their actual recorded WCB, another 

important human factors measure. The drawings were then sorted by common 

shapes/features and tallied up to summarize findings. This subjective feedback 

was compared to the objective data described above.  

Analysis 

 The WCB data were analyzed with a five-way mixed ANOVA to analyze 

differences across all variables and to assess any interactions. For all tests, 

alpha (significance level) was set to .05.  
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Results  

WCB Maps  

The results of all WCB measurements are presented below in the form of 

maps, with separate maps for the dOWN metric as well as the tCPA 

measurements.  These maps have not been subjected to any form of statistical 

analysis other than averaging results per intruder approach angle to aggregate 

mean values.  Helping to visualize measurements, multiple maps were created 

by collapsing data across every independent variable to show the effect each 

one had on the overall WCB map shape. All maps have ownship heading north 

(000°).  The seemingly inverse relationship between the dOWN and tCPA maps 

is due to closure rate. Distances are large with small times in front of ownship 

because closure rate was high, so pilots wanted the most distance because they 

had the least time to react in a head-on scenario. Distances are small and times 

are great in the rear because closure rates were small, so pilots allowed small 

distances due to high time to collision.  

Figure 7 below shows the difference in the WCB values across different 

intruder approach angles and collapsed across all other independent variables, 

with the head-on angle having over double the value of the rear value for dOWN. 

The peripherals appear largely uniform with very little variation compared to their 

horizontal symmetric counterpoint. The tCPA also follows suit, with an inverse 

relationship in values for head-on and rear directions as explained in the previous 
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paragraph. These maps are cohesive with the logic of closure speed and 

time/distance needed to safely react throughout different encounter situations.  

 

 

The following maps in Figures 8 through 15 are provided to display the 

effects that each independent variable (IV) had on the WCB (pilot type, ownship 

speed, intruder type, and traffic levels), collapsing across the effects of all other 

IVs except approach angle.  They visually highlight isolated effects, which may or 

may not be statistically significant, allowing for good conception of each IV’s role 

in WCB perception. Ignoring all other IVs, Figures 8 and 9 show between pilot 

type maps, with GA pilots having a much larger WCB than ATP pilots. Each GA 

pilot data point is several thousand feet greater than the ATP pilot dOWN values. 

Figure 7. WCB by Direction 
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The tCPA values follow suit, and show the GA pilots having greater values by at 

least 3 seconds, and as much as 16 seconds difference from ATP pilots.     

Figure 8. dOWN of WCB by Pilot Type 

Figure 9. tCPA of WCB by Pilot Type 
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In Figures 10 and 11, ignoring all other IVs, ownship speed appears to 

change the values of dOWN measurements slightly, with small increases in the 

higher speed scenarios. The shape of the 250 knot map is also considerably 

wider specifically in the 315° and 045° angles (or the forward 45° angles from 

ownship). Conversely, the tCPA values are all larger on the 150 knot map, 

except for the head-on angle of 000°, which appeared less in the 150 knot map 

compared to the 250 knot map. Reasoning for this is provided in the Discussion 

section.  
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Figure 10. dOWN of WCB by Ownship Speed 

Figure 11. tCPA of WCB by Ownship Speed 
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In Figures 12 and 13 we can observe interesting results. There appear to 

be mixed dOWN value differences across intruder types. The manned intruders 

have slightly larger dOWN values for the head-on and rear approach angles, as 

well as the 90° and 270° angles than UAS intruders. However, the manned 

intruders have slightly smaller values for the 315°, 45°, 225°, and 135° angles 

than UAS. The tCPA values also follow suit here, with nearly identical difference 

patters.  
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Figure 12. dOWN WCB by Intruder Type 

Figure 13. tCPA of WCB by Intruder Type 
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 Below, Figures 14 and 15 show slightly smaller dOWN values in the 

medium background traffic level (8 background aircraft) than the low traffic level 

(4 background aircraft) scenarios. The tCPA values followed suit here, but with 

slightly less noticeable differences. This trend was evident for all angle directions 

in these maps.   
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Figure 14. dOWN of WCB by Traffic Level 

Figure 15. tCPA of WCB by Traffic Level 
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Objective Metrics Results   

The WCB was measured in two ways to provide a full understanding of its 

parameters, measured by dOWN in feet, and tCPA in seconds.  Therefore, two 

five-way mixed analyses of variance (ANOVA) were used to analyze these 

quantitative WCB measures. The five factors in the mixed ANOVAs were the 

between subjects variable of pilot type and intruder approach angle, intruder 

type, ownship speed, and traffic level.  

Distance from Ownship (dOWN). The first five-way ANOVA was 

performed on the dOWN measure, which was the distance from ownship in feet 

indicating the WCB. This consisted of an 8 x 2 x 2 x 2 x 2 ANOVA for significant 

differences among approach angles, intruder types, ownship speeds, traffic 

levels, and pilot types. Results found two significant interactions and three main 

effects. A significant three-way interaction was evident among intruder type, 

ownship speed, and pilot type, F(1, 32) = 4.56, p = .041.  This indicates that the 

effect of intruder type depends on ownship speed and that differs across pilot 

type. A significant two-way interaction was also observed with ownship speed 

and intruder approach angle, F(5,175) = 6.85, p = .004.  Main effects were also 

found for intruder approach angle, F(1, 55) = 27.68, p < 0.001, ownship speed, 

F(1, 32) = 9.76, p = 0.004, and traffic level, F(1, 32) = 5, p = 0.045.  Besides 

these interactions, no other effects for the metric of dOWN in feet were found to 

be significant. For all dOWN means and standard deviations, as well as full 

dOWN interaction results, see Tables 1 and 2 below. 
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Table 1: Means and Standard Deviations for dOWN in feet 
Scenario                                                                          Pilot Type Mean Std. Deviation 

Manned Intruder_Low Traffic_150knots_Angle 1 ATP 13752 4347 

GA 17300 15439 

Total 15526 11313 

Manned Intruder_Low Traffic_150knots_Angle 2 ATP 17389 7788 

GA 24532 18106 

Total 20960 14195 

Manned Intruder_Low Traffic_150knots_Angle 3 ATP 24170 13004 

GA 27453 16515 

Total 25812 14732 

Manned Intruder_Low Traffic_150knots_Angle 4 ATP 23269 13642 

GA 29931 17533 

Total 26600 15834 

Manned Intruder_Low Traffic_150knots_Angle 5 ATP 35069 25209 

GA 37173 23135 

Total 36121 23849 

Manned Intruder_Low Traffic_150knots_Angle 6 ATP 26588 15086 

GA 28761 16694 

Total 27675 15707 

Manned Intruder_Low Traffic_150knots_Angle 7 ATP 22944 13716 

GA 29012 16473 

Total 25978 15241 

Manned Intruder_Low Traffic_150knots_Angle 8 ATP 18465 8811 

GA 25112 15962 

Total 21789 13136 

Manned Intruder_Low Traffic_250knots_Angle 1 ATP 13593 4434 

GA 17935 13557 

Total 15764 10173 

Manned Intruder_Low Traffic_250knots_Angle 2 ATP 19068 9729 

GA 22508 12579 

Total 20788 11210 

Manned Intruder_Low Traffic_250knots_Angle 3 ATP 23510 14718 

GA 30366 19799 

Total 26938 17527 

Manned Intruder_Low Traffic_250knots_Angle 4 ATP 30790 20730 

GA 30803 17245 

Total 30797 18776 

Manned Intruder_Low Traffic_250knots_Angle 5 ATP 34710 27162 

GA 39142 24306 

Total 36926 25480 

Manned Intruder_Low Traffic_250knots_Angle 6 ATP 29474 21650 

GA 31829 19106 

Total 30652 20141 

Manned Intruder_Low Traffic_250knots_Angle 7 ATP 23623 15083 

GA 30070 19594 

Total 26846 17526 

Manned Intruder_Low Traffic_250knots_Angle 8 ATP 16665 8272 

GA 22335 12727 
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Total 19500 10954 

Manned Intruder_Medium Traffic_150knots_Angle 1 ATP 17606 19959 

GA 16700 12591 

Total 17153 16438 

Manned Intruder_Medium Traffic_150knots_Angle 2 ATP 18092 9254 

GA 23182 10365 

Total 20637 10014 

Manned Intruder_Medium Traffic_150knots_Angle 3 ATP 22061 12871 

GA 26644 15158 

Total 24353 14040 

Manned Intruder_Medium Traffic_150knots_Angle 4 ATP 25054 16788 

GA 26527 16598 

Total 25791 16455 

Manned Intruder_Medium Traffic_150knots_Angle 5 ATP 34427 25357 

GA 33808 17907 

Total 34117 21617 

Manned Intruder_Medium Traffic_150knots_Angle 6 ATP 24865 14726 

GA 28165 18153 

Total 26515 16362 

Manned Intruder_Medium Traffic_150knots_Angle 7 ATP 21436 10901 

GA 27267 13723 

Total 24351 12557 

Manned Intruder_Medium Traffic_150knots_Angle 8 ATP 17492 7987 

GA 22307 11986 

Total 19899 10322 

Manned Intruder_Medium Traffic_250knots_Angle 1 ATP 14771 5696 

GA 18249 13035 

Total 16510 10061 

Manned Intruder_Medium Traffic_250knots_Angle 2 ATP 17123 8127 

GA 22247 12606 

Total 19685 10763 

Manned Intruder_Medium Traffic_250knots_Angle 3 ATP 24640 17047 

GA 31023 19514 

Total 27831 18331 

Manned Intruder_Medium Traffic_250knots_Angle 4 ATP 28275 20025 

GA 34294 19524 

Total 31285 19712 

Manned Intruder_Medium Traffic_250knots_Angle 5 ATP 33239 24256 

GA 39645 29035 

Total 36442 26544 

Manned Intruder_Medium Traffic_250knots_Angle 6 ATP 28134 16324 

GA 30597 19286 

Total 29366 17638 

Manned Intruder_Medium Traffic_250knots_Angle 7 ATP 22547 14175 

GA 31419 17878 

Total 26983 16513 

Manned Intruder_Medium Traffic_250knots_Angle 8 ATP 16869 9038 

GA 22801 12814 

Total 19835 11326 
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UAS Intruder_Low Traffic_150knots_Angle 1 ATP 12642 3214 

GA 17037 13184 

Total 14840 9708 

UAS Intruder_Low Traffic_150knots_Angle 2 ATP 18757 9466 

GA 25570 15569 

Total 22163 13150 

UAS Intruder_Low Traffic_150knots_Angle 3 ATP 20502 12055 

GA 27616 15682 

Total 24059 14239 

UAS Intruder_Low Traffic_150knots_Angle 4 ATP 26234 16800 

GA 28682 18149 

Total 27458 17265 

UAS Intruder_Low Traffic_150knots_Angle 5 ATP 32251 24064 

GA 39195 26023 

Total 35723 24930 

UAS Intruder_Low Traffic_150knots_Angle 6 ATP 26235 17350 

GA 29632 17149 

Total 27934 17074 

UAS Intruder_Low Traffic_150knots_Angle 7 ATP 22344 11746 

GA 26521 13031 

Total 24433 12399 

UAS Intruder_Low Traffic_150knots_Angle 8 ATP 17863 8697 

GA 26373 17808 

Total 22118 14459 

UAS Intruder_Low Traffic_250knots_Angle 1 ATP 13688 4570 

GA 19386 16228 

Total 16537 12090 

UAS Intruder_Low Traffic_250knots_Angle 2 ATP 17919 8747 

GA 22673 13176 

Total 20296 11273 

UAS Intruder_Low Traffic_250knots_Angle 3 ATP 22708 13906 

GA 31491 19208 

Total 27099 17103 

UAS Intruder_Low Traffic_250knots_Angle 4 ATP 31932 24172 

GA 34891 20296 

Total 33411 22029 

UAS Intruder_Low Traffic_250knots_Angle 5 ATP 36031 28417 

GA 39207 25515 

Total 37619 26642 

UAS Intruder_Low Traffic_250knots_Angle 6 ATP 31749 22045 

GA 34541 19145 

Total 33145 20380 

UAS Intruder_Low Traffic_250knots_Angle 7 ATP 23880 16240 

GA 29801 19925 

Total 26840 18149 

UAS Intruder_Low Traffic_250knots_Angle 8 ATP 18943 9211 

GA 21253 12113 

Total 20098 10661 

UAS Intruder_Medium Traffic_150knots_Angle 1 ATP 14062 4491 
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GA 14562 4738 

Total 14312 4553 

UAS Intruder_Medium Traffic_150knots_Angle 2 ATP 17715 8197 

GA 22798 13944 

Total 20256 11554 

UAS Intruder_Medium Traffic_150knots_Angle 3 ATP 20671 9089 

GA 27622 15934 

Total 24146 13251 

UAS Intruder_Medium Traffic_150knots_Angle 4 ATP 24389 14562 

GA 29804 18592 

Total 27097 16672 

UAS Intruder_Medium Traffic_150knots_Angle 5 ATP 29598 18579 

GA 37846 20891 

Total 33722 19912 

UAS Intruder_Medium Traffic_150knots_Angle 6 ATP 25288 17559 

GA 29859 16335 

Total 27573 16859 

UAS Intruder_Medium Traffic_150knots_Angle 7 ATP 21703 12363 

GA 29678 14526 

Total 25690 13885 

UAS Intruder_Medium Traffic_150knots_Angle 8 ATP 17632 9483 

GA 21858 11243 

Total 19745 10464 

UAS Intruder_Medium Traffic_250knots_Angle 1 ATP 13549 4429 

GA 14115 4936 

Total 13832 4627 

UAS Intruder_Medium Traffic_250knots_Angle 2 ATP 18426 8963 

GA 23382 13968 

Total 20904 11826 

UAS Intruder_Medium Traffic_250knots_Angle 3 ATP 23164 14079 

GA 28853 17478 

Total 26009 15892 

UAS Intruder_Medium Traffic_250knots_Angle 4 ATP 31322 22423 

GA 35065 19928 

Total 33194 20974 

UAS Intruder_Medium Traffic_250knots_Angle 5 ATP 33690 25922 

GA 36187 20076 

Total 34939 22865 

UAS Intruder_Medium Traffic_250knots_Angle 6 ATP 28722 17616 

GA 35363 21049 

Total 32042 19407 

UAS Intruder_Medium Traffic_250knots_Angle 7 ATP 23344 15602 

GA 28955 19903 

Total 26150 17838 

UAS Intruder_Medium Traffic_250knots_Angle 8 ATP 18152 9453 

GA 22265 11183 

Total 20208 10408 
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Table 2: Five-way Mixed ANOVA Results for dOWN in feet (p* = significant) 

Effect F df p 

Angle 27.68 2, 56  < .001* 

IntruderType <1 1, 32 .692 

OwnSpeed 9.75 1, 32 .004* 

TrafficLevel 4.35 1, 32 .045* 

Angle * Pilot_Type <1 2, 56 .703 

IntruderType * Angle 2.86 5, 175 .014* 

IntruderType * OwnSpeed 1.08 1, 32 .306 

IntruderType * Pilot_Type <1 1, 32 .407 

IntruderType * TrafficLevel 1.16 1, 32 .289 

OwnSpeed * Angle 6.85 5, 175  < .001* 

OwnSpeed * Pilot_Type <1 1, 32 .989 

TrafficLevel * Angle <1 5, 146 .701 

TrafficLevel * OwnSpeed <1 1, 32 .509 

TrafficLevel * Pilot_Type <1 1, 32 .764 

IntruderType * Angle * Pilot_Type <1 5, 175 .489 

IntruderType * OwnSpeed * Angle <1 5, 176 .920 

IntruderType * OwnSpeed * Pilot_Type 4.56 1, 32 .041* 

IntruderType * TrafficLevel * Angle <1 5, 171 .604 

IntruderType * TrafficLevel * OwnSpeed 1.44 1, 32 .239 

IntruderType * TrafficLevel * Pilot_Type <1 1, 32 .967 

OwnSpeed * Angle * Pilot_Type <1 5, 175 .768 

TrafficLevel * Angle * Pilot_Type 1.37 5, 146 .243 

TrafficLevel * OwnSpeed * Angle <1 6, 182 .731 

TrafficLevel * OwnSpeed * Pilot_Type 1.83 1, 32 .186 

IntruderType * OwnSpeed * Angle * Pilot_Type 2 5, 176 .165 

IntruderType * TrafficLevel * Angle * Pilot_Type 1.57 5, 171 .927 

IntruderType * TrafficLevel * OwnSpeed * Angle <1 6, 183 .599 

IntruderType * TrafficLevel * OwnSpeed * Pilot_Type 3.26 1, 32 .080 

TrafficLevel * OwnSpeed * Angle * Pilot_Type <1 6, 182 .696 

IntruderType * TrafficLevel * OwnSpeed * Angle * Pilot_Type 1.27 6, 183 .277 

    

Tests of Between-Subjects Effects F df p 

Pilot_Type  <1 1, 32 .337 
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Interaction Plots for WCB Distance from Ownship Metrics. Figure 16a 

is one of two figures that depicts the three way interaction present among 

intruder type, ownship speed, and pilot type measured by dOWN.  It shows the 

interaction for ATPs. We can see how the effect of intruder and ownship speed 

interact, and when compared to Figure 16b below, how this interaction differs 

across pilot type. In Figure 16a, it evident that when ATPs traveled at the slower 

speed of 150 knots, they averaged a smaller WCB for UAS than manned 

intruders. However, when traveling at the higher speed of 250 knots, they 

indicated a significantly larger WCB for UAS over manned intruders.    
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Figure 16a. Means of WCB by Ownship Speed between Intruder Types for ATPs 
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Figure 16b is the second of two depicting the three way interaction 

between intruder type, ownship speed, and pilot measured by dOWN, showing 

the effects of ownship speed and intruder type for GA pilots. We can see the 

effect of intruder and ownship speed for GA pilots differ from ATPs when 

compared to Figure 16a above. Here in Figure 16b it is evident that regardless of 

whether GA pilots were travelling at the slower or faster speeds, they averaged a 

larger WCB for UAS than manned intruders. This differs significantly from the 

WCB for ATPs, which changed between ownship speeds depending on intruder 

types. 
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Figure 16b. Means of WCB by Ownship Speed between Intruder Types for GA Pilots 
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Figure 18 shows how the effect of ownship speed on the WCB depends 

on intruder approach angle when measured by dOWN for all pilots. So, aside 

from pilots averaging different WCB distances depending on intruder approach 

angle, these distances also differed significantly based on ownship speed. The 

largest differences in the WCB between ownship speeds are at the 315° and 

045° angles (all relative to ownship bearing 000°).  Oddly, we also see the WCB 
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Figure 17. Means of WCB by Intruder Approach Angle for all Pilots 
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having smaller values at the higher speed of 250 knots from the 225° and 135° 

angles, an opposite trend from all other angles. 

Time to Closest Point of Approach (tCPA). The second five-way ANOVA 

was performed on the tCPA measurement results, which were the times until 

ownship was projected to intersect flight paths (closest point of approach) with 

ownship from each of the eight intruder approach angles.  This 8x2x2x2x2 

ANOVA was used to analyze these data. Three interactions (see Figures 18-20) 

and two main effects were statistically significant. There was a significant four-

way interaction among  intruder type, traffic level, ownship speed, and intruder 

approach angle, F(6,200) = 6.28, p = 0.008.  This shows that the effect of 

intruder type depends on traffic level and ownship speed, and this relationship 

differs across intruder approach angles. A significant three-way interaction was 

found among intruder type, traffic level, and ownship speed, F(1, 32) = 4.16, p = 

0.049.  This means that the effect of intruder type depends on traffic level, which 

differs across ownship speeds. A significant two-way interaction was observed 

between ownship speed and intruder approach angle, F(5,170) = 6.85, p < 0.001, 

indicating that the effect of ownship speed depends on intruder approach angle.  

Main effects were also found for intruder approach angle, F(2, 83) = 370.02, p < 

0.001, and for ownship speed, F(1, 32) = 8.57, p = 0.006.  Aside from these 

interactions, all other effects for the metric of tCPA in feet were not significant. 

For all tCPA means and standard deviations, as well as full tCPA interaction 

results, see Tables 3 and 4 below. 
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Table 3: Means and Standard Deviations for tCPA in seconds 
Scenario                                                                   Pilot Type Mean Std. Deviation 

Manned Intruder_Low Traffic_150knots_Angle 1 ATP 146.0471 23.29343 

GA 156.5706 44.36533 

Total 151.3088 35.29752 

Manned Intruder_Low Traffic_150knots_Angle 2 ATP 58.0235 26.14459 

GA 78.3118 51.06435 

Total 68.1676 41.25178 

Manned Intruder_Low Traffic_150knots_Angle 3 ATP 53.7176 26.39650 

GA 60.3824 33.51450 

Total 57.0500 29.89755 

Manned Intruder_Low Traffic_150knots_Angle 4 ATP 42.0353 21.61458 

GA 52.6059 27.85883 

Total 47.3206 25.13155 

Manned Intruder_Low Traffic_150knots_Angle 5 ATP 32.1176 29.78905 

GA 30.5235 30.60538 

Total 31.3206 29.74988 

Manned Intruder_Low Traffic_150knots_Angle 6 ATP 48.0824 23.95666 

GA 51.5118 26.54058 

Total 49.7971 24.95642 

Manned Intruder_Low Traffic_150knots_Angle 7 ATP 51.0882 27.84374 

GA 63.4000 33.46171 

Total 57.2441 30.94853 

Manned Intruder_Low Traffic_150knots_Angle 8 ATP 61.9000 29.93881 

GA 81.8824 46.25137 

Total 71.8912 39.68144 

Manned Intruder_Low Traffic_250knots_Angle 1 ATP 138.4059 30.41060 

GA 154.3353 45.25983 

Total 146.3706 38.81930 

Manned Intruder_Low Traffic_250knots_Angle 2 ATP 62.5235 30.07546 

GA 71.2412 33.69967 

Total 66.8824 31.76103 

Manned Intruder_Low Traffic_250knots_Angle 3 ATP 42.3706 24.52338 

GA 53.8000 33.03642 

Total 48.0853 29.23011 

Manned Intruder_Low Traffic_250knots_Angle 4 ATP 42.3235 26.41904 

GA 42.2941 22.00033 

Total 42.3088 23.93912 

Manned Intruder_Low Traffic_250knots_Angle 5 ATP 43.9882 32.00306 

GA 49.1706 28.64910 

Total 46.5794 30.02411 
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Manned Intruder_Low Traffic_250knots_Angle 6 ATP 40.7588 27.56726 

GA 43.7118 24.33408 

Total 42.2353 25.64781 

Manned Intruder_Low Traffic_250knots_Angle 7 ATP 42.7529 25.00258 

GA 53.4059 32.76657 

Total 48.0794 29.20412 

Manned Intruder_Low Traffic_250knots_Angle 8 ATP 54.5765 25.54996 

GA 70.1412 34.11006 

Total 62.3588 30.70878 

Manned Intruder_Medium Traffic_150knots_Angle 1 ATP 139.0353 28.49995 

GA 155.7588 38.24644 

Total 147.3971 34.27953 

Manned Intruder_Medium Traffic_150knots_Angle 2 ATP 60.2824 31.36322 

GA 76.9000 33.09732 

Total 68.5912 32.85071 

Manned Intruder_Medium Traffic_150knots_Angle 3 ATP 49.4353 26.12247 

GA 58.7412 30.76028 

Total 54.0882 28.49421 

Manned Intruder_Medium Traffic_150knots_Angle 4 ATP 44.8765 26.64208 

GA 47.2000 26.37314 

Total 46.0382 26.12985 

Manned Intruder_Medium Traffic_150knots_Angle 5 ATP 31.2647 30.25213 

GA 25.8412 22.26845 

Total 28.5529 26.30084 

Manned Intruder_Medium Traffic_150knots_Angle 6 ATP 45.3294 23.37880 

GA 50.5824 28.85453 

Total 47.9559 25.99591 

Manned Intruder_Medium Traffic_150knots_Angle 7 ATP 48.0176 22.14182 

GA 59.8588 27.87062 

Total 53.9382 25.50361 

Manned Intruder_Medium Traffic_150knots_Angle 8 ATP 58.8412 26.82881 

GA 73.5941 35.88371 

Total 66.2176 32.08362 

Manned Intruder_Medium Traffic_250knots_Angle 1 ATP 145.9235 34.74058 

GA 157.1824 44.47027 

Total 151.5529 39.70714 

Manned Intruder_Medium Traffic_250knots_Angle 2 ATP 56.5118 25.12491 

GA 70.5176 33.74925 

Total 63.5147 30.14699 

Manned Intruder_Medium Traffic_250knots_Angle 3 ATP 44.2882 28.37263 

GA 54.8882 32.57315 
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Total 49.5882 30.55612 

Manned Intruder_Medium Traffic_250knots_Angle 4 ATP 39.1235 25.47956 

GA 46.7529 24.90535 

Total 42.9382 25.10977 

Manned Intruder_Medium Traffic_250knots_Angle 5 ATP 42.2353 28.57241 

GA 49.7647 34.26228 

Total 46.0000 31.29840 

Manned Intruder_Medium Traffic_250knots_Angle 6 ATP 39.0235 20.75595 

GA 42.1294 24.60236 

Total 40.5765 22.46840 

Manned Intruder_Medium Traffic_250knots_Angle 7 ATP 40.8824 23.63769 

GA 55.6647 29.87541 

Total 48.2735 27.56694 

Manned Intruder_Medium Traffic_250knots_Angle 8 ATP 55.2059 27.96083 

GA 72.0000 35.78049 

Total 63.6029 32.74798 

UAS Intruder_Low Traffic_150knots_Angle 1 ATP 141.5882 23.56390 

GA 157.1412 35.96140 

Total 149.3647 30.96028 

UAS Intruder_Low Traffic_150knots_Angle 2 ATP 62.4647 32.12291 

GA 82.3706 44.84892 

Total 72.4176 39.71909 

UAS Intruder_Low Traffic_150knots_Angle 3 ATP 46.2824 24.46925 

GA 60.7118 31.82558 

Total 53.4971 28.89665 

UAS Intruder_Low Traffic_150knots_Angle 4 ATP 46.7647 26.65774 

GA 50.6353 28.83301 

Total 48.7000 27.41321 

UAS Intruder_Low Traffic_150knots_Angle 5 ATP 28.5412 28.41751 

GA 34.5059 33.89339 

Total 31.5235 30.94643 

UAS Intruder_Low Traffic_150knots_Angle 6 ATP 47.5235 27.56174 

GA 52.9118 27.26951 

Total 50.2176 27.13557 

UAS Intruder_Low Traffic_150knots_Angle 7 ATP 49.8529 23.83517 

GA 58.3588 26.47976 

Total 54.1059 25.18035 

UAS Intruder_Low Traffic_150knots_Angle 8 ATP 60.0471 29.21288 

GA 84.9118 50.15820 

Total 72.4794 42.34167 

UAS Intruder_Low Traffic_250knots_Angle 1 ATP 140.7294 32.54848 
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GA 160.4588 48.23870 

Total 150.5941 41.73896 

UAS Intruder_Low Traffic_250knots_Angle 2 ATP 58.9765 27.03739 

GA 71.7118 35.46921 

Total 65.3441 31.72035 

UAS Intruder_Low Traffic_250knots_Angle 3 ATP 41.0353 23.14716 

GA 55.6706 32.04522 

Total 48.3529 28.51030 

UAS Intruder_Low Traffic_250knots_Angle 4 ATP 43.7882 30.82410 

GA 47.5176 25.90367 

Total 45.6529 28.09951 

UAS Intruder_Low Traffic_250knots_Angle 5 ATP 45.5588 33.48923 

GA 49.2529 30.08758 

Total 47.4059 31.40385 

UAS Intruder_Low Traffic_250knots_Angle 6 ATP 43.6235 28.07858 

GA 47.1294 24.43133 

Total 45.3765 25.97739 

UAS Intruder_Low Traffic_250knots_Angle 7 ATP 43.1000 27.09986 

GA 52.9765 33.30448 

Total 48.0382 30.31480 

UAS Intruder_Low Traffic_250knots_Angle 8 ATP 61.6118 28.48850 

GA 67.7294 35.00791 

Total 64.6706 31.58082 

UAS Intruder_Medium Traffic_150knots_Angle 1 ATP 147.2706 24.92155 

GA 155.0588 21.27087 

Total 151.1647 23.15437 

UAS Intruder_Medium Traffic_150knots_Angle 2 ATP 59.0000 27.96672 

GA 74.7471 42.08414 

Total 66.8735 36.08036 

UAS Intruder_Medium Traffic_150knots_Angle 3 ATP 46.6059 18.45367 

GA 60.7176 32.33911 

Total 53.6618 26.89734 

UAS Intruder_Medium Traffic_150knots_Angle 4 ATP 43.8059 23.09403 

GA 52.4235 29.55490 

Total 48.1147 26.48067 

UAS Intruder_Medium Traffic_150knots_Angle 5 ATP 24.3000 19.75373 

GA 32.0353 26.02698 

Total 28.1676 23.08772 

UAS Intruder_Medium Traffic_150knots_Angle 6 ATP 46.0353 27.86878 

GA 53.2588 25.96681 

Total 49.6471 26.77551 
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UAS Intruder_Medium Traffic_150knots_Angle 7 ATP 48.5765 25.09000 

GA 64.7706 29.50095 

Total 56.6735 28.19099 

UAS Intruder_Medium Traffic_150knots_Angle 8 ATP 59.1235 32.09799 

GA 72.6529 35.30462 

Total 65.8882 33.92641 

UAS Intruder_Medium Traffic_250knots_Angle 1 ATP 141.2412 34.27423 

GA 146.7176 30.10586 

Total 143.9794 31.88630 

UAS Intruder_Medium Traffic_250knots_Angle 2 ATP 60.5412 27.69574 

GA 73.5588 36.82813 

Total 67.0500 32.75910 

UAS Intruder_Medium Traffic_250knots_Angle 3 ATP 41.8000 23.45365 

GA 51.2706 29.15012 

Total 46.5353 26.49142 

UAS Intruder_Medium Traffic_250knots_Angle 4 ATP 43.0000 28.56851 

GA 47.7412 25.41739 

Total 45.3706 26.73457 

UAS Intruder_Medium Traffic_250knots_Angle 5 ATP 42.7824 30.54004 

GA 45.6706 23.64191 

Total 44.2265 26.93260 

UAS Intruder_Medium Traffic_250knots_Angle 6 ATP 39.7765 22.38215 

GA 48.2294 26.85370 

Total 44.0029 24.71697 

UAS Intruder_Medium Traffic_250knots_Angle 7 ATP 42.2059 26.01561 

GA 51.5588 33.25643 

Total 46.8824 29.78122 

UAS Intruder_Medium Traffic_250knots_Angle 8 ATP 59.1647 29.24060 

GA 71.0235 32.70456 

Total 65.0941 31.13459 
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Table 4: Effects of all interactions for tCPA in seconds (p* = significant) 
 
 

Effect F df p 

Angle 370.02 3, 83  < .001* 

IntruderType <1 1, 32 .460 

OwnSpeed 8.57 1, 32 .006* 

TrafficLevel 3.87 1, 32 .058 

Angle * Pilot_Type 1.70 3, 83 .179 

IntruderType * Angle 1.36 4, 139 .250 

IntruderType * OwnSpeed <1 1, 32 .782 

IntruderType * Pilot_Type <1 1, 32 .644 

IntruderType * TrafficLevel <1 1, 32 .579 

OwnSpeed * Angle 19.85 5, 171  < .001* 

OwnSpeed * Pilot_Type <1 1, 32 .339 

TrafficLevel * Angle <1 4, 118 .773 

TrafficLevel * OwnSpeed 3.05 1, 32 .090 

TrafficLevel * Pilot_Type <1 1, 32 .787 

IntruderType * Angle * Pilot_Type 1.02 4, 139 .405 

IntruderType * OwnSpeed * Angle <1 6, 183 .890 

IntruderType * OwnSpeed * Pilot_Type 3.35 1, 32 .076 

IntruderType * TrafficLevel * Angle <1 5, 163 .875 

IntruderType * TrafficLevel * OwnSpeed 4.19 1, 32 .049* 

IntruderType * TrafficLevel * Pilot_Type <1 1, 32 .356 

OwnSpeed * Angle * Pilot_Type <1 5, 171 .543 

TrafficLevel * Angle * Pilot_Type <1 4, 118 .455 

TrafficLevel * OwnSpeed * Angle <1 6, 202 .572 

TrafficLevel * OwnSpeed * Pilot_Type <1 1, 32 .378 

IntruderType * OwnSpeed * Angle * Pilot_Type 1.24 6, 183 .288 

IntruderType * TrafficLevel * Angle * Pilot_Type <1 5, 163 .496 

IntruderType * TrafficLevel * OwnSpeed * Angle 2.97 6, 201 .008* 

IntruderType * TrafficLevel * OwnSpeed * Pilot_Type 1.29 1, 32 .265 

TrafficLevel * OwnSpeed * Angle * Pilot_Type 1.62 6, 202 .140 

IntruderType * TrafficLevel * OwnSpeed * Angle * Pilot_Type 1.16 6, 201 .328 

      

Tests of Between-Subjects Effects F df p 

Pilot_Type 1.20 1, 32 .282 
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 Interaction Plots for WCB Time to Closest Point of Approach Metrics. 

Figures 18a through 18d collectively depict the four-way interaction observed 

among intruder type, traffic level, ownship speed, and intruder approach angle. 

Figure 18a represents a portion of the four-way interaction showing average time 

to closest point of approach by intruder approach angle across ownship speeds 

for ATPs interacting with manned intruders.  Figure 18b shows another portion of 

the same interaction, but for GA pilots interacting with manned intruders.  In both 

of these plots we can see ATP and GA pilots averaging a significantly larger 

tCPA when traveling at the lower speed of 150 knots for all intruder approach 

angles, except for 000° (the head-on angle). In the head-on angle we can see a 

significantly lower tCPA value compared to all other angles. This head-on value 

difference is even more drastic in the GA pilot plot in Figure 18b when compared 

to the ATP plot in Figure 18a.  Additionally, we can see that ownship speed had 

less of an effect on tCPA for GA pilots than for ATPs in this particular interaction. 

While Figures 19 and 20 only represent half of the four-way interaction (all 

interactions with manned intruders only), Figures 19 and 20 below them 

represent the remaining portions of the interaction.   
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150kts 
250kts 

Figure 18b. Mean Time to CPA by Intruder Approach Angle between Ownship 
Speeds for GA Pilots interacting with Manned Intruders 
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Figure 18a. Mean Time to CPA by Intruder Approach Angle between Ownship 
Speeds for ATPs interacting with Manned Intruders 
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Figures 18c and 18d depict the second half of the four-way interaction 

observed among intruder type, traffic level, ownship speed, and intruder 

approach angle. Figure 18c represents the portion of the four-way interaction 

showing average time to closest point of approach by intruder approach angle 

across ownship speeds for ATPs interacting with UAS intruders.  Figure 18d 

shows another portion of the same interaction, but for GA pilots interacting with 

UAS intruders.  Just as seen in the first two plots for this interaction in Figures 19 

and 20, both of the plots in Figures 21 and 22 show ATP and GA pilots averaging 

a significantly larger tCPA when traveling at the lower speed of 150 knots for all 

intruder approach angles, except for 000° (the head-on angle). In the head-on 

angle we can see a significantly lower tCPA value compared to all other angles. 

However, this time the head-on value difference is more drastic in the ATPs’ (as 

opposed to with GA pilots in Figures 19 and 20) plot in Figure 18c when 

compared to the GA pilots plot in Figure 18d.  Additionally, we can see that 

ownship speed had less of an effect on tCPA for GA pilots than for ATPs in this 

particular interaction.  The last thing  to notice in this four-way interaction is that 

we can see that the effect of ownship speed had greater differences in tCPA 

values with ATPs interacting with manned intruders (Figure 18b) when compared 

to ATPs interacting with UAS intruders (Figure 18d), except of course for the 

head-on condition where the opposite is true.  
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Figure 18c. Mean Time to CPA by Intruder Approach Angle between Ownship 
Speeds for ATPs interacting with UAS Intruders 
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Figure 18d. Mean Time to CPA by Intruder Approach Angle between Ownship 
Speeds for GA Pilots interacting with UAS Intruders 
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Figures 19a and 19b below depict the three way interaction among 

intruder types, traffic levels, and ownship speeds. Figure 19a shows average 

time to CPA for intruder types based on ownship speed in low traffic level.  This 

plot indicates that while interacting with the low background traffic level, all pilots 

had a slightly larger value of the WCB for the manned over UAS intruders at the 

lower ownship speed of 150 knots, while having a significantly smaller WCB for 

manned compared to UAS intruders at the higher ownship speed of 250 knots. 

Conversely, we can see in Figure 19b that when interacting with the medium 

background traffic level all pilots showed a significantly larger WCB for UAS 

compared to manned intruders at the lower ownship speed, and a slightly smaller 

WCB for UAS over manned intruders at the higher ownship speed.  

The final plot in Figure 20 below depicts the significant two-way interaction 

between ownship speed and intruder approach angle when measured by time to 

CPA. Similar to the findings mentioned previously for the dOWN measurements, 

the plot shows larger values for the slower ownship speed of 150 knots versus 

the faster speed of 250 knots due to the difference in closure rate given the 

intruder angle. Again we see an exception for the 000° or head-on angle where 

the value trend reverses from all other angle-ownship speed differences.  In the 

head-on angle we see a significantly lower tCPA WCB value for the 150 knot 

ownship speed as opposed to other angles and ownship speeds.  
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Figure 19a. Time to CPA for Intruder Types based on Ownship Speed in Low 
Traffic Level 
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Figure 19b. Time to CPA for Intruder Types based on Ownship Speed in Medium 
Traffic Level 
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Figure 20. Time to CPA by intruder Approach Angle between Ownship Speeds 
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Subjective Metrics Results   

Pilot post-simulation subjective questionnaires are listed by question type: 

WCB perception, CDTI/CSD technology preferences, manned vs. unmanned 

intruder types, UAS specific questions, and other pilot type opinions. The tables 

below show responses given by pilots, broken down into percentages of overall 

responses and also corresponding responses by pilot type. If any instance of 

answer percentages does not sum to 100%, it was due to some questions being 

omitted or misinterpreted by participants.  

Table 5: Subjective Questions about WCB Perception 

Question Overall Response      Response by Pilot Type 

What unit of measurement do you first 
think of when measuring the well clear 
boundary (WCB) from ownship position? 

Distance = %32.4 
Time = %35.3 
Both = %32.4 

ATP = %17.6  
ATP = %41.2   
ATP = %41.2    

GA = %47.1 
GA = %26.4 
GA = %23.5 

What affects your opinion of the 
WCB the most?  

Closure Rate =  %47.1 
Intruder Angle = %11.8 

Maneuverability = %17.6 

ATP = %52.9  
ATP = %5.9   

ATP = %17.6    

GA = %41.2 
GA = %17.6 
GA = %17.6 

How do you believe WCB 
to be different from other 
similarly defined terms? 

Varies Subjectively = %76.5 
Has lower minimums = %5.9 
VFR Conditions only = %8.9 

ATP = %76.5  
ATP = %5.9   

ATP = %11.8    

GA = %76.5 
GA = %5.9   
GA = %5.9 

Do you feel comfortable 
with the current definition 
of Well Clear? 

Yes = %55.9 
No = %32.4 

Depends (equipment/WX) = %11.8 

ATP = %58.8  
ATP = %35.3   

ATP = %5.9    

GA = %52.9 
GA = %29.4   
GA = %17.6 

All scenarios measured WCB in 
2D. What should the vertical WCB 
be? 

1000' = %70.6   
>1000 = %8.9 

Too complicated = %26.5 

ATP = %23.5  
ATP = %23.5   

ATP = %5.9    

GA = %47.1 
GA = %29.4   
GA = %11.8 

Rating Scale Questions (1 Strongly Disagree – 5 Strongly Agree) 

Did you feel speed of ownship changed 
your perceived dimensions of the WCB? 

4 ATP = 4.2 GA = 3.9 

Do you believe traffic density in your 
surroundings affected your perception of WCB? 

3 ATP = 2.9 GA = 2.5 

 

In Table 5, it can be collectively observed that responses for how 

participants primarily perceived the WCB indicated that they consider it to be a 

factor of distance, time, or both. Yet, more than double the percentage of GA 
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pilots thought of the WCB as a measurement of distance. Almost double the 

percentage of ATPs primarily thought of the WCB in terms of time, or 

combination of time and distance than GA pilots did. When asked what affected 

the WCB opinion the most, all pilot types mostly agreed closure rate was the 

biggest factor over intruder angle or aircraft maneuverability.  All pilots believed 

the WCB to be different from other similar terms mainly because it varies 

personally while other definitions have set parameters. Over half of overall pilot 

responses showed they were comfortable with the current definition of Well 

Clear.  When asked what the vertical component of WCB should be most pilots 

thought it should be 1000 feet vertical separation. ATPs were split in their want 

between 1000 feet and greater than 1000 feet while most GA pilots agreed upon 

1000 feet.  Both pilot types strongly agreed that ownship speed affected WCB 

dimensions. Pilots moderately agreed that background traffic density affected the 

WCB. 
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Table 6: Subjective Questions about Manned vs. Unmanned Intruders 

Question Overall Response      Response by Pilot Type 

Do you believe UAS should abide to 
the exact same WCB as manned 
vehicles if you were flying a manned 
aircraft? 

Yes = %50.0 
No = %47.1 

Unsure = %2.9 

ATP = %41.2  
ATP = %52.9  

ATP = %5.9  

GA = %58.9 
GA = %41.2 

GA = %0.0 

Did you experience any 
difference in arousal 
(stress) with Manned vs 
UAS intruders? 

Yes =  %26.5 
No = %73.5 

 

ATP = %29.4  
ATP = %70.6  

 

GA = %23.5 
GA = %76.5 

 

What direction did the 
intruder feel most 
threatening from? 

Head-on = %58.8 
Overtake = %14.7 
Right/Left = %26.5 

ATP = %41.2  
ATP = %17.6  
ATP = %41.2  

GA = %76.5 
GA = %11.8  
GA = %11.8 

What was your perceived 
level of safety during 
interaction with Manned 
intruding aircraft? 

Very Safe = %23.5 
Safe = %70.9 

Less Safe (than UAS) = %2.9 

ATP = %29.4  
ATP = %64.7  

ATP = %0  

GA = %17.6 
GA = %64.7  

GA = %5.9 

What was your perceived 
level of safety during 
interaction with UAS 
intruding aircraft? 

Very Safe = %17.6 
Safe = %52.9 

Less Safe (than Man) = %26.5 

ATP = %17.6  
ATP = %41.2  
ATP = %35.3  

GA = %17.6 
GA = %64.7  
GA = %17.6 

Rating Scale Questions (1 Very Low Trust – 5 Very High Trust) 

Please rate the overall 
trust level you felt 
towards the Manned 
intruding aircraft 

3 ATP = 2.9 GA = 3.9 

Please rate the overall 
trust level you felt 
towards the UAS 
intruding aircraft 

3 ATP = 2.4 GA = 3.2 

 

In Table 6, when asked if UAS should abide by the same WCB as manned 

aircraft, responses were almost 50/50 split. Nearly half the pilots answered yes, 

while barely below half said no.  GA pilots answered yes more than ATPs.  When 

asked about arousal differences, most of both pilot types answered no, while 

almost a third experienced more stress with UAS intruders.  Both pilot types felt 

that the most threatening intruder angle was from head-on approaches. Yet, for 

ATPs this was closely followed by right/left directions, and trailed by overtake 

(rear) directions. When asked about perceived safety levels both pilot types felt 
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much safer with manned intruders over UAS. Yet, GA pilots showed an even split 

in opinion. When asked to rate perceived trust levels between intruder types, 

both pilot types trusted manned and UAS evenly. GA pilots showed higher trust 

ratings.  When dissected by pilot type the responses showed slightly higher 

ratings for manned trust than UAS intruders overall.   

 

Table 7: Subjective Questions UAS Specific 

Question Overall Response      Response by Pilot Type 

Do you feel confident that 
the UAS can abide by 
current WCB definition 
autonomously? 

Yes  = %35.3 
No = %55.9 

Depends on equipment = %11.8 

ATP = %29.4  
ATP = %58.8  
ATP = %11.8  

GA = %41.2 
GA = %52.9 
GA = %11.8 

Would your WCB 
change if there were 2 
or more UASs involved 
instead of just one? 

Yes =  %35.3 
No = %55.9 

Maybe = %8.8 

ATP = %58.8  
ATP = %29.4  
ATP = %11.8  

GA = %11.8 
GA = %82.4 

GA = %5.9 

How do you feel in 
terms of the safe 
integration of UAS’s 
into our national 
airspace system? 

Safe if proven = %34.7 
Unsafe/complicates things = %23.5 

Mixed feelings = %11.8 

ATP = %64.7  
ATP = %29.4  
ATP = %23.5  

GA = %64.7 
GA = %17.6  
GA = %17.6 

 

 In Table 7, we can see when asked if UAS could autonomously abide the 

current WCB definition, over half of all pilots and pilot types said no with a higher 

yes answer percentage for GA pilots over ATPs. When asked if their WCB would 

change if two or more UASs were involved, half of all pilots said no. When 

broken down by pilot type most GA pilots said no, while over half of ATPs said 

yes.  When asked how they felt about UAS integration, most pilots answered 

safe if proven.  A lower percentage felt that it was unsafe, with more ATPs than 

GA pilots offering the response of unsafe.   
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Table 8: Subjective Questions about CDTI/CSD Technology 

Question Overall Response      Response by Pilot Type 

What system (if any) do you primarily 
use as a CDTI? 

TCAS = %41.2 
Other = %11.8 
None = %47.1 

ATP = %76.5  
ATP = %17.6  

ATP = %5.9  

GA = %5.9 
GA = %5.9 

GA = %88.2 

Do you feel your current CDTI 
display is adequate enough to 
allow safe perception of WCB? 

Yes =  %26.5 
No = %26.5 

N/A (Mostly GA) = %47.1 

ATP = %52.9  
ATP = %41.2  

ATP = %5.9  

GA = %0.0 
GA = %11.8 
GA = %88.2 

Do you envision yourself relying 
more on a CDTI to maintain the 
WCB, or out-the-window view? 

CDTI = %58.8 
Out-the-Window = %38.2 

 

ATP = %47.1  
ATP = %52.9  

 

GA = %70.6 
GA = %23.5  

 

Rating Scale Question (1 Strongly Disagree – 5 Strongly Agree) 

Did the CSD have positive 
impact on WCB perception 
compared to your CDTI? 

4 ATP = 3.9 GA = 3.9 

 

As can be seen in Table 8, although most GA pilots did not have any experience 

with a CDTI while most ATPs did. For ATPs, when asked if their current display 

was adequate for WCB perception, more than half said yes with just over 40% 

said no. Pilots were also asked if they envisioned themselves primarily utilizing a 

CDTI or out-the-window view to maintain WCB, and most answered they would 

use a CDTI.  All pilots strongly agreed that the CSD was better for WCB 

perception compared to their current CDTI or other detection method.  

Table 9: Subjective Question about WCB Opinion of other Pilot Type 

 

Question Response 

ATP Pilots Only – Do you believe pilots with less 
experience than you would have a different opinion of 
the WCB? 

Yes = %94.1 
No = %5.8 

Maybe = %0.0 

GA Pilots Only – Do you believe pilots with more 
experience than you would have a different opinion of the 
WCB? 

Yes =  %41.2 
No = %29.4 

Maybe = %29.4 
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Table 9 shows that all ATPs except  one agreed yes to the question, while 

GA pilots often  responded yes with an equal split response between no and 

maybe.  

Subjective WCB Map Drawings  

After all subjective and objective data collection took place, pilots were 

asked to draw their version of a WCB map in terms of distance surrounding 

ownship.  The only instruction given was to draw it as they saw fit on a blank map 

that only had ownship in the center as well as two range rings for scale, and to 

indicate a range on one of the range rings to help gauge the drawing’s WCB size. 

They were asked to draw two maps, one for manned, and one for unmanned 

intruders. This hand-drawn map was done to visualize pilot’s top down view of 

the WCB, as well as further depict any differences that intruder type had on the 

WCB. Drawings were first grouped by shape type, then by WCB size, and tallied 

accordingly. Full depictions of every map can be seen in Appendix Section C.  

Maps were categorized initially by three general shape categories: greater 

distance in front with less in rear, circular, and other. An example of each can be 

seen below in Figures 21, 22, and 23. 
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Figure 21. WCB drawing example – greater distance in front with less in 
rear 

Figure 22.  WCB drawing example – circular 
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Table 10: WCB Drawing Shape Summary 

WCB Drawing general Shape Overall ATPs GA Pilots 

Greater distance in front, less in 
rear 

%50.0 %47.1 %52.9 

Circular %41.2 %47.1 %35.3 

Other %8.8 %5.9 %11.8 

As we can see in Table 10, overall half of both pilot types depicted WCB 

maps with greater distance in front and less in the rear. This percentage was 

slightly higher with GA pilots than ATPs. Circular WCB maps closely followed for 

both pilot types, matching the percentage for greater in front less in rear for 

ATPs, and consisting of about 1/3 of the opinion for GA pilots. WCB maps 

classified as “other” made up a very small percentage, and serve to illustrate how 

differently humans can think and vary their opinion even when given the same 

information.   

Figure 23. WCB drawing example – other 
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Discussion 

 The purpose of this thesis research was to determine how different pilot 

types perceived the subjective concept of the Well Clear Boundary, and to 

observe if that boundary changed when dealing with manned versus unmanned 

aircraft.  The present study used an 8 x 2 x 2 x 2 x 2 mixed design that included 

four repeated-measures factors and a single between-subjects factor. 

Independent manipulations consisted of intruder approach angle (8 angles every 

45° surrounding ownship), intruder type (manned vs. UAS), ownship speed (150 

knots vs. 250 knots), traffic level (4 background aircraft vs. 8 background 

aircraft), and the between-subjects variable of pilot type (Commercial/ATP vs. GA 

pilots). The effects of these variables were assessed through objective measures 

of distance from ownship and time to closest point of approach, as well as 

subjectively through custom questionnaires to gauge overall perception of the 

WCB. 

The Well Clear Boundary 

 To quantifiably determine pilot perception of the WCB, experimental data 

were recorded in a part-task CDTI simulator.  WCB was determined by 

simulating multiple intruding aircraft set on a collision course with participants’ 

ownship as indicated on the display.  Pilots indicated the WCB by clicking a 

mouse button when an intruder was felt to no longer be well clear from them, with 

each trial representing a different combination of independent variables present 
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during encounters from 8 angles surrounding ownship.  Recording the position, 

trajectory, and speeds of ownship and intruders allowed the WCB to be 

calculated in two ways. 

 The dOWN Metric. The first method of calculating the WCB was by 

distance from ownship (dOWN), in other words an own-ship-centric metric with 

ownship located in the middle of a surrounding boundary measured in feet from 

ownship to intruding aircraft crossing the WCB. Overall, when measured by 

dOWN, the WCB followed the findings and propositions of suggested WCB 

definitions, with a much larger distance value in front of ownship compared to the 

rear. In this experiment, the WCB was found to average 35,701 feet directly in 

front of ownship, while it was 15,559 feet directly behind the aircraft. The two 

angles 45° to the left and right of ownship nose averaged 29,362 and 29,454 feet 

respectively, while the two angles 45° to the left and right of the rear of ownship 

measured 20,399 and 20,711 respectively. The 90° angles right and left of 

ownship measuring 25,909 and 25,781 respectively. We can observe an obvious 

pattern of greater values in the front with lower values in the rear of ownship are 

evident when measured in dOWN.  Of course, this is due to difference in closure 

rates from these different angles. However, notice the extreme lower variability 

(as in the difference from angle to angle in dOWN values) in distance values for 

the 90° sides and all rear angles as opposed to the high degree of variability of 

the 3 angles in front of the aircraft. This could be key in fully understanding pilot 

perception of the WCB in terms of direction and distance.  
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 The WCB measured in dOWN also displayed differences when collapsed 

across different independent variables. When WCB measurements were 

compared by pilot type, GA pilots averaged a larger value for every angle than 

ATPs did. This could be due to the fact most GA piloting experiences involve 

flying smaller aircraft at lower altitudes and slower airspeeds than ATPs. 

Therefore, they are not only more accustomed to having more time to react, but 

they are also used to an environment of looser ATC control over their aircraft 

since they travel in class E (uncontrolled airspace) much more frequently than 

ATPs in scheduled airlines. Additionally, most GA pilots did not have experience 

with cockpit traffic display technology of any kind and consequently rely on out-

the window visual monitoring to avoid aircraft.  Since this experiment only had a 

CDTI view (no out-the-window), perhaps GA pilots were more conservative in 

their WCB interpretations due to lack of CDTI experience.  

 The most significant differences in WCB dOWN appeared between the 

alternate ownship speeds tested.  Ownship speed was present in all dOWN 

significant interactions, clearly having a strong effect on the WCB.  Faster speeds 

yielded a larger WCB value for every approach angle. At 250 knots ownship 

speed all pilots pushed out the WCB in every angle, but especially at the front 

45° left and right of their nose. These angles (315° and 45° relative to ownship) 

showed differences of nearly 4000’ as opposed to approximately 1000’ for other 

angles. This indicates the importance of the forward 45° angles from ownship 

nose in pilots’ WCB perception. This may be not only be because intruders 
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approaching from the front have a high closure rate, but because they likely 

would have a hard time judging an aircraft’s distance and direction from these 

angles. For example, if an intruding aircraft is turning at these angles, the 

direction that it starts turning in may be difficult to interpret due to relative motion 

between ownship and intruder. If the intruder turned to the right, while ownship 

moved forward, the intruder may turn at a rate that appears to have no relative 

motion if their turn is gradual enough. This can add confusion since intruders with 

no relative motion in the sky are of the most danger since this indicates they can 

be heading straight for ownship. However the intruder turn could continue to the 

right and change visual relative motion cues often during its maneuver, creating 

the potential to mislead.  

 Another interesting dOWN WCB finding had to do with differences 

between intruder types. Although significant differences in intruder type 

depended on ownship speed which differed across pilot type, the manned 

intruders had slightly larger values for the head-on and rear approach angles, as 

well as the 90° and 270° angles than UAS intruders. Yet, the manned intruders 

had slightly smaller values for the 315°, 45°, 225°, and 135° angles than UAS.  

While the differences may not be great between intruders for most angles 

(approx. 500-1000’), the biggest difference was in the 315° and 45° angles which 

varied almost 2000’ each.  The patterns of these results are a bit scattered, but 

also show the importance of the pilots’ perception of the forward 45° left and right 
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of their nose. This difference is perhaps due to a mix in opinions of trust about 

manned versus unmanned intruders, which the subjective metrics also revealed.  

 The main effects for the dOWN metric were found to be most significant 

with intruder approach angle. This is not surprising considering how much the 

WCB varies in value depending on direction surrounding ownship. The main 

effect of ownship speed closely followed, and this trend is evident in Figures 10 

and 11 even before statistical analysis was applied, showing how deeply ownship 

speed impacts the dOWN WCB from all angles, with greater speeds increasing 

WCB size. The background traffic level also was a dOWN main effect, not as 

significantly as the others, but still an important finding. This IV had significance 

of just under p=.05, visible in Figures 14 and 15 showing slightly smaller dOWN 

WCB values in the medium background traffic than the low traffic level scenarios. 

The tCPA Metric.  The second method of calculating the WCB was by 

time to closest point of approach (tCPA), which, unlike dOWN, is not an ownship 

centric metric. It involved measuring the time until the intruder aircraft reaches its 

closest point of approach (or in the case of this research, collide) with ownship.  

In this experiment, the tCPA WCB was found to average 38 seconds directly in 

front of ownship, while it was 149 seconds directly behind the aircraft. The two 

angles 45° to the left and right of ownship nose both averaged 46 seconds, while 

the two angles 45° to the left and right of the rear of ownship both averaged 67 

seconds. The 90° angles right and left of ownship measured 52 and 51 seconds 

respectively.  The differences found in the tCPA metrics when collapsed across 
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independent variables correlate precisely with the dOWN metric findings, but with 

one fundamental difference. All tCPA results essentially assumed a mirrored 

shape of the dOWN WCB shape across the horizontal axis. In other words, 

greater tCPA values were found behind the ownship with much smaller values 

located towards the front of ownship.  Again, this is due to differences in closure 

rates.  Since intruding aircraft approaching from the front of ownship had such 

high closure rates, their time until collision was very short. Conversely, the 

intruders approaching the rear of ownship had an extremely slow closure rate 

with extremely high time values until collision.   

One interaction unique to the tCPA metric is the four-way interaction 

observed among intruder type, traffic level, ownship speed, and intruder 

approach angle.  When interacting with manned intruders, this interaction shoes 

both pilot types averaging a significantly larger tCPA when traveling at the lower 

speed of 150 knots for all intruder approach angles, except the head-on angle. In 

the head-on angle we can see a lower tCPA value compared to all other angles. 

This head-on value difference is even more drastic in the GA pilot data than 

ATPs.  We can also see that ownship speed had less of an effect on tCPA for GA 

pilots in this interaction. Interestingly, when interacting with UAS intruders, this 

interaction shows the head-on value difference being more drastic in the ATPs’ 

when compared to the GA pilots.  Additionally, we can see that ownship speed 

had less of an effect on tCPA for GA pilots than for ATPs with UAS intruders.  

Aside from the differences in intruder type tCPA values across pilot types in this 
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four-way interaction, we can see that the effect of ownship speed had greater 

differences in tCPA values with ATPs with manned intruders compared to ATPs 

with UAS intruders. This is true for all angles except for the head-on condition 

where the opposite is true.   

The results regarding this head-on angle obscurity may be due to the fact 

that when traveling at 150 knots, there is much more time to react before a 

collision in the head-on scenarios than when traveling 250 knots.  Thus, pilots 

may have allowed for a much lower tCPA value in the 150 knot conditions 

without feeling less safe. The results regarding ownship speed affecting ATPs 

more with manned versus unmanned intruders may have to do with ATPs 

expectation of UAS reaction time and abilities. They may perceive these 

automated machines as being able to potentially react more quickly and 

maneuver in a more agile manner than manned aircraft can. 

The main effects observed with the tCPA metric were found with intruder 

approach angle, and ownship speed just as was seen with the dOWN metric. 

However, the tCPA metric showed no main effect with background traffic level as 

the dOWN metric did. This is not surprising, since the dOWN metric was 

measured more precisely due to less rounding and finer incremental units (tens-

of-thousands of feet versus rounded whole-seconds) and because it just made 

the cutoff for dOWN significance (p= .045 out of .05).  
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Although the differences in the tCPA metrics for all independent variables 

are consistent with differences observed with the dOWN metric, they do shine 

light on an important factor.  Opposite of the dOWN metric, the tCPA metric 

showed the highest degree of variability in the intruder angles approaching from 

the rear of ownship. Inversely, intruders approaching from angles in front of 

ownship displayed a low degree of variability (as in the difference from angle to 

angle in tCPA values). Again, this pattern of variability may be vital in 

comprehending how the WCB is perceived. Pilots may consider metrics they can 

easily interpret on a traffic display as their primary indicators for   determining the 

WCB, even if that means using different metrics given different intruder approach 

angles surrounding ownship.  

Subjective Questionnaire Responses.  Responses about WCB 

perception unveiled that pilot’s think of the WCB as a factor of distance, time, or 

both overall. This is logical since closure rate is a result of time and distance 

relationship.  However, more than double the percentage of GA pilots primarily 

thought of the WCB as a measurement of distance compared to ATPs, while 

almost double the percentage of ATPs thought of the WCB in terms of time, or 

combination of time and distance than GA pilots did. This sharp contrast could 

again be due to differences in flight environments each pilot type is used to. GA 

pilots move slower and have more time to deal with potential conflicts, more often 

using distance as a mental model for separation since their speed and distance 
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values are relatively smaller. ATPs move faster and therefore quantify aircraft 

separation more easily by time since distance and speed values are so great.   

In terms of what affected the WCB opinion the most, closure rate was the 

biggest subjective factor, considerably more so than intruder angle or aircraft 

maneuverability.  This was the case for both pilot types.  Across the board, pilots 

believed the WCB to be different from other similar terms (mentioned above in 

section entitled “Similar Terms and Concepts”) primarily because it subjectively 

varies as other definitions do not. Surprisingly, over half of overall pilot and 

between pilot type responses showed they were comfortable with the current 

definition of Well Clear.  This may be because pilots like self-separating under 

their own jurisdiction to take into account the variability of the current Well Clear 

interpretation.  Since the current study only considered lateral WCB, when asked 

what the vertical component of WCB should be over 70% of overall pilots thought 

it should be 1000 feet vertical separation, with ATPs split in their want for 1000 

feet and being greater than 1000 feet. The majority of GA pilots agreed upon 

1000 feet.  1000 feet is the standard vertical separation margin for most 

instances in controlled airspace, so no surprise here since it has been an 

effective margin for years.  All pilots strongly agreed that ownship speed affected 

WCB dimensions, which aligns with the statistically significant effect of ownship 

speed effect on WCB. Pilots moderately agreed that background traffic density 

affected the WCB, which also parallels with the statistical findings of traffic level 

effect on WCB.  



85 
 

The next set of questions was asked to study intruder type differences. 

When asked if UAS should abide by the same WCB as manned aircraft, there 

was almost a 50/50 split in responses.  Overall almost half of the pilots said yes, 

while just under half said no. Interestingly, GA pilots provided slightly more yes 

answers while ATPs answered more no’s.  This could possibly be because GA 

pilots averaged a younger age, and have spent more of their adolescence 

surrounded by more intelligent and reliable computer systems then their ATP 

counterparts, allotting more trust in UAS while ATPs have seen many upgrade 

iterations in their cockpits and witnessed the success and failures of them all first 

hand. Also, ATPs typically have more lives at stake when they fly perhaps giving 

reason to their decreased UAS trust.  

When asked about arousal (i.e. stress level) differences between intruder 

types, over 70% of all pilots answered they experienced no difference, while 30% 

or less experienced more stress with UAS intruders.  This is an important finding 

because it indicates a fairly large portion of pilots may feel uncomfortable or more 

stressed with UAS traffic encounters, which is something the FAA must take into 

account during integration. The most threatening overall intruder angle was 

mostly felt to be from head-on approaches. This was followed by right/left 

directions, and trailed by overtake (rear) directions. This is logical and follows suit 

with the hierarchy of closure rates across intruder angles.  

When asked about perceived safety levels between intruder types, overall 

pilots felt much safer with manned intruders than UAS. However, GA pilots 
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appeared to feel slightly safer with UAS than ATPs did. Conversely, , when 

asked to rate perceived trust levels between intruder types, although overall 

pilots trusted both manned and UAS evenly, GA pilots had generally higher trust 

and showed slightly higher ratings for manned intruder trust than UAS. These 

findings not only show how spread out the opinion of manned versus UAS traffic 

can be, but also shows GA pilots  vary more  in their opinion than the ATPs. This 

must be taken into account when integrating UAS into the NAS, as different 

classifications of airspace may have different WCBs depending on which pilots 

consist of the majority in that given airspace.  

UAS specific questions were asked to uncover more information on UAS 

interaction.  When asked if UAS could autonomously abide by the current WCB 

definition, over half of all pilots and pilot types said no. But, there was a higher 

yes answer percentage for GA pilots over ATPs, again displaying the overall 

trend of GA pilots having more faith in UAS than ATPs did. Since all trials 

involved at most only one UAS intruder, when asked if their WCB would change 

if two or more UASs were involved overall half of the pilots said no. However 

when broken down by pilot type over 80% of GA pilots said no, while almost 60% 

of ATPs said yes.  This is trend seems opposite of previous mentioned higher GA 

trust in UAS, and yields the need for further exploration of how multiple UAS 

interactions would affect the WCB. Finally, when asked how they felt about UAS 

integration, most pilots answered safe if proven. This answer was closely 

followed by unsafe feelings, believing UAS integration complicates things. More 
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ATPs answered the latter response in this question than GA pilots, representing 

the common trend of higher GA trust with UAS again. 

The next set of questions were asked to find opinion of how our lab’s 

version of a CDTI, our CSD, and other CDTIs would affect WCB perception.  

Although nearly 90% of the GA pilots did not have any experience with a CDTI, 

most ATPs did and they mainly had experience with the Traffic Collision 

Avoidance System II (TCAS II) that is largely used in airlines. For ATPs, when 

asked if their current display was adequate for WCB perception, more than half 

said yes, but just over 40% said no. Pilots were also asked if they envisioned 

themselves primarily utilizing a CDTI or out-the-window view to maintain WCB, 

and across the board most answered they would use a CDTI.  As most ATPs use 

a CDTI today anyway, this is not surprising. Overall, all pilots agreed that our 

lab’s CSD had a positive impact on WCB perception compared to their current 

CDTI or other detection method. 

 The final set of subjective questions asked ATPs if they believed pilots 

with less experience, and GA pilots if they believed pilots with more experience 

would have different opinions of the WCB.  All ATPs but one agreed yes to the 

question, while GA pilot opinion varied with most responses saying yes and an 

equally split response rate between no and maybe.  This again displays the 

uniformity of ATP opinions while GA pilots tend to have a more diverse thinking 

process perhaps due to their lesser flight experience and perhaps less uniform 

training.  
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 After all other data collection was complete, subjective WCB drawings 

were completed. Half of all pilots depicted a greater distance in front of ownship 

with less distance in their drawings.   Slightly more GA pilots drew g this shape 

than ATPs. This general shape was closely followed by circular WCB drawings 

with ownship equidistant from all WCB points regardless of the angle. However, 

ATPs showed a nearly 50/50 split between the greater in front, less in rear and 

the circular depictions. The other category consisted of very few WCB drawings 

and displayed some peculiar shapes which prove difficult to classify. 

Future Research Recommendations 

 Future research should be conducted to properly determine how pilots 

perceive the WCB, and should include additional metrics to uncover increased 

breadth and depth in the definition of this construct.  Vertical WCB should be 

included since it is a highly dynamic factor requiring careful research.    It can 

change everything about potentially altering the WCB dramatically if intruding 

aircraft ascend or descend at rapid rates from different approach angles. 

Investigating the effects of multiple instead of just single UAS intruders would be 

crucial to UAS integration into the NAS, as UAV usage will only continue to 

increase and imminently yield high density UAS environments. This research 

only considered 8 intruder approach angles, and increasing this number of 

angles to 16, 32, or more could provide a picture of higher WCB fidelity and 

would be extremely valuable.  Also, examining how the WCB is affected by more 

dynamic flight environments (as this research only took place in optimal 
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conditions) such as crosswinds and weather phenomena, as well as more 

complex airspace such as class B, C, or D airspace (as this research took place 

in class E, or uncontrolled airspace) would be of great worth since pilots often 

deal with non-optimal and busy conditions.  Finally, it would be important to 

measure UAS pilot perspective of the WCB, as they are more removed from the 

situation than the manned aircraft pilots in this research. Their WCB opinion 

would help contrast differences in manned versus UAS perception and could 

uncover issues before they arise in a real world setting.  

Conclusion 

 The purpose of this thesis research was to determine how different pilot 

types perceived the Well Clear Boundary, and to observe if the WCB changed 

when dealing with manned versus unmanned aircraft.  This research was 

successful in addressing the research questions, finding several significant main 

effects and interactions. It is vital to realize that the findings in this research were 

all for pilots in a part task environment, without them preforming the primary task 

of flying as they normally would.  While flying, utilizing a CDTI as they did in this 

study would be a secondary task in real-world scenarios, therefore potentially 

changing WCB results.  This fact does not degrade the current research, as 

these findings lay the framework for human perception of the WCB in a simple 

experimental setting despite lacking the complexity that real flying involves. 
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The first research question attempted to uncover what the WCB is for 

civilian pilots. We now have objective metrics for the subjective concept of Well 

Clear. The next question revolved around determining the perception of the WCB 

and if it differs between General Aviation pilots and Commercial ATPs. The 

answer is yes; the effect of intruder type depends on ownship speed, and that 

differs across pilot type when measured by dOWN.  It was also asked if the WCB 

differs when pilots interact with manned versus unmanned aircraft. It was found 

that the effect of intruder type depends on traffic level and ownship speed, and 

that effect differs across intruder approach angles when measured by tCPA. This 

research also revealed that the effect of intruder type depends on traffic level 

which differs across ownship speeds when measured in tCPA. In terms of what 

other parameters affected the perception of WCB, it was found that the effect of 

ownship speed depended on intruder approach angle when measured in dOWN. 

There were also several main effects evident. dOWN measurements displayed 

main effects with ownship speed, intruder angle, and background traffic level, 

while tCPA main effects were observed with ownship speed and intruder angle.  

 Subjective findings uncovered an important trend, that even though GA 

pilots indicated a larger average WCB, they tended to rate UAS aircraft with 

higher trust and safety ratings than ATPs did. GA pilots also appeared to have 

more diverse responses than ATPs did, where ATPs had more similar and 

uniform language in their answers. These subjective findings indicate 

fundamental differences in pilot experience levels, showing how their perceptions 
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may differ based on hours and type of flight environment flown.  Subjectively, it is 

also important to note how broad the opinion of not only the WCB, but interaction 

with manned versus unmanned intruders was across all pilots and between pilot 

types. Many different mental models and opinions were observed, which may 

demonstrate the need for more structured and less subjective definitions of 

aviation concepts, especially when it comes to aircraft spacing procedures.  

 The most important overall conclusion to draw from this research is based 

on the objective results.  Pilots likely perceive the WCB in terms of what is most 

easily recognizable and/or mentally computable based on the angle of 

approaching intruders. As previously mentioned, the metrics of dOWN and tCPA 

seemed to mirror each other over the horizontal axis with dOWN having larger 

distance variation between angle values in front of ownship while tCPA had 

larger variation in angle values in values to the rear of ownship. Therefore, it is 

reasonable to assume that since uniformity (i.e. least value variation) of the WCB 

is most evident to the rear for distance based measurements and to the front for 

time based measurements, that pilots perceive the WCB like the model below in 

Figure 29: 
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 Since the rear of ownship experiences a low closure rate with low distance 

and high time to collision values, distance may be easier and quicker to mentally 

calculate for pilots. Conversely, to the front of ownship where a high closure rate 

with large distances and low times are evident, time may be easier and quicker to 

mentally calculate for both pilot types. This finding is supported objectively and 

subjectively in the data and is instrumental in the future integration of UAS into 

the NAS.  It would mean that in defining the WCB for manned aircraft, pilots are 

more comfortable knowing time separation in front and distance separation to the 

rear. Therefore pilots may better perform separation procedures knowing specific 

types of intruder information depending on relative angle surrounding their 

aircraft, as opposed to a static and finite WCB metric encircling them. Beyond the 

concerns of the WCB, this data can also be used to help ATC better understand 

pilots’ perception of intruders encroaching their airspace, improving their aircraft 

Time 

Distance 

Figure 24. Pilot WCB Perception – Time in Front 
and by Distance to Rear 
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spacing tactics by advising pilots using angle and metric combinations that they 

can most efficiently comprehend.  

 To compare the current findings to other proposed WCB definitions 

mentioned in the introduction, it is important to consider that the current research 

was only concerned with measuring the WCB in the lateral plane of three-

dimensional space. Other proposed definitions were generated without ignoring 

the vertical plane dimensionality, therefore potentially allowing for smaller WCB’s 

since an additional dimension of space is available for pilots to maneuver in (i.e. 

diving or climbing around an intruder).  With that in mind, Figure 1 depicts a tCPA 

WCB having a larger area in the front of ownship, and a smaller distance-based 

WCB encircling ownship.  This definition incorporates distance and time, giving 

different shapes for each metric. Similar concepts to the present research are 

evident, and it can be observed that the Figure 1 definition recognizes the need 

to have different WCB based on using time or distance. Figure 2 depicts two Tau 

values (range and vertical tau) that when combined amount to a positive 

numerical value when intruders converge with a UAS, and a negative value upon 

their divergence, representing an approximation of time to CPA or tCPA. These 

tau values incorporate elements of distance and time, but blend the two metrics 

together mathematically. The current findings indicate that combining metrics is 

useful for human pilots depending on directionality, however this Figure 2 

definition was developed for UAS aircraft only which is why combining metrics 

mathematically is acceptable for the UAS on-board computers and sense and 
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avoid capabilities. Also, the Figure 2 equations only work in the case of a direct 

collision course with a straight line of intersection. While this research procured 

WCB measurements that were only tested with straight line intruder 

intersections, these measurements are applicable to curved intersection paths as 

well.  

 Comparing the present research’s WCB to the proposed definition in 

Figure 3 known as “Ellipsoid defined by Tau with tapered vertical separation,” it 

uses a tapered vertical separation to avoid “nuisance” alerts resulting from 

intercepting aircraft that may have enough vertical separation to properly evade 

each other, but still cause alerts. This model is difficult to compare to the present 

research due to the heavy influence of vertical tapered separation, however in 

Figure 3 the attempt to incorporate elements of distance and time are present by 

the arrows indicating adjustment for closure rate (which is a time based metric) 

as well as the horizontal protection (a distance based metric).  Finally, to 

compare this research to the MIT model in Figure 4, their model was entirely 

distance based. However, the model is similar to this research since it uses real 

data generated from actual pilots, and is concerned with manned-ownships only. 

What sets it apart (aside from having a distance metric only) is it does not take 

into account any encounters involving manned and UAS together. Having said 

that, the tear-drop shape it depicts (lager distance in front of ownship, smaller in 

the rear) mirror very closely to what this research measured when considering 

the overall WCB shape.  Also, the size of the MIT WCB shown in Figure 4 is 
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much smaller than what this research measured, with theirs extending out in 

excess of only 8,000 feet compared to the 35,000 seen here in front of ownship.  

The current thesis research has provided scientific data on the perception 

of Well Clear, as well as how that differs across pilot types and manned versus 

unmanned intruders. This could be considered by comities, research initiatives, 

and regulatory bodies that are currently contributing to the NextGen airspace 

infrastructure. This is because current resources that provide guidance and make 

decisions on the issue of Well Clear such as SC 228, various FAA resources 

including the Airman’s Information Manual, Advisory Circulars, FAA library 

articles, as well as research entities like MIT and other universities have rarely 

considered the human pilot opinion in the matter. They have tended to base 

separation standards off of ATC preferences, FAA traffic data, and subject matter 

expertise (FAA, 1983; FAA, n.d.; FAA, 2014; Weibel, Edwards, & Fernandes, 

June, 2011). These are all vital and well established sources, yet they often lack 

the principles and findings of Human Factors science, as well as the perceptional 

preferences among different pilots interacting with varying technologies.  

With present UAS regulations, incidents of UASs technologies crashing 

and colliding with manned aircraft (Reed, 2011; The Washington Post, 2014; 

Drone Wars UK, 2013) have been witnessed. UAS integration into the NAS will 

also be an even bigger issue for GA pilots, as they deal with less aviation 

technology, less experience levels, rely more heavily on visual avoidance 

procedures, and are allowed more flight path freedom than ATP pilots operating 
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in commercial airlines (Goyer, 2012).  Therefore, this thesis data can assist in 

making future decisions about Well Clear definitions regarding multiple pilot 

types, and can help decisions about UAS operational parameters when flying in 

close proximity to other manned aircraft by providing quantitative human pilot 

perception and qualitative insight on the matter.  

If pilots’ mental models truly follow the rationale suggested by this 

research, future sense and avoid systems aboard UAS as well as traffic collision 

avoidance systems need to consider these human factors findings.  Perhaps 

UAS could gain higher acceptance and trust ratings if they are able to provide 

this approach-angle-relevant information, as well as intruder intent information 

such as upcoming route changes, to manned pilots sharing their airspace.  

Through this, we can best design technology around the needs of human 

operators in order to prevent confusion, mistrust, and accidents in our airspace 

given the increase of air traffic that is projected.  This research can contribute to 

creating a more efficient, intelligent, and most of all safer environment for 

tomorrow’s airspace.  
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Appendix B: NASA Ames Informed Consent 

 
ARC - 475 - Category II Participant Consent Form 
 
To the research Participants: Please read this consent form and the attached protocol 
and/or subject instructions carefully. 
 
A. I agree to participate in the Well Clear: General Aviation and Commercial Pilots’ 
Perception of Unmanned Aerial Systems (UAS) VS. Manned Aircraft in the National 
Airspace System (NAS) research experiment as described in the attached protocol or 
subject instructions. I understand that I am employed by _________________________ 
who can be contacted at ______________________________________. 
 
B. I understand that my participation could cause me minimal risk*, 
inconvenience, or discomfort. The purpose and procedures have been explained to 
me and I understand the risks and discomforts as described in the attached research 
protocol. 
 
C. To my knowledge, I have no medical conditions, including pregnancy that will 
prevent my participation in this study. I understand that if my medical status should 
change while I am a participant in the research experiment there may be unforeseeable 
risks to me (or the embryo or fetus if applicable). I agree to notify the Principal 
Investigator (PI) or medical monitor of any known changes in my condition for safety 
purposes. 
 
D. My consent to participate has been freely given. I may withdraw my consent, and 
thereby withdraw from the study at any time without penalty or loss of benefits to which I 
am entitled. I understand that the PI may request my withdrawal or the study may be 
terminated for any reason. I agree to follow the procedures for orderly and safe 
termination. 
 
E. I am not releasing NASA or any other organization or person from liability for any 
injury arising as a result of my participant in this study. 
 
F. I hereby agree that all records collected by NASA in the course of this study are 
available to the research study investigators, support staff, and any duly authorized 
research review committee. I grant NASA permission to reproduce and publish all 
records, notes, or data collected from my participation, provided there will be no 
association of my name with the collected data and that confidentiality is maintained, 
unless specifically waived by me. While all stated precautions will be taken to protect 
anonymity, there is a small risk that some or all of the participants’ data could become 
identifiable. 
 
 
 
Participant Signature: ____________________________     Date: _________________  
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Appendix C: Subjective WCB Map Drawings 

Note – top drawing is for manned intruders, while the bottom is for unmanned intruders.

Pilot 01 - GA 

 

  

Pilot 02 - GA 

 

 

 

Pilot 03 - ATP 

 

Pilot 04 - ATP 
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Pilot 05 - ATP 

 

Pilot 06 - GA 

  

Pilot 07 - GA 

 

Pilot 08 - GA 
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Pilot 09 - GA 

 

Pilot 10 - ATP 

 

 

 

 

 

 

Pilot 11 - GA 

 

Pilot 12 - GA 
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Pilot 13 - ATP 

 

Pilot 14 - GA 

 

 

 

 

 

 

Pilot 15 - GA 

 

Pilot 16 - ATP 
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Pilot 17 - GA 

 

Pilot 18 - GA 

 

 

 

 

 

 

Pilot 19 - ATP 

 

Pilot 20 - ATP 
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Pilot 21 - ATP 

 

Pilot 22 - GA 

 

 

 

 

 

 

Pilot 23 - GA 

 

Pilot 24 - ATP 
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Pilot 25 - ATP 

 

Pilot 26 - ATP 
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Pilot 28 - GA 
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Pilot 29 - GA 

 

Pilot 30 - ATP 

 

 

 

 

 

 

Pilot 31 - ATP 

 

Pilot 32 - GA 
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Pilot 33 - ATP 

 

 

 

 

Pilot 34 - ATP 
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Appendix D: Post-Simulation Pilot Questionnaire 

 

1. What unit of measurement do you first think of when measuring the well clear 

boundary (WCB) from ownship position? (I.e. Do you think of it as a measure of time 

before collision? Or distance before collision? Another unit of measurement?) 

 

 

 

 

 

 

 

 

 

 

2. Do you believe that unmanned vehicles should abide to the exact same WCB as manned 

vehicles if you were flying a manned aircraft in the skies? Why or why not? 
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3. What affects your opinion of the WCB the most? Please explain why you feel this way.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. What strategies did you use in determining the WCB? 
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5. How do you believe WCB to be different from Legal Separation? From other similarly 

defined terms? 

 

 

 

 

 

 

 

 

 

 

 

 

6. Did you experience any difference in arousal (i.e. stress levels) when interacting with the 

Manned Vs Unmanned intruders? 
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7. Do you feel comfortable with the current definition of WC? 

a. Do you feel confident that the UAS can abide by this definition autonomously? 

 

 

 

 

 

 

 

 

 

 

 

 

8. All scenarios with UAS intruding aircraft only involved one UAS vehicle per each trial. 

Would your opinion of the WCB change if there were 2 or more UASs involved instead 

of just one? 
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9. All scenarios involved two-dimensional interaction with intruders (in the horizontal 

plane). What would your opinion of the WCB in the vertical plane be? (Feel free to draw 

a depiction or describe it as best you can) 

 

 

 

 

 

 

 

 

 

 

 

 

10. How do you feel about in terms of the safe integration of UAS’s into our national 

airspace system? Please thoroughly explain your response. 
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11. For this experiment, you used our Cockpit Situational Display (CSD) as a Cockpit Display 

of Traffic Information (CDTI). What system (if any) do you primarily use as a CDTI?  

a. Do you feel that your current CDTI system display is adequate enough to allow 

you to safely perceive the WCB around ownship? Why or why not? 

 

 

 

 

 

 

 

 

 

 

 

 

12. What, if any, changes would you make to your display technology to better assist you in 

determining the WCB? 
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13. What direction did the intruder feel most threatening from (made you feel most 

vulnerable to collision)? Please explain why you felt this way.  

a. Note – please refer to intruder directions in terms of cardinal directions 

(N,W,E,S) from ownship, as if ownship were always facing North (0 or 360). 

Response for 

interactions with 

Manned intruder 

Aircraft: 

 

 

 

 

 

Response for 

interactions with 

Unmanned intruder 

Aircraft: 

 

 

 

 

 

 

 

 

 

14. Would you envision yourself more often relying on a CDTI to maintain the WCB 

boundary, or out-the-window view? (Note – only referring to horizontal separation, not 

vertical) 

Response for 

interactions with 

Manned intruder 

Aircraft: 

 

 

 

 

 

Response for 

interactions with 

Unmanned intruder 

Aircraft: 
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15. What was your perceived level of safety during interaction with intruding aircraft? 

Response for 

interactions with 

Manned intruder 

Aircraft: 

 

 

 

 

 

Response for 

interactions with 

Unmanned intruder 

Aircraft: 

 

 

 

 

 

 

 

 

16. Did you feel speed of ownship changed your perceived dimensions of the WCB? (circle 

one) 

 

Strongly Disagree          Disagree    Neutral                     Agree      Strongly 

Agree 

 

 

 

17. Do you believe that traffic density in your immediate surrounding airspace affected your 

perception of WCB? 

 
Strongly Disagree          Disagree    Neutral                     Agree      Strongly 

Agree 

 

 

18. Do you feel that the CSD had a positive impact on your WCB perception in comparison 

to your current CDTI? 

 
Strongly Disagree          Disagree    Neutral                     Agree      Strongly 

Agree 
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19. Please rate the overall trust level you felt towards the intruding aircraft (circle one) 

 

Response for 

interactions 

with Manned 

intruder 

Aircraft: 

 

 

 
Very Low Trust Low Trust                Neutral Trust                    High Trust           Very High 

Trust  

 

Response for 

interactions 

with 

Unmanned 

intruder 

Aircraft: 

 

 

 
Very Low Trust Low Trust                Neutral Trust                    High Trust           Very High 

Trust  
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20. FOR GA PILOTS ONLY - Do you believe pilots with more experience than you would have 

a different opinion of the WCB? If so, why? 

 

 

 

 

 

 

 

 

 

 

 

21. FOR COMM PILOTS ONLY – Do you believe pilots with less experience than you would 

have a different opinion of the WCB? If so, why? 
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22. Please draw your interpretation of what the WCB should be between your ownship and 

other Manned aircraft. Be sure to indicate a range scale as you see fit. 
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23. Please draw your interpretation of what the WCB should be between your ownship and 

other Unmanned aircraft. Be sure to indicate a range scale as you see fit. 
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