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ABSTRACT 

LOW-VOLTAGE CONTINUOUS-TIME LINEAR EQUALIZER FOR 

DIGITAL VIDEO APPLICATIONS 

by Poonam V. Agale 

This thesis presents a low-voltage continuous-time linear equalizer for the digital video 

application of 1080p HD video with a data rate of 3 Gbps.  The equalizer was designed in 

the CMOS 45 nm technology with a supply voltage of 1V and bias current of 1.5 mA.  

The equalizer has a variable gain, which can be adjusted to suit the cable length and 

physical parameters.  The circuit design of the equalizer filter includes a 3-stage filter, 

where each stage has been implemented as a variable gain amplifier along with a linear 

transconductance amplifier as a gain control stage.  The equalizer is capable of 

compensating for the loss of a coaxial cable within the range 0-240 m in length, with each 

stage compensating for a cable of 80 m.  The circuit design of the equalizer was 

implemented in the CMOS 45 nm technology in Cadence Virtuoso.  The equalizer was 

also tested in Matlab, using the model of the coaxial cable to demonstrate the equalization 

of the data.  The transient results of the equalized data, as well as the eye diagrams, are 

presented in this work. 
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1. Introduction 

1.1. Background 

     The on-chip communication frequency increased tremendously from 1994 to 2004, 

crossing into the GHz range [1].  This spurt in the on-chip communication frequency has 

been due to rapidly shrinking silicon processes, which have improved on-chip bandwidth 

capabilities.  Microprocessor speeds have not increased much after 2004 so as to limit the 

power consumption on IC's [1].  This spurt in on-chip capabilities has caused a demand 

for higher bandwidth capabilities for the off-chip interfaces. 

     The demand for HDTV has brought about the need for high data rates in the 

transmission of digital data.  Data rates in the range of 3 Gbps are needed for 1080p HD 

video, and there is a higher need for data rates.  Digital video applications use serial digital 

interfaces to handle the requirements of uncompressed digital video.  The coaxial cable is 

a serial digital interface used for digital video applications like 1080p HD video.  The 

1080p HD technology is a mature technology and is being standardized in the market 

today.  In the consumer domain, almost all flat panel displays with HDMI 1.3 interfaces 

can display 1080p HD video.   

1.2. Motivation 

     This need for high data rates has led to the development of techniques that create more 

room in the bandwidth domain and thus reduce effects like ISI.  Adaptive equalizers [2], 
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[3] have been implemented for digital video applications in a 0.8 μm/14 GHz BiCMOS 

process and a 14 GHz bipolar process respectively.  Other equalizers [4], [5] have 

achieved up to 3.5 Gbps with a 1.8 V supply in a CMOS process and 10 Gbps with a 3.3 V 

supply in a SiGe BiCMOS process.  These implementations show that high-data rates 

using an unknown cable length (up to a certain range) can be achieved with adaptive 

equalization.  However, there is still a need for low-voltage and low-power equalizers, 

implemented in a CMOS process for better integration with the receiver circuits of the 

transmission system. 

     The need for equalization is to eliminate the effects of ISI, which occur due to the non-

linear effects of the channel and cause successive symbols to blur together.  Figure 1.1 

shows perfect PRBS data generated in Matlab, which is used for input to the coaxial cable.  

The low-pass nature of the cable affects the data, and this can be clearly seen in the Figure 

1.2.  The data output from the cable is shown in Figure 1.3, and the data are attenuated due 

to the low pass characteristics of the cable.  The cable model that has been created and 

used is the model of a Belden 1694A cable, which is designed for high-speed transmission 

of digital data. 
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Figure 1.1: PRBS data (Input to the cable) 

 
Figure 1.2: Data output through a coaxial cable of length 40 m 

 

     The coaxial cable has an inner conductor, which is surrounded by insulating material 

(dielectric).  The dielectric material is then covered with a copper shield, and finally a 
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plastic sheath surrounds and completes the cable.  The inner conductor and the outer 

conductor are configured in such a way that they form concentric cylinders while having a 

common axis, as shown in Figure 1.3.  The copper shield is kept at ground potential, while 

the electrical signal propagating through the cable is applied to the center core conductor.  

The coaxial cable insulates the signal from the outside electric and magnetic fields and has 

less leakage than other cables.   

     A digital coaxial cable is better shielded for interference and has higher impedance, 

allowing it to handle more energy and a larger range of electrical frequencies. 

 
Figure 1.3: Coaxial cable 

 

One such digital coaxial cable that is used for video applications is the Belden 1694A 

cable, with an impedance of 75 Ω.  This HD designed coaxial cable can carry the 3 Gbps 

signal needed for 1080p/50 HD video with an attenuation of 21 dB for a cable of 100 m. 
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Figure 1.4: Coaxial cable frequency response (length = 80 m) 

 

     In recent years, coaxial cables have been applied in a wide variety of residential, 

commercial, and industry installations.  One of the applications of coaxial cables is for 

digital video applications.  The losses in the coaxial cable are due to the resistance of the 

conductors and the dielectric that is used for insulating the conductors consumes power.  

Losses in the transmission line arise from sources like radiation, dielectric loss, and skin 

effect loss [6]. 

     Attenuation is the inherent signal power loss in the coaxial cable, and it is dependent on 

both the frequency and the length of the cable.  Attenuation is caused by the DC resistance 

of the center conductor and the dissipation factor of the dielectric material.  Attenuation is 

typically expressed in dB/100 ft. 

     Reflection losses are based upon signals reflecting back to the source rather than 

propagating through the cable.  These reflections are caused by impedance mismatches or 
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variations due to any physical changes in the cable.  The reflection losses can be 

minimized by quality cable manufacturing techniques and proper installation techniques 

[7]. 

     Insertion loss is the combination of attenuation losses and reflection losses, resulting 

from impedance changes at the cable input and output interface plus any reflection losses 

along the cable length, along with any other losses such as radiation.  Conductor losses 

vary with the square root of frequency, which is due to the skin effect.  Losses from the 

dielectric increase with frequency and are due to friction from the resistance of the 

conductor [8]. 

     The cable loss characteristics can be modeled as a function of frequency [3]: 

   

e
ffjl kkfC dS




1

 (1.1) 

where, kS is the skin effect constant, kd is the dielectric constant and l is the cable 

length.   

 
Figure 1.5: Eyediagram of data output from a 40 m cable 
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Figure 1.6: Eyediagram of equalized data simulated in Matlab 

 

The eye diagram shown in Figure 1.5 is that of the data output through a 40 m cable.  

Clearly, the eye opening is small due to the distortion and attenuation of data and a 

considerable amount of jitter can be seen to occur in the eyediagram.  The data output 

from the cable is then put through a filter whose transfer function is the inverse of the 

cable function.  This filter acts as an equalizer and amplifies the attenuated data, resulting 

in a wider eye opening as shown in Figure 1.6.  The equalizer transfer function used to 

obtain this eye diagram is an ideal transfer function obtained as the inverse of the cable 

transfer function.  Due to the ideal nature of the equalizer in this case, the eye diagram of 

Figure 1.6 is an ideal eye diagram with a wide eye opening and no jitter. 
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2. Continuous-time linear equalizer 

2.1. Equalization 

     According to the Shannon-Hartley theorem, the maximum data rate at which the error-

free signal can be transmitted through a band-limited channel in the presence of noise can 

be improved by widening the bandwidth of the transmission channel or improving the 

signal-to-noise ratio of the signal.  The general formula for Shannon-Hartley's theorem is 

expressed as [9]: 

)1(log
2

SNRC   (1.2) 

where, 

C = data rate measured in number of bits per second 

B = Bandwidth of the signal measured in Hertz 

SNR = Signal to noise ratio 

     Equalization is a method where a waveform is manipulated at either the transmitter or 

the receiver in order to compensate for the imperfections of the channel, and thus restore 

signal integrity.  Equalization can be achieved by providing a flat band frequency response 

which extends slightly beyond the operating frequency of the system.  Conventional 

methods such as replacing the channel with low-loss material, incorporating a repeater in 
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the channel, and reducing the channel length are no longer effective in solving high-speed 

communication issues [9].  Besides correcting for the channel frequency-response 

anomalies, the equalizer can cancel the effects of multipath signal components, which can 

manifest themselves in the form of voice echoes, video ghosts, or Rayleigh fading 

conditions in mobile communications channel [10]. 

 
Figure 2.1: Block diagram of the proposed equalizer 

 

     The block diagram in Figure 2.1 shows the system diagram of the proposed equalizer.  

The equalizer consists of two main parts: one is the equalizer filter, and the second part of 

the equalizer is the DC restorer combined with the gain decision circuit.  The gain 

selection depends on the attenuation affecting the input signal, while the attenuation is a 

function of the cable length and the cable physical parameters.  

     The adaptive gain control block is used to compare the received signal with a reference 

level, and then determine the gain of the filter that needs to be implemented.  The received 

signal is used to determine the average or the peak amplitude of the signal.  The signal is 
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subjected to a slicer circuit and then an integrator, from which a dc voltage value is 

obtained which is proportional to the peak of the received signal.  This dc voltage is then 

compared to a reference value and an error signal is obtained.  The error signal determines 

the number of filter stages and the level of gain in each stage that will be used to amplify 

the received signal.  This process is iterated till the generated error signal is within an 

acceptable range. 

 
Figure 2.2: Block diagram of a Transmission System 

 

     The block diagram in Figure 2.2 is that of a digital transmission system which can be 

improved with the use of discrete-time or continuous-time filters.  The placement of the 

discrete-time or continuous-time filters has been shown above, exploring both the receiver 

and transmitter placement options.  As can be seen from the Figure 2.2, the discrete-time 

filter is placed after the sample and hold circuit at the receiver.  The sample and hold 

circuit takes samples of the continuous-time data such that a sample is created with every 

clock edge.  If the clock has any jitter or skew, the wrong data might be sampled and 

would eliminate any chance of recovery of the data.  In the case of the continuous-time 

filter, the data is first equalized and then it is sampled.  The data can therefore still be 

recovered, even if it has been sampled incorrectly.  Another factor is to decide the 
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placement of the filter at the transmitter or at the receiver.  Placing the filter at the 

transmitter is not very ideal for adaptation, as the filter response has to be adjusted based 

on the time varying channel.  Therefore, if the filter is at the transmitter, a feedback will be 

needed from the receiver to the transmitter to adjust the response of the filter.  In the other 

case, if the filter is at the receiver, the response of the filter can be easily adjusted 

depending on the channel response. 

     Transmit equalization pre-distorts a transmitted signal by amplifying the high-

frequency content of the signal to compensate for the expected amount of loss through the 

channel.  The emphasized portion of the signal is attenuated by the channel resulting in an 

open eye that can be easily interpreted by the receiver.  However, the lower supply voltage 

due to process scaling trend and high channel losses imply that majority of the 

equalization is performed at the receiver side [11]. 

     There are two main techniques that are employed to formulate the filter coefficients, 

which will ultimately aim to compensate for the low-pass characteristics of the channel. 

1. Automatic Synthesis 

     In this method, the equalizer receives a time-domain reference signal and compares it 

to a stored copy of the undistorted training signal.  This comparison results in an error 

signal which can be determined to calculate the transfer function of the inverse of the 

channel transfer function.  The formulation of this inverse filter may be accomplished 

strictly in the time domain, as is done in the ZFE and LMS systems.  Another method is to 

convert the training signal to a spectral representation to enable the formulation of the 



12 

 

inverse channel response.  The inverse spectrum is then converted to a time-domain 

representation for calculating the filter tap weights.  The main disadvantage of using this 

method is that the training signal which is as long as the filter tap length must be 

transmitted [10]. 

2. Adaptation 

     In adaptation, the equalizer attempts to minimize the error signal based on the 

difference between the output of the equalizer and the estimate of the transmitted signal, 

which is generated by the decision device.  The adaptation tries to keep the difference 

between what was most likely transmitted and what was received to a minimum.  

Adaptation techniques can prove useful to compensate for minor variations in the channel 

response and to a certain length of the channel. 

 
 

Figure 2.3: Classification of Equalizers [12] 
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2.2. Literature survey 

     The purpose of performing a literature survey was to find the processes and methods in 

which the equalizers have been designed so as to determine the approach needed to take to 

design a low-voltage and low-power equalizer, as well as to judge the need of such a 

project.  As seen from the table above, a low-voltage equalizer design is needed to bridge 

the gap between highly evolving digital circuits and the analog circuits, which are mostly 

designed in higher technologies with higher supply voltages. 

     This work competes with the previous works in terms of better integration with the 

existing digital circuits due to its low-voltage design.  Most digital circuits in the industry 

are fabricated in the lowest technology possible for optimizing area, as well as 

performance.  The low-voltage design of this work enables a low-power performance of 

the circuit, even with high-biasing currents. 
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Table 1: Literature Survey 

 

 

Conference/ 
Year 

Author/Co
rporate 
Author 

VD

D 

(V) 

Technolog
y 

Data 
rate 

Max length 
of cable 

Peak 
to 

peak 
jitter 

Power 
Dissipati

on 

ISSCC 1999 
Shakiba, 

M. H. 
5 

0.8um/14
GHz 

Bipolar  

1.5 
Gbps 

100m of 
Belden 8281 

< 
0.1U

I 
12.7mW 

ISSCC 1996 
Baker, 
Alan J. 

5 
0.8um/14

GHz 
BiCMOS 

400 
Mbps 

300m of 
Belden 8281 

< 
0.1U

I 
 

CICC 1998 
Babanezh
ad, J. N. 

3.3 
0.4um 
CMOS 

100 
Mbps 

125m CAT5 
UTP cable 

0.14
UI 

65mW 

ISCAS 1999 
Hartman, 

G. P. 
3.3 

0.5um 
CMOS  

143 
Mbps 

215m 
coaxial 

cable for 
SMPTE Std 

259M 

 
30mW 

VLSI-DAT 
2006 

Lu, Jian-
Hao 

1.8 
0.18um 
CMOS  

3.125 
Gbps 

20m Belden 
8219 cable 

0.25
UI 

14.8mW 

Asian-SSCC 
2008 

Park, P 1.3 
90nm 
CMOS  

20Gb
ps 

equalizes 
7.5dB 

attenuation 
at 10GHz 

0.32
UI 

138mW 

ISSCC 2005 Jaussi, J. E. 
1.7
V 

0.13um 
CMOS  

8Gbp
s 

17cm FR4 
traces  

280mW 

ISSCC 2005 Gondi, S 1.2 
0.13um 
CMOS  

10Gb
ps 

30 inches of 
FR4 traces 

15ps 25mW 

ISCAS 2011 
Ganzerli, 

M, D. 
1.1 45nm 

13.5 
Gbps 

equalizes up 
to 18dB loss 

0.4U
I 

8mW 

CICC 2009 Shin, D. H. 1 
90nm 
CMOS  

12Gb
ps 

72 inch RG-
58 cable  

1mW 

This thesis Agale, P. 1 
45nm 
CMOS 

3Gbp
s 

240m RG-6 
cable  

15mW 
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2.3. Linear equalization technique 

     The linear equalization technique is implemented at the receiver, where the equalizer 

has a transfer function which is equal to the inverse of the transfer function of the cable.  

The equalizer implements peaking at higher frequencies and degenerated gain at lower 

frequencies to compensate for the cable losses as shown in Figure 2.4.  

     The frequency response represented by the blue line in Figure 2.4 is the response of a 

40 m coaxial cable (Belden 1694A), and the frequency response depicted in red is the 

frequency response of the equalizer.  As seen in the graph below, the equalizer response 

compensates for the low-pass characteristics of the coaxial cable.  The equalizer curve was 

implemented in cadence using a differential amplifier as well as a Gilbert cell as a variable 

gain amplifier.  Both these designs will be explained in detail in the following sections.  

The equalizer response curve was then exported from cadence to Matlab and plotted with 

the curve of the coaxial cable. 
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Figure 2.4: Frequency response of the cable and the equalizer 

 

The design of gain-peaking circuits must satisfy many difficult requirements [13]: 

1. Sufficient gain boost at high frequencies 

2. Matching the inverse loss profile of the channel with reasonable tolerance 

3. Minimal low-frequency loss to minimize the noise accumulation in cascaded stages 

and provide sufficient swings for the CDR 

4. Well-behaved phase response to achieve a low jitter 

5. Reasonable linearity so that the equalizer transfer function acts as the inverse of the 

channel loss profile 

6. Small input capacitance 

7. Tunability of the boost to allow adaptation 
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2.4. Design and implementation 

     CTLE is essentially a high-pass filter targeted to compensate the undesired low-pass 

effects of the channel.  Multi-stage CTLE are the most inexpensive, low power option to 

implement, and can be adapted very well to the channel loss [11].  On the one hand, 

passive CTLE is constructed using only passive electronic components such as resistors, 

capacitors, and inductors.  Therefore, high-pass response of passive CTLE is not coupled 

with signal amplification.  On the other hand, active CTLE provides high-frequency gain 

boosting by means of real zeroes using RC degeneration.  CTLE is normally designed and 

analyzed in the frequency domain; the most important step in CTLE design is to 

accurately place the poles and zeroes according to the inverse loss profile of the target 

channel [9]. 

     This design of a continuous time linear equalizer aims at the design of a high-pass filter 

which provides high-frequency boost at 1.5 GHz.  The longer the length of the channel, 

the higher is the attenuation at the operating frequency.  Therefore, as the cable length gets 

longer, the amplifier needs to modify its gain to be higher to now equalize the data.  From 

observing previous works, it was determined that multiple stages of the filter would prove 

efficient in providing the appropriate gain for a particular length of the cable with certain 

physical parameters.  The proposed filter is divided into three stages, with each stage 

providing a gain of 20 dB at 1.5 GHz to compensate for the losses of the cable length of 

80 m each.  Therefore, the filter as a whole will be able to compensate the losses of the 

cable length from 0 to 240 m.  Each filter stage will be able to adapt to a change of the 
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length of the cable or any other parameter which may cause a change in the frequency 

response of the cable.  The gain of the variable gain amplifier can be controlled by a 

control voltage.  This control voltage is converted to a current modulation by a linear 

transconductance amplifier.  The linear transconductance amplifier thus modulates the 

control stage in the amplifier, which in turn varies the gain of the amplifier. 

2.4.1. Design specifications 

The desired peaking frequency for the continuous time linear equalizer is 1.5 GHz.  

The design has been implemented in the 45 nm CMOS technology, which is conducive for 

high-frequency designs.   

 
ns

Frequency
Period 6667.0

1
  (1.3) 

The rise/fall time should be 1/10th of the period to allow for enough time for data 

read/data to be stable. 

Rise time/Fall time = 1/10th of the period = 66.667 ps  

Slew rate = 15 V/ns 

CL = 40 fF (for next stage) 

Parasitic capacitances for routing = 100 fF (assumption) 

SR = Iss/CL  

Iss = 1.5 mA 

Therefore, the amplifier is designed with a bias current of 1.5 mA. 
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     The bias current specification of the amplifier should be designed to be 1.5 mA.  The 

biasing parameters are discussed in the section below, along with the design constraints of 

the amplifier.  The continuous time linear equalizer has been designed in the CMOS 45 

nm technology which has a supply voltage of 1 V.  Since the equalizer circuit is placed in 

the front-end of the receiver in the transmission system, an equalizer fabricated in a 

technology with a supply voltage of 1 V can now be integrated with the receiver circuit 

and fabricated in the same technology.  Designing the analog and digital components of 

the circuit with the same supply voltage helps in reducing an alternate power supply, 

which is used for the analog equalizer in most receiver circuits.  This not only saves the 

total area of the design, but also enables integration of the design and thus improves cost 

and performance. 

     The first step in designing the amplifier is to find the biasing of the differential pair, 

such that the gain is optimum and the bandwidth extends beyond 1.5 GHz.  Designing the 

amplifier in the CMOS 45 nm technology helped in extending the bandwidth to the GHz 

range.  The circuit used to determine the bias point of the amplifier is shown in Figure 2.5.  

The gm of the amplifier was designed to be at a value of 15.43 mA/V.  The VDS voltage of 

the transistor was limited by the available headroom of the circuit, while the VGS - VTH 

(VOV) voltage was designed to be within the saturation limits of the transistor.   
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Figure 2.5: Differential amplifier (NMOS transistor) testbench schematic 

 

The following graph in Figure 2.6 shows the current biasing of the differential pair 

NMOS transistor by varying the width of the transistor to match the current of 1.5mA.  

Due to this large biasing current, a parameter of the transistor that suffered was the output 

resistance (RON) or drain to source resistance of the amplifier as shown in Figure 2.7.  The 

parameter called ‘region’ in Figure 2.7, which is of the value 2 indicates that the transistor 

is in saturation region.   

 
Figure 2.6: Differential amplifier (NMOS transistor) bias 
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Figure 2.7: Differential pair (NMOS transistor) parameters 

 

A technique to improve the ROUT (drain to source resistance) of the transistors is to 

increase the length of the transistor.  It is shown below in Figure 2.8 that the gm*ROUT 

product increases quite significantly with the length of the NMOS transistor.  However, 

increasing the length of the differential pair transistors in the amplifier circuit in turn 

reduces the bandwidth of the amplifier.  Hence, the length of the differential pair was 

maintained at 45 nm.  The tradeoff during the design of the amplifier was between the 

gain and the bandwidth of the amplifier.  The length of the tail transistor of the differential 

pair was increased to 1 um to increase the resistance of the transistor.  A reduced 

resistance of the tail transistor would degrade the performance of the differential pair 

amplifier.   

 
Figure 2.8: gm*Rout v/s length of the transistor 
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     The high biasing current demands (3 mA and 6 mA) of this design resulted in an 

extremely large width of the tail transistors.  Due to this, the ROUT of the transistor could 

not be designed to a large enough value as to suit a constant current source.  The length of 

the tail transistor was increased to be 1 um so as to increase the ROUT of the transistor and 

avoid discrepancies in the circuit due to PVT variations. 

 
Figure 2.9: Transfer characteristics of different length (1 um, 0.5 um, 0.35 um, 0.18 um) 

transistors 

 

     As can be seen from the plot above, increasing the length of the transistor reduces the 

channel length modulation in the output curve.  This makes the transistor more suited to 

be a tail transistor.  The graph in black in Figure 2.9 is the output characteristic graph of a 

transistor of length 1 um.  The graphs in blue, red, and green are the output characteristics 

of transistors of length 0.5 um, 0.35 um, and 0.18 um, respectively.  Ideally, the tail 

transistor has very high impedance and almost no channel length modulation. 
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2.4.2. Variable gain amplifier 

The first implementation of the variable gain amplifier is a differential pair amplifier, 

which is a first order system with a single pole and a zero and is shown in the Figure 2.10.  

The differential pair amplifier is designed to provide a variable gain by varying the tail 

current of the differential amplifier. 

 
Figure 2.10: Differential pair amplifier 

 

The graph in Figure 2.11 shows the linear relationship between the control voltage and 

the variable tail current.  The maximum tail current is 1.5 mA which corresponds to the 

maximum gain of the amplifier.  The Figure 2.12 shows the frequency response of the 

amplifier with variable gain, which corresponds to the different tail bias currents.  The 

range of the amplifier varies from 14.17 dB to 0 dB, which can be controlled by varying 

the bias current of the amplifier. 
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Figure 2.11: Linear relationship between the control voltage and the bias current 

 
Figure 2.12: Frequency response of the amplifier showing variable gain 
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2.4.3. Source degeneration 

     The objective of source degenerating the amplifier is to provide a high-frequency 

boost, while at the same time attenuating the low-frequency gain.  This technique is 

instrumental in achieving a transfer function of the amplifier which is the inverse of the 

transfer function of the cable.  The analysis of the amplifier with source degeneration and 

the resulting response curves are shown in detail in this section. 

     Low frequency analysis: At low frequencies, the impedance of the capacitor (Xc) is 

high enough that the capacitor can be assumed to be an open circuit.  In this case, the 

resistor does the job of degenerating the gain of the amplifier at low frequencies as stated 

in Equation 1.4. 

 
Figure 2.13: Differential pair with source degeneration 
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Rg
Rg

Sm

LmGain



1

 (1.4) 

If RS>> 1/gm; 

RR
R

TAILS

LGain
||

  (1.5) 

     The gain at the lower frequencies is independent of the gm of the amplifier and 

becomes a function of RL and RS.  In this case, gm = 15.08 mA/V, and RS = 2.5 KΩ, and 

since 1/gm = 66.313 V/A; RS > 1/gm.  However, the source resistance is in parallel with 

the tail transistor resistance, which limits the value of the degenerating resistance (RS || 

RTAIL).  Another issue that arises is that the PMOS load resistance does not stay constant 

with variable gain values, which results in variable DC gain values.  The DC or low 

frequency gain has been expressed in the Equation 1.5. 

     High frequency analysis: At high frequencies, the impedance of the capacitor becomes 

low enough to act as a short circuit and short the source resistance (RS) in the amplifier 

circuit.  At this point, the differential pair can exhibit the qualities of an amplifier, and thus 

we can achieve high-frequency gain.  The max gain of the differential circuit is gm*RL as 

shown in Figure 2.14, and the location of the pole as stated in the Equation 1.6 can be 

approximated to: 

C

g
w

S

m

p


1
 (1.6) 
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     The zero and the pole location can be manipulated by appropriately changing the value 

of the degenerating resistor (RS) and the capacitor (CS).  The frequency response 

represented by the black line in Figure 2.14 is the ideal frequency response needed by the 

equalizer.  The peak should occur at the operating frequency of the receiver.  The location 

of the zero can be changed by changing the value of the source capacitance and thus the 

bandwidth of the amplifier can be altered as shown in Figure 2.18. 

 
Figure 2.14: Frequency response of a first order system 

 

     Determining the transfer function of the circuit will give an insight into the placement 

of the pole and the zero of the circuit and thus determine the peaking frequency of this 

first order CTLE.  The peaking frequency can be manipulated by varying the value of the 
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degenerating capacitor and the low frequency gain can be varied by varying the value of 

the degenerating resistor. 

Zg

Rg

Sm

LmsH



1

)(  (1.7) 
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If     1/gm; 














R
CRg

S

SLm
sGain

1
 (1.10) 

The gain will roll-off at high frequencies; it may not even reach a high gain of gm*RL 

due to parasitics of the amplifier, but may roll-off at a smaller gain as depicted by the red 

curve in Figure 2.14.  The above calculations are of an ideal perspective, to determine the 

location of the zero and the pole of the first-order CTLE in a simplistic way.  However, as 

shown in the Figure 2.14, the frequency response does roll-off and this shows that the 

transfer function does include another pole. 

CR
w

LL

P

1
2
  (1.11) 

This pole capacitance should practically also include the parasitic capacitances of the 

transistor, for example, the gate to drain capacitance (CGD) and the bulk to drain 
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capacitance (CBD), but for now those parasitics have been excluded.  The complete 

transfer function of the circuit can therefore be summarized as: 





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Figure 2.15: High-frequency variable peaking in the response of a differential amplifier 
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Figure 2.16: Variable gain obtained by varying the control voltage 

 
Figure 2.17: Low frequency gain variation by changing the source resistance 
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The frequency response graphs in Figure 2.15 and Figure 2.16 have been generated by 

varying the control voltage, which in turn varies the bias current of the differential pair.   

 
Figure 2.18: Frequency response of the differential amplifier with a variable bandwidth 

 

     By keeping the control voltage at a constant level, and varying the source capacitance, 

the graphs in Figure 2.18 can be obtained.  A variation in the value of the source 

capacitance varies the bandwidth of the amplifier and to some extent even varies the gain 

of the amplifier.  The graphs in Figure 2.17 can be obtained by varying the source 

resistance values, which varies the gain of the amplifier at low frequencies.  This is the 

same as having a source degenerated common source amplifier, where the value of the 

source resistance divides the gain of the amplifier.  Although having a row of resistors in 
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the circuit can consume a lot of area, some applications do require low frequency gain 

variation. 

 
Figure 2.19: Transient response of the input and output signals from the amplifier 

 

The graphs displayed in red and black in the Figure 2.19 are the differential input 

signals to the amplifier.  The input signals are of the magnitude of 100 mV and are 

opposite in phase as they are differential signals.  The graphs in the second half of Figure 

2.19 are the output differential signals of the amplifier.  The output differential signals can 

be seen to be amplified in nature as compared to the input differential signals. 
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Figure 2.20: Differential PRBS data in cadence (input to the cable) 

 
Figure 2.21: Distorted, differential output signals, received from the channel 
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Figure 2.22: Equalized data (in red) and the ideal PRBS data (in blue)  

 
Figure 2.23: Equalized data (in red) of OUT- and the ideal PRBS data (in blue)  
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Figure 2.24: Eyediagram of the distorted data shown in Figure 2.21 

 

``  

Figure 2.25: Eyediagram of the equalized data shown in Figure 2.22 and 2.23 
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2.4.4. Gilbert cell 

The Gilbert cell proves to be a useful circuit when the gain of the amplifier is to be 

varied from a negative value to a positive value.  This can be done by using two 

differential amplifiers that amplify the input by gains having the opposite phase i.e.: 

Rgm
V
V

A
IN

OUT

V 11
1

1

1
  (1.13) 

Rgm
V
V

A
IN

OUT

V 22
2

2

2
  (1.14) 

where gm1 and gm2 denote the transconductance of each amplifier in equilibrium. 

 
Figure 2.26: Representation of the Gilbert cell 

From Figure 2.26,  

VVV OUTOUTOUT 21
  (1.15) 



37 

 

VAVAV ININOUT


21
 (1.16) 

where, A1 and A2 are controlled by VCONT1 and VCONT2. 

     The cross-coupling of the two differential amplifiers allows the gain to range from a 

negative gain value to a positive gain value, depending on the individual gains of each of 

the differential amplifiers.  Since the differential amplifiers have the same gain when 

VCONT1 = VCONT2, the gain of the Gilbert cell is equal to zero.  In this design, the biasing 

current is equal to 1.5 mA and, therefore, each branch is designed to carry a current of 1.5 

mA. 

 
 

Figure 2.27: Differential amplifiers with a gain of the opposite polarity 

 

Now, in Figure 2.27: 

IRIRV DDOUT 21111
  (1.17) 

IRIRV DDOUT 44332
  (1.18) 
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Therefore, we can conclude that: 

   IIRIIRV DDDDDDOUT 3241
  (1.19) 

The above equation becomes true assuming that R1 = R2 = R3 = R4 = RD 

     So, instead of adding VOUT1 and VOUT2, we can just short the drains of Q1 and Q4 to 

combine ID1 and ID3 and short the drains of Q2 and Q3 to combine ID2 and ID4. 

 
Figure 2.28: Circuit implementation of VOUT = VOUT1 +VOUT2 

 

     In Figure 2.29, if I1 and I2 vary in different directions, so do AV1 and AV2 and, 

therefore, the circuit acts as a variable gain amplifier.  The resistors are replaced with 

PMOS transistors for higher swing and better gain.  The available headroom voltage limits 

the resistance value of the passive resistors and this in turn limits the gain of the amplifier.  

The tail currents are replaced with NMOS transistors whose currents will be controlled by 

VCONT1 and VCONT2.  The advantage of using a Gilbert cell is that the gain of the variable 

gain amplifier can vary from a positive gain value to a negative gain value.  However, in 

this design, the need for implementing a negative gain does not exist and, therefore, one of 
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the branches can be made to have a more positive gain than the other to maintain the gain 

of the amplifier on the positive side. 

When the currents in both the differential tail transistors are the same, the gain of the 

overall circuit should be zero.  As the tail current will modulate, the gain of the circuit 

should be equal to the difference of the gain of the two amplifiers.  To make the 

relationship between the control voltage and the gain of the amplifier more linear, a linear 

transconductance amplifier has been implemented before the Gilbert cell, which converts 

the change in the control voltage to a change in the bias current of the Gilbert cell.  The 

linear transconductance amplifier output is connected to the tail transistors in Figure 2.29 

(Q5 and Q6). 

 
Figure 2.29: Cross-coupled differential amplifiers with an active load 



40 

 

     The load to this amplifier is the gate of the transistor of the next amplifier stage.  This 

can be mimicked by placing a simple common source amplifier as the next amplifier stage 

and simulating the Gilbert cell as the test circuit. 

 
Figure 2.30: Gilbert cell with a voltage control stage for gain control 

 
Figure 2.31: Gilbert cell tail bias circuit 
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The Gilbert cell circuit, shown in Figure 2.30 is implementing the variable gain 

amplifier using the cross-coupled differential amplifier topology.  The VCONT stage helps 

in varying the gain of the individual amplifier stages and thus varies the overall gain of the 

amplifier circuit.  The tail bias circuit is shown in Figure 2.31, which is designed to bias 

the tail transistor for a drain current of 6 mA.  The VCONT1 and VCONT2 bias voltages are 

decided by the linear transconductance amplifier, which acts as the gain control stage.  

The control voltage, which is applied to the gain control stage, is decided by the amplitude 

of the input data stream which comes in via the channel (coaxial cable).  One of the main 

issues, while working with this design, was the resistance of the tail transistors, which was 

as low as 200 Ω due to the large width of the transistors.  The large width of the transistor 

is contributed to a large bias current needed in the tail transistor (6 mA) and the voltage 

headroom limits the increases in the overdrive (VGS - VTH) voltage.  The frequency 

response graphs for the circuit in Figure 2.30 are displayed in Figure 2.32. 

The Gilbert cell provides a gain of 13.96 dB at the operating frequency of 1.5 GHz for 

a load of 100 fF.  The different colored graphs in Figure 2.32 have been obtained by 

varying the VCONT1 and VCONT2 control options in the circuit of the Gilbert cell.  To obtain 

high-frequency peaking, a source degenerating resistor and capacitor will be used.  The 

maximum gain of the Gilbert cell is not more than 15 dB, which may prove insufficient to 

compensate for a cable length of 80 m.  A second stage common source amplifier can be 

used to further amplify the gain of the amplifier and compensate for 80 m cable length as 

shown in the Figure 2.38.  A gain of around 20 dB is needed to compensate for a cable 

length of 80 m. 
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Figure 2.32: Variable gain frequency response of the Gilbert cell 

 

 
Figure 2.33: Gilbert cell with the control stage as the input pair 
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Figure 2.34: Linear current variation by steering the VCONT voltage 

 

     The two current graphs in Figure 2.34 are of the drain currents of the transistors Q1 and 

Q3.  By changing the VCONT voltage, the current in the branches can be steered such that 

one of the branches has a higher current flow than the other.  This difference in the bias 

currents causes the gain of one of the differential amplifiers to have a positive magnitude, 

while the other differential amplifier will have a negative magnitude.  Since the gain of the 

Gilbert cell is the difference of the two differential amplifiers, it will depend on the 

fluctuation of the gains of each of the differential amplifiers.  This gain can be increased 

or decreased based on the variation of the bias currents in the branches of the Gilbert cell.  

The higher the difference between the bias currents of the two branches of the Gilbert cell, 

the greater the gain of the Gilbert amplifier and vice versa. 
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Figure 2.35: Current modulation when one of the Gilbert cell branches has a higher 

current bias than the other 

 

     The transient currents in Figure 2.35 are the drain currents of the transistors Q1 and Q3.  

The transistors are biased at two different current states and the modulation of the two 

currents is due to the AC input on the transistors.  The transistors Q1 and Q3 are common 

gate amplifiers and this cascoded structure in the Gilbert cell increases the gain of the 

amplifier. 

)
1*11
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||5(*5

rdsgm

rdsrds
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


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Eqn. 2.15, 2.16, and 2.17 are the gain equations of the common source, common gain 

amplifier, and the cascode amplifier respectively.  The transistor Q5 acts as the common 

source amplifier, Q1 is the common gate amplifier, and Q7 is the PMOS load as shown in 

Figure 2.36. 

 
Figure 2.36: Gilbert cell circuit with source degeneration 
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Figure 2.37: Variable bandwidth frequency response of the Gilbert cell 

 

     The graphs in Figure 2.37 and 2.38 have been generated by varying the source 

capacitor as shown in the Figure 2.36.  The value of the capacitor determines the location 

of the zero, which changes the bandwidth of the amplifier.  Increasing the value of the 

capacitor increases the bandwidth of the amplifier; reducing the value of the capacitor 

reduces the amplifier's bandwidth.  Figure 2.38 is the frequency response of the two-stage 

amplifier, where the second stage of the amplifier is a common source amplifier.  The 

graph in Figure 2.39 shows gain variation due to variation in both the control voltage and 

the source capacitance.  The drawback of this technique is that the low frequency gain of 

the amplifier does not remain constant over variations in the control voltage.  An array of 
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capacitors can therefore be used to generate a small range of variable gain with a 

particular control voltage.  The ideal graph would display a constant low-frequency gain, 

which starts boosting near the operating frequency of 1.5 GHz. 

 
Figure 2.38: Variable bandwidth frequency response of the two-stage amplifier 

(Increased gain) 
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Figure 2.39: Variable gain frequency response with variable source capacitance and 

variable control voltage 

 

     The input to the Gilbert cell is of the order of 10 mV.  Since a gain of 20 dB is to be 

achieved, the output of the differential amplifier is centered at approximately 0.5 V for 

maximum output swing.  The transient output response is shown in Figure 2.40.  The 

graph in Figure 2.41 is that of the peak value of the amplifier gain versus the control 

voltage.  This graph shows the linearity of the amplifier over the control voltage range.  At 
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higher gain values, the graph becomes non-linear as the transistors are almost cut-off due 

to low bias currents. 

 
Figure 2.40: Transient output response 

 
Figure 2.41: Peaking value of the amplifier v/s control voltage 
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2.4.5. Folded-cascode amplifier 

The folded-cascode configuration was designed with the purpose of taking advantage 

of the voltage headroom that this architecture allows.  The folded-cascode amplifier has 

one less stage than the Gilbert cell and therefore has more headroom, although it does 

result in less output voltage swing than the Gilbert cell.  The higher voltage headroom 

increases the linearity of the amplifier and thus enhances its performance.  The NMOS 

pair is the input differential pair which acts as the common source amplifier, while the 

PMOS pair is biased with the control voltage from the gain control stage to vary the gain 

of the amplifier.  However, the folded cascode amplifier frequency response shows the 

bandwidth limitations of this circuit as shown in the Figure 2.43 and Figure 2.44.   

 
Figure 2.42: Folded-cascode amplifier schematic 
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Figure 2.43: Variable gain (V/V) of the folded-cascode amplifier 

 
Figure 2.44: Variable gain frequency response of the folded-cascode amplifier 
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2.4.6. Gain control stage 

     The objective of the circuit in Figure 2.45 is to get a linear relationship between the 

control voltage and the biasing current in each branch, which is why this circuit is called a 

linear transconductance amplifier.  This amplifier thus helps to provide a linear 

relationship between the control voltage and the resulting gain from the variable gain 

amplifier.  The gain control stage is a linear transconductance amplifier and is compared 

to the linearized CMOS differential transconductance amplifier [14] for design guidance 

and understanding. 

 
Figure 2.45: Linear transconductance amplifer as a gain control circuit 
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     As a starting point, a differential integrator can be used as a tuning circuit due to its 

simplicity, tunability, area efficiency, and a good high-frequency performance, which 

implements the voltage-to-current converter function (as opposed to configurations with 

multi-stage operational amplifiers which suffer from large amounts of excess phase at 

high frequency) [14]. 

     Q3 and Q6 are the input differential pair whose transfer characteristics are linearized by 

the voltage controlled degenerating resistors Q7 and Q8.  The biasing current in each 

branch is equal to 1.5 mA, as per the previous calculations and to provide the appropriate 

biasing to the VCONT stage in the Gilbert cell amplifier.  The biasing of the VCONT stage 

shifts as per the control voltage applied on the gate of the Q7 and Q8 transistors.  This 

control voltage modulates the biasing point, thus affecting the gain of the Gilbert cell 

amplifier. 

     For optimum linear characteristics of the gain control circuit as per the assumptions and 

observations from [14], we can conclude that: 

7

6

8

3

7 






 (2.18) 

 

     To lower the power consumption in the circuit, the biasing current in the current mirror 

source is kept as 500 uA and the width of Q7 and Q8 is increased to get the required 

biasing current of 1.5 mA.  The Q7 and Q8 transistors act as resistors and prove 

instrumental in linearizing the relationship between the steering voltage and the output 

current biasing. 
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In the graph in Figure 2.46, the variations of the current can be observed with respect to 

the control voltage Vc.  The VC voltage is applied between the transistors Q7 and Q8 in the 

circuit shown in Figure 2.45.  The x-axis is the range of Vc, where Vcmax = Vc + 0.28 

and Vcmin = Vc – 0.28.  Therefore, the current variation is almost linear with respect to 

the control voltage whose range extends from -0.5 V to 0.5 V.  The voltages VCONT1 and 

VCONT2 are then applied to the amplifier to vary the current in the amplifier and thus 

modulate the gain of the amplifier.  Linearizing the current output becomes difficult as the 

value of the VCONT1 or VCONT2 voltage increases beyond 0.8 V.  Beyond 0.8 V, the 

headroom of the PMOS transistors falls enough to drive them away from the saturation 

region. 

 
Figure 2.46: Variation of the branch currents with the change in VCONT 
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2.5. Design verification 

     The design of the first-order CTLE is to be verified with corner simulations where PVT 

variations are subjected to the design and the effects are observed.  Ideally, even with the 

PVT variations, the results are expected to be within the design specifications.  For the 

corner simulations, the following PVT variations have been implemented: 

Temperature = 125, 25, 0, -40 

Corners = TT, FF, SS, FS, SF 

VDD = 0.9, 1, 1.1 

     The critical test points for corner simulations are high temperature parameters and VDD 

variations.  Any variations in the supply voltage changes the gain of the amplifier 

dramatically, especially when VDD = 0.9 V.  The two instances in which the gain changes 

drastically in Figure 2.48 is when VDD = 0.9 V and the temperature is 125 °C as shown in 

Figure 2.47. 

 
Figure 2.47: Gain variations with variations in temperature 
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.  

Figure 2.48: Gain variations of the first-order CTLE with changes in temperature (-40, 0, 

25 and 125 °C and VDD) 

`  

Figure 2.49: Variations of the bandwidth of the amplifier over temperature with VDD=1 V 
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3. Matlab simulation and results 

3.1. Cable response (transient and frequency) 

     The model of the coaxial cable was simulated in Simulink and the low pass frequency 

response of the coaxial cable of length 40 m is shown in Figure 3.1.  The impedance of the 

Belden 1694A coaxial cable is 75 Ω.  This cable model is used to replicate the behavior of 

the cable and thus simulate the behavior of the equalizer. 

 
Figure 3.1: Low pass frequency response of a 40 m Belden cable 
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     A PRBS-7 signal, shown in the Figure 3.2 was generated to apply as the input to the 

cable model to simulate the cable response to a digital input.  The data output from the 

coaxial cable is shown in Figure 3.4 and, as can be seen, the data are attenuated and 

distorted due to the low pass characteristics of the cable.  The eye diagram shown in 

Figure 3.3 is the eye diagram of the ideal PRBS signal.  The eye diagram has an open eye 

with no jitter and the data edges overlap perfectly.  This eye diagram has been shown to 

highlight the contrast between the eye diagram of an ideal signal and that of a signal that 

has been propagated through a channel or even a signal that has been equalized.  The eye 

diagrams of the signal propagated through the channel or the equalized signals will not be 

this wide open and neither will they display this quality of a jitter free diagram.  The next 

section will discuss the anatomy of an eye diagram as well as show the eye diagrams of 

the equalized signals from a channel of different lengths.   

 
Figure 3.2: PRBS Signal (Input to the cable) 
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Figure 3.3: Eyediagram of an ideal PRBS signal 

 
Figure 3.4: Data output from a coaxial cable of length 40 m 
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3.2. Eyediagram 

     An eyediagram is an indicator of the quality of the signals in high-speed digital 

transmissions.  The eye diagram is generated by overlapping sections of the digital data 

stream at periodic intervals and thus creates an opening that looks like an eye.  A good 

method of testing a digital transmission system is to test it with a PRBS signal, which may 

have random and long runs of either 1's or 0's.   

     A very useful and important component of an eye diagram is jitter.  Jitter occurs when 

there is a late or early occurrence of the rising and falling edges of the data.  Jitter may 

occur due to reflections, ISI, crosstalk, PVT variations, and some jitter is even random.  

Some of the eye diagram parameters like noise margin, jitter, eye width and eye length 

have been highlighted in Figure 3.5.  The graphs in Figure 3.5, 3.6 and 3.7 represent the 

eye diagrams of the data output through a cable of length 20 m, 40 m, and 80 m 

respectively.  It can be observed from the graphs in Figure 3.5, 3.6, and 3.7 that the eye 

diagram openings get smaller as the length of the cable increases.  This is due to the fact 

that the attenuation at the operating frequency increases as the cable length increases as 

shown in the previous section. 
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Figure 3.5: Eyediagram of the data through a cable of length 20 m 

  
Figure 3.6: Eyediagram of the data through a cable of length 40 m 
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Figure 3.7: Eyediagram of the data through a cable of length 80 m 

 

3.3. Curve matching 

     To generate the transfer function of the equalizer in Matlab, the frequency response of 

the amplifier from the Cadence simulations was exported to Matlab.  The transfer function 

of the equalizer was then estimated from the frequency response curve, by estimating the 

locations of the poles and zeroes in the transfer function of the amplifier.  The graphs in 

Figure 3.8 represent the frequency response of the Belden cable of length 20 m, 40 m and 

80 m. 
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Figure 3.8: Frequency response of the coaxial cable of lengths 20 m, 40 m and 80 m 
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Figure 3.9: Frequency response of the cable (80 m) and the equalizer (single-stage 

amplifier) 

 

     The graph of the equalizer shown in Figure 3.9 is the frequency response of a single-

stage amplifier that has been exported from Cadence simulations.  The transfer function of 

the equalizer was then estimated from the frequency response curve by estimating the pole 

and zero locations.  The transfer function of the equalizer should be the inverse of that of 

the cable to compensate the losses of the cable at appropriate frequencies, and thus reduce 

the ISI and distortion occurring in the data propagated through the channel. 
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Figure 3.10: Close approximation of the transfer function of the equalizer 

 

     The frequency response curve labeled FR1 in the Figure 3.10 is the bode plot of the 

estimated transfer function from the frequency response curve labeled FR2, which has 

been exported from Cadence and is the amplifier frequency response.  The pole and zero 

locations were manipulated to match the two curves to each other and thus obtain the 

transfer function of the equalizer. 
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Figure 3.11: Flat frequency band generation using the equalizer 

 

     The graphs in Figure 3.11 demonstrate that the equalizer compensates for the losses of 

the coaxial cable.  The curve name Eq is the frequency response of the equalizer filter, 

while the curve named Cable is the coaxial cable frequency response.  When the transfer 

function of the equalizer and the cable are multiplied together, they generate a flat band 

frequency response over the operating frequency.  A completely flat frequency response is 
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the ideal response of a digital transmission channel and helps to avoid data attenuation and 

distortion. 

 
Figure 3.12: Equalization of the data through a cable of 80 m 
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     The graphs in Figure 3.12 show the equalized data plots of the data output from the 

cable of length 80 m.  The two-stage amplifier transient output has less distortion than the 

single-stage amplifier output.   

 
Figure 3.13: Eyediagram of the equalized data through an 80 m cable using a single-stage 

amplifier 

 
Figure 3.14: Eyediagram of the equalized data through an 80 m cable with a 2-stage 

amplifier 
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Figure 3.15: Eyediagram of the equalized data through a 40 m cable with a single-stage 

amplifier 

 
Figure 3.16: Eyediagram of the equalized data through a 40 m cable with a 2-stage 

amplifier 

 

     Although the eye diagrams in Figure 3.13, Figure 3.14, Figure 3.15, and Figure 3.16 

have a large eye opening, they show the occurrence of jitter. 
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Figure 3.17: Sine wave input equalization 

 

     The sine wave input to the cable is attenuated after propagating through the cable.  The 

input also suffers from baseline wander as can be seen in the first transient output in 
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Figure 3.17.  The second transient output and the third transient output are the outputs of 

the first-stage and second-stage amplifier respectively.  The outputs from the first stage 

amplifier and the second stage amplifier amplify the signals and reduce the baseline 

wander to a good extent. 
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4. Conclusion 

     This work covers the proposal, design, implementation, and verification of the 

continuous time linear equalizer in the CMOS 45 nm technology.  The constraints of the 

design were the low output resistances of the large width transistors, headroom limitations 

in cascode amplifier design, and the linearity limitations.  Another major issue during the 

amplifier design was that the load resistance changed with the control voltage, which in 

turn changed the low frequency gain.  A future goal is to design a DC restoring circuit, 

which will eliminate the baseline wander that occurs due to AC coupling.   

     The Matlab and Cadence simulations results matched and proved that the equalizer 

does overcome the attenuation caused by the low pass characteristics of the channel.  The 

goal of achieving a flat band frequency response over the operating frequency using the 

equalizer was materialized.  A future goal is to achieve low jitter in the output data eye 

diagram of the equalized signals.  Thus, a low-voltage equalizer can be designed in a 1 V 

technology, but with some gain and linearity limitations. 
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APPENDIX 

 

1:  Cable and Equalizer system test model in Simulink 
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