
Aspect-Oriented Requirements with UML

João Araújo and Ana Moreira
Dept. Informática, FCT

Universidade Nova Lisboa
2829-516 Caparica, Portugal

+351 212948536
{ja,amm}@di.fct.unl.pt

Isabel Brito
Dept. de Engenharia

Instituto Politécnico de Beja
7800-050 Beja, Portugal

+351 284311540
isabel.sofia@estig.ipbeja.pt

Awais Rashid
Computing Department

Lancaster University Lancaster
LA1 4YR, UK

+44 1524 592344
awais@comp.lancs.ac.uk

ABSTRACT
Crosscutting concerns are responsible for producing spread
and tangled representations throughout the software life
cycle. Effective separation of such concerns is essential to
improve understandability and maintainability of artefacts at
the various software development stages. Aspect-oriented
software development holds promise for the purpose.
However, to date, most of the work in this area has
concentrated on the implementation level. While the focus is
shifting to earlier development stages such as design, very
less work exists on separation of crosscutting concerns
during requirements engineering.

The goal of this paper is to handle the separation of
crosscutting concerns at requirements level using UML. To
accomplish this we identify and specify crosscutting
concerns in separate modules, so that localization and hence,
reusability and maintainability can be promoted. The UML-
based aspect-oriented requirements engineering mechanism
has a two-fold impact. It makes it possible to identify trade-
offs among broadly scoped properties early on in the
development cycle hence providing decision support for the
stakeholders involved. At the same time, being based on
UML, the approach adheres to a de-facto industry standard
hence making it suitable for incorporation in existing
requirements engineering practices.

1. INTRODUCTION
Separation of concerns is a central software engineering
principle that should be applied throughout the software
development process, from requirements to implementation
[6]. The basic idea is to handle one property of a system at a
time. This involves identifying, encapsulating and using
parts of a system related to a specific area of interest.

The concerns that we are interested in are those that
crosscut, i.e. transverse, other concerns at the requirements
level (e.g. response time, security). There are other
crosscutting concerns that may appear during design and
implementation due to limitations imposed by the
technology chosen to implement a system (e.g. exception
handling, synchronization). Multidimensional separation of
concerns, composition filters, adaptive techniques and aspect

languages are some of the approaches dealing with
crosscutting concerns at design and implementation levels
[1].

This work presents an approach to handle crosscutting non-
functional concerns at the requirements stage1. Non-
functional requirements are global properties of a system
that constrain the functional requirements [3]. During the
requirements elicitation, while identifying the user
requirements, it happens that stakeholders describe their
system in terms of functional and non-functional
requirements. For example, a stakeholder may tell us that a
bank account should support deposits and withdrawals and
that the system should react to the account’ owners requests
in a short period of time. That is, on the one hand the user is
describing the accounts functionality (deposits and
withdrawals), on the other hand s/he is explicitly concerned
with response time. Surely, those are two different types of
requirements. Most approaches to requirements engineering
and modelling are focused on identifying the business
requirements of the systems (e.g. those that refer to an
account functionality). However, we should not ignore the
type of restrictions that a user is already imposing on the
systems solution (in this case, response time).

This discussion highlights the need to have, on the one hand,
approaches that treat crosscutting concerns (i.e. candidate
aspects2) homogeneously from requirements to
implementation; on the other hand, the need to equip
requirements engineering methods with mechanisms to
rapidly manage and understand the whole systems
requirements. The goal of this paper is to handle the
separation of crosscutting concerns at requirements level.
The UML models [15] will be used as a basic notation to
express the requirements. The integration of aspects in the
UML would augment its power.

1 Crosscutting concerns can also be functional [12]. However, this
paper focuses on non-functional properties. Separation of
crosscutting functional requirements will form the subject of a
future publication.
2 Crosscutting concerns at the requirements level are candidate
aspects. They can be mapped onto design aspects, functions or
architecture decisions. For more information please see [13].

1

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Lancaster E-Prints

https://core.ac.uk/display/70418?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

This paper is organized as follows. Section 2 presents some
related work on aspect–orientation. Section 3 applies our
approach to aspect-oriented requirements using a case study.
Finally, section 4 draws some conclusions and highlights
some future work.

Requirements

Specify
functional
requirements

Compose
crosscutting
concerns into
the UML
models

Identify and
resolve
conflicts

Identify &
describe
non-
functional
concerns

Identify &
specify
crosscutting
concerns

Crosscutting Concerns Composed Requirements Functional Concerns

2. RELATED WORK
In the last couple of years there has been growing interest in
propagating the aspect paradigm to the earlier activities of
the software development life cycle. At the Aspect-Oriented
Software Development conference, one workshop was
organised on aspect-oriented requirements and architecture
[17] and another on aspects and UML [16]. Integrating
aspects with UML seems to be an obvious area of research.
Indeed, this subject has raised interest in the UML
community. The well-known work on incorporating aspects
into the UML was accomplished by [5, 8, 9, 14].

Suzuki and Yamamoto proposed an extension to UML to
support aspects, where an aspect is described as a classifier
in the meta-model [14]. They extend UML with aspects to
support the design activity. Also, they propose a XML based
aspect description language to interchange aspect models
between development tools such as CASE tools and aspect
weavers.

Composition patterns is an approach to handle crosscutting
requirements at the design level [5]. This approach promotes
reusability and traceability to the following activities of the
software development. This model is based on subject-
oriented design and uses UML templates.

The aspect-oriented requirements engineering approach by
Grundy is targeted to component based software
development, where there is a characterization of diverse
aspects of a system that each component provides to end
users or other components [8]. This approach is too specific
for component development, not showing evidence of its use
in software development in general. Besides, the
identification of aspects for each component is not clearly
defined.

An UML compliant approach to handle quality attributes at
the requirements activity of the software development
process was proposed in [11]. The work we present here
builds on this by extending the notation used and adding
more to the identification and resolution of conflicting
crosscutting concerns.

3. AN APPROACH TO ASPECT-
ORIENTED REQUIREMENTS

3.1 Overview
The proposed approach is a UML-based realisation of the
general aspect-oriented requirements engineering process
presented in [13]. While [13] described a viewpoint-based
implementation of the process, this paper will describe how
such a process can be supported when engineering
crosscutting requirements with the UML. A simplistic view
of the aspect-oriented requirements engineering process is
depicted in Figure 1.

Figure 1. A model for aspect-oriented requirements

The process is partitioned vertically in three main parts:

• Crosscutting concerns: this handles first the non-
functional requirements and then identifies which of
those are crosscutting, i.e. which are candidate aspects.
Candidate aspects3 are specified using the template
depicted in Table 1.

• Functional concerns: this performs a traditional
specification of functional requirements, in this case,
using an UML-like approach where the use case model
is the main specification technique.

• Composed requirements: this starts by composing
functional requirements (modelled using UML) with
aspects; then it identifies and resolves conflicts that may
arise from the composition process. We adopt the
concepts of overlapping, overriding and wrapping,
commonly used in various separation of concerns
approaches [2, 5, 10, 18], to define the composition part
of the model. This is accomplished as follows:

♦

♦

♦

Overlapping: the requirements of the aspect modifies
the functional requirements they transverse. In this
case, the aspect requirements may be required before
the functional ones, or they may be required after
them.

Overriding: the requirements of the aspect superpose
the functional requirements they transverse. In this
case, the behaviour described by the aspect
requirements substitutes the functional requirements
behaviour.

Wrapping: the requirements of the aspect
“encapsulate” the functional requirements they
transverse. In this case, the behaviour described by

2

3 For simplicity we will use “aspect” instead of “candidate aspect”
from now on.

the functional requirements is wrapped by the
behaviour described by the aspect requirements.

Table 1. Specification of crosscutting concerns

Crosscutting concern <Name>
Description <Executive

description>
Priority <Priority can be Max,

Med and Min>
List of requirements <Requirements that

describe the concern>
List of models <UML models

influenced by the
concern >

3.2 Applying the approach to a case study
The case study we have chosen is a simplified version of the
real system implemented in the Portuguese motorways
network [4]. The requirements are stated as follows:

 “In a road traffic pricing system, drivers of authorised
vehicles are charged at toll gates automatically. The gates
are placed at special lanes called green lanes. A driver has to
install a device (a gizmo) in his/her vehicle. The registration
of authorised vehicles includes the owner’s personal data,
bank account number and vehicle details. The gizmo is sent
to the client to be activated using an ATM that informs the
system upon gizmo activation.

A gizmo is read by the toll gate sensors. The information
read is stored by the system and used to debit the respective
account.

When an authorised vehicle passes through a green lane, a
green light is turned on, and the amount being debited is
displayed. If an unauthorised vehicle passes through it, a
yellow light is turned on and a camera takes a photo of the
plate (used to fine the owner of the vehicle). There are three
types of toll gates: single toll, where the same type of
vehicles pay a fixed amount, entry toll to enter a motorway
and exit toll to leave it. The amount paid on motorways
depends on the type of the vehicle and the distance
travelled.”

3.2.1 Identify and describe non-functional
concerns

The problem description presented in the previous section
contains functional and non-functional requirements.
However, in order to have a complete description of each
non-functional requirements we need to discuss with the
stakeholder the kind of restrictions that the system has to
satisfy.

For example, from our case study, this will be the moment
when we have to decide about the time in which a tollgate
has to react when a vehicle uses the system. By further
analysis of the requirements we can identify that this time
can be calculated as a function of the speed limit allowed
and the distance between the various elements that compose
a tollgate (sensors to detect the vehicle and read the gizmo,
light, display and camera). This leads us to determine where

all those components should be physically located. For
example, if we have to photograph the plate number and the
driver then the camera has to be located in a different place
from that if the plate number can be photographed from the
back of the vehicle.

Also, it is very important that the light is turned green (or
yellow) before the vehicle leaves the tollgate area. In a
similar way, the amount to be charged later has to be
displayed while the driver is able to see it. Therefore we can
say, from the externally observable behaviour, that the
tollgate has to react fast enough so that the driver (vehicle)
can see the light and the amount that will be later charged.
From this perspective, we can talk about “tollgate response
time”.

The “tollgate response time” concern can be described with
a numbered set of requirements, as follows:

R1. “When a car crosses a toll-gate, the system has to read
the identifier in time t1.”

R2. “Unauthorized vehicles using the green lane, have
their plate numbers photographed in time t2.”

R3. “When a car crosses a toll gate, the system has to turn
on the light in time t3.”

R4. “When an authorized vehicle crosses the gate, the
system has to display the amount in time t4.”

The nature of these requirements, i.e. whether they cut
across or not other concerns, can be better analyzed after we
study in more detail the functional requirements. Other non-
functional concerns are: security, multi-user system,
compatibility, correctness, legal issues.

3.2.2 Specify functional requirements
We propose the UML use case model and interaction
diagrams as description techniques to specify functional
requirements. Analysing these set of requirements we can
identify the following actors:

• Vehicle owner: this is responsible for registering a
vehicle;

• Vehicle driver: this comprehends the vehicle and the
gizmo installed on it;

• Bank: this represents the entity that holds the vehicle
owner’s account;

• System clock: represents the internal clock of the system
that monthly triggers the calculation of debits.

The following are the use cases required by the actors listed
above:

• Register vehicle: is responsible for registering a vehicle
and its owner, and communicate with the bank to
guarantee a good account;

• Pass single toll: is responsible for dealing with tolls
where vehicles pay a fixed amount. It reads the vehicle
gizmo and checks on whether it is a good one. If the
gizmo is ok the light is turned green, and the amount to

3

be paid is calculated and displayed. If the gizmo is not
ok, the light is turned yellow and a photo is taken.

• Enter motorway: checks the gizmo, turns on the light
and registers an entrance. If the gizmo is invalid, a photo
is taken.

• Exit motorway: checks the gizmo and if the vehicle has
an entrance, turns on the light accordingly, calculates the
amount to be paid (as a function of the distance
travelled), displays it and records this passage. If the
gizmo is not ok, or if the vehicle did not enter in a green
lane, the light is turned yellow and a photo is taken.

• Pay bill: sums up all passages for each vehicle, issues a
debit to be sent to the bank and a copy to the vehicle
owner.

Figure 2 shows the use case diagram of the road traffic
system.

PassSingleToll

EnterMotorway
ExitMotorway

VehicleDriver
SystemClock

Bank

RegisterVehicle

VehicleOwner
PayBill

Figure 2. The use case diagram of the toll gate collecting system

We describe use cases using scenarios (primary and
secondary) and each scenario is then further described using
sequence diagrams. For the use cases PassSingleToll,
EnterMotorway and ExitMotorway, we can identify at least two
scenarios for each one; one to deal with authorised vehicles
and another to deal with non-authorised vehicles.

Figure 3 shows a sequence diagram for the primary scenario.
(For some non-functional requirements we may not need to
“explode” the sequence diagram, i.e. show all the
interactions that take place between objects inside the
system.)

VehicleDriver

 : RTPSystem

readGizmo()

(amount)
(green)

Figure 3. Sequence diagram for “authorized vehicle passing a

single toll gate”

The idea is that the system is represented by the object
RTPSystem. The road traffic pricing system reads the gizmo

and, if this is a valid one, the actor VehicleDriver sees the light
green and the amount to be paid in the display. This
represents the externally visible behaviour of the system for
that scenario.

3.2.3 Identify and specify crosscutting concerns
A non-functional requirement is crosscutting if it
transverses, i.e. affects, more than one use case. For
example, let us consider “response-time” when vehicles use
the system. This non-functional requirement affects
PassSingleToll, EnterMotorway and ExitMotorway. For this reason,
“toll gate response time” is crosscutting. Table 2 illustrates
this.

Table 2. Template specification for TollGateResponseTime

Crosscutting concern Toll gate response
time

Description Tollgates should
react before the
driver leaves the toll
gate area

Priority Max
List of requirements R1, R2, R3, R4
List of models Use cases:

PassSingleToll,
EnterMotorway,
ExitMotorway

3.2.4 Composing crosscutting concerns into the
UML models

The criteria for integrating both functional and crosscutting
requirements are: completeness and sufficiency. With
completeness we guarantee that all the requirements needed
to support composition are included in the aspect. With
sufficiency we guarantee that every requirement in an aspect
must have an impact in the composition process.

Let us take “toll gate response time” and compose it into the
two UML models we have used to describe the functional
requirements. For the use case diagram we can define a
special use case with the stereotype <<TollGateResponse-
Time>> (see Figure 4).

VehicleDriver

PassSingleToll

ExitMotorway

EnterMotorway

<<TollGateResponseTime>>

<<wrappedBy>>
<<wrappedBy>>

<<wrappedBy>>

Figure 4. A use case composed with an aspect

This crosscutting concern wraps, using the stereotyped
relationship <<wrappedBy>>, the use cases PassSingleToll,
ExitMotorway and EnterMotorway. This means that the functional
behaviour described by these use cases is wrapped by the
behaviour described by the requirements of the aspect
TollGateResponseTime.

4

To compose TollGateResponseTime with a sequence diagram
we can be inspired by [7]. Figure 5 shows the real-time
constraints composed into the scenario “authorized vehicles
pass single toll”.

 : VehicleDriver
 : RTPSystem

a

b

c { c-a<t1
 b-a<t3

c-b<t2 }

readGizmo()

(green)

(amount)

Figure 5. A sequence diagram composed with an aspect

Here, we included event identifiers within the sequence
diagram (e.g. “a”, “b” and “c”). These are used to reference
the event that gives rise to the message. Event identifiers are
then included in timing mark expressions to indicate the
relative time between events. These expressions specify the
timing constraints and are shown between curly braces. In
the situation where we have several constraints (such as the
one we are evaluating) it is possible to provide multiple
timing constraints within the same timing mark expression,
as shown in Figure 5.

According to Douglass, these expressions can be used to
specify constraints using functions. (These constraints could
be specified in OCL.)

3.2.5 Identifying and resolving conflicts
Composing a crosscutting concern into a requirements
model may reveal in conflicts that have to be solved. It may
well be that crosscutting concerns may cause contradictory
situations in a system.

We have been looking at the situation where during the
composition of crosscutting concerns with functional
requirements conflicting behaviour may arise. For example,
“Toll gate response time” and “security” are two
crosscutting concerns that affect a toll gate. When trying to
compose these concerns with the (same set of the) toll gate
requirements a conflict will be found, as both crosscutting
concerns contribute negatively to each other. Therefore, a
decision has to be made in terms of which crosscutting
concerns should have the maximum priority, i.e. should be
composed first.

This suggests that what we should do is to first study the
contribution from one crosscutting concern in relation to all
the others. This contribution can be positive or negative [3].
If two (or more) crosscutting concerns contribute negatively
to each other we are facing a conflicting behaviour if, and
only if, these crosscutting concerns influence the same set of
requirements. To resolve these kinds of conflicts, which
affect the whole system or a part of it, a trade-off must be
negotiated with the stakeholders. In this situation what we
propose is to attribute priorities to the concerns and compose
them according to these.

4. CONCLUSIONS AND FUTURE
WORK

This paper proposes an approach to handle crosscutting
concerns (i.e. candidate aspects) at the requirements level,
using the UML. The approach is composed of three main
parts: crosscutting concerns, functional requirements and
composition. The first part handles first the non-functional
requirements and then the crosscutting concerns. The second
part performs a traditional specification of functional
requirements, in this case, using an UML-like approach
where the use case model and sequence diagrams are the
main specification techniques. Finally, the third part handles
first the composition of functional requirements (modelled
using UML) and the crosscutting concerns and then it
identifies and solves conflicts that may arise from the
composition process. This, in turn, provides decision support
for stakeholders making it possible for the requirements
engineer to establish early trade-offs and balance the various
conflicting, broadly scoped properties.

We are currently working on a method to help us identifying
other types of conflicts that may arise both during the
specification of crosscutting concerns and after the
composition process. Part of this work will deal with the
order in which the composition process should tackle the
crosscutting concerns. We also aim to develop tool support
for the UML-based aspect-oriented requirements
engineering approach.

REFERENCES

[1] Communications of ACM. Special Issue on Aspect-

Oriented Programming, 44 (10), 2001.

[2] Bergmans, L. M. J. and Aksit, M. “Composing
Software from Multiple Concerns: A Model and
Composition Anomalies”, Multi Dimensional
Separation of Concerns in Software Engineering
Workshop, ICSE 2000, Limerick, Ireland, 2000.

[3] Chung, L., Nixon, B., Yu, E., Mylopoulos, J. Non-
Functional Requirements in Software Engineering,
Kluwer Academic Publishers, 2000.

[4] Clark, R., Moreira, A. “Constructing Formal
Specifications from Informal Requirements”, Software
Technology and Engineering Practice, pp. 68-75, IEEE
Computer Society, Los Alamitos, California, July
1997.

[5] Clarke, S., Walker, R.J. “Composition Patterns: An
Approach to Designing Reusable Aspects”,
Proceedings of International Conference on Software
Engineering, ICSE 2001, Toronto, Canada, 2001.

[6] Dijkstra, E.W. A discipline of programming, Prentice-
Hall, 1976.

[7] Douglass, B.P. Real Time UML - Developing Efficient
Objects for Embedded Systems, Addison-Wesley, 1998
(pp.80).

5

[8] Grundy, J. “Aspect-oriented Requirements
Engineering for Component-based Software Systems”,
4th IEEE International Symposium on Requirements
Engineering, IEEE Computer Society, Limerick,
Ireland, 1999, pp. 84-91

[9] Ho, W.-M., Pennaneac’h F., Plouzeau, N. “UMLAUT:
A Framework for Weaving UML-Based Aspect-
Oriented Designs”,
http://www.irisa.fr/pampa/UMLAUT/ download. Htm

[10] IBM Research. MDSOC: Software Engineering Using
Hyperspaces,
http://www.research.ibm.com/hyperspace/

[11] Moreira, A., Araújo, J., Brito, I. “Crosscutting Quality
Attributes for Requirements Engineering”, 14th
International Conference on Software Engineering and
Knowledge Engineering (SEKE 2002), ACM Press,
Italy, July 2002.

[12] Rashid, A. and Sawyer, P. “Aspect-Orientation and
Database Systems: An Effective Customisation
Approach”, IEE Proceedings - Software, 2001, 148(5):
p. 156-164.

[13] Rashid, A., Sawyer, P., Moreira, A. and Araújo, J.
“Early Aspects: a Model for Aspect-Oriented
Requirements Engineering”, IEEE Joint Conference
on Requirements Engineering, Essen, Germany,
September 2002, pp 199-202.

[14] Suzuki, J. and Yamamoto, Y. “Extending UML with
Aspects: Aspect Support in the Design Phase”, AOP
Workshop at ECOOP’99, Lisbon, Portugal, 1999.

[15] Unified Modeling Language, version 1.4.
http://cgi.omg.org/, 2001.

[16] Workshop on “Aspect-oriented Modeling with UML”.
ttp://lglwww.epfl.ch/workshops/aosd-uml/

[17] Workshop on “Early Aspects: Aspect-Oriented
Requirements Engineering and Architecture Design”.
http://trese.cs.utwente.nl/AOSD-EarlyAspectsWS/

[18] Xerox Parc, AspectJ home page, Technical report,
http://www.aspectj.org/, 2000.

6

http://cgi.omg.org/

	1.INTRODUCTION
	2.RELATED WORK
	3.AN APPROACH TO ASPECT-ORIENTED REQUIREMENTS
	3.1Overview
	3.2Applying the approach to a case study
	Identify and describe non-functional concerns
	Specify functional requirements
	Identify and specify crosscutting concerns
	Composing crosscutting concerns into the UML models
	Identifying and resolving conflicts

	4.CONCLUSIONS AND FUTURE WORK
	REFERENCES

