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ABSTRACT
Adding Syntax Parameters to the Sweet.JS Macro Library for JavaScript

by Vimal Kumar

Lisp and Scheme have demonstrated the power of macros to enable programmers
to evolve and craft languages. A macro is a rule or pattern that specifies how a
certain input sequence should be mapped to an output sequence according to some
defined procedure. Using a macro system a programmer can introduce new syntactic
elements to the programming language. Macros found in a program are expanded by
a macro expander and allow a programmer to enable code reuse. Mozilla Sweet.JS
provides a way for developers to enrich their JavaScript code by adding new syntax
to the language through the use of macros. Sweet.JS provides the possibility to define

hygienic macros inspired by Scheme.

In this paper, I present the implementation of a “syntax parameter” feature for
the Sweet.JS library. A syntax parameter is a mechanism for rebinding a macro defi-
nition within the dynamic context of a macro expansions thereby introducing implicit
identifiers in a hygienic fashion. Some time hygienic macro bindings are insufficient
such as with “anaphoric conditionals" where the value of the tested expression is avail-
able as an ¢ binding. With syntax parameters, instead of introducing the binding
unhygienically each time, we instead create one binding for the keyword, which we
can then adjust later when we want the keyword to have a different meaning. As no

new bindings are introduced hygiene is preserved.
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CHAPTER 1

Introduction

1.1 What are macros?

A macro is a rule or pattern that specifies how a certain input sequence should be
mapped to an output sequence according to some defined procedure. Using a macro
system a programmer can introduce new syntactic elements to the programming
language. Macros found in a program are expanded by a macro expander and allow

a programmer to enable code reuse. There are two types of macro systems

1. Lexical macro systems, such as the C preprocessor, transform the code
before compilation. Lexical macros are ignorant of the grammar of the core
programming language and therefore sometimes result in ill-formed programs
and in accidental capture of identifiers [3|. They only require lexical analysis;
that is, they operate on the source text prior to any parsing, using simple substi-
tution of tokenized character sequences for other tokenized character sequences
according to user-defined rules. Consider this example [17]

1 #define INCI(i) {int a=0; ++i;}
> int main(void){
int a =0, b= 0
INCI(a) ;
INCI(b) ;
printf("a is now %d, b is now %d\n", a, b);

7 return 0;

Running through the C preprocessor results in



1 int main(void)

. 4
int a =0, b= 0;
{int a=0; ++ta;};
{int a=0; +tb;};
printf("a is now %d, b is now %d\n", a, b);
7 return 0;
}

The variable a declared in the top scope is shadowed by the a variable in the
macro, which introduces a new scope. The output of the compiled program is:

1 a is now 0, b is now 1

The solution is to give the macro’s variables names that do not conflict with
any variable in the current program:

| #define INCI(i) {int INCIa=0; ++i;}

> int main(void)

{
int a =0, b = 0;
INCI(a);
INCI(b) ;
printf("a is now %d, b is now %d\n", a, b);
return 0;
}

this solution produces the correct output:

1 a is now 1, b is now 1

The problem is solved for the current program, but this solution is not robust.
This is where we require a hygienic macro system, which preserves the lexical

scoping of all identifiers.
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. Syntactic macro systems, like those in the Lisp and Scheme [12] program-

ming languages are, aware of the grammar of the core programming language.
They transform the syntax tree according to a number of user-defined rules.
Rules can be written in the same programming language as the program or
another language that relies on a fully external language to define the transfor-
mation, such as the XSLT preprocessor for XML [3]. Below is an example [21]
of a syntactic macro in scheme that swaps the values.

(define —syntax—rule (swap x y)

(e oz =)
(set! x y)

(set! y tmp)))

The define-syntax-rule is the template, used in place of a form that matches
the pattern, except that each instance of a pattern variable in the template is

replaced with the part of the macro that uses the pattern variable matched.

(let ([tmp 5]
[other 6])
(swap tmp other)

(list tmp other))

The result of the above expression should be (6 5). The naive expansion of this

use of swap, however, is

(let ([tmp 5]
[other 6])
(let ([tmp tmp])
(set! tmp other)
(set! other tmp))

(list tmp other))



whose result is (5 6). The problem is that the naive expansion confuses the tmp
in the context where swap is used with the ¢mp that is in the macro template.
Instead it produces
(let ([tmp 5]
2 [other 6])
(let ([tmp_1 tmp])
(set! tmp other)

(set! other tmp 1))

(list tmp other))

with the correct result of (6 5). Racket’s [14]| pattern-based macros automati-
cally maintain lexical scope, so macro implementors can reason about variable
references in macros and macro uses in the same way as for functions and func-

tion calls.

1.2 Hygiene

Hygienic macros are macros whose expansion does not cause the accidental cap-
ture of identifiers introduced by the macro expander. Hygiene prevents variable names
inside the macros from clashing with the variables in the surrounding code. Hygienic
macro systems are a feature of programming languages such as Scheme. Consider the

following Scheme macro for “or” [19]

I (define—syntax or

2 (syntax—rules ()
((_ el e2)
(let ((t el))

(if ¢ t €2)))))
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We can call the above macro as shown below:

(Tet ((t 5))
(or #f t))

The macro call is expanded to:

(let ((t 5))
(let ((t #f))
(if t t t)))

This program evaluates to #f, which is not the desired output. On expanding the
macro the binding “t” is shadowed to #f. If you run this in the scheme REPL, the
output will be 5. One way to work around this, which was a common trick for LISP
programmers of yore, is to choose variable names that a programmer is unlikely to
guess. We could modify the macro expander to automatically rename any variables
bound by a macro expansion. In this case, our simple test program would expand as

follows, using our first definition of “or™:

(let ((t 5))
(let ((t_1 #1))
(if t 1¢1¢)))

This program evaluates as expected.

There are occasions when traditional hygienic binding is insufficient: one example
is the "anaphoric if condition" (a version of the if-then-else construct that introduces
an anaphor "4t," which is bound to the result of the test clause), where expanding the
macro definition at compile time may deliberately introduce new variable bindings,
that capture variables in your own code. That is, the new binding might shadow a

variable that you have already created.
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(aif (big—long—calculation)
(foo it) ;;’it’ is the result of big—long—calculation

#1)

when the condition is true, an it identifier is automatically created and set to the

value of the condition.

1.3 Syntax Parameters

Syntax parameters are a mechanism for rebinding a macro definition within
the dynamic extent of a macro expansion. The ability to write functions that, instead
of accepting and returning values, accept and return pieces of source code allows for
abstractions and extensions that just simply are not possible in other languages. With
syntax parameters, instead of introducing the binding unhygienically each time, we
instead create one binding for the keyword, which we can then adjust later when we
want the keyword to have a different meaning. As no new bindings are introduced
hygiene is preserved. Looping macros are a common example of syntax parameter

that introduces a “break" or “abort" function [1].

The below example shows how to define a syntax parameter in Racket [11]:

1 #lang racket

> (require racket /stxparam)

3 (define—syntax—parameter example—stx—parameter

(lambda (stx)

#’(displayln "I’'m a syntax parameter!")))

All macros are functions that take as input a syntax object representing the piece
of the program where it was located, and return a new syntax object to replace the

old one within the program. So with the following syntax parameter defined, this



code

(example—stx—parameter)

The expanded code is

(displayln "I’'m a syntax parameter!")

Remember that this transformation happens at compile time before the code is run.
The purpose of a syntax parameter is to be modified by other macros with the syntax-

parameterize form, which looks like this

(syntax—parameterize
([example—stx—parameter (lambda (stx)
#’(displayln "I’m parameterized!"))])

(example—stx—parameter) )

; (example—stx—parameter)

The syntax-parameterize form "renames" the parameter, giving it a new value that
applies only in the code inside the syntax-parametrize form. So when the above code
is expanded, it produces

(displayln "I’m parameterized!")

(displayln "I’'m a syntax parameter!")

The occurence of “example-stx-parameter” inside the syntax-parameterize form used
the function defined in syntax-parameterize to transform the code instead of the

original function.

Shown below is an example of Break keyword implementation using a syntax

parameter [16]
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(define —syntax—parameter break
(constant —syntax—func

#’(error "Error — must be used in breakable")))

(define—syntax (breakable stx)
(syntax—parse stx
[(_ body ...+)
#'(call/cc
(lambda (cc)
(syntax—parameterize

([break (constant—syntax—func #’(cc))])

body ...)))]))

) (breakable

displayln "beginning")

(
(displayln "middle")
(break)

(

displayln "end"))

This creates exactly the behavior that we desire, calling break outside the form raises
an error with an appropriate message explaining its proper usage, and breakable forms
are naturally supported with each break form only skipping one level, because each

instance of breakable parameterizes break separately to a different continuation.

In this paper, I present the example of a macro that breaks hygienie in Sweet.JS
and propose a solution taking inspiration from Scheme’s syntax parameters. The

problem and solution are discussed in up-coming chapters.



CHAPTER 2

Basics of Sweet.JS

Sweet.JS [6] is a hygienic macro compiler for JavaScript that takes JavaScript
macros and produces normal JavaScript code that one can run in a browser or using
a standalone interpreter like Node.JS. The idea is that you define a macro with a
name and a list of patterns. Whenever a macro is invoked, the code is matched and
expanded at compile time and produces the expanded source that can be run in any

JavaScript environment.

2.1 Types of macros in Sweet.JS

1. Rule macros Rule macros work by matching a syntax pattern and generating
new syntax based on the template. To define a rule based macro the grammar
is

| macro <name> {

> rule { <pattern> } => { <template> }

The following macro defines swapping two values [20]:

| macro swap |
rule { ($x, $y) } = {
var tmp = $x;
$x = 8y; Sy = tmp;

}



1 var foo = 5;
2 var tmp = 6;

swap (foo , tmp) ;

When the compiler hits "swap," it invokes the macro and runs each rule
against the code after it. When a pattern is matched, it returns the code within
the rule. You can bind identifiers and expressions within the matching pattern
and use them within the code. If Sweet.JS did not support hygiene, this macro
might expand to

1 var foo = 5;

2 var tmp = 6;
var tmp = foo;
foo = tmp;

tmp = tmp;

The tmp created from the macro collides with my local ¢tmp. This is a serious
problem, but macros maintain hygiene by renaming variables. Basically they
track the scope of variables during expansion and rename them to maintain the
correct scope and avoid accidental variable capture. Sweet.JS fully implements
hygiene so it never generates the code you see above. It would actually generate

the following code

1 var foo = 5;
var tmp$l = 6;
var tmp$2 = foo;

foo = tmp$l; tmp$l = tmp$2;

Notice how two different "tmp" variables are created. This makes it extremely

powerful to create complex macros elegantly.

10



2. Case macros Case macro are analogous to syntax-case in Scheme. Case
macros allow the macro author to use JavaScript code to procedurally create
and manipulate the syntax. To define case macros, the grammar is

macro <name> {

2 case { <pattern> } = { <body> }

The following macro adds syntax for generating random numbers [20]:

1 macro rand {
case {  $x } = {
var r = Math.random () ;
letstx $r = [makeValue(r) |;

return #{ var $x = $r }

}
T}

¢« rand x;

The above code expand to

1 var x$123 = 0.8367501533161177;

The body of a macro contains a mixture of templates and normal JavaScript
that can create and manipulate syntax. The code within the “case” is run at
expand-time and you use #{} to create “templates” that construct code just
like the syntax in the rule macros. “Letstx” which bind the pattern variable to

syntax object.

Breaking hygiene using “case” macro is done by stealing the lexical context
from syntax objects in the right place [6]. Consider aif the anaphoric if macro
that binds its condition to the identifier it in the body as shown in the below

example

11
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2

var it = "foo";

long.obj.path = [1, 2, 3];

; aif (long.obj.path) {

~

console.log (it );

This is a violation of hygiene because normally ¢t should be bound to the sur-
rounding environment but aif wants to capture .

macro aif {
case {
// bind the macro name to ‘$aif name*
$aif name
($cond ...) {Sbody ...}
} = {
// make a new ‘it ‘ identifier using the lexical context
// from ‘$aif name
var it = makeldent("it", #{$aif name});
letstx $it = [it];
return #{
// create an Immediately—Invoked Function expression that
binds ‘$cond‘ to ‘§it
(function ($it) {
if ($cond ...) {
// all ‘it ‘ identifiers in ‘$body‘ will now
// be bound to ‘8$it °
$body

}
}) ($cond ...);

}

12



To do this we can create an it binding in the macro that has the lexical context
within surrounding environment using makeldent represent the string value as
an identifier and letstr, which binds syntax object to pattern variable. The

lexical context we want is actually found on the aif macro name itself [6].

2.2 Sweet.JS compilation process

Sweet.JS includes a separate reader that converts a sequence of tokens into a
sequence of token trees, analogous to s-expressions in scheme, without feedback from

the parser [2]. The parser gives structure to unstructured source code. The

lexer — %" reader lokeiiee, Porser A%

Figure 1: Sweet.JS anatomy.

lexer converts a character stream to a token stream and the parser converts the token
stream into an abstract syntax tree (AST) according to a context free grammar [2].
The macro expander must sit between the lexer and the parser. Here the reader
records sufficient history information in the form of token trees in order to decide
how to parse the token, which is required to decide if a token is a divisor (“/”) or
a regular expression. In traditional JavaScript compilers, the parser and lexer are
intertwined; rather than running the entire program through the lexer once to get
a sequence of tokens, the parser calls out to the lexer from a given grammatical
context with a flag to indicate if the lexer should accept a regular expression or a
divide operator, and the input characters are tokenized accordingly [2]| for example
if the parser receive the characters “/x/” the lexer will result in a single token “/x/”

otherwise lexer will result in individual tokens /x,/ .

13



Example

macro id {
case {_ $x } = {

return #{ $x }

id 42

{ type:3,value:"macro"},
{type:3,value:"id"},
{type:11,value:{},
inner:[
{type:4,value:"case"},
{type:11,value:{},
inner:[{type:3,value:"_"},
{type:3,value:"%x"} ]}, {type:7,value:"=>"},
{type:11,value:{},
inner:[{type:4,value:"return"}, {type:7,value:"#"},
{type:11,value:{},inner: [{type:3,value: "$x"}]
1]
1

Figure 2: Token tree.

The reader converts the string of tokens to a token tree. A token tree is similar
to tokens produced by the standard esprima lexer 7], but with the critical difference

that token trees match delimiters.

[{
type:"Program”,
body:[ {type: "ExpressionStatement™,expression:{type:"literal”,value:42}
Hs
error: [{..}]
1]

Figure 3: Final AST from parser.

The approach used in Sweet.JS is enforestation, first pioneered by Honu [4].

Enforestation extracts the sequence of terms produced by the reader to create a term

14



tree. Consider the following let example [2]

macro let{
rule { %$id= $init:expr }=>{
var $id=%init
}
}

function foo(x){
let y=48+2
return x+y;
}
foo(188) ;

Figure 4: Macro Expansion.

Enforestation begins by loading the let macro, into the macro environment and
converting the function declaration into a term tree as shown in Figure 4.

<fn:foo,
params:(x),
body:{
<varix, init:<op:+,left:48,right:2 >
<return: <op:i+,leftix,righty>
}>
<call:foo, args(1e8):

Figure 5: Term tree.
Figure 5: shows how the let example in figure 4 expanded to a term tree using
the var keyword introduced by the rule macro.

A term tree is a kind of proto-AST that represent a partial parse of the program.
As the expander passes through the token trees, it creates term trees that contain
unexpanded sub trees that will be expanded once all macro definition have been

discovered in the current scope [2].

2.3 Current limitation of Sweet.JS

Although the benefits of hygienic macros are well established, there are oc-

casions when traditional hygienic bindings are insufficient. The classic example is

15



macro aif {

case {
Faif_ name
(fcond ...} {Ftru ...} else { Fels ... }
} =>{
letstx $it = [makeIdent("it", #{faif_name})];
return #{
(function (%it) {
if ($cond ...} {
ftru ...
} else {
fels ...
¥
F)(Fcond ...};
¥
¥
macro unless {
rule { {($cond ...} { $body ...} } => {
while (true) {
aif ($cond ...) {
4 TitT is correctly bound by Taif”
console.log(”loop finished at: ™ + it);
/4 break;
} else {
$body ... // “it" dis not defined here, unfortunately
¥
¥

unless (x) {
S/ TitT dis not bound!
console. log(it)

Figure 6: Broken unless macro.

"anaphoric conditionals" where the value of the tested expression is available as an it
binding. When the condition is true, an it identifier is automatically created and set
to the value of the condition. An anaphoric macro is a type of programming macro
that deliberately captures some form supplied to the macro, which may be referred

to as an anaphor (an expression referring to another expression).

16
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1. while {(true) {

2 (function (it$2) {

3 s o b 4

4 f/ Tit" is correctly bound by "aif”

5. console.log( ' loop finished at: ' + ith2);
6. } else {

7 S/ Tit" is not boundl

g console.log(it);

9
1
1

}
D)5
}

= s s e

Figure 7: Macro expansion of the broken unless macro

In Figure 6, I define the "unless” macro that executes code if the condition is
false. If the condition is true, the code specified in the else clause is executed. Here
we use an anaphoric-if condition, which introduces an anaphor it that should bind

to the result of the test clause.

In Figure 7, on the macro expansion in line (8), the identifier it is not defined.

Here we wish to introduce the identifiers deliberately breaking hygiene.

The same unhygienic macros are possible in Scheme as shown in the below ex-

ample:

(define—syntax—rule (aif condition true—expr false—expr)
(let ([it condition])
(if it
true—expr

false —expr)))

s aif #t (displayln it) (void))

it: undefined; //error

o> cannot reference an identifier before its definition

10

in module: ’program

When using syntax-parameterize, it acts as an alias for ¢mp. The alias behavior is

17



created by make-rename-transformer. define-syntax-parameter binds the key-
word to the value obtained by evaluating the transformer. The transformer provides
the default expansion for the syntax parameter. Usually, you will just want to have
the transformer throw a syntax error indicating that the keyword is supposed to be
used in conjunction with another macro, as shown in the below example [11].

I (require racket/stxparam)
> (define—syntax—parameter it
(lambda (stx)
(raise —syntax—error (syntax—e stx)

"can only be used inside aif")))

7 (define—syntax—rule (aif condition true—expr false—expr)

(let ([tmp condition])

(if tmp

(syntax—parameterize ([it (make—rename—transformer #’tmp)])
11 true—expr)

12 false —expr)))

The "syntax-parameterize" function adjusts the keyword to use the values ob-
tained by evaluating their transformer in the expansion of the expression. Each

keyword must be bound to a syntax-parameter.

+ (aif 10 (displayln it) (void))

Inside syntax-parameterize, it acts as an alias for tmp, results in 10 being displayed.

The alias behavior is created by make-rename-transformer.

18



CHAPTER 3

Syntax parameters implementation for Sweet.JS

Syntax parameters are a mechanism for rebinding a macro definition within the
dynamic extent of a macro expansion. With syntax parameters, instead of introducing
the unhygienic binding each time we instead create a binding for the identifier, which
we can adjust later when we want the identifier to have a different meaning as no new
binding is introduced hygiene is preserved. This is similar to the dynamic binding
mechanism that we have at run time, except that the dynamic binding only occurs

during macro expansion.

3.1 Pre-processing [Approach 1]

In this approach, I tried to use the pre-processing approach similar to C, where
I transform the code before the main compiler get a hold of it. ‘“‘SyntaxParameter’’
replaces and binds the parameter with its mapped value in the particular defined
macro scope. Here the macro transformation happens during the parse phase by
matching the pattern. To define syntax parameters in Sweet.JS, the programmer

provides a new keyword that looks something like this:

SyntaxParameter(<parameter >,<Mapped to>,<Scope/Macro Name>,

<Macro definition >)

“parameter” is an identifier that is defined as a syntax parameter in the macro
definition, “Mapped to” is the macro input variable that will be mapped to “parame-

ter,” and “Scope” defines the context of the macro definition.

19



An example of its usage is Figure 8:

defineSyntaxParameter it { rule {} =» { console.log(" to be used in aif"™) } }

macro aif {

case {
faif_name
($cond ...) {$tru ...} else { $els ... }
P {
SsyntaxParameter(it, $cond ... , aif ,
return #
(function () {
if ($cond ...} {
$tru ...
} else {
%els ...
¥
1)
1)
¥
}
macro unless {
case {

Funless name
(Scond -..) { Sbody ...} } => {
return #{
while (true) {
aif ($econd ...} {
f/ TitT is correctly bound by Taif”

console.log("loop finished at: " + it);
} else {
Sbody ..
)
if($cond ...} {break;}
1}
¥
b
Figure 8: Pre-processing [Approach 1.]
x=2

unless (x) {
Jf Tit is  bound! correctly
console. log(it)

Figure 9: Calling unless macro

20



Figure 10 shows the expanded code for the broken “unless” macro

x = 2;
while (true) {
(functien() {

if (=) {
// Tit" dis correctly bound by "aif’
console.log('loop finished at: ' + x);
} else {

/f Tit" is bound! correctly
console.log(x);

}
Y
if (x) {
break;
}

Figure 10: “it” identifier correctly bound to $cond... in an anaphoric-if

As a example in Figure 10 shows, ‘it’’ is correctly bound to $cond... as desired.
However this approach has certain disadvantages, since this will not allow users to
define macros named ‘‘SyntaxParameter’” At the moment in Sweet.JS, the only
way to create a syntax transformer is by defining a macro. A macro is really just a
function that takes syntax and returns new syntax (thus a syntax transformer). To
fix this we first need to implement some primitive functions that help us to create and
manipulate the arbitrary compile time syntax transformation. Macros are compile
time syntax transformations, so when the “expander” encounters a macro definition,
it converts the body of the macro into a function and loads it into the compile time

environment.
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3.2 Syntax parameter processing at compile time [Approach 2|

The disadvantage with [Approach 1] is that it does not allow users to define
macros named “SyntaxParameter”. In this approach I defined syntax parameter that
can be processed at compile time, the following paradigm are added in order to define

syntax parameter in Sweet.JS.

1. “syntaxparam,” similar to define-syntax-parameter in Scheme, loads the prim-

itive function in the compile time environment.

2. “syntaxLocalValue,” which loads the compile time primitive function from

the environment within the dynamic extent of the macro expansion.

3. “replaceSyntaxParam,” which transforms the identifier with the compile
time value from the environment returned by “syntaxLocalValue” within the

defined scope of the macro.

In Figure 11, T have defined an anaphoric-if macro named as aif, where syn-
taxLocalValue defines an identifier it as a syntax parameter defined in the aif macro
context, which also loads the macro definition for ¢ from the context environment.
Once the macro definition is loaded, replaceSyntazParam replaces the identifier with

the defined identifier definition during expansion of the macro.
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syntaxparam it => (functicn(x) {
if(x==null) {
return "To be used in Anaphoric-If™
}

else {
return x;
}

1)

macro aif {
case {$aif_name
(fcond ...) {$tru ...} else { %els ... }
1oy

¥

va; stxId = syntaxlLocalValue(#{it},#{%aif_name})
var cond=stxId{#{%cond ...})

replaceSyntaxParam("it",cond ,#{%aif name})

return #

:
L3

(function ) {
if ($cond ...} {
$tru ...
} else {
fels ...
h

1)

macro unless {
case {
funless name
($cond ...) { $body ...} } => {
return #{
while (true)} {
aif ($cond ...) {
£/ Tit" is correctly bound by Taif”
console.log("loop finished at: " + it);
} else {
$body ...

1}
¥

x=2

unless (243} {
ff TitT is bound!
console.log(it)

Figure 11: Approach 2.Shows how we can use anaphoric-if to build an “unless” macro
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x = 2;
while (true) {
(function () {
ifF (2 + 3) {
/4 Tit" is correctly bound by "aif”
console.log(' loop finished at: ' + 2 + 3);
¥ else {
/i Tit" is  boundl
console.log(2 + 3);

1

Figure 12: Approach 2. Syntax parameter expansion

Figure 12 shows the expanded result of the “unless” macro defined in Figure 11,

and it expands as expected. The source code is available in Appendix A.1.

Expand

During macro expansion

ExpandToTermTree i) Enferest
enforest :: ([Syntax], Map) > Load Macro
{ result :: TermTree ) Definition

rest :: [Syntax] }

“syntaxparam”
definitionis added to
context environment

replaceSyntaxParam

Pattern Matching

Figure 13: Approach 2. Design

The main entry point into the expander is the expand function, which is primarily
responsible for handling hygiene. The env param is a mapping from identifiers to
macro definitions, as shown in Figure 14 and ctx is a mapping of names to names.

The expand function delegates to expandToTermTree, responsible for converting the
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syntax to TermTrees and loading any macro definitions it finds into the new env map.

The “expandToTermTree” function calls enforest repeatedly until the entire token
tree has been converted into a term tree. In the enforest function, the “syntaxparam”
definition loads the macro to the context env map [enforest :: [Syntax|,Map)|. When
a macro call is invoked the macro expander loads the macro definition from env in
the “loadmacrodef” function, the “replaceSyntaxParam” function binds the identifier

with the value of the loaded macro definition during pattern matching.

T A T R P e M R M

context.env.set(resolve(name), {

fE e B q,
w Q-
i)
-
Cl=L )
+ [+ F Y
A Ee
+ + v
o Fe
N, He
Gl ition Into the environment and CONtinUe expanding
+ - lacroDef (head.body, context);
o
o
v
. + -
4 1@ .
| teken.va — @ 'n.:
HEe fn function R(x3627){ i (8627 == null) { return 'No value is initialzed”: | else | retumn x5627: 1} o
w.Tokenk @ is0p false
rsynbaxP o @ builtin false

Figure 14: Approach 2. context environment object loaded with macro definition
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Conclusion

Syntax parameters are an outstanding instrument for rebinding a macro defini-
tion within the dynamic context of a macro expansions thereby introducing implicit
identifiers in a hygienic fashion. With syntax parameters, instead of introducing the
binding unhygienically each time, we instead create one binding for the keyword,
which we can then adjust later when we want the keyword to have a different mean-
ing. As no new bindings are introduced, hygiene is preserved. In my implementation,
I define “syntaxparam,” which defines and binds the syntax parameter part of the
compiler; “syntaxlocalValue,” which pulls the syntax parameter definition in the de-
fined scope; and “replaceSyntaxParam,” which expands the syntax parameter macro

definition defined within the macro body using “syntaxLocalValue”.
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APPENDIX

Code base

A.1 Syntax parameter processing at compile time [Code base]

// enforest the tokens, returns an object with the ‘result ‘

// TermTree and the uninterpreted ‘rest‘ of the syntax

; function enforest (toks, context, prevStx, prevTerms) {

5 //Syntax param syntaxparam ToDo: add the stx as syntax

¢ //like unwrapSyntax(head.keyword)

if (resolve (head) == ’syntaxparam’ &&
rest [1]. token.value==="=>"){

head .syntaxParamName=rest [0]

head .body=rest [2]. token.inner

head .isSyntaxParam=true

// parser.Token.Keyword

return {
result: head,
rest: rest.slice(3),
opCtx:opCtx

}s
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// given the syntax for a macro, produce a macro transformer

// (Macro) —> (([...CSyntax]) —> ReadTree)

« function loadMacroDef(body, context) {

10

11

replaceSyntaxParam :syn .makeSyntaxParam, // Added
syntaxLocalValue: function (id ,stx){

return syn.syntaxLocalValue(id,stx,context) //Added

}

30



N

// similar to ‘parsel ‘ in the honu paper

// ([Syntax], Map) — {terms: [TermTree]|, env: Map}

3 function expandToTermTree(stx, context) {

¥
W

S
ot

//Add syntax param context
if (head.isSyntaxParam ){
var name—= head.syntaxParamName
// head.body

macroDefinition = loadMacroDef(head.body, context)

context.env.names. set (name. token.value, true);
context.env.set (resolve (name), {

fn: macroDefinition ,

isOp: false

builtin: false ,

fullName: name

i)

syntaxParamPrimitiveFn[resolve (name) | =

[syn.makeldent (macroDefinition () ,head) |;

continue ;

}
//
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// given the macroBody

//(list of Pattern syntax objects) and the

5 // environment (a mapping of patterns to syntax)

+ //return the body with the

// appropriate patterns replaced with
//their value in the environment
// pattern.js
function transcribe (macroBody, macroNameStx, env) {
if (parser.syntaxParameter [macroNameStx. token . value ]
= undefined )
{
newBody . token . inner=syntaxParamMatch (newBody . token . inner ,
parser.syntaxParameter [ macroNameStx. token . value] ,env);
}
acc . push (newBody) ;

return acc;
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// pattern.js
function syntaxParamMatch( inner ,paramValue,env){
if (paramValue != undefined){
_.each( _inner, function (inner ,key) {
if (inner. token.value = "()")
{
inner . token.inner=
syntaxParamMatch (inner . token.inner ,paramValue,env)

}

else if(inner.token.value =— paramValue.param)
{
var last= .last( _inner, inner.length—key—1);
_inner= . first (_inner, key);

push.apply(_inner ,paramValue. value) ;

return

push.apply(_ inner,last);

return

_inner;

_inner;
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11

A.2 Syntax parameter pre-processing [Code base]

// Code Added to Parser.JS

// (Str) —> [...CSyntax|

function read(code) {

while (index < length || readtables.peekQueued()) {
var obj=readToken (tokenTree, false, false);
if (obj.value=="defineSyntaxParameter")
{
// obj=readToken (tokenTree, false, false);
//defineSyntaxParameter[obj.inner [0]. value]=o0bj.inner.
splice (1,obj.inner.length);

obj.value="macro"

// continue;

}
if (obj.value=="{}" && obj.inner != undefined) // looking for
{
fetchSyntaxParameter (obj);
}

tokenTree.push (obj);
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// Code Added to Parser.JS

// This function pull the syntax parameter during parsing

s // Create an object ’'syntaxParameterParse’ to keep track

+ // of the syntax parameter defined in the context

&)

N

I~
N

¥

N

&)

[N

function fetchSyntaxParameter(obj)

{

for (var i in obj.inner)
{
var paramObj=[];
var bflag=false ;
// obj.inner[1i]
if (obj.inner[i].value =="{}")
{

var tempParameter=obj.inner[i].inner.slice ();

for (var j in tempParameter)
{
if (tempParameter[j]|.value =="

SyntaxParameter")

// console.log("found");
paramODbj . push (tempParameter[j])
obj.inner[i].inner.shift ();

bflag=true;

}

else if (tempParameter[j]. value =="()" &

tempParameter[j].inner != undefined && bflag)

{

var k=0;
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parameter

inner [0]. value !=",")

inner [0].inner [0])

shift ();

}

while (k<7) // fetch the syntax

if (obj.inner[i].inner [0].

{

paramObj . push (obj.inner[i].

}

obj.inner[i].inner [0].inner.

k++;

break ;

else

break ;

if (paramObj.length >0)

{

// create the syntaxPatameter based on the

scope defined in the macro

syntaxParameterParse [paramObj [ paramObj.length

—1].value]=createSyntaxParamArray (paramObj) ;
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//remove the syntax parameter () and push the

value one level up

for (var 1 = 0, len = obj.inner[i].inner[0].

inner.length; 1 < len; ++1) {

obj.inner[i].inner.splice(1+4+1,0,0bj.inner[i

].inner [O].inner[1]);

}

obj.inner [i].inner.shift ();

iNumParam-++;

}

function createSyntaxParamArray( paramObj)
{
return {
"param" : paramObj[1],
"value" : [_paramObj[2], _paramObj[3]] // Todo: Need to

add te remaining array element

}
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//Code added to pattern.js
//function add the syntax parameter with the literal definition during

expansion

function syntaxParamMatchParse( inner ,paramValue,env)

{

_.each( _inner, function (inner  key) {
if (inner .token.value =— "()")
{
syntaxParamMatchParse (inner . token . inner ,

paramValue ,env)

}

else if(inner.token.value = paramValue.param.
value)
{
_inner [ key |;
push.apply( inner, joinRepeatedMatch (env |
paramValue.value [0]. value].match, " "))

_inner.splice (key,1);

//return inner
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