
San Jose State University
SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

Spring 5-26-2015

Support Vector Machines and Metamorphic
Malware Detection
Tanuvir Singh
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

Part of the Information Security Commons

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU ScholarWorks. It has been
accepted for inclusion in Master's Projects by an authorized administrator of SJSU ScholarWorks. For more information, please contact
scholarworks@sjsu.edu.

Recommended Citation
Singh, Tanuvir, "Support Vector Machines and Metamorphic Malware Detection" (2015). Master's Projects. 409.
DOI: https://doi.org/10.31979/etd.43jb-raq4
https://scholarworks.sjsu.edu/etd_projects/409

https://scholarworks.sjsu.edu?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F409&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F409&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F409&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F409&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F409&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/409?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F409&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

Support Vector Machines and Metamorphic Malware Detection

A Project

Presented to

The Faculty of the Department of Computer Science

San Jose State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

by

Tanuvir Singh

May 2015

c○ 2015

Tanuvir Singh

ALL RIGHTS RESERVED

The Designated Project Committee Approves the Project Titled

Support Vector Machines and Metamorphic Malware Detection

by

Tanuvir Singh

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

SAN JOSE STATE UNIVERSITY

May 2015

Dr. Mark Stamp Department of Computer Science

Dr. Jon Pearce Department of Computer Science

Mr. Fabio Di Troia Università del Sannio

ABSTRACT

Support Vector Machines and Metamorphic Malware Detection

by Tanuvir Singh

Metamorphic malware changes its internal structure with each infection,

which makes it challenging to detect. In this research, we test several scor-

ing techniques that have shown promise in metamorphic detection. We then

perform a careful robustness analysis by employing morphing strategies that

cause each score to fail. Finally, we show that combining scores using a Sup-

port Vector Machine (SVM) yields results that are significantly more robust

than we obtained using any of the individual scores.

ACKNOWLEDGMENTS

I am very thankful to my advisor Dr. Mark Stamp for his continuous

guidance and support throughout this project and believing in me. Also, I

would like to thank the committee members Dr. Jon Pearce and Mr. Fabio Di

Troia for monitoring the progress of the project and their valuable time.

v

TABLE OF CONTENTS

CHAPTER

1 Introduction . 1

2 Background . 4

2.1 Types of Malware . 4

2.1.1 Trojans . 4

2.1.2 Worms . 5

2.1.3 Viruses . 5

2.1.3.1 Encrypted viruses 5

2.1.3.2 Polymorphic viruses 6

2.1.3.3 Metamorphic viruses 6

2.2 Detection Techniques . 8

2.2.1 Signature Based Detection 8

2.2.2 Behavior Based Detection 9

2.2.3 Anomaly Based Detection 9

2.2.4 Statistical Malware Detection 10

2.2.4.1 Hidden Markov Model Based Detection . . 10

2.2.5 Similarity Based Detection 11

2.2.5.1 Opcode Graph Based Detection 11

2.2.5.2 Simple Substitution Based Detection . . . 12

3 Statistical and Similarity based Malware Detection . . . 13

3.1 Hidden Markov Model Method 13

vi

vii

3.1.1 Hidden Markov Model 14

3.1.2 Implementation . 14

3.2 Opcode Graph Similarity 16

3.2.1 Implementation . 16

3.3 Simple Substitution Distance 19

3.3.1 Jakobsen Algorithm 20

3.3.2 Implementation . 20

4 Support Vector Machines 24

4.1 Introduction . 24

4.1.1 SVM Example . 24

4.1.2 Kernel Mapping . 26

4.1.3 Linear separation of a feature space 27

4.1.4 The learning problem 28

4.1.5 Definition . 30

4.2 Implementation . 31

4.2.1 Design . 31

4.2.2 Algorithm . 32

5 Experiments . 34

5.1 Receiver Operating Characteristics 35

5.2 Hidden Markov Model Method 36

5.3 Opcode Graph Similarity 38

5.4 Simple Substitution Distance 39

5.5 Support Vector Machine 40

viii

6 Results . 44

6.1 Attacks on Detection Techniques 44

6.1.1 Morphing Techniques 44

6.2 Results for Morphed Malware 46

6.2.1 Hidden Markov Model Method 46

6.2.2 Opcode Graph Similarity Method 48

6.2.3 Simple Substitution Distance Method 51

6.2.4 Combining Scores using SVM 53

6.2.4.1 SVM Kernel functions comparison 55

6.3 SVM vs Individual Techniques 57

6.3.1 ZeroAccess Malware 58

6.3.2 Zbot Malware . 59

6.3.3 WinWebSec Malware 59

6.3.4 SmartHDD Malware 60

6.3.5 Harebot Malware 61

6.3.6 Sesh Malware . 61

6.3.7 Combined results 61

6.3.8 Morphing results 63

7 Conclusion and Future Work 67

APPENDIX

ROC Curves . 72

A.1 Hidden Markov Model . 72

A.2 Opcode Graph Similarity Method 74

ix

A.3 Simple Substitution Distance Method 75

A.4 Support Vector Machine Method 76

LIST OF TABLES

1 Opcode Sequence . 17

2 Opcode Count . 18

3 Probability Table . 18

4 Opcode Frequency Counts 22

5 Initial Putative Key Guess 22

6 Digraph Distribution Matrix 23

7 Modified Digraph Distribution Matrix 23

8 Machine Specification . 35

9 HMM AUC values for different levels of Block Morphing . 47

10 OGS AUC values for different levels of Block Morphing . . 50

11 SS AUC values for different levels of Block Morphing . . . 53

12 Comparison of Scores at 80% Block Morphing 55

13 Comparison of SVM Kernel Functions at 80% Block Morphing 57

14 Comparison of Scores at Different Morphing levels 57

15 Comparison of Scores for Zero Access Malware 59

16 Comparison of Scores for Zbot Malware 59

17 Comparison of Scores for WinWebSec Malware 60

18 Comparison of Scores for SmartHDD Malware 60

19 Comparison of Scores for Harebot Malware 61

20 Comparison of Scores for Sesh Malware 62

21 Combined Results . 62

x

xi

22 Winwebsec . 63

23 Zeroaccess . 64

24 Zbot . 64

25 Harebot . 65

26 Security Shield . 65

27 Smart HDD . 66

LIST OF FIGURES

1 Hidden Markov Model . 15

2 Opcode Graph . 18

3 Linear Classifier . 25

4 Non Linear Classifier . 26

5 Kernel Mapping . 27

6 SVM Design . 32

7 SVM Scoring Process . 33

8 HMM Score Analysis . 37

9 ROC curve for HMM . 37

10 Opcode Graph Similarity Score Analysis 38

11 ROC curve for Opcode Graph Similarity Method 39

12 Simple Substitution Method Score Analysis 40

13 ROC curve for Simple Substitution Method 41

14 Support Vector Machine Score Analysis 42

15 ROC curve for Support Vector Machine Method 42

16 HMM - 10% morphed Scores Analysis 46

17 HMM - ROC curve for 10% morphing 47

18 HMM AUC at different Morphing levels(Table 9) 48

19 OGS - 60% morphed Scores Analysis 49

20 OGS - ROC curve for 60% morphing 49

21 OGS AUC at different Morphing levels(Table 10) 50

xii

xiii

22 SS - 80% morphed Scores Analysis 51

23 SS - ROC curve for 80% morphing 52

24 SSD AUC at different Morphing levels(Table 11) 53

25 HMM - ROC curve for 80% morphing 54

26 OGS - ROC curve for 80% morphing 54

27 SS - ROC curve for 80% morphing 55

28 SVM - ROC curve for 80% morphed scores 56

29 AUC Comparison for 80% Block Morphed scores(Table 12) 56

30 Comparison of AUC Values at different Morphing levels . 58

31 Combined AUC Comparison(Table 21) 62

A.32 ROC curve for Harebot - HMM 72

A.33 ROC curve for Sesh - HMM 72

A.34 ROC curve for SmartHDD - HMM 72

A.35 ROC curve for WinWebSec - HMM 72

A.36 ROC curve for Zbot - HMM 73

A.37 ROC curve for ZeroAccess - HMM 73

A.38 ROC curve for Harebot - OGS 74

A.39 ROC curve for Sesh - OGS 74

A.40 ROC curve for SmartHDD - OGS 74

A.41 ROC curve for WinWebSec - OGS 74

A.42 ROC curve for Zbot - OGS 74

A.43 ROC curve for ZeroAccess - OGS 74

A.44 ROC curve for Harebot - SS 75

xiv

A.45 ROC curve for Sesh - SS 75

A.46 ROC curve for SmartHDD - SS 75

A.47 ROC curve for WinWebSec - SS 75

A.48 ROC curve for Zbot - SS 75

A.49 ROC curve for ZeroAccess - SS 75

A.50 ROC curve for Harebot - SVM 76

A.51 ROC curve for Sesh - SVM 76

A.52 ROC curve for SmartHDD - SVM 76

A.53 ROC curve for WinWebSec - SVM 76

A.54 ROC curve for Zbot - SVM 76

A.55 ROC curve for ZeroAccess- SVM 76

CHAPTER 1

Introduction

Malware also known as Malicious software is a software program which

intends to perform malicious activities on a computer. It can be used to steal

sensitive information or to gain un-authorized access to private networks [16].

Different malware are created for different purposes. A malware that changes

its internal structure each time it infects a new system is referred to as a

metamorphic malware. Once a system has been infected, an antivirus software

needs to identify the infection and take steps to eradicate it. A lot of malware

are created by developers these days to generate money. In this paper we use

the terms virus and malware interchangeably.

As the quantity of new and unknown malware is on the rise by the day,

analysis of different kind of malware and their detection has become a prime

research area. Malware detection strategies need to be updated regularly so

as to cope up with increasing diversity in metamorphic malware. Various

techniques have been proposed in the past for malware detection. Initial tech-

niques which were based on virus signature cannot be used for detection of

metamorphic malware. In recent years many new machine learning techniques

have been proposed for detection of metamorphic malware. Statistical mal-

ware detection techniques are based on some statistical characteristics of a

malware file, an example being Hidden Markov Models (HMM) [26]. Sim-

ilarity based techniques try to establish a similarity measure between files

of the same family, Simple Substitution Distance is an interesting similarity

based technique discussed in paper [24]. Examples of graph-based techniques

1

include Opcode Graph Similarity discussed in [23] and Function Call Graph

technique discussed in [8]. Entropy analysis, compression rates, and Principal

Component Analysis (PCA) are examples of Structural-based techniques. In

our research we will be implementing a subset of these scoring techniques and

then will try to devise some kind of morphing strategies to break each of these

scores. Our main aim here is to use minimum amount of morphing which is

sufficient to produce some kind of misclassification. Then we try to devise a

combined morphing strategy that can break all of our scores with minimum

amount of morphing. Finally, we will implement a Support Vector Machine

(SVM) [18] that will serve to generate an optimal combination of scores, and

we will measure the success of this SVM-based score in comparison to the

individual scores.

This paper is organized as follows. In Chapter 2, we discuss about avail-

able background information on malware with an emphasis on metamorphic

malware. Chapter 3 outlines previously implemented statistical and similarity

based metamorphic malware detection techniques that form the basis for the

research in this paper. Then in Chapter 4, we cover the Support Vector Ma-

chines and discuss our specific implementation using Rapidminer. Next, we

look at three different malware detection scores such as Hidden Markov Model,

Simple Substitution distance and Opcode Graph Similarity techniques. Then

we consider a combination of the these three scores using Support Vector Ma-

chines. These topics are covered in Chapter 5. Then in Chapter 6 we apply all

of our metamorphic detection strategies to some new classes of malware and

then compare the results produced by SVMs against the results produced by

other three techniques. Chapter 7 contains our conclusions and considerations

2

for future work.

3

CHAPTER 2

Background

A software program developed with an intention to harm another com-

puter or software is known as malware. Malware are developed with different

goals in mind. Usage varies from stealing information, damaging files on a com-

puter to earning money as a developer. malware are hidden and distributed

through a variety of channels such as seemingly legit online software download

s, CDs installs, email attachments etc. Hence, firewalls and antivirus softwares

are needed to be run frequently for malware detection and removal [19].

2.1 Types of Malware

Malware is a generic term which covers a wide range of malicious soft-

wares. The term malware can refer to any of the following:

2.1.1 Trojans

Term Trojan horse is derived from the deceptive horse used in the ancient

war of troy. It refers to a software program that presents itself as a legit

software but means harm to the host machine. It lures user into clicking on

unauthentic links, email attachments, downloading seemingly genuine files,

etc., to penetrate the host system and get executed without user’s knowledge.

Trojan horse can be used to monitor user activity, get remote machine or web

cam access, execute other harmful softwares or to steal personal information

from the host system. However, trojans do not replicate or spread themselves

thereby differ from viruses and worms [3].

4

2.1.2 Worms

Worm is a malicious software program that can spread itself without any

user intervention and hence is self sufficient. It generally uses host machine’s

network to jump and infect other machines on the network as the infected

document travels from one machine to another. Worm can be as small as a

macro in a word document. Worms can collapse an entire network just by using

up the bandwidth and not performing any malicious activity [3]. Developers

also use it to create backdoors and bot nets.

2.1.3 Viruses

Viruses get executed at whatever point the infected frameworks are

booted. Once executed virus can spread itself by multiplying its copies and

infecting other files and programs [3]. However, viruses are a lot different from

worms as human action is required in order to spread viruses. One of the most

typical scenario is copying data using an infected thumb drive on different

machines thereby spreading viruses on each of the host machines.

2.1.3.1 Encrypted viruses

To evade antivirus softwares malware needs to change its body with each

infection. The easiest technique that can be used for this is by encrypting the

virus body. Encrypted viruses generally use simple encryption techniques such

as computing XOR of a key with each byte of the virus body. Such viruses

also have a decryption block of code along with the encrypted body. However,

decryption code remains same across all variations of the virus thereby making

it vulnerable to detection. Hence, even though the scanner component of

5

antivirus software cannot decrypt the virus body, a signature based detection

is highly probable [15]. The first such virus was developed in 1987 called

Cascade [22].

2.1.3.2 Polymorphic viruses

In addition to the rather simple encrypted viruses, polymorphic viruses

have an additional component called mutation engine. Mutation engine plays

a crucial role in efficiently changing the body of the virus. Encypted virus

body and the mutation engine is first decrypted by decryption module once

the virus is downloaded on the host machine. Every infection then generates

a new virus body and decryptor using the encrypted mutation engine [22].

Anti-virus softwares can detect polymorphic viruses by using the method of

heuristic analysis in sandbox mode. The first such virus is 1260 developed in

1990 [29].

2.1.3.3 Metamorphic viruses

Metamorphic viruses are the most advanced form of viruses. These are

different from polymorphic viruses in a way that they do not have a decryptor

or encrypted virus body. Instead “Metamorphic viruses spread by keeping the

base functionality same but by changing their whole body i.e. by rewriting

themselves”. Hence, generations differ only in the code of the virus [15].

Metamorphic viruses use morphing techniques to change their code before

each infection. Few elementary morphing techniques are discussed below.

Subroutines Permutation It is important to change the structure of the

virus code in order to change its appearance. We can achieve this by

6

inserting random methods between two functional methods in the code.

Thus, antivirus softwares based on structural similarity are not be able

to detect such viruses easily. One such virus is win32/Ghost [34].

Instruction Reordering Instruction reordering works by identifying inde-

pendent instructions within each functional module of the virus code.

Such instructions execute independently with respect to other instruc-

tions. Reordering these leads to different appearance but same function-

ality. Due to its simplicity this technique can be easily used to generate

different generations of metamorphic viruses [22].

Instruction Substitution This technique uses functional equivalents to re-

place one or more instructions in the virus code [32].

Register Swapping Another simple approach for keeping the generations

different is to just change the registers used by different instructions

in the code. A simple swap of registers each time meaning using them

alternatively is one of the most trivial examples. Win95/Regs wap [34] is

one of the many metamorphic malware which makes use of this morphing

technique.

Garbage Instruction Insertion Garbage instruction insertion technique

uses “do-nothing” instructions for code obfuscation. Such statements

primarily do not have any effect on the code functionally and act as

dummy code lines once inserted [7]. Win95/ZPerm [29] is the most com-

mon example.

Malware writers have even created metamorphic “engines”, which are now

available publicly and can be used to generate metamorphic copies of a given

7

malware. These engines are referred to as “Virus Construction Kits” and can be

used to create functionally equivalent copies of an executable, and hence ease

the process of creating different generations of existing malware. Few examples

of such kits are Phalcon/Skism, NGVCK [25], Mass-Produced Code generator

(PS-MPC), MPCGEN and Second Generation virus generator (G2) [31]. We

focus on NGVCK in sections ahead because it was found to be one of the best

engines capable of producing entirely different metamorphic copies in previous

researches [25].

2.2 Detection Techniques

With the rapid increase in types and intricacy of obfuscation techniques

utilized by malware writers, there is great requirement for antivirus softwares

to keep up with the pace. Hence, there lies a vast scope for research and

possibilities in detection techniques. Currently multiple techniques are used for

malware detection which focus on varied parameters. Some of these techniques

are discussed below in detail.

2.2.1 Signature Based Detection

Signature based detection is based on scanning programs and files and

computing signatures for each of them. Signature based detection involves

searching for a known pattern, referred to as signature, in a given executable

file. Most of the antivirus manufacturers maintain a large repository of unique

signature for each known virus which is updated on a regular basis [3]. When

an anti-virus software scans an executable, it generates the signature of the

executable file and looks for a match in its database, if a match is found

8

the executable is deemed to be infected. Signature based detection scheme is

used on a vast scale because it is simple, accurate and fast [26]. One of the

drawbacks of this technique is that it requires a continuous update of signatures

for newly found malware. Also it cannot be used to detect previously unknown

malware as it can only detect malware with a known signature. Another of

its drawbacks is that it is very easy to evade signature based detection, simple

obfuscation techniques like polymorphism and metamorphism can be used to

evade signature based detection [21].

2.2.2 Behavior Based Detection

Behavior based detection is another legacy technique wherein the focus

is on the actions that a malware performs during its execution and trying to

understand the intent of the malware using various techniques. In behavior

based detection, the behavior of both benign files and malware files are studied

during the first phase generally referred to as the training or learning phase

and then during the monitoring phase, we use the information gathered in the

training phase to classify a given executable as either malware or benign [12].

2.2.3 Anomaly Based Detection

It is a technique which is inherently similar to behavior based detection. It

can actually be seen as a slight variation of behavior based detection, wherein

analysis is done by studying the behavior of all files in the training phase,

and during the monitoring phase we look out for files which show deviation

from normal behavior, such files are classified as infected. However, this tech-

nique is more susceptible to false positives. In [30] an unsupervised approach

9

for “Anomaly-based Malware Detection using Hardware Features” has been

discussed.

2.2.4 Statistical Malware Detection

Conventional approaches like signature detection cannot be used in the

case of metamorphic malware as they evade signature detection by morph-

ing their code. Although metamorphic malware copies can differ from each

other a great deal, but still some of the statistics of the metamorphic mal-

ware files remains the same. A variety of other techniques, including machine

learning [33] and statistical analysis [10] have been studied. In addition, some

improved techniques for evading these metamorphic detection schemes have

been considered in [15].

2.2.4.1 Hidden Markov Model Based Detection

In recent years a lot of machine learning techniques have been used in the

detection of malware, specifically metamorphic malware which cannot be de-

tected by using traditional malware detection techniques. Most of the machine

learning techniques work on the principle of analyzing a particular family of

virus for some kind of similarity score, which can then be used to detect an

incoming file as either a malware belonging to the same family or as a benign

file. One of such technique is Hidden Markov Model (HMM), which is one

of the most popular machine learning techniques used in the field of malware

detection [26]. In this technique, a Hidden Markov Model is trained against

known malware opcode sequence [17]. Once the training phase is over, the

trained model is used to score incoming files. The score is then compared to

10

a predefined threshold, if it is more than the threshold, the file is classified as

an infected file [33]. We will discuss more about this technique in Section 3.1.

2.2.5 Similarity Based Detection

This kind of detection is based on some kind of a similarity measure

defined between the metamorphic and benign files. It revolves around finding

some kind of characteristics which are similar for a given metamorphic malware

family. In previous researches a lot of similarity based detection strategies

have been discussed which are all based on analyzing characteristics of opcode

sequences of malware files. Some of these techniques are pairwise sequence

alignment [1, 20], n-gram similarity [33], cosine similarity [14], and chi-squared

similarity [10].

2.2.5.1 Opcode Graph Based Detection

Opcode graph based techniques are the techniques which involve analyz-

ing the graphs generated by opcode sequences instead of analyzing the files

themselves. For detection a weighted directed graph is constructed by analyz-

ing a metamorphic malware family. Then a graph is constructed for the file

under consideration. Finally the two graphs can be compared to generate a

score. The technique works by calculating the absolute difference between cor-

responding elements in the two graphs. If the computed score is low it means

that the two files are similar and hence the file is classified as a malware file

otherwise it is classified as a benign file [23]. We will discuss more about this

technique in Section 3.2.

11

2.2.5.2 Simple Substitution Based Detection

Simple substitution is another detection technique which is based on a

similarity measure. This technique uses approach which is very similar to the

use of simple substitution ciphers in cryptanalysis. It uses Jackobsen’s fast

algorithm similar to its use in cryptanalysis. Then we try to establish a kind

of a similarity score by trying to convert the matrix formed by the opcode

sequences of a given malware to that of the fuel under consideration [24]. We

will discuss more about this technique in Section 3.3.

12

CHAPTER 3

Statistical and Similarity based Malware Detection

Signature based detection is one of the most common method used by

antivirus softwares for malware detection. But it cannot be used to detect

metamorphic malware, as metamorphic malware evade signature based detec-

tion by morphing its body in such a way that the internal structure of the

morphed malware is completely different from its original copy. Even though

the internal structure of the malware has been completely changed by morph-

ing, but still, the instructions that this new morphed malware executes have to

be the same in order to perform the same actions. This means that in one way

or the other the distribution of these instructions will be the same across all

morphed copies. Based on these assumptions various malware detection tech-

niques have been devised, we discuss some of these techniques in the coming

sections.

3.1 Hidden Markov Model Method

Hidden Markov Model also referred to as HMM in coming sections is

a technique which can be used to recognize patterns. We can use a slight

modification of this technique to detect metamorphic malware. A Hidden

Markov Model can be trained based on a representative set of malware files

and then can be used to detect if given file belongs to a particular malware

family or not. We use log likelihood per opcode(LLPO) as a measure to score

these files. Once we have trained a Hidden Markov model we can then use

it to score new files, these new scores can then be compared to a predefined

13

value also known as threshold. If the score generated by a file is greater then

the threshold value then it can be inferred that the given file belongs to the

same metamorphic malware family.

3.1.1 Hidden Markov Model

Hidden Markov Model(HMM) Markov Process whose states are un-

known [26]. The notation used in HMM is described in [26] as follows:

𝑇 = length of the observation sequence
𝑁 = number of states in the model
𝑀 = number of observation symbols
𝑄 = {𝑞0, 𝑞1, . . . , 𝑞𝑁−1} = distinct states of the Markov process
𝑉 = {0, 1, . . . ,𝑀 − 1} = set of possible observations
𝐴 = state transition probabilities
𝐵 = observation probability matrix
𝜋 = initial state distribution
𝒪 = (𝒪0,𝒪1, . . . ,𝒪𝑇−1) = observation sequence.

A model is defined using these known values as

𝜆 = (𝐴,𝐵, 𝜋)

Figure 1 gives a graphical view of the Hidden Markov Process. The state

and observation of HMM at any point of time 𝑡 is represented by 𝑋𝑡 and 𝒪𝑡

respectively, as shown in Figure 1.

3.1.2 Implementation

In our implementation we start of by training a Hidden Markov Model

based on set of given metamorphic malware files. Once the model has been

trained this model represents the statistical properties that define the given

malware family in some way. We can then use this resulting model to score

14

𝒪0 𝒪1 𝒪2 · · · 𝒪𝑇−1

𝑋0 𝑋1 𝑋2 · · · 𝑋𝑇−1
𝐴 𝐴 𝐴 𝐴

𝐵 𝐵 𝐵 𝐵

Figure 1: Hidden Markov Model

a file under consideration and then predict whether it belongs to the same

family that the model was trained upon or not. In the training phase we

extracted sequence of opcodes from given executable files by disassembling

these files into machine level code. The we created an observation sequence

out of these opcode sequence by combining all of them into a long string of

opcode sequences.

Once we have trained our HMM on this given observation sequence we

can then use this resulting model to score a file under consideration, and then

predict whether it belongs to the same family or not. We would have two sets

of datasets, the test set and the compare set. The test set comprises of the

malware family under our consideration and the compare set usually comprises

of benign files. Then we compare the scores generated by the files in test set

to those generated by files in the compare set. Our main aim here is to get a

clear separation between the scores generated by each of these data sets. In

terms of LLPO our model should assign a higher LLPO value tot he files that

belong the the malware family under consideration and assign a lower score to

the comparison data set i.e. the benign files.

15

After training a HMM on NGVCK virus files we use it to score a subset of

NGVCK malware files and also an equivalent number of benign files(Cygwin

files). Then we compare the scores generated by the test data set compris-

ing of the NGVCK files against those generated by the comparison data set

comprising of the benign files.

3.2 Opcode Graph Similarity

The given malware file is first disassembled to generate a sequence of

opcodes. This sequence of opcodes is then used to generate a directed graph.

To construct this directed graph, first of all we create nodes representing all

the unique opcodes that we encounter in the given malware file. Once we

have all the edges for this graph we insert edges between each pair of nodes

which occur as consecutive opcodes in the given file i.e. a directed edge is

constructed for each pair of opcodes opc1 and opc2 such that opc2 follows

opc1 in the sequence of opcodes for that particular file. The weight of that

edge is defined as the probability of these two opcodes in that particular order.

3.2.1 Implementation

Here our main aim is to construct an opcode graph for each file and then

compare opcode graphs from two files to generate a similarity score between

those two files. For this we go through the sequence of opcodes in a given file

and create an opcode graph. We create a weighted directed graph wherein each

node consists of a unique opcode in our file and the edges connecting different

opcodes are created for each opcode bigram in that file. We create this graph

for both the malware files as well as the benign files. For comparison we can

16

then use these opcode graphs instead of the actual files. Here we discuss the

approach that has been previously studied in the paper [23].

Table 1 shows a subset of assembly language trace from a given metamor-

phic file:

Table 1: Opcode Sequence

Number Opcode Number Opcode
1 CALL 11 JMP
2 JMP 12 ADD
3 ADD 13 NOP
4 SUB 14 JMP
5 NOP 15 CALL
6 CALL 16 CALL
7 ADD 17 CALL
8 JMP 18 ADD
9 JMP 19 JMP

10 SUB 20 SUB

Table 2 shows a matrix containing count for each instruction digram in the

given file. There is a count value against each row-column opcode pair if they

exist in the opcode sequence one after the other and the value is determined as

the sum of all such occurences. So, the value against row 1 col 3 corresponds

to the count of instruction digrams involving ADD followed by JMP. Then, we

convert this table into a row-stochastic table by dividing each count by the

number of columns in the table. This leads to a matrix which provides us with

transition probabilities between successive opcodes as shown in Table 3. Then,

we generate a weighted directed graph for this table as shown in figure 2.

17

Table 2: Opcode Count

ADD CALL JMP NOP SUB
ADD 0 0 2 1 1
CALL 2 2 1 0 0
JMP 2 1 1 0 2
NOP 0 1 1 0 0
SUB 0 0 1 1 0

Table 3: Probability Table

ADD CALL JMP NOP SUB
ADD 0 0 1

2
1
4

1
4

CALL 2
5

2
5

1
5

0 0
JMP 1

3
1
6

1
6

0 1
3

NOP 0 1
2

1
2

0 0
SUB 0 0 1

2
1
2

0

ADD CALL JMP

NOP

SUB

1/4

1/4

1/2

1/3

1/2

2/5
1/5

1/6

1/2

1/3

2/5

1/6

1/2

1/2

Figure 2: Opcode Graph

18

Once we have the graph, we need to establish a threshold value which can

then be used to compare different scores by following the below steps:

1. Determine the opcode graphs for a set of malware family.

2. Determine the opcode graphs for a set of benign files.

3. Compute the scores for all pairs of metamorphic family viruses from step

1.

4. Determine the scores for differing pairs comprising of one family malware

from step 1 and one benign file from step 2.

5. Establish threshold values based on results from step 3 and step 4.

Once a threshold score has been established, we can use this score to

compare different sets of files. Now, to check if a given file belongs to a

particular malware family or not, we would first generate an opcode graph for

the given file. Then, we can compare this graph with that of a file from the

malware family in consideration. Once we have this score we can compare it

to our threshold value, if it is greater then the threshold value then we classify

the given file as a benign file otherwise as a malware file belonging to the same

family.

3.3 Simple Substitution Distance

It is an efficient technique which uses the similarity measure between two

given files for detection of metamorphic malware. This technique again relies

on the fact that we have a representative set of malware files belonging to the

same family. Here, we use a distance measure similar to the method used in

19

cryptanalysis, which is based on simple substitution distance. This method

uses a hill climbing approach based on Jakobsen’s algorithm [13]. The main

idea behind the approach is based on the frequency of opcodes, assuming that

they stay the same for a given family. So, we can use Jakobsen’s algorithm to

compare the similarity of a given file against both a malware file and a benign

file.

3.3.1 Jakobsen Algorithm

Jakobsen’s algorithm is an algorithm which involves refining an initial

guess for the encryption key with each iteration. It is based on the assumption

that the cipher text is actually in English language and has only 26 different

symbols. So, each of these symbols represents a letter in the english language.

it is a very fast algorithm because the distribution matrix is only created once

and is then changed after every iteration to evaluate the plain text.

The algorithm starts of by calculating the frequency of all the symbols

in the cipher text. Once all the frequencies have been calculated we can

sort them in reverse order. Then we can compare the maximum frequencies

from the cipher text to english language character frequencies and generate a

putative key. The algorithm then runs various iterations to improve on this

key as follows:

3.3.2 Implementation

In our implementation we follow the same approach of extracting opcode

sequences from all the family files as discussed in the previous two sections.

Then we create bigram distribution matrix from these opcode sequences which

20

Algorithm 1 Jakobsen’s Fast Attack on substitution ciphers
1: Initialize 𝐸 with expected digram frequencies
2: 𝐶 = Input cipher text
3: 𝐾 = Compute Initial Putative Key
4: 𝑃 = Putative plaintext by decrypting C using K
5: 𝐷 = Digram distribution matrix for P
6: 𝑠𝑐𝑜𝑟𝑒 = 𝑑(𝐷,𝐸)
7: for 𝑖 = 1 to 𝑛− 1 do
8: for 𝑗 = 1 to 𝑛− 𝑖 do
9: 𝐷′ = 𝐷

10: swapRows(j, j+i)
11: swapColumns(j, j+i)
12: if d(D′,E) < score then
13: 𝐷 = 𝐷′

14: swapElements(j, j+i) {Swap elements of the putative key}
15: score = d(D’,E)
16: end if
17: end for
18: end for
19: return K

is the equivalent of 𝐸 matrix in Jackobsen’s algorithm [13]. Then we construct

another similar matrix for the file which we want to classify, this matrix is

equivalent of 𝐷 matrix in the algorithm. We constrain both of these matrices

to the most common 𝑛 opcodes. We add one more symbol to represent all the

other opcodes which were excluded from the list. So, we are left with 𝑛 + 1

symbols.

Then we choose an initial “key” 𝐾 such that it is a representative of the

frequency of opcodes in the malware family. We assume that the frequencies

of opcodes in family viruses should be the same as compared to the code that

we are suspecting.

Then we construct the equivalent of matrix 𝐷 by using the key 𝐾 to

decrypt. This is similar to the procedure followed in Jackobsen’s algorithm to

21

construct 𝐷. Once we have the 𝐸 and 𝐷 matrices we make them row stochastic

so that the scores are not dependent on the size of the opcode sequence. For

example, if we have the below mentioned opcodes:

MOV, CALL, ADD, XOR, CMP

where the opcodes are in a reverse sorted order of their frequencies. Assume

that the sequence that we want to score is:

JMP, MOV, MOV, ADD, INC, INC, INC

the frequency counts for these will be:

Table 4: Opcode Frequency Counts

Opcode INC MOV ADD JMP
Frequency 3 2 1 1

So, our initial guess for the putative key 𝐾 is:

Table 5: Initial Putative Key Guess

Metamorphic Family MOV CALL ADD XOR
File to be scored INC MOV ADD JMP

By using the above putative key 𝐾 the decrypted sequence results in:

XOR, CALL, CALL, ADD, MOV, MOV, MOV

This gives us our initial 𝐷 matrix which is also referred to as digraph distri-

bution matrix as shown in table 6.

Once we have scored the 𝐷 and 𝐸 matrices against each other, the fol-

lowing step involves swapping the initial two opcodes in ‘putative key’ 𝑘, i.e.

22

Table 6: Digraph Distribution Matrix

MOV CALL ADD XOR CMP OTHER
MOV 2 0 0 0 0 0
CALL 0 1 1 0 0 0
ADD 1 0 0 0 0 0
XOR 0 1 0 0 0 0
CMP 0 0 0 0 0 0
OTHER 0 0 0 0 0 0

if we are looking at the first row then we will swap MOV and CALL, to achieve

this we can just swap the first row with the second row and repeat the same

with columns. This will result in our modified matrix shown in table 7.

Table 7: Modified Digraph Distribution Matrix

MOV CALL ADD XOR CMP OTHER
MOV 1 0 1 0 0 0
CALL 0 2 0 0 0 0
ADD 0 1 0 0 0 0
XOR 1 0 0 0 0 0
CMP 0 0 0 0 0 0
OTHER 0 0 0 0 0 0

From here onwards our algorithm carries on in the same way as in Jack-

obsen’s algorithm [13]. The score for a given file is computed as the score of

the final 𝐷 matrix. In our implementation we limit the size of our matrices to

25, based on previous research done in paper [24].

23

CHAPTER 4

Support Vector Machines

4.1 Introduction

Support vector machines are an example of supervised learning algorithms

which belong to both the regression and classification categories of machine

learning algorithms. SVMs is a collection of machine learning algorithms that

can be used to recognize pattens in given data [5]. Given a set of training data

we would like to classify new examples into one of the possible two categories.

For achieving such a task SVM training algorithm can be used to build a

model which is capable of performing such classification. We can define the

SVM model by having all the example from the training data represented as

points on a space. These points will be represented in the two dimensional

space such that there is an evident gap between data points belonging to our

two different classes. So for new points we can use this model to classify it

to one of these two classes based on which side of the gap it belongs to. This

kind of classification is known as linear classification [28].

4.1.1 SVM Example

SVM’s can be defined by using the concepts of decision planes and support

vectors. The decision planes are planes in the two dimensional space that

would represent the decision boundaries. Basically a decision plane is defined

as a plane which completely separates all data points belonging to two different

classes. Figure 3 shows an example of data points in two dimensional space.

In this example we have two different types of data points represented by

24

Red and Green dots. The Green points refer to class A whereas Red points

refer to class B. If we look at the figure we can clearly see that we can plot a

line segment which can separate all the data points in a way that all points

belonging to one class are on one side and all the other points are on the other

side of the line segment. This line segment will be our decision plane. Any

new examples of data coming in can be classified based on this line segment,

if it falls on the left side then it belongs to class B otherwise it belongs to class

A [28].

Figure 3: Linear Classifier

The type of classification shown in Figure 3 is referred to as linear classi-

fication, i.e. the classifier separates two different classes of data by finding a

decision plane in between them.

But in some cases the classification problem is much tougher then the one

shown in Figure 3. An example of a different kind of classification problem is

shown in Figure 4. If we compare the two figures we can clearly see that the

classification task in the second is tougher and we cannot have a simple line

segment separating the two classes. In such situations we would have to plot

a curve instead. Classification problems which involve plotting of simple line

segments to differentiate between data points belonging to two different kinds

25

are referred to as hyper plane classifiers [28]. These kind of problems are best

suited for Support Vector Machines.

Figure 4: Non Linear Classifier

But sometimes there are cases wherein we cannot separate the datasets

linearly. In such scenario’s support vector machines allow us to use a special

trick known as the kernel trick. A kernel trick is basically using some math-

ematical functions which are known as “kernels” to map the given data sets

into a new feature space(mapping). The only condition here is that when we

map our data points into this new feature space, the newly mapped points

should be linearly separable in this new feature space. So, we can change the

complex problem of plotting a curve into a simple problem of plotting a line

segment in the new feature space. Figure 5.

4.1.2 Kernel Mapping

Definition: A kernel is defined as a function that accepts two vectors x𝑖

and x𝑗 as inputs and produces an output which is defined as the inner product

of their images 𝜑(x𝑖) and 𝜑(x𝑗)

𝐾(x1,x2) = 𝜑(x1)
𝑇𝜑(x2)

26

Figure 5: Kernel Mapping

We are not concerned about the dimensionality of the newly formed space

because we are only returning the inner products in the new space for the two

vectors.

The main idea here is to generate a learning algorithm that operates in

kernel space, which is generated by substituting the values of all inner products

from the original space into the newly formed kernel space:

𝑓(x) = 𝜑(x)𝑇w + 𝑏 =
𝑚∑︁
𝑗=1

𝛼𝑗𝑦𝑗𝐾(x,x𝑗) + 𝑏

The parameter 𝑏 can be found from any support vectors x𝑖

𝑏 = 𝑦𝑖 − 𝜑(x𝑖)
𝑇w = 𝑦𝑖 −

𝑚∑︁
𝑗=1

𝛼𝑗𝑦𝑗(𝜑(x𝑖)
𝑇𝜑(x𝑗)) = 𝑦𝑖 −

𝑚∑︁
𝑗=1

𝛼𝑗𝑦𝑗𝐾(x𝑖,x𝑗)

4.1.3 Linear separation of a feature space

Let’s assume that we have a hyper plane in an 𝑛-dimensional (𝑛-D) orig-

inal feature space

𝑓(x) = x𝑇w + 𝑏 =
𝑛∑︁

𝑖=1

𝑥𝑖𝑤𝑖 + 𝑏 = 0

27

where w = [𝑤1, · · · , 𝑤𝑛]
𝑇 the weight vector is normal to the hyper plane,

and |𝑏|/||w|| is defined as the distance between the plane and origin [11]. Then

we can say that our 𝑛-Dimensional has been partitioned into two different

regions by this new hyper plane [11]. We can go ahead and define a mapping

function 𝑦 = sign(𝑓(x)) ∈ {1,−1}, i.e.,

𝑓(x) = x𝑇w + 𝑏 =

{︂
> 0, 𝑦 = sign(𝑓(x)) = 1, x ∈ 𝑃
< 0, 𝑦 = sign(𝑓(x)) = −1, x ∈ 𝑁

Any point x ∈ 𝑃 which exists on the positive side is mapped to 1, while

any point x ∈ 𝑁 which exists on the negative side is mapped to -1. A point x

of unknown class will be classified to 𝑃 if 𝑓(x) > 0, or 𝑁 if 𝑓(x) < 0 [11].

4.1.4 The learning problem

Given a set 𝐾 training samples from two linearly separable classes 𝑃 and

𝑁

{(x𝑘, 𝑦𝑘), 𝑘 = 1, · · · , 𝐾}

where 𝑦𝑘 ∈ {1,−1} labels x𝑘 to belong to either of the two classes. Our main

aim is to find a hyper-plane in terms of w and 𝑏, that linearly separates the

two classes.

Before w is properly trained, the actual output 𝑦′ = sign(𝑓(x)) may not

be the same as the desired output 𝑦. There are four possible cases:

Input (x, 𝑦) Output 𝑦′ = sign(𝑓(x)) result
1 (x, 𝑦 = 1) 𝑦′ = 1 = 𝑦 corrrect
2 (x, 𝑦 = −1) 𝑦′ = 1 ̸= 𝑦 incorrect
3 (x, 𝑦 = 1) 𝑦′ = −1 ̸= 𝑦 incorrect
4 (x, 𝑦 = −1) 𝑦′ = −1 = 𝑦 corrrect

28

The weight vector w is updated whenever the result is incorrect (mistake

driven):

∙ If (x, 𝑦 = −1) but 𝑦′ = 1 ̸= 𝑦 (case 2 above), then

xnew = wold + 𝜂𝑦x = wold − 𝜂x

When the same x is presented again, we have

𝑓(x) = x𝑇wnew + 𝑏 = x𝑇wold − 𝜂x𝑇x+ 𝑏 < x𝑇wold + 𝑏

The output 𝑦′ = sign(𝑓(x)) is more likely to be 𝑦 = −1 as desired. Here

0 < 𝜂 < 1 is the learning rate.

∙ If (x, 𝑦 = 1) but 𝑦′ = −1 ̸= 𝑦 (case 3 above), then

wnew = wold + 𝜂𝑦x = wold + 𝜂x

When the same x is presented again, we have

𝑓(x) = x𝑇wnew + 𝑏 = x𝑇wold + 𝜂x𝑇x+ 𝑏 > x𝑇wold + 𝑏

The output 𝑦′ = sign(𝑓(x)) is more likely to be 𝑦 = 1 as desired.

Summarizing the two cases, we get the learning law:

if 𝑦𝑓(x) = 𝑦(x𝑇wold + 𝑏) < 0, then wnew = wold + 𝜂𝑦x

The two correct cases (cases 1 and 4) can also be summarized as

𝑦𝑓(x) = 𝑦(x𝑇w + 𝑏) ≥ 0

which is the condition a successful classifier should satisfy.

29

4.1.5 Definition

For a decision hyper-plane x𝑇w + 𝑏 = 0 to separate the two classes P

(x𝑖, 1) and N (x𝑖,−1), it has to satisfy

𝑦𝑖(x
𝑇
𝑖 w + 𝑏) ≥ 0

for both x𝑖 ∈ 𝑃 and x𝑖 ∈ 𝑁 . Among all the planes that can actually satisfy our

condition, we are concerned in finding a plane that can separate the given two

classes in such a way that the margin between them is the maximum possible

margin [11].

The optimal plane which maximizes the margin has to lie somewhere in

between the two classes, to make the distance from the closest points on each

of its sides equal. We then draw two more planes 𝐻+ and 𝐻− that are parallel

to each other and also to 𝐻0 and also pass through the closest point to the

plain on both of its sides:

x𝑇w + 𝑏 = 1, and x𝑇w + 𝑏 = −1

All points x𝑖 ∈ 𝑃 on the positive side should satisfy

x𝑇
𝑖 w + 𝑏 ≥ 1, 𝑦𝑖 = 1

and all points x𝑖 ∈ 𝑁 on the negative side should satisfy

x𝑇
𝑖 w + 𝑏 ≤ −1, 𝑦𝑖 = −1

These can be combined into one inequality

𝑦𝑖(x
𝑇
𝑖 w + 𝑏) ≥ 1, (𝑖 = 1, . . . ,𝑚)

30

The equality holds for those points on the planes 𝐻+ or 𝐻−. Such points are

called support vectors, for which

x𝑇
𝑖 w + 𝑏 = 𝑦𝑖

i.e., the following holds for all support vectors

𝑏 = 𝑦𝑖 − x𝑇
𝑖 w = 𝑦𝑖 −

𝑚∑︁
𝑗=1

𝛼𝑗𝑦𝑗(x
𝑇
𝑖 x𝑗)

4.2 Implementation

In our implementation of the SVM’s we used Rapid-miner studio a tool

available with multiple machine learning packages. This learner uses the Java

implementation of the support vector machine mySVM by Stefan Rueping.

The implementation of mySVM can both be utilized in regression task as well

as classification tasks and it provides a very fast implementation which gives

good results. mySVM works with all kind of functions, be it linear or quadratic

and it is also useful in case of asymmetric loss functions [27]. Figure 6 below

shows the design of the SVM process.

4.2.1 Design

Training Data: This corresponds to the training input file which is

expected to be an excel file with labelled data in form of tuples defined above.

Testing Data: This corresponds to the testing input file which is ex-

pected to be an excel file with un-labelled data in form of tuples defined

above.

SVM: This is the learner which generates a model by learning from the

Training data.

31

Figure 6: SVM Design

Apply Model: This operator allows us to apply a model onto incoming

testing data.

Performance: This operator provides us with a list of performance cir-

teria’s which can be used to measure its performance and also for visualization

purposes.

4.2.2 Algorithm

Figure 7 explains the scoring process in detail. In our scenario we are us-

ing the SVM as a classifier which can classify Benign and Metamorphic files.

The features that our SVM is built on correspond to the scores that we re-

ceived from HMM, Simple Substitution and Opcode graph scoring techniques

as discussed in previous sections. The algorithm works in two phases -Training

Phase and Testing Phase. In Training Phase, we generate a model by training

on our training dataset which is formed by combining the scores from our three

different techniques i.e. HMM, Simple Substitution and Opcode graph as a

tuple along with a class description referring to as either Benign or Metamor-

phic file as shown in Figure 7. In Testing Phase, we apply the model that we

32

created in the training phase to our testing dataset which is again the same

tuple along with a class description as shown in Figure 7.

Figure 7: SVM Scoring Process

33

CHAPTER 5

Experiments

In this chapter we focus our attention on using the below mentioned tech-

niques to score a representative set of metamorphic malware:

∙ Hidden Markov Model Method

∙ Opcode Graph Similarity Method

∙ Simple Substitution Distance Method

∙ Combining all the above three using SVM’s

The first three of these methods work directly on the statistical properties

of opcodes and the last method works by combining the scores coming out of

these three techniques. Our test set of metamorphic viruses consists of 200

NGVKC files [31]. So all the results to follow in this chapter will revolve

around the NGVCK family to be representative of metamorphic files [25].

The NGVCK family of viruses in previous researches has proved that it is one

of the most highly metamorphic [33].

Our set of benign files consists of 40 cygwin utility files [6]. We have se-

lected these files for our experiments because we wanted to compare our results

with previous implementations which also used these files in their experiments,

including [33]. Finally we will be diversifying our malware dataset by moving

to a whole new families of metamorphic malware in the next chapter. We use

34

ROC (Receiver Operating Characteristics) curves for comparing these tech-

niques to each other and for measuring their efficacy [4]. The Area under the

curve also refer to as AUC in coming sections, which is the area under this

ROC curve will provide us with a measure of the degree of correctness of each

of these techniques.

We used a machine with the below mentioned configuration:

Table 8: Machine Specification

Model MacBook Pro Retina
Processor 2.4 GHz Intel Core i5

RAM 8 GB 1600 MHz DDR3
System type 64-bit OS

Operating System OS X 10.9.5

5.1 Receiver Operating Characteristics

Receiver Operating Characteristics or in short ROC curve is a kind of

graph which is drawn to measure the correctness of a binary classifier [4].

We first calculate the TPR also known as true positive rate which is defined

as the number of positives that were predicted positives in actual out of the

total predicted positives. Then we calculate FPR also known as false positive

rate which is defined as the negative classifications which were accidentally

predicted as positives out of the total actual negatives. Once we have these

two values we plot the TPR vs the FPR at different levels of threshold to

generate an ROC curve. TPR is also known as sensitivity and FPR is also

known as the fall out of a classification system [9].

In the following sections we will be discussing about the results of the

above mentioned techniques in detail. We will be plotting ROC curves to

35

compare their efficiency. We will also be using area under the curve or in

short AUC for these ROC curves as a measure of the correctness of these

scoring systems.

5.2 Hidden Markov Model Method

We did a lot of experiments so as to compare the results that we got for

our implementation against the scores produced in previous researches [23].

While performing our experiments we saw that the final score produced is not

effected much by the number of states that we have considered for the HMM.

So, we decided to go with 2 as the default number of states for HMM in our

experiments. In this particular experiment, we trained our HMM on a training

set which consisted of 160 NGVCK files to generate a model which we could

use for scoring similar files. Then we used this model to score another testing

set which consisted of 40 NGVCK files alongwith a compare set consisting of

40 Benign files. If we look at the scatter plot in Figure 8 we can clearly see

that there is a clear separation between the scores for both kind of files.

Figure 9 shows the corresponding ROC curve that has been plotted for the

results received in this experiment. From the curve it is very easy to deduce

that our HMM model is capable of producing great results and can easily

distinguish the family viruses from benign files. The AUC for this experiment

was 1.0, which further reinstates the fact that it produces perfect classification.

36

Figure 8: HMM Score Analysis

Figure 9: ROC curve for HMM

37

5.3 Opcode Graph Similarity

This experiment is based around the same setup where we use a subset of

160 NGVCK files for the training phase and use the remaining 40 files along

with 40 cygwin utility files for the testing dataset. We use the process defined

in Section 3.2.1 to establish a threshold value, which will further be used for

the actual distinction between the two type of files.

Figure 10 shows a scatterplot that we got after plotting the results from

our experiment. The red dots in the scatter plot denote the similarity score

between two different types of files in our experiment i.e. the malware and

benign files, whereas blue triangles denote the similarity score between two

files which belong to same malware family. Because there is a clear separation

between the two scores in Figure 10, we can clearly conclude that this method

is able to distinguish between the files correctly.

Figure 10: Opcode Graph Similarity Score Analysis

Figure 11 shows the corresponding ROC curve that has been plotted for

38

the results received in this experiment. From the curve it is very easy to deduce

that our Opcode graph similarity method is capable of producing great results

and can easily distinguish the family viruses from benign files. The AUC for

this experiment was 1.0, which further reinstates the fact that it produces

perfect classification.

Figure 11: ROC curve for Opcode Graph Similarity Method

5.4 Simple Substitution Distance

In this experiment as well we used the same malware and benign files

as discussed above. The scores obtained in this experiment are plotted on

scatter plot as shown in Figure 12. From the scatter plot it is quite clear that

the malware files produce a lower score for this technique as compared to the

benign files which are quite different.

Figure 13 shows the corresponding ROC curve that has been plotted for

39

Figure 12: Simple Substitution Method Score Analysis

the results received in this experiment. From the curve it is very easy to deduce

that our Simple Substitution method is capable of producing great results and

can easily distinguish the family viruses from benign files. The AUC for this

experiment was 1.0, which further reinstates the fact that it produces perfect

classification.

5.5 Support Vector Machine

In this experiment we are not devising a new technique for detection

of metamorphic malware by working on any of its characteristics, rather

our aim here is to see if we could combine the scores coming from the three

techniques defined above and use an SVM classifier to classify them. So,

here rather than directly working with malware and benign files we will be

working with scores generated by the three previous techniques as described

in Section 5.2, 5.3, 5.4. Once we have scores from the above three techniques,

we split them into two files with each containing a tuple:

40

Figure 13: ROC curve for Simple Substitution Method

(𝑎𝑐𝑡𝑢𝑎𝑙 𝑐𝑙𝑎𝑠𝑠 𝑙𝑎𝑏𝑒𝑙, 𝐻𝑀𝑀 𝑠𝑐𝑜𝑟𝑒, 𝑂𝐺𝑆 𝑠𝑐𝑜𝑟𝑒, 𝑆𝑆𝐷 𝑠𝑐𝑜𝑟𝑒)

The output from the support vector machine is a file which contains a tuple:

(𝑎𝑐𝑡𝑢𝑎𝑙 𝑐𝑙𝑎𝑠𝑠 𝑙𝑎𝑏𝑒𝑙, 𝐻𝑀𝑀 𝑠𝑐𝑜𝑟𝑒, 𝑂𝐺𝑆 𝑠𝑐𝑜𝑟𝑒, 𝑆𝑆𝐷 𝑠𝑐𝑜𝑟𝑒, 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑐𝑙𝑎𝑠𝑠 𝑙𝑎𝑏𝑒𝑙)

as shown in Figure 7. We can then compare the predicted class label against

the actual class for calculating the performance of the model. The scores

obtained in this experiment are plotted on scatter plot as shown in Figure 14.

It can be observed that our SVM technique is able to distinguish between

metamorphic malware and benign file with an accuracy of 100%.

Figure 15 shows the corresponding ROC curve that has been plotted for

the results received in this experiment. From the curve it is very easy to deduce

that our Support vector machine method is also capable of producing results

that are similar to the one’s produced by the underlying techniques. The

AUC for this experiment was 1.0, which shows that it can easily distinguish

41

Figure 14: Support Vector Machine Score Analysis

the metamorphic family files from benign files.

Figure 15: ROC curve for Support Vector Machine Method

In this experiment we have proved that Support Vector Machines can be

used to detect metamorphic malware by using the scores of Hidden Markov

42

Model, Simple Substitution Distance and Opcode Graph Similarity techniques.

In the coming sections we will do an in-depth analysis of the robustness of our

underlying techniques that we have discussed above.

43

CHAPTER 6

Results

In the previous section we have seen that Support Vector Machines can

be used to detect malware files from benign files by using scores from different

techniques. In the coming sections we will test the robustness of each of these

techniques. Our main aim is to prove that Support Vector Machines can serve

as a more robust detection strategy even when the underlying techniques have

failed.

6.1 Attacks on Detection Techniques

In this section, we consider the robustness of the above mentioned meta-

morphic detection techniques. In previous researches [15] for attacks on these

statistical metamorphic detection techniques, it has been observed that mor-

phing the metamorphic malware files by inserting code from benign files gives

the best results.

6.1.1 Morphing Techniques

In [15], a morphing engine was developed in order to evade detection

by known machine learning techniques such as the Hidden Markov Model

technique. The engine works by inserting dead code from a benign file into

a metamorphic file so as to beat the statistics of the metamorphic file which

make it susceptible to detection by HMM [23].

Two different forms of morphing strategies have been discussed in pa-

per [15]:

44

∙ Block Morphing

∙ Random Morphing

In the first case, which we refer to as “block morphing”, the dead code

is inserted as a single block of code which is placed into the malware file

at one location. Whereas in “random morphing”, the dead code is inserted

uniformly into the malware file at constant intervals so as to spread the dead

code throughout its body. The paper proves that this method of insertion of

“dead code” into the malware file from a benign file is capable of defeating

the HMM detection, i.e. it is able to induce false negatives or false positives.

In the paper it has also been shown that the first method of insertion that is

block morphing is way more effective then the random morphing method.

We performed experiments at different levels of block morphing. The

amount of dead code inserted into the file depends on the size of the malware

file and is usually inserted as a percentage of its size. For example in order

to do a 20% morphing into a metamorphic file of 400 lines we would have to

insert 80 lines into it from a randomly selected benign file. The main point to

be noted here is that all the steps we are performing here are happening at the

assembly code level, but we are just making these changes to the static opcode

files that we already have. The assumption here is that in real world a malware

writer would have to put in a lot of effort to do the same modifications into

an executable, because he has to make sure that none of the inserted code

gets executed. Another thing that he has to worry about is that the inserted

code should not look obvious and should not be easily detected by someone

debugging the executable. So, by ignoring these practical problems which are

45

involved in the insertion of dead code into a malware file, we are considering

the worst possible case that a malware writer would have to go through. In the

coming sections we look at results of our detection techniques against block

morphed NGVCK malware files.

6.2 Results for Morphed Malware

6.2.1 Hidden Markov Model Method

We started off by inserting different levels of opcodes into the NGVCK

files from randomly selected benign files. In Figure 16, we show a scatter plot

for HMM results for 10% morphed NGCVK malware files vs Benign files, from

the scatter plot it is clearly visible that there is no clear distinction between

the malware scores and the benign scores at 10% block morphing.

Figure 16: HMM - 10% morphed Scores Analysis

The ROC curve shown in Figure 17 below validates the fact, it can be

clearly inferred from the ROC curve that some of the files have been miss-

classified. The AUC for Figure 17 has been reduced to 0.90125 from its initial

46

value of 1.000 for un-morphed Malware files vs Benign Files.

Figure 17: HMM - ROC curve for 10% morphing

Table 9 shows AUC value for ROC Curves plotted for different levels of

block morphing. From the table we can see that there is a considerable drop

in the AUC values at 10% and 20% block morphing levels, but the AUC values

for morphing levels greater than 20% tend to stabilize. Figure 18 shows the

graph for these results.

Table 9: HMM AUC values for different levels of Block Morphing

Morphing percentage AUC
0% 1.00000
10% 0.90125
20% 0.81625
30% 0.81875
40% 0.82250

47

Figure 18: HMM AUC at different Morphing levels(Table 9)

6.2.2 Opcode Graph Similarity Method

In this experiment we inserted different percentages of opcodes into the

NGVCK files from randomly selected benign files. In Figure 19 we show a

scatter plot for Opcode Graph Similarity method results for 60% morphed

NGCVK malware files vs Benign files, from the scatter plot is clearly visible

that there is no clear distinction between the malware scores and the benign

scores at 10% block morphing. This technique turned out to be comparatively

more robust to HMM technique as it could withstand morphing levels of upto

50% before showing any kind of miss-classification.

The ROC curve shown in Figure 20 below validates the fact, it can be

clearly seen from the ROC curve that some of the files have been miss-classified

at 60% block morphing level. The AUC for Figure 20 has been reduced to

48

Figure 19: OGS - 60% morphed Scores Analysis

0.91250 from its initial value of 1.000 for un-morphed Malware files vs Benign

Files.

Figure 20: OGS - ROC curve for 60% morphing

Table 10 shows AUC values for ROC Curves plotted for different levels

49

of block morphing. From the table we can see that Opcode graph similarity

technique is more robust than HMM technique as at relatively moderate levels

of morphing it produced perfect results in the form of AUC value of 1.0. It

was only at about 60% block morphing the the results started to deteriorate

and the AUC value dropped to 0.91250. Figure 21 shows the graph for these

results.

Table 10: OGS AUC values for different levels of Block Morphing

Morphing percentage AUC
0% 1.00000
10% 1.00000
20% 1.00000
30% 1.00000
40% 1.00000
50% 1.00000
60% 0.91250

Figure 21: OGS AUC at different Morphing levels(Table 10)

50

6.2.3 Simple Substitution Distance Method

In this experiment as well we inserted different percentages of opcodes into

the NGVCK files from randomly selected benign files. In Figure 22 we show a

scatter plot for Simple Substitution Distance method scores for 80% morphed

NGCVK malware files vs Benign files, from the scatter plot it is clearly visible

that there is no clear distinction between the malware scores and the benign

scores at 80% block morphing. This technique turned out to be comparatively

more robust to HMM technique, because it could withstand morphing levels

of upto 50% before showing any kind of miss-classification. It performed a

little better in comparison to the Opcode Graph Similarity technique as well,

it took about 80% block morphing to drop the AUC value to 0.89875 whereas

similar AUC was achieved in case of Opcode Graph Similarity at a morphing

level of 60%.

Figure 22: SS - 80% morphed Scores Analysis

The ROC curve shown in Figure 27 below validates the fact, it can be

51

clearly seen from the ROC curve that some of the files have been miss-classified

at 80% block morphing level. The AUC for Figure 27 has been reduced to

0.89875 from its initial value of 1.000 for un-morphed Malware files vs Benign

Files.

Figure 23: SS - ROC curve for 80% morphing

Table 11 shows AUC values for ROC curves plotted for different levels

of block morphing. From the table we can see that Opcode graph similarity

technique is more robust than HMM technique as at relatively moderate levels

of morphing it produced perfect results in the form of AUC value of 1.0. It

was only at about 60% block morphing that the results started to deteriorate

and the AUC value dropped to 0.91250. Figure 24 shows the graph for these

results.

52

Table 11: SS AUC values for different levels of Block Morphing

Morphing percentage AUC
0% 1.00000
10% 1.00000
20% 1.00000
30% 1.00000
50% 1.00000
60% 0.99750
70% 0.95063
80% 0.89875

Figure 24: SSD AUC at different Morphing levels(Table 11)

6.2.4 Combining Scores using SVM

In this experiment we want to see if SVM can provide us with better result

than individual scores from the three techniques mentioned above. Because the

maximum morphing % used to break all the techniques was registered in case

of Simple Substitution method, wherein it took about 80% block morphing to

bring the AUC down by a considerable level, we choose 80% morphing as a

benchmark. Now we generate scores for each of the three techniques at 80%

block morphing. Figure 25, 26, 27 below show the ROC curves generated by

each of the three techniques at 80% block morphing.

53

Figure 25: HMM - ROC curve for 80% morphing

Figure 26: OGS - ROC curve for 80% morphing

In comparison to these above three, we can see that Support vector ma-

chine can produce better results by combining the scores from the above three

techniques. Figure 28 shows the ROC curve generated by SVM scores. The

AUC for this ROC curve is 1.0, which is better than the AUC achieved by any

of the three techniques individually at 80% block morphing level.

54

Figure 27: SS - ROC curve for 80% morphing

We summarize these results in Table 12. If we take a look at the table it is

evident that SVM produced a perfect AUC score of 1.0 when all the individual

techniques had failed with AUC scores around 0.9. So we can conclude that

SVM’s can produce better results by combining scores generated by different

malware detection techniques. Figure 29 shows the graph for these results.

Table 12: Comparison of Scores at 80% Block Morphing

Scoring Technique AUC
Hidden Markov Models 0.85062

Opcode Graph Similarity 0.89875
Simple Substitution Distance 0.88437

Support Vector Machine 1.00000

6.2.4.1 SVM Kernel functions comparison

We tested different kernel methods for our SVM implementation, but got

the best results with radial kernel as shown in Table 13. So from here on, all

our experiments will be using the radial function as the kernel function.

55

Figure 28: SVM - ROC curve for 80% morphed scores

Figure 29: AUC Comparison for 80% Block Morphed scores(Table 12)

56

Table 13: Comparison of SVM Kernel Functions at 80% Block Morphing

SVM Kernel AUC
Dot 0.918

Polynomial 0.860
Neural 0.850
Radial 1.000

6.3 SVM vs Individual Techniques

In this section we compare the results produced by SVM against the re-

sults produced by each of our individual techniques. In Section 6.2.4 we saw

that SVM scores outperformed each of the techniques at a morphing level of

80%. Next we try to establish a morphing ratio wherein SVM’s perform better

than each of the individual techniques. Table 14 shows AUC values at differ-

ent morphing percentages for Hidden Markov Model(HMM), Opcode Graph

Similarity(OGS), Simple Substitution Distance(SSD) and Support Vector Ma-

chine(SVM) techniques respectively. From the table we can see that SVM is

a much more robust technique as compared to the other three.

Table 14: Comparison of Scores at Different Morphing levels

Morphing % HMM AUC OGS AUC SSD AUC SVM AUC

0% 1 1 1 1
10% 0.90125 1 1 1
20% 0.81625 1 1 1
30% 0.81875 1 1 1
40% 0.82250 1 1 1
50% 0.86250 1 1 1
60% 0.87875 0.91250 0.99750 1
70% 0.85437 0.90687 0.95063 1
80% 0.85062 0.88437 0.89875 1
90% 0.87625 0.87250 0.93812 1
100% 0.90000 0.85370 0.90750 1
110% 0.9 0.79563 0.90188 0.97906
120% 0.9 0.78125 0.87438 0.95875

57

Figure 30 shows a line graph depicting the change in AUC values at

different morphing levels for all the four techniques. We can clearly see that

SVM performs way better than the other techniques even at 100% morphing

level. The morphing ratio where SVM shows up to be better than the three

underlying techniques is 60%. Now that we have proved that SVM’s can be

used to combine results from different malware detection techniques and still

produce better results, we would like to put it to test against some other virus

families to see how it performs as compared to the three underlying techniques.

Figure 30: Comparison of AUC Values at different Morphing levels

6.3.1 ZeroAccess Malware

In this experiment we want to validate how SVM performs against the in-

dividual techniques for ZeroAccess Malware. We extract the opcode sequences

from the ZeroAccess malware files and use them as the dataset for our malware

58

detection techniques. For comparison we use the same set of benign files that

we used to compare against the NGVCK virus. Table 15 shows the compari-

son between AUC values for SVM and the underlying techniques, we can see

that for ZeroAccess Malware SVM outperforms the other three techniques and

provides us with better result.

Table 15: Comparison of Scores for Zero Access Malware

Scoring Technique AUC
Hidden Markov Models 0.97875

Opcode Graph Similarity 0.47531
Simple Substitution Distance 1

Support Vector Machine’s 1

6.3.2 Zbot Malware

In this experiment, we extract the opcode sequences from the Zbot mal-

ware files and use them as the dataset for our malware detection techniques.

Table 16 shows the comparison between AUC values for SVM and the un-

derlying techniques, we can clearly see that for Zbot Malware as well SVM

outperforms the other three techniques and provides us with better result.

Table 16: Comparison of Scores for Zbot Malware

Scoring Technique AUC
Hidden Markov Models 0.9875

Opcode Graph Similarity 0.61938
Simple Substitution Distance 0.675

Support Vector Machine’s 1

6.3.3 WinWebSec Malware

In this experiment as well we followed the same approach to generate

scores as in the above section. Table 17 shows the comparison between AUC

59

values for SVM and the underlying techniques. For WinWebSec malware fam-

ily HMM was able to distinguish between the malware and benign files with

an AUC of 1. Although the other two techniques were not able to distinguish

between malware and benign files, but by combining the scores from the three

techniques SVM was able to distinguish between the files with an AUC value

of 1. So we can see that in the above three cases SVM has performed at least

as well or better than the three individual techniques.

Table 17: Comparison of Scores for WinWebSec Malware

Scoring Technique AUC
Hidden Markov Models 1

Opcode Graph Similarity 0.85437
Simple Substitution Distance 0.93563

Support Vector Machine’s 1

6.3.4 SmartHDD Malware

In this experiment as well we followed the same approach to generate

scores as in the above section. This was the first experiment where we saw

that HMM performed better than SVM technique. Although the AUC value

produced by SVM was better than the AUC value for all the techniques but

HMM also produced good scores in this case. Table 18 shows the comparison

between AUC values for SVM and the underlying techniques for SmartHDD

malware.

Table 18: Comparison of Scores for SmartHDD Malware

Scoring Technique AUC
Hidden Markov Models 0.99875

Opcode Graph Similarity 0.94875
Simple Substitution Distance 0.91156

Support Vector Machine’s 1

60

6.3.5 Harebot Malware

In this experiment we saw that that HMM performed as good as the

SVM technique. The AUC value produced by SVM was far better than the

AUC value for both Opcode graph similarity and Simple substitution distance.

The scores for both the Opcode graph technique as well as Simple substitu-

tion technique were very low and not suitable for any kind of classification

task. Table 19 shows the comparison between AUC values for SVM and the

underlying techniques for Harebot malware.

Table 19: Comparison of Scores for Harebot Malware

Scoring Technique AUC
Hidden Markov Models 1

Opcode Graph Similarity 0.4
Simple Substitution Distance 0.6125

Support Vector Machine’s 1

6.3.6 Sesh Malware

This was another experiment where we saw that HMM performed better

than the other two techniques but was still outperformed by SVM. Although

the AUC values from Opcode graph and Simple substitution techniques were

not sufficient to be used for practical malware detection purposes. Table 19

shows the comparison between AUC values for SVM and the underlying tech-

niques for Sesh malware.

6.3.7 Combined results

Here we look at the results from the above sections combined together in

Table 21. A bar graph representing the same scores is shown in Figure 31.

61

Table 20: Comparison of Scores for Sesh Malware

Scoring Technique AUC
Hidden Markov Models 0.994

Opcode Graph Similarity 0.608
Simple Substitution Distance 0.583

Support Vector Machine’s 1

From the graph it is quite clear that SVM produce better results as compared

to the other three techniques when AUC values for each of the techniques are

above 0.7 in general. But if the AUC values from our underlying techniques

deteriorate further, then SVM scores are no better than individual scores.

Table 21: Combined Results

Malware HMM AUC OGS AUC SSD AUC SVM AUC
WinWebSec 1 0.85437 0.93563 1

Zbot 0.9875 0.61938 0.675 1
ZeroAccess 0.97875 0.47531 1 1

Sesh 0.994 0.608 0.583 1
Harebot 1 0.4 0.6125 1

SmartHdd 0.99875 0.94875 0.91156 1

Figure 31: Combined AUC Comparison(Table 21)

62

6.3.8 Morphing results

After having the scores from all the techniques compared against the mali-

cia malware dataset, we wanted to see how the scores compared against each

other for different levels of morphing percentages against each of these malware

families. Tables 22,23,24,25,26,27 show the results for these experiments.

Table 22: Winwebsec

Morphing AUC
Percent HMM OGS SSD SVM

0 1 0.85437 0.93563 1
10 1 0.85937 0.91969 1
30 0.885 0.85438 0.91563 0.978
50 0.84875 0.81813 0.89437 0.938
70 0.82063 0.79062 0.86719 0.905
90 0.73063 0.76187 0.85438 0.905

110 0.72875 0.73312 0.85219 0.93
130 0.71312 0.70563 0.815 0.903
150 0.69063 0.6725 0.75969 0.867

Table 23: Zeroaccess

Morphing AUC
Percent HMM OGS SSD SVM

0 1 0.47531 1 1
10 0.42063 0.43125 1 1
30 0.1325 0.4125 1 1
50 0.11875 0.37 1 1
70 0.115 0.3825 1 1
90 0.12188 0.3775 0.981 1

110 0.13875 0.37125 0.973 0.998
130 0.14625 0.3625 0.969 0.975
150 0.145 0.33125 0.943 0.932

63

Table 24: Zbot

Morphing AUC
Percent HMM OGS SSD SVM

0 0.9875 0.61938 0.675 1
10 0.9725 0.57875 0.77563 0.998
30 0.82875 0.51875 0.87125 0.99
50 0.79437 0.46875 0.85469 0.95
70 0.78375 0.43 0.8525 0.938
90 0.7975 0.4025 0.8275 0.952

110 0.70688 0.365 0.7825 0.905
130 0.69188 0.3375 0.74 0.86
150 0.43938 0.32875 0.68219 0.7

Table 25: Harebot

Morphing AUC
Percent HMM OGS SSD SVM

0 1 0.4 0.6125 1
10 0.78937 0.4075 0.69719 0.972
30 0.59437 0.36875 0.70281 0.872
50 0.515 0.33375 0.68812 0.702
70 0.52687 0.34375 0.72875 0.74
90 0.27125 0.32 0.72469 0.705

110 0.29125 0.30875 0.71188 0.73
130 0.21625 0.305 0.71469 0.822
150 0.22438 0.305 0.66844 0.9

64

Table 26: Security Shield

Morphing AUC
Percent HMM OGS SSD SVM

0 0.994 0.608 0.58313 1
10 0.99375 0.59625 0.58312 1
30 0.77313 0.64625 0.76 0.87
50 0.75188 0.615 0.79375 0.798
70 0.7825 0.5925 0.76531 0.855
90 0.785 0.58375 0.7175 0.892

110 0.78187 0.5625 0.73625 0.865
130 0.72688 0.555 0.71562 0.788
150 0.7275 0.5425 0.68406 0.725

Table 27: Smart HDD

Morphing AUC
Percent HMM OGS SSD SVM

0 0.99875 0.94875 0.91156 1
10 0.9575 0.93125 0.87875 0.985
30 0.89 0.84 0.90844 1
50 0.8425 0.78313 0.88018 0.932
70 0.62062 0.72875 0.85781 0.885
90 0.46312 0.7 0.845 0.745

110 0.40312 0.68062 0.83375 0.778
130 0.39687 0.66875 0.79906 0.855
150 0.37 0.66063 0.74813 0.727

65

CHAPTER 7

Conclusion and Future Work

The aim of this experiment was to design and test a system which could

combine the scores generated by existing detection techniques and produce

better results. The main idea behind it was that if we could combine the

scores generated by different malware detection technique, we could create

a technique which is more robust because it would be looking at different

characteristics of the same files. Such a combined approach could leverage the

relative strengths of each of its components to yield a stronger overall detector.

In our approach, we combined scores from Hidden Markov Model, Opcode

Graph Similarity and Simple Substitution Distance techniques using Support

Vector Machines as a classifier. It was found that Support Vector Machines

was able to detect the given malware files from benign files by combining three

different detection strategies into one.

In previous researches, it has been found that detection by these meth-

ods can be evaded by adding dead code. During our experiments, it was

observed that Hidden Markov Model, Opcode Graph Similarity, Simple Sub-

stitution Distance start misclassifying at 10%, 60% and 80% block morphing

respectively. Whereas we were able to use Support vector machine method to

combine the results from the above three techniques at each morphing level

and were still able to detect malware files from benign files even at 100% block

morphing level. We were able to establish that SVMs produced more robust

results and would only deteriorate in AUC after 100% morphing level, which

was way better in comparison to all the underlying techniques.

66

The approach discussed in this paper can be used for all metamorphic

malware files. During our research we also validated our approach against

differing classes of metamorphic malware. We observed that Support Vector

machine method was able to produce equivalent or better results for most of the

malware families. We also noted that SVM generally tends to perform better

when the AUC values for the underlying detection techniques are greater than

0.8, when AUC values start to decrease below 0.8, the performance of SVM

method deteriorates.

Future work for this experiment can include enhancing our SVM technique

even further. In our experiments we used statistical detection techniques such

as Hidden Markov Model, Opcode Graph Similarity and Simple Substitution

Distance as the underlying types for our method. In order to improve this

method even further, we could incorporate some more detection techniques to

our underlying detection strategies for Support Vector Machine classifier.

Finally, it could be really useful if we had a standard metamorphic mal-

ware dataset, so that we could compare the results of our proposed detection

scheme, based on its performance against this standard data-set.

67

LIST OF REFERENCES

[1] S. Attaluri, S. McGhee, and M. Stamp. Profile hidden Markov models and
metamorphic virus detection. Journal in Computer Virology, Volume 5,
No 2, pp. 151–169. (2009)

[2] T. Austin, E. Filiol, S. Josse, M. Stamp. Exploring Hidden Markov Models
for Virus Analysis: A Semantic Approach. Proceedings of 46th Hawaii
International Conference on System Sciences. (2013)

[3] J. Aycock, Computer Viruses and Malware. Advances in Information Se-
curity, Springer-Verlag, New York. (2006)

[4] A. P. Bradley. The use of the Area Under the ROC Curve in the Evalua-
tion of Machine Learning Algorithms. Journal Pattern Recognition, Vol-
ume 30, Issue 7, pp. 1145–1159. (1997)

[5] N. Cristianini and J. Shawe-Taylor. An Introduction to Support Vector
Machines and other kernel-based learning methods, Cambridge University
Press. (2000)

[6] Cygwin, Cygwin utility files. http://www.cygwin.com/

[7] E. Daoud, I. Jebril. Computer Virus Strategies and Detection Methods.
International Journal of Open Problems in Computer Science and Math-
ematics, Volume 1, Issue 2. (2008)

[8] P. Deshpande, Metamorphic Detection Using Function Call Graph Anal-
ysis, Master’s report, Department of Computer Science, San Jose State
University. http://scholarworks.sjsu.edu/etd_projects/336 (2013)

[9] T. Fawcett. An Introduction to ROC Analysis. http://people.inf.
elte.hu/kiss/13dwhdm/roc.pdf

[10] A. Hii. Chi-squared distance and metamorphic detection, Master’s
report, Department of Computer Science, San Jose State University.
http://scholarworks.sjsu.edu/cgi/viewcontent.cgi?article=
7710&context=etd_theses (2011)

[11] Introduction to Support Vector Machines. http://fourier.eng.hmc.
edu/e161/lectures/svm

68

http://www.cygwin.com/
http://scholarworks.sjsu.edu/etd_projects/336
http://people.inf.elte.hu/kiss/13dwhdm/roc.pdf
http://people.inf.elte.hu/kiss/13dwhdm/roc.pdf
http://scholarworks.sjsu.edu/cgi/viewcontent.cgi?article=7710&context=etd_theses
http://scholarworks.sjsu.edu/cgi/viewcontent.cgi?article=7710&context=etd_theses
http://fourier.eng.hmc.edu/e161/lectures/svm
http://fourier.eng.hmc.edu/e161/lectures/svm

[12] G. Jacob, H. Debar, E. Filiol. Behavioral detection of malware: from a
survey towards an established taxonomy. Journal of Computer Virology,
Volume 4, pp. 251–266. (2008)

[13] T. Jakobsen. A Fast Method for the Cryptanalysis of Substitution Ci-
phers. Cryptologia, Volume 19, pp. 265–274. (1995)

[14] A. Karnik, S. Goswami, and R. Guha, Detecting obfuscated viruses using
cosine similarity analysis. First Asia International Conference on Mod-
elling & Simulation, pp. 165–170. (2007)

[15] D. Lin, M. Stamp. Hunting for Undetectable Metamorphic Viruses. Jour-
nal in Computer Virology, Volume 7, Issue 3, pp. 201–214. (2011)

[16] Malware. http://en.wikipedia.org/wiki/Malware

[17] M. Musale. Hunting for Metamorphic JavaScript Malware, Master’s
report, Department of Computer Science, San Jose State University.
http://scholarworks.sjsu.edu/cgi/viewcontent.cgi?article=
1357&context=etd_projects (2014)

[18] A. Ng, Support Vector Machines. http://cs229.stanford.edu/notes/
cs229-notes3.pdf

[19] OECD, Malicious software (malware): A security threat to the Internet
economy. http://www.oecd.org/dataoecd/53/34/40724457.pdf

[20] M. Patel, Similarity tests for metamorphic virus detection, Master’s re-
port, Department of Computer Science, San Jose State University http:
//www.cs.sjsu.edu/faculty/stamp/students/patel_mahim.pdf
(2011)

[21] S. Priyadarshi. Metamorphic Detection via Emulation, Master’s report,
Department of Computer Science, San Jose State University. http://
scholarworks.sjsu.edu/etd_projects/177 (2011)

[22] B. Rad, M. Masrom, S. Ibrahim. Camouflage in Malware: from Encryp-
tion to Metamorphism. International Journal of Computer Science and
Network Security, Volume 12, Issue 8, pp. 74. (2012)

[23] N. Runwal, R. M. Low, and M. Stamp. Opcode Graph Similarity and
Metamorphic Detection. Journal in Computer Virology, Volume 8, Is-
sue 1–2, pp. 37–52. (2012)

[24] G. Shanmugam, R. Low, M. Stamp. Simple Substitution Distance and
Metamorphic Detection, Journal of Computer Virology and Hacking Tech-
niques, Volume 9, Issue 3, pp. 159–170. (2013)

69

http://en.wikipedia.org/wiki/Malware
http://scholarworks.sjsu.edu/cgi/viewcontent.cgi?article=1357&context=etd_projects
http://scholarworks.sjsu.edu/cgi/viewcontent.cgi?article=1357&context=etd_projects
http://cs229.stanford.edu/notes/cs229-notes3.pdf
http://cs229.stanford.edu/notes/cs229-notes3.pdf
http://www.oecd.org/dataoecd/53/34/40724457.pdf
http://www.cs.sjsu.edu/faculty/stamp/students/patel_mahim.pdf
http://www.cs.sjsu.edu/faculty/stamp/students/patel_mahim.pdf
http://scholarworks.sjsu.edu/etd_projects/177
http://scholarworks.sjsu.edu/etd_projects/177

[25] Snakebyte. Next Generation Virus Construction Kit (NGVCK). http:
//vx.netlux.org/vx.php?id=tn02 (2000)

[26] M. Stamp. A Revealing Introduction to Hidden Markov Models. http:
//www.cs.sjsu.edu/~stamp/RUA/HMM.pdf (2012)

[27] Support Vector Machine (LibSVM). http://docs.rapidminer.com/
studio/operators/modeling/classification_and_regression/svm/
support_vector_machine_libsvm.html

[28] Support Vector Machines (SVM) Introductory Overview. http://www.
statsoft.com/textbook/support-vector-machines

[29] P. Szor. The Art of Computer Virus Research and Defense, Addison-
Wesley Professional. (2005)

[30] A. Tang, S. Sethumadhavan, and S. Stolfo. Unsupervised Anomaly-based
Malware Detection using Hardware Features. http://www.cs.columbia.
edu/~simha/preprint_raid14.pdf

[31] VX Heavens. http://vx.netlux.org/

[32] Walenstein, R. Mathur, M. Chouchane, R. Chouchane, and A. Lakhotia.
The Design Space of Metamorphic Malware. In Proceedings of the 2nd
International Conference on Information Warfare. (2007)

[33] W. Wong and M. Stamp. Hunting for metamorphic engines, Journal in
Computer Virology, Volume 2, No 3, pp. 211–229. (2006)

[34] P. Zbitskiy. Code Mutation Techniques by means of Formal Grammars
and Automatons, Journal in Computer Virology, Volume 5, No 3, pp. 199–
207. (2009)

70

http://vx.netlux.org/vx.php?id=tn02
http://vx.netlux.org/vx.php?id=tn02
http://www.cs.sjsu.edu/~stamp/RUA/HMM.pdf
http://www.cs.sjsu.edu/~stamp/RUA/HMM.pdf
http://docs.rapidminer.com/studio/operators/modeling/classification_and_regression/svm/support_vector_machine_libsvm.html
http://docs.rapidminer.com/studio/operators/modeling/classification_and_regression/svm/support_vector_machine_libsvm.html
http://docs.rapidminer.com/studio/operators/modeling/classification_and_regression/svm/support_vector_machine_libsvm.html
http://www.statsoft.com/textbook/support-vector-machines
http://www.statsoft.com/textbook/support-vector-machines
http://www.cs.columbia.edu/~simha/preprint_raid14.pdf
http://www.cs.columbia.edu/~simha/preprint_raid14.pdf
http://vx.netlux.org/

APPENDIX

ROC Curves

A.1 Hidden Markov Model

Figure A.32: ROC curve for Hare-
bot - HMM

Figure A.33: ROC curve for Sesh -
HMM

Figure A.34: ROC curve for
SmartHDD - HMM

Figure A.35: ROC curve for Win-
WebSec - HMM

71

Figure A.36: ROC curve for Zbot -
HMM

Figure A.37: ROC curve for Ze-
roAccess - HMM

72

A.2 Opcode Graph Similarity Method

Figure A.38: ROC curve for Hare-
bot - OGS

Figure A.39: ROC curve for Sesh -
OGS

Figure A.40: ROC curve for
SmartHDD - OGS

Figure A.41: ROC curve for Win-
WebSec - OGS

Figure A.42: ROC curve for Zbot -
OGS

Figure A.43: ROC curve for Ze-
roAccess - OGS

73

A.3 Simple Substitution Distance Method

Figure A.44: ROC curve for Hare-
bot - SS

Figure A.45: ROC curve for Sesh -
SS

Figure A.46: ROC curve for
SmartHDD - SS

Figure A.47: ROC curve for Win-
WebSec - SS

Figure A.48: ROC curve for Zbot -
SS

Figure A.49: ROC curve for Ze-
roAccess - SS

74

A.4 Support Vector Machine Method

Figure A.50: ROC curve for Hare-
bot - SVM

Figure A.51: ROC curve for Sesh -
SVM

Figure A.52: ROC curve for
SmartHDD - SVM

Figure A.53: ROC curve for Win-
WebSec - SVM

Figure A.54: ROC curve for Zbot -
SVM

Figure A.55: ROC curve for
ZeroAccess- SVM

75

	San Jose State University
	SJSU ScholarWorks
	Spring 5-26-2015

	Support Vector Machines and Metamorphic Malware Detection
	Tanuvir Singh
	Recommended Citation

	Introduction
	Background
	Types of Malware
	Trojans
	Worms
	Viruses
	Encrypted viruses
	Polymorphic viruses
	Metamorphic viruses

	Detection Techniques
	Signature Based Detection
	Behavior Based Detection
	Anomaly Based Detection
	Statistical Malware Detection
	Hidden Markov Model Based Detection

	Similarity Based Detection
	Opcode Graph Based Detection
	Simple Substitution Based Detection

	Statistical and Similarity based Malware Detection
	Hidden Markov Model Method
	Hidden Markov Model
	Implementation

	Opcode Graph Similarity
	Implementation

	Simple Substitution Distance
	Jakobsen Algorithm
	Implementation

	Support Vector Machines
	Introduction
	SVM Example
	Kernel Mapping
	Linear separation of a feature space
	The learning problem
	Definition

	Implementation
	Design
	Algorithm

	Experiments
	Receiver Operating Characteristics
	Hidden Markov Model Method
	Opcode Graph Similarity
	Simple Substitution Distance
	Support Vector Machine

	Results
	Attacks on Detection Techniques
	Morphing Techniques

	Results for Morphed Malware
	Hidden Markov Model Method
	Opcode Graph Similarity Method
	Simple Substitution Distance Method
	Combining Scores using SVM
	SVM Kernel functions comparison

	SVM vs Individual Techniques
	ZeroAccess Malware
	Zbot Malware
	WinWebSec Malware
	SmartHDD Malware
	Harebot Malware
	Sesh Malware
	Combined results
	Morphing results

	Conclusion and Future Work
	ROC Curves
	Hidden Markov Model
	Opcode Graph Similarity Method
	Simple Substitution Distance Method
	Support Vector Machine Method

