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ABSTRACT

Clustering versus SVM for Malware Detection

by Usha Narra

Previous work has shown that we can effectively cluster certain classes of mal-

ware into their respective families. In this research, we extend this previous work to

the problem of developing an automated malware detection system. We first compute

clusters for a collection of malware families. Then we analyze the effectiveness of clas-

sifying new samples based on these existing clusters. We compare results obtained

using 𝑘-means and Expectation Maximization (EM) clustering to those obtained us-

ing Support Vector Machines (SVM). Using clustering, we are able to detect some

malware families with an accuracy comparable to that of SVMs. One advantage of

the clustering approach is that there is no need to retrain for new malware families.
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CHAPTER 1

Introduction

Malware is a piece of software that runs unauthorized tasks without the consent

of the user. The tasks performed by malware intend to do harm to the user by gaining

access to their sensitive information stored on the system or by tricking the user to

provide their personal and/or financial information. To protect the user, system and

any critical information stored on it, malware has to be identified and eliminated from

the system. Malware is a broad term that encompasses various types of computer

viruses, worms, trojan horses, spyware, adware etc. A more detailed view on different

kinds of malware is presented in Chapter 2.

Stuxnet is an advanced form of malware (worm) that is known worldwide for its

attack on industrial control systems. The distinguishing feature that makes Stuxnet

stand out from other worms is its access control over physical systems [45]. Stuxnet

came to light in the year 2010, June. It was programmed to infect the industrial

programmable logic controllers (PLC’s), targeting Iran’s nuclear facilities. Stuxnet

exploits vulnerabilities in industrial control systems and spreads through removable

USB drives. A component of Stuxnet (rootkit) hid all the background activity on the

system.

Koobface is a type of malware that is platform independent and spreads through

social networking sites. It wouldn’t be an exaggeration to say that every person

who has access to internet uses social networking sites these days. Koobface takes

advantage of this fact and targets the users on social networking sites such as Skype,

Facebook, Twitter and mailing services like GMail and Yahoo Mail! Koobface is not a
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single module of code, it contains several units each performing its respective task. All

the units coordinate with each other to form the Koobface worm. The worm resides

in the spam of these websites and the users who encounters it get infected. From

the infected system, the Koobface collects the user’s login details and also other user

profile information from any social networking sites accessed from that system. One

important unit that works to the advantage of Koobface is its rouge DNS (Domain

Name System) changer unit which prevents the user form accessing anti-virus software

or security websites [44].

It is clear from the above information that malware is a serious threat in this

digital era. According to [43], malware or harmful programs are adapting to the

increasing use of anti-virus software at a fast rate and are growing more powerful,

posing danger to the community at large. Some malware stay dormant for a long time

and are capable of spreading rapidly across the network when they encounter loopholes

in the security of the system. Anti-virus software is the most widely used defense

mechanism against malware, but are not capable of detecting advanced malware.

Most anti-virus software use signature based detection which identifies a malware

by its signature. The drawback of this technique is it cannot identify obfuscated or

new class of malware that does not match the list of known signatures. By the time

security experts identify the new malware and trace out its signature, the malware

would have enough time to carryout its actions. There are several other techniques

used to detect malware which are discussed in Chapter 2. Inspite of all the existing

techniques, there is no classification model that can differentiate the new malware

and fit it into the existing models. More research and experiments are needed in

the area of detection of malware to develop a technique which can effectively combat

evolving malware.
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In this paper, we apply Hidden Markov Models (HMM) and clustering techniques

to the problem of classifying new/unknown malware. The combination of HMM and

clustering techniques is inspired from previous research in malware classification [2, 3].

The basic idea of this paper is to train the HMMs [47] for different malware fami-

lies. These trained models are then used to score malware samples. Based on these

scores, the malware samples are grouped into clusters using Expectation Maximiza-

tion (EM) [9] and 𝑘-means clustering algorithms [1]. Analysis of the resulting clusters

indicate that HMM-based clustering can be an effective tool for classifying new/pre-

viously unknown malware. We compare the results of both the clustering techniques

to see which one does a better job in classifying different malware families. We also

classify the same malware samples using Support Vector Machines (SVM) to see how

well clustering performs as compared to SVM.

This paper is organized as follows: Chapter 2 defines various kinds of malware

and describes some of the existing malware detection techniques and concealment

strategies adopted by malware writers. Chapter 3 provides insight into previous work

done on malware classification. Chapter 4 provides details about Clustering (espe-

cially EM clustering) and SVM, while Chapter 5 discusses our implementation and

experimental setup for clustering and SVM in more detail. In Chapter 6 experimental

results are presented and analyzed. Finally, Chapter 7 contains our conclusion and

suggestions for future work.
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CHAPTER 2

Malware Detection and Concealment Strategies

2.1 Malware

Malware is a computer program that performs malicious actions [46]. Unlike

a bad piece of software which may not provide the intended functionality due to

accidental bugs in the code, malware is written to cause harm.

As mentioned in Chapter 1, malware is used to refer computer infections such as

worms, viruses, spyware, trojan horses, adware etc. A short description of the various

types of malware is as follows:

2.1.1 Virus

Majority of the known malware today are viruses. A computer virus is a self-

replicating program that links itself to other executables to spread the infection. This

implies that the infected program is capable of spreading the infection to the other

executable programs [21]. Virus may conceal itself anywhere in the system such as

the executable files, data files, hidden folders or even in the boot sector. A virus

that resides in the boot-sector of the hard drive is known as boot-sector virus and

it becomes active at the start-up of the system [7]. Thus it makes itself immune to

any anti-virus software that starts with the booting of the system or even before any

security at the operating system level is enabled. As it is one of the first programs

to run during the boot process, it can even block anti-virus software from executing

on the system. Some of the historic examples of computer viruses are Brain, Lehigh,

MBDF, Pathogen, Melissa [34].
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2.1.2 Worm

Worms are similar to the viruses as they create copies of themselves except

that worms do not require a host file. Thus they differ from viruses which require

an infected host file for spreading [40]. According to [4], worms are independent

programs and they do not depend on other host files. A worm usually spreads on a

network compromising the systems on its way in the network. Some of the examples

of famous worms are Morris, Ramen, Lion, Adore, Code Red, Nimda [30].

2.1.3 Trojan Horse

A Trojan horse is a malware which pretends to do some legitimate task, but

secretly performs malicious tasks [4]. Trojan horse differs from virus as it does not

spread itself [40]. They camouflage as harmless programs or files that the end users

might mistake for authentic programs and use them [37]. But when the user runs

the programs assuming them to be known software, the trojans perform undesired

activities in the background. Some of the notable trojan horses are Netbus, Subseven,

Back Orifice [30].

2.1.4 Spyware

Spyware is a form of malware when installed in a system steals the user’s creden-

tials from the system of which the user is unaware of [25]. Spyware generally conceals

itself and collects data related to keystrokes, browsing patterns, credit card details,

personal information etc. At times the activities of the spyware can get far beyond

normal monitoring and carries out activities such as installing additional software,

reducing connection speeds, redirecting web browser searches, changing computer

settings etc [25]. Unlike viruses and worms, spyware do not usually make copies of
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themselves. Some of the examples of spyware are CoolWebSearch, HuntBar, Weath-

erStudio, Zango, Zlob [23].

2.2 Detection Techniques

Most anti-virus software in use today depend on static detection techniques.

Static analysis extracts interesting features from file without executing the file and

studies them whereas dynamic analysis extracts the actual behavior of the file by

running it in a sandbox. In this section we look at some of the static malware

detection techniques, for example, signature detection, change detection, anomaly

detection and HMM based detection.

2.2.1 Signature Detection

Amongst static detection techniques, signature detection is the most popular

one. Signature detection depends on discovering a series of bits (signature) which

uniquely identifies a particular malware [31]. That is, the anti-virus scanner scans all

the files in the system looking for some specific signatures. The anti-virus software

saves all the signatures of known malware in a database and frequently updates this

database to include any new signatures. When the scanner finds a match within the

list of known malware signatures in its database, the file will be marked as malware.

Signature detection works on known malware whose signature is already in the

database. The major disadvantage of this approach is it cannot detect new (previously

unknown) or even obfuscated malware. Also, another important factor to consider

in signature detection is the signature database. The efficiency of this technique

entirely depends on the quality of the database. To have an effective detection rate,

the database must be regularly updated [31].
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2.2.2 Change Detection

When a file is infected by malware, the contents of the file are changed. Change

detection monitors the files looking for any unapproved changes [4]. The basic idea

behind this technique is to calculate the hash values of all the files on the system

and save them in a file. From time to time we re-calculate the hashes of all files and

compare them with the actual hash values saved in the file. Any mismatch in hash

values indicates that the file has been modified, which indicates that the file might

have be infected with malware. That is, change detection checks the integrity of the

files on the system periodically and reports red flags.

One advantage with change detection is that any changes to a file can be detected

without fail which guarantees that this technique could atleast detect if not classify

new malware. But the real problem with change detection is that files on a system

change regularly and this may prompt numerous false positives thereby reducing the

efficiency of detection [31].

2.2.3 Anomaly Detection

Anomaly-based detection is based on the organization of file contents [13]. The

structural details of a file can be considered as its attributes. These attributes are

extracted and provided to a machine learning algorithm that is trained to classify

ordinary from anomalous file structures. But there is no set definition for normal

and unusual structure of programs. This poses a fundamental challenge to anomaly

detection, defining what is normal and what is unusual. Depending on how we train

the learning model and the definitions we give for normal and unusual behavior, there

may be numerous false positives and false negatives.

In an anomaly-based detection technique mentioned in [16], the author developed
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a malware detector model which can classify the files on the system into different

categories based on the structural organization of the files. Any new file that needs

to be categorized is given to the detector model. If the file looks similar to the model,

it is marked as benign otherwise as malware. When a file is marked as malware it is

further reviewed to determine whether it is actually malicious or just a false positive.

Since anomaly detection alone might give numerous false positives, it is often

combined with other techniques such as signature-based detection for further screen-

ing [31].

2.2.4 HMM Based Detection

Some of the previous research [2, 47] prove that HMM can be an effective tool for

malware detection. Apart from malware detection, HMMs are also used for speech

recognition [27], gene prediction, human activity recognition [26], etc. In the following

sections we give a brief overview of HMM and how it is used for malware detection.

2.2.4.1 Introduction to HMM

In general, a Markov process is a statistical model in which the internal states

and state transitions are transparent to the user. A HMM can be considered as a

special case of Markov model as the states in HMM are not visible to the user (hid-

den), consequently the name ‘Hidden’ Markov Model. Table 1 provides the standard

notation used for HMM.

The three matrices 𝐴,𝐵 and 𝜋 together represent the HMM. These three matrices

are row stochastic in nature. A matrix is said to be row stochastic if the sum of all the

elements in a row is equal to 1. So, an HMM can be written in terms of these matrices

as 𝜆 = (𝐴,𝐵, 𝜋). Figure 1 illustrates a generic view of Hidden Markov Model.
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Table 1: HMM Notation

Notation Description
𝑇 Length of observation sequence
𝑁 Number of hidden states in the model
𝑀 Number of distinct observation symbols
𝑄 Distinct states of the Markov process
𝑉 Set of possible observations
𝐴 State transition probability matrix, 𝑁 ×𝑁
𝐵 Observation probability matrix, 𝑁 ×𝑀
𝜋 Initial state distribution matrix, 1×𝑁
𝒪 Observation sequence

𝒪0 𝒪1 𝒪2 · · · 𝒪𝑇−1

𝑋0 𝑋1 𝑋2 · · · 𝑋𝑇−1
𝐴 𝐴 𝐴 𝐴

𝐵 𝐵 𝐵 𝐵

Figure 1: Generic View of HMM

We can solve three problems using HMM. The three problems and algorithms to

solve these problems [32] are as follows:

Problem 1:

Given a model 𝜆 = (𝐴,𝐵, 𝜋) and an observation sequence 𝒪, we want to find

the probability 𝑃 (𝒪|𝜆).

Problem 2:

Given a model 𝜆 = (𝐴,𝐵, 𝜋) and an observation sequence 𝒪, we want to find

the most likely hidden state sequence of the model.
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Problem 3:

Given a scenario where the observation sequence 𝒪 and dimensions 𝑁 and 𝑀

are known, the model 𝜆 which increases the probability of 𝒪 need to be found.

For the research presented in this paper, HMM models are trained to represent

different compilers and malware families. This is similar to problem 3 mentioned

above. A large collection of malware and benign samples are scored using these

HMM models. Again, this is similar to problem 1 mentioned above. So, in this

paper we are going to use the HMM algorithms that solve the Problems 1 and 3.

Now, we discuss these HMM algorithms (forward algorithm, backward algorithm and

Baum-Welch algorithm) to solve these problems in detail.

Solution to Problem 1:

Our aim in problem 1 is to find the probability of an observation sequence,

𝑃 (𝒪|𝜆) with respect to 𝜆 = (𝐴,𝐵, 𝜋). To find the 𝑃 (𝒪|𝜆) we use the forward

algorithm or 𝛼-pass. For 𝑡 = 0, 1, . . . , 𝑇 − 1 and 𝑖 = 0, 1, . . . , 𝑁 − 1, we define

𝛼𝑡(𝑖) = 𝑃 (𝒪0,𝒪1, . . . ,𝒪𝑡, 𝑥𝑡 = 𝑞𝑖|𝜆). (1)

where 𝛼𝑡(𝑖) corresponds to the probability of the partial observation sequence until

time 𝑡, when the Markov process is in state 𝑞𝑖 at time 𝑡.

The forward algorithm can be computed recursively as follows:

1. Let 𝛼0(𝑖) = 𝜋𝑖𝑏𝑖(𝒪0), for 𝑖 = 0, 1, . . . , 𝑁 − 1

2. For 𝑡 = 1, 2, . . . , 𝑇 − 1 and 𝑖 = 0, 1, . . . , 𝑁 − 1, compute

𝛼𝑡(𝑖) =

[︂𝑁−1∑︁
𝑗=0

𝛼𝑡−1(𝑗)𝑎𝑗𝑖

]︂
𝑏𝑖(𝒪𝑡)
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3. From Equation (1), the desired probability is given by

𝑃 (𝒪|𝜆) =
𝑁−1∑︁
𝑖=0

𝛼𝑇−1(𝑖)

Solution to Problem 2:

Our aim in problem 2 is to find the most likely state sequence. In order to

do that, we use the backward algorithm or 𝛽-pass. This is similar to the forward

algorithm, except as the name suggests it starts at the end and finds its way to the

beginning. For 𝑡 = 0, 1, . . . , 𝑇 − 1 and 𝑖 = 0, 1, . . . , 𝑁 − 1, we define

𝛽𝑡(𝑖) = 𝑃 (𝒪𝑡+1,𝒪𝑡+2, . . . ,𝒪𝑇−1|𝑥𝑡 = 𝑞𝑖, 𝜆).

The backward algorithm can be computed recursively as follows:

1. Let 𝛽𝑇−1(𝑖) = 1, for 𝑖 = 0, 1, . . . , 𝑁 − 1

2. For 𝑡 = 𝑇 − 2, 𝑇 − 3, . . . , 0 and 𝑖 = 0, 1, . . . , 𝑁 − 1, compute

𝛽𝑡(𝑖) =
𝑁−1∑︁
𝑗=0

𝑎𝑖𝑗𝑏𝑗(𝒪𝑡+1)𝛽𝑡+1(𝑗)

For 𝑡 = 0, 1, . . . , 𝑇 − 2 and 𝑖 = 0, 1, . . . , 𝑁 − 1 we define,

𝛾𝑡(𝑖) = 𝑃 (𝑥𝑡 = 𝑞𝑖|𝒪, 𝜆),

Since 𝛼𝑡(𝑖) measures the relevant probability until time 𝑡 and 𝛽𝑡(𝑖) measures

the probability after time 𝑡, we can write 𝛾𝑡(𝑖) as follows

𝛾𝑡(𝑖) =
𝛼𝑡(𝑖)𝛽𝑡(𝑖)

𝑃 (𝒪|𝜆)
(2)

Solution to Problem 3:

11



Our aim in problem 3 is to train a model that best fits the observations. One

of the interesting aspects of HMM is its ability to re-estimate the model itself. We

already know the size of the matrices 𝐴,𝐵 and 𝜋, we just need to find the elements

of these matrices. In order to find these elements, we use the Baum-Welch algorithm.

Initially we define “di-gammas” as,

𝛾𝑡(𝑖, 𝑗) = 𝑃 (𝑥𝑡 = 𝑞𝑖, 𝑥𝑡+1 = 𝑞𝑗|𝒪, 𝜆)

for 𝑡 = 0, 1, . . . , 𝑇 − 2 and 𝑖 = 0, 1, . . . , 𝑁 − 1.

Where 𝛾𝑡(𝑖, 𝑗) is the probability of being in state 𝑞𝑖 at time 𝑡 and going to state

𝑞𝑗 at time 𝑡+ 1. Writing the di-gammas in terms of 𝛼, 𝛽,𝐴 and 𝐵 gives,

𝛾𝑡(𝑖, 𝑗) =
𝛼𝑡(𝑖)𝑎𝑖𝑗𝑏𝑗(𝒪𝑡+1)𝛽𝑡+1(𝑗)

𝑃 (𝒪|𝜆)
(3)

Equations (2) and (3) are related as follows:

𝛾𝑡(𝑖) =
𝑁−1∑︁
𝑗=0

𝛾𝑡(𝑖, 𝑗)

Re-estimating the model is an iterative process. The process starts by initializing

the model, 𝜆 = (𝐴,𝐵, 𝜋) with random values such that 𝜋𝑖 ≈ 1/𝑁 and 𝑎𝑖𝑗 ≈ 1/𝑁 and

𝑏𝑗(𝑘) ≈ 1/𝑀. Note that the values of 𝐴,𝐵, 𝜋 are random. This is important to note

because if we initialize the matrices with exactly uniform values, the model might get

stuck in a local maximum. The iterative process can be summarized as follows:

1. Initialize, 𝜆 = (𝐴,𝐵, 𝜋).

2. Compute 𝛼𝑡(𝑖), 𝛽𝑡(𝑖), 𝛾𝑡(𝑖, 𝑗) and 𝛾𝑡(𝑖).

3. Re-estimate the model 𝜆 = (𝐴,𝐵, 𝜋) as follows:
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For 𝑖 = 0, 1, . . . , 𝑁 − 1, let

𝜋𝑖 = 𝛾0(𝑖)

For 𝑖 = 0, 1, . . . , 𝑁 − 1 and 𝑗 = 0, 1, . . . , 𝑁 − 1, compute

𝑎𝑖𝑗 =
𝑇−2∑︁
𝑡=0

𝛾𝑡(𝑖, 𝑗)

⧸︂𝑇−2∑︁
𝑡=0

𝛾𝑡(𝑖)

For 𝑗 = 0, 1, . . . , 𝑁 − 1 and 𝑘 = 0, 1, . . . ,𝑀 − 1, compute

𝑏𝑗(𝑘) =
∑︁

𝑡𝜖(0,1,...,𝑇−2),𝒪𝑡=𝑘

𝛾𝑡(𝑗)

⧸︂𝑇−2∑︁
𝑡=0

𝛾𝑡(𝑗)

4. If 𝑃 (𝒪|𝜆) increases, go to 2.

2.2.4.2 HMM for Malware Detection

A trained HMM model can be used to classify malware from benign samples.

There is a lot of previous work done on using HMM for malware detection. According

to [47], we can ‘train’ an HMM on a set of files such that the trained model represents

a particular family (either malware or benign on which it has been trained). Now,

given a new observation sequence which is not a part of training data, we can score the

sequence using the trained HMM. The model will output a high score if the sequence

is similar to the training data and output a low score otherwise. In an ideal case, the

model should output a score of 1 for a sequence on which it has been trained.

Previous research [2, 15] has shown that HMMs trained on opcode sequences

and/or function call-graphs can effectively classify different families of malware.

2.3 Concealment Strategies

With more and more malware detection software coming into light, malware

writers are using many concealment strategies to prevent their malware from being
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detected by regular malware detection techniques. Some of the concealment strategies

are discussed below:

2.3.1 Encrypted Virus

As mentioned in Section 2.2.1, signature detection is the most commonly used

malware detection technique. One basic approach used even by novice malware writ-

ers to evade signature detection is encryption [5]. The major advantage of encrypted

virus is it does not need strong cryptographic encryption techniques. A simple en-

cryption such as XOR operation on the malware file completely changes the signature

of the malware. But the set back is an encrypted virus cannot execute directly be-

cause the instructions are encrypted and cannot be read by the system. In order to

execute the malware, it first needs to be decrypted. So encrypted virus comes as a

package containing decryption code and actual encrypted malicious code known as

the virus body [28]. So when the malware is executed, the decryption code executes

the virus body by decrypting it and provides control to the virus body. The virus

now performs its malicious activity.

Encryption seems to be an easy technique to avoid signature detection. But this

simple technique comes with a drawback. Instead of trying to find the signature of

the virus body, signature detection system can try to find the signature of decryption

code which if found could indicate the presence of malware.

2.3.2 Polymorphic Virus

Polymorphic virus is an improvement over encrypted virus. It is built on the

same idea as encrypted virus but with additional features to overcome the drawbacks

of encryption. The new feature in polymorphic virus is its ability to create a new
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decryption code with every infection [28]. As a result, the decryption code looks

different across different infections of the same virus. So a single signature of the

decryption code cannot detect different generations of the same virus. Even though

polymorphic virus can evade signature detection, it can be caught when run in an

emulated environment [5].

2.3.3 Metamorphic Virus

Metamorphic virus is built on top of polymorphic malware. Instead of just chang-

ing the decryption code with every infection, metamorphic virus changes entire virus

body still keeping the virus functionality unchanged. Peter Szor quoted in [41], the

shortest definition of metamorphic virus defined by Igor Muttik is “Metamorphics are

body-polymorphics”. Every single conceivable strategy appropriate for polymorphic

virus to create new decryptor can be utilized by a metamorphic virus to create a new

virus body to make another copy of virus [28]. As a result, different generations of

metamorphic virus look completely different yet have the same malicious intent.
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CHAPTER 3

Related Work

Automatic malware classification is a challenging task and a lot of previous work

has been done in this area. Some of the previous research techniques include behav-

ioral analysis, compression based analysis etc. One of the recent research papers [2]

which inspired the current paper uses clustering techniques to detect malware. In

this chapter we discuss some of the previous work done which includes both static

and dynamic detection techniques.

3.1 MEDiC

Malware Examiner using Disassembled Code (MEDiC) is a static malware de-

tection technique. The underlying logic for MEDiC is an extension of signature-based

malware detection. Instead of using the standard signature database, MEDiC cre-

ates its own database by extracting necessary features from assembly code. This

technique is developed with the intent of detecting obfuscated and mutated malware

which cannot be identified by regular signature detection [35]. As the name suggests,

the first step in MEDiC is to disassemble the executable file using a disassembler.

A disassembler converts machine code into assembly instructions. MEDiC then ex-

tracts appropriate subroutines from the assembly code. A subroutine in assembly

code consists of a label and instructions associated with it. Since there will be many

labels in the assembly code, each subroutine is treated as a checkpoint. Each label

and instruction set combination is stored as key-value pairs where label is the key

and instructions associated with that label is the value. These key-value pairs are

analogous to the signature database. Based on the average length of the subroutine, a
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dictionary threshold is determined. This whole process can be considered as building

the MEDiC model.

In order to test the MEDiC model, the test file is first disassembled to get the

assembly code. Then, the assembly code is parsed to extract the sequence of key-value

pairs. The length of each key-value pair is compared with the dictionary threshold

value. If the length exceeds the threshold, the key-value pair is counted towards

the number of matches and the number of subroutines count towards the number of

checks. This process is called MEDiC signature matching. Based on the result of

signature matching, the detection algorithm calculates the virus threshold. The virus

threshold is calculated as,

virus threshold =
number of matches
number of checks

The test file undergoes multiple levels of scanning before it is classified as malicious

or benign. The main reason behind multiple scanning is to reduce the number of

false positives. In the first level of scanning, the checkpoints extracted from the

test file are matched against the signature database. If more checkpoints match

the signature database than the virus threshold the file is marked as malicious. If

the file passes this level, it enters second level of scanning where the key names are

excluded in the matching process. This second level of scanning is trying to match

similar instruction sets with different labels. In the third level the raw assembly code

instructions are matched against the signature database. We can observe that with

each level, the scanning becomes more generalized. Since MEDiC uses disassembled

code, the authors in [35] claim that this model can detect malware on any operating

system.
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3.2 Behavior Based Malware Detection

Behavior-based malware detection as the name suggests extracts the dynamic

behavior of the files and studies this behavior to detect malware. Dynamic behavior

of a file can be extracted by executing the file in an emulated (sandbox) environment.

The emulated environment allows the user to see step by step execution of the pro-

gram. Many emulators provide a convenient user interface where the user can specify

which characteristics of the file to identify and report. The research methodology

in [11] combines the features extracted from dynamic analysis with machine learning

(classification) techniques for effective and efficient malware detection.

As with all the malware detection techniques, this technique also has training

and testing phases. In the training phase, data samples (both malware and benign)

are collected and monitored for behavioral patterns. This is done by passing each

file through an automatic dynamic analysis tool which executes the file in an emu-

lated environment. As mentioned above, the emulator generates a behavioral report

of the input file. These report files are preprocessed for feature selection. Feature

selection is the process of selecting only the crucial and applicable characteristics for

further processing. These selected features from each file are stored as vectors. Ma-

chine learning techniques are applied on these vector models for further learning and

classification. The research in [11] compares five different machine learning classifiers

namely 𝑘-Nearest Neighbor, Naïve Bayes, Support Vector Machine, J48 decision tree

and Multilayer Perceptron (MLP) neural network of which J48 gives better perfor-

mance results.
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3.3 Compression Based Malware Detection

Several machine learning techniques are in use for the purpose of identifying un-

known malware. Since machine learning techniques are supervised algorithms, they

require labeled and organized input data. Despite the fact that machine learning

techniques provide promising results, the limiting factor with these techniques is the

requirement of labeled input. However the raw data from the executable files is

not structured. So we cannot directly apply machine learning algorithms on raw

executable files. The data from the files must be preprocessed and converted into

desirable format for the algorithm. Preprocessing generally involves feature selection

and extraction, labelling the extracted features, etc. Such preprocessing might intro-

duce errors into the data and may not use all the available data for learning. The

research methodology in [48] proposes a new malware detection technique that does

not require any preprocessing, thereby working on raw executables.

Compression is the process of reducing the size of a file. This is achieved by re-

moving redundancy in a file. The basic logic behind compression is to assign a unique

symbol to each string and replace all the occurrences of the string with its correspond-

ing symbol thereby reducing the size of the file considerably. The research in [48] uses

an adaptive data compression model namely prediction by partial matching (PPM).

The detection mechanism in this paper [48] builds two compression models using

the PPM algorithm. One of the compression models represent malware class and

the other represents benign class. Each file that needs to be classified, is encoded

(compressed) using the two compression models. Whichever model yields the best

compression output in terms of compression ratio determines the classification of the

file. The preliminary results shown in [48] are promising.
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3.4 HMM for Malware Classification

The current research is inspired from the work in [2]. As discussed in Chapter 2,

HMM can be used for malware detection. The research in [2] combines HMM and

𝑘-means clustering to come up with a malware classification model to classify over

8000 malware samples. Initially several HMM models are trained on a variety of

compilers and malware generators (GCC, MinGW, TurboC, Clang, TASM, NGVCK

and MWOR). Each malware file is scored against all the trained HMM models. As

a result, each of the malware sample is represented by a 7-tuple score. These 7-tuple

scores are provided to the 𝑘-means clustering algorithm.

In 𝑘-means clustering, a dataset of 𝑛 samples is partitioned into 𝑘 clusters such

that each data point belongs to one and only one cluster which has the nearest

centroid. The 𝑘-means algorithm involves the following steps:

1. Specify the number of clusters 𝑘.

2. Choose initial centroids. The initial centroid estimate can be chosen either at

random or uniformly across the dataset.

3. We then associate each data point to the nearest centroid (squared euclidean

distance measure is used to compute the distance from each data point to all

the centroids).

4. Re-compute the cluster centroids based on current clustering of data points.

5. If there is a significant change in centroids, re-associate the data points to the

nearest centroid.

6. The process is repeated until there is no significant change in centroid positions.
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Once the samples are clustered, Receiver Operating Characteristics (ROC) curves

are plotted to find the accuracy of cluster formations. The clustering algorithm is

performed for varied values of 𝑘 (from 2 to 15) and the results in [2] show that by

using 𝑘-means clustering on HMM scores, the malware samples can be classified into

clusters of appropriate families with good accuracy. But the major drawback of 𝑘-

means algorithm is that the algorithm does not consider the underlying distribution

of the data and the cluster formations depend heavily on the initial choice of the

centroids.

To overcome this drawback of 𝑘-means algorithm, we use EM clustering in this

project. More details about EM algorithm are given in the next chapter.
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CHAPTER 4

Clustering and SVM

4.1 Clustering

Clustering is the process of grouping objects together such that related objects

fall in same group. Clustering is a common technique used in statistical data anal-

ysis, data mining, pattern recognition, etc. This section will briefly discuss various

categories of clustering algorithms and then look at EM clustering in detail.

4.1.1 Clustering Techniques

∙ Intrinsic vs Extrinsic: Intrinsic clustering is an unsupervised learning method

and hence is directly applied to the data. In unsupervised learning, we do

not have class labels for the data [33]. On the other hand, extrinsic clustering

is a supervised learning method. In supervised learning, prior to running the

algorithm, data is preprocessed to assign class labels such that each data point

belongs to one of the classification classes [33].

∙ Agglomerative vs Divisive: In agglomerative clustering each data point is con-

sidered a cluster in itself [33]. As the algorithm proceeds, the nearest data

points merge together forming fewer large clusters. This process continues until

all the clusters are merged into a single cluster. Since the algorithm starts with

multiple small clusters and works its way up to a single large cluster, it is known

as “bottom-up” approach. In contrast, divisive clustering starts with a single

cluster consisting of all data points [42] and as the algorithm proceeds, the large

cluster is split into multiple mini sized clusters. Hence, divisive clustering can

be viewed as a “top-down” approach [33].
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∙ Hierarchical vs Partitional: Hierarchical clustering is in a way related to divi-

sive clustering except for the hierarchical relationship. That is in hierarchical

clustering, when a large cluster is split into few small clusters, the large and the

small clusters are bound by a parent-child relation respectively. The hierarchi-

cal relationship between the clusters can be pictorially represented in the form

of a dendrogram [33]. On the other hand, clusters in partitional algorithm do

not share any relationship. That is, the data is divided into mutually exclusive

clusters such that each data point precisely belongs to one cluster [42].

4.1.2 Expectation Maximization (EM) Clustering

EM clustering is an unsupervised clustering technique. This technique uses gaus-

sian mixture models to find the maximum likelihood estimates of the parameters in

the data. Unlike 𝑘-means clustering, which uses distance measures to classify the data

points into different clusters, EM clustering uses existing probability distributions of

the data. That is, instead of assigning a data point exclusively to a single cluster, EM

clustering calculates the probability with which a data point belongs to each cluster.

The data points are then assigned to the cluster with highest probability. Thus, EM

clustering can be viewed as soft clustering technique. As the name suggests, the EM

algorithm has two steps, namely E-step and M-step. The algorithm iterates between

these two steps to find the maximum likelihood of the parameters of the data [6, 33].

The algorithm continues until the parameters converge or the maximum number of

iterations is reached. The steps of the EM algorithm are as follows:

∙ Initialize the parameters 𝜃 and 𝜏 , where

𝜃𝑖 denotes relevant parameters of distribution 𝑖

𝜏𝑖 denotes the ratio of times that we sample from the distribution 𝑖.
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∙ E-Step: Using Bayes’ formula, compute the probability of a data point belong-

ing to a particular cluster

𝑝𝑗,𝑖 = 𝜏𝑗𝑓(𝑥𝑖, 𝜃𝑗)

⧸︂ 𝐾∑︁
𝑗=1

𝜏𝑗𝑓(𝑥𝑖, 𝜃𝑗)

Where,

𝑗 = 1, 2, . . . , 𝐾 (number of clusters)

𝑖 = 1, 2, . . . , 𝑛 (number of data points)

𝑓 is the probability density function

𝑝𝑗,𝑖 is the probability of 𝑥𝑖 under distribution 𝑗

We know that the sum of probabilities of a data point belonging to all the

clusters is 1. This is mathematically represented as,
𝐾∑︁
𝑗=1

𝑝𝑗,𝑖 = 1, (4)

for a particular 𝑖.

∙ M-Step: Re-estimate the parameters 𝜃 and 𝜏

𝜏𝑗 =
𝑛∑︁

𝑖=1

𝑝𝑗,𝑖

⧸︂ 𝐾∑︁
𝑗=1

𝑛∑︁
𝑖=1

𝑝𝑗,𝑖

By using (4), the above equation can be simplified as

𝜏𝑗 =
1

𝑛

𝑛∑︁
𝑖=1

𝑝𝑗,𝑖

The estimates for means and variances are given as follows:

𝜇𝑗 =
𝑛∑︁

𝑖=1

𝑝𝑗,𝑖𝑥𝑖

⧸︂ 𝑛∑︁
𝑖=1

𝑝𝑗,𝑖

𝜎2
𝑗 =

𝑛∑︁
𝑖=1

𝑝𝑗,𝑖(𝑥𝑖 − 𝜇𝑗)
2

⧸︂ 𝑛∑︁
𝑖=1

𝑝𝑗,𝑖
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The parameters 𝜃𝑗 will be some function of 𝜇𝑗 and 𝜎𝑗 depending on the proba-

bility distribution function.

∙ Iterate between the E-step and M-step until the parameters 𝜃 and 𝜏 converge.

Once the model is converged, each data point is assigned to a cluster for which it has

the highest probability. This results in each data point belonging to one cluster. Or,

we could allow for soft assignment, where each data point belongs to multiple clusters

with relative probability. More implementation specific details of EM clustering are

given in chapter 5.

4.1.3 Cluster Validation

Different clustering algorithms can form different clusters with the same data.

To compare different clustering algorithms or to quantify how well a particular algo-

rithm clusters the data, we should be able to measure individual cluster quality. In

this section we will discuss some measures of cluster quality. There are two general

approaches to cluster validation, namely, external and internal. We discuss these two

approaches in detail in the coming sections.

Let 𝑥1, 𝑥2, . . . , 𝑥𝑚 denote the data points and 𝐶1, 𝐶2, . . . , 𝐶𝐾 denote the clusters.

Let 𝑚𝑗 be the total count of objects in cluster 𝐶𝑗 and 𝑚𝑖𝑗 the number of objects of

type 𝑖 in cluster 𝐶𝑗. The probability of having type 𝑖 objects in cluster 𝑗 is given

by 𝑝𝑖𝑗 = 𝑚𝑖𝑗/𝑚𝑗. We follow the same notation to discuss the validation techniques

below.
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4.1.3.1 External Validation

External validation uses metadata about the data to determine the cluster qual-

ity. This metadata often corresponds to class labels attached to the data. There

are two common measures in external validation, entropy and purity. Both these

measures determine the quality of a cluster by counting the number of objects of a

particular class assigned to a cluster.

Entropy is a standard measure of instability [14, 33, 42]. Higher entropy implies

that the cluster is a mix of objects from multiple classes and no particular class objects

dominate the cluster. Following the notation mentioned earlier, entropy of a cluster

𝐶𝑗 is given by

𝐸𝑗 = −
𝑛∑︁

𝑖=1

𝑝𝑖𝑗𝑙𝑜𝑔𝑝𝑖𝑗

The (weighted) intra-cluster entropy is given by

𝐸 =
1

𝑚

𝐾∑︁
𝑖=1

𝑚𝑗𝐸𝑗

We would want 𝐸 to be smaller, since small 𝐸 indicates maximum objects of the

cluster belong to a single class.

Purity is the measure of uniformity within the cluster [14, 33, 42]. An ideal

cluster should have all the data points of a particular type. Using the same notation

as above, purity of a cluster 𝐶𝑗 is defined as

𝑈𝑗 = 𝑚𝑎𝑥𝑖𝑃𝑖𝑗

The overall (weighted) purity is given by

𝑈 =
1

𝑚

𝐾∑︁
𝑖=1

𝑚𝑗𝑈𝑗

We would want 𝑈 to be as close to 1 as possible because, smaller 𝑈 indicates that

the clusters elements share no relationship with each other.
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4.1.3.2 Internal Validation

Internal validation determines quality based on cluster characteristics. Naturally,

we want the clusters to be well separated from each other. Also, the data points with

in a cluster should be as close as possible to each other. These properties are referred

to as separation and cohesion respectively. These two properties can be consolidated

to get a solitary quality measure called silhouette coefficient [14, 33, 42]. Using the

same notation as above, silhouette coefficient of a data point 𝑥𝑖 is given by

𝑆(𝑥𝑖) =
𝑏− 𝑎

max(𝑎, 𝑏)

Where,

𝑎 is the average distance of 𝑥𝑖 to the data points in its cluster

𝑏 is the minimum (average distance of 𝑥𝑖 to data points in another cluster)

Figure 2 illustrates an example of silhouette coefficient calculation. In general

for any reasonable cluster formation, 𝑏 > 𝑎, therefore

𝑆(𝑥𝑖) = 1− 𝑏

𝑎

Figure 2: Silhouette Coefficient Example
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We would want 𝑆(𝑥𝑖) ≈ 1 i.e., we want 𝑥𝑖 to be cohesive with respect to the data

points in its own cluster and well separated from the data points in other clusters.

In this project we combine purity and silhouette coefficient measures to come up

with a score which we use to plot the ROC curves. Implementation details of this

score are provided in Chapter 5.

4.2 Support Vector Machines (SVM)

Support Vector Machines are amongst the most popular supervised learning al-

gorithms used for classification and regression analysis. Supervised learning method

deals with labeled data i.e., we must preprocess the data and assign labels to each

data point. SVMs are generally applied to binary classification problems. Given a

labeled training data, the algorithm tries to find an optimal hyperplane such that all

the data points on one side of hyperplane belong to one class and the data points on

other side belong to another class. In other words the hyperplane acts a threshold

separating the two classes of data [36]. Figure 3 illustrates an optimal hyperplane

separating the red squares from blue circles [24].

Figure 3: Optimal Hyperplane Example
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The hyperplane should be chosen in such a way that it maximizes the distance

between closest data points between the two classes. In other words the hyperplane

should maximize the margin as shown in Figure 3. But for most of the real world

applications, training data is not linearly separable. There are two ways to deal

with this situation. Instead of maximum margin, specify a “soft” margin or use the

“kernel trick”. By using soft margin, we allow the SVM to make some classification

errors. Depending on the non linearity of the data and the soft margin, the number of

classification errors may vary significantly. Kernel trick provides an effective solution

to both the problems, non linearity and classification errors.

Kernel trick is the process of transforming non linearly separable data into lin-

early separable data. This is done by shifting the data into a higher dimensional

space [33]. Generally, when dealing with machine learning algorithms, it is advised

to reduce the dimensionality of the data so as to avoid the ‘curse of dimensional-

ity’. However the kernel trick does the magic in SVM to work efficiently with high

dimensional data. The kernel function spreads out the data in high dimensional

space making it linearly separable by a high dimensional (one dimension less than

the data) hyperplane. Figure 4 illustrates the kernel trick of transforming 2D data

into 3D space [19]. Implementation details of SVM are provided in Chapter 5.

Figure 4: Transformation of Data to Higher Dimensional Space
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CHAPTER 5

Implementation and Experimental Setup

This section provides the implementation and experimental setup details of the

project. The first section gives a brief overview of the dataset. The second section

gives details about training the HMMs and scoring the dataset. The third section

explains the tools and packages used for clustering and the scoring technique used to

plot the ROC curves. The fourth section explains the tools used for SVM. Finally,

experimental setup details are discussed.

5.1 Dataset

The malware dataset used for this project is obtained from the Malicia project

website [22]. The dataset consists of more than 11,000 malware binaries. All the mal-

ware files are either an executable (.exe) or a dynamic-link library (.dll). Along with

the malware samples, the dataset also consisted of MySQL database with metadata.

For each malware sample, the metadata has information of the family of malware

and details about when and where the malware is collected. This metadata infor-

mation helped us in calculating the cluster purity. Of the 11,000 malware samples,

about 7800 samples were distributed among three dominant malware families namely

Winwebsec, Zbot and ZeroAccess.

Winwebsec is a malware program that runs only on windows operating system.

This malware convinces windows users into buying fake anti-virus software. As an

initial step, the malware gives false alerts to the user that the system has been infected

even though the system does not contain any other malware. As a commercial step,

the malware offers to remove theses infections for a fee [18].
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Zbot, also known as Zeus is a family of trojans [38]. Zbot is also targeted to run

on windows operating system. This malware steals personal and financial information

from the compromised system. Zbot files are usually installed via spam emails and

hacked websites [17].

ZeroAccess is another family of trojans that uses advance rootkit to hide itself.

ZeroAccess is also targeted at windows users and its major functionality is to download

other harmful malware [39].

In this project we only used the malware samples from these three families. The

benign samples used for this project are 32-bit Cygwin utility files. Table 2 shows

the number of samples used from each family.

All of the malware and benign files are disassembled using the IDA disassem-

bler [12]. Opcode sequences are then extracted from the disassembled files and given

as input to the HMM models for scoring.

Table 2: Dataset Distribution

Family Number of files
Winwebsec 4361

Zbot 2136
ZeroAccess 1306

Benign 213

5.2 Training the HMMs

In this project we perform multiple experiments . All the experiments follow

the same steps except that the HMM models are generated with different data. In

all the experiments, the HMMs are trained on sequence of opcodes. In order to get

the opcodes, the malware and benign binaries are first disassembled using the IDA
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disassembler [12]. Opcodes are then extracted from the corresponding assembly files

and used to train the HMMs. Now we will see in detail how to train the HMMs for

our experiments.

5.2.1 Training with compilers and malware generators

Initially, the HMMs are generated for four different compilers (GCC, MinGW,

TurboC, Clang), hand-written assembly (TASM), virus generation kit(NGVCK) and

metamorphic malware (MWOR). For each of these models, the training is done for

800 iterations with number of hidden states being 2. The number of assembly files

used for training each model is given in Table 3.

Table 3: Number of files used for training HMMs

Type Number of files
MWOR 100
GCC 75

MinGW 72
Clang 72

TurboC 64
TASM 56

NGVCK 50

Each of the malware and benign files mentioned in Table 2 are scored against

these seven HMM models. In order to score a file, the file is disassembled and opcode

sequence is extracted. The opcode sequence is given to the trained HMM model. The

model assigns high score to the files similar to the training data set and low score

to other files. The score is nothing but log likelihood of the opcode sequence and is

highly dependent on the length of the sequence. Since different files have different

opcode sequence lengths, we divide the log likelihood of the sequence by the number

of opcodes (length of the sequence). This normalizes the score for various opcode
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sequence lengths and we obtain log likelihood per opcode. And finally, each file is

now represented with a 7-tuple score.

5.2.2 Training with subset of malware samples

For this experiment three HMM models are generated, one for each of the dom-

inant malware families. The malware files from the remaining two families and the

benign files are scored against these HMM models. For example, the Winwebsec

HMM model is generated as follows:

∙ Train HMM on a subset of Winwebsec files.

∙ Score the remaining Winwebsec files (that are not part of training subset), Zbot

, ZeroAccess and benign files against the model created in above step.

Similarly generate the HMM models for Zbot and ZeroAccess families. The models

should assign high score to the files that are from the same family as training dataset

and low score to other families.

Similar to the scores in Section 5.2.1, the final scores obtained in this section are

also normalized to obtain the log likelihood per opcode. Each file is now represented

with a 3-tuple/3-D score.

5.3 Clustering Implementation

In this project we used the Matlab Statistics Toolbox [20] to implement the

clustering algorithms. The Statistics toolbox provides easy to use built-in functions

for both 𝑘-means and EM clustering algorithms.
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5.3.1 Clustering scores from compiler trained HMM models

The 7-tuple scores obtained from the HMM are used for clustering. A subset of

the 7-tuple HMM scores is used as training dataset to generate a cluster model. The

remaining scores are given to this cluster model to see how well the model fits these

scores into different clusters. The number of samples used for training and testing are

given in Table 4. Based on the resulting cluster formations we calculate a probability

score for each sample that is clustered and use this probability score as a performance

measure to compare 𝑘-means and EM algorithms. The probability score is calculated

as follows:

1. Generate a clustering model using the train dataset.

2. Using the trained model, cluster the test data.

3. Calculate cluster purity for the clusters created in Step 2.

4. For each test sample, depending on the cluster to which it is assigned and the

corresponding cluster purity, compute the probability with which the sample

belongs to each of the malware/benign (Winwebsec, Zbot, ZeroAccess, benign)

families. That is each test sample will have four probabilities associated with

it.

5. From the metadata in the malware dataset, we know the family to which each

test sample actually belongs to. Now for each test sample, take the probability

that is associated with its own family.

6. Take the average of probability scores obtained in Step 5.

We repeat the experiment by varying the number of clusters, 𝐾 from 2 to 15.

Perform the same experiment for both EM and 𝑘-means algorithms.
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Table 4: Distribution of Samples Used for Clustering

Number of files
Family Training Testing

Winwebsec 3000 1361
Zbot 1500 636

Zeroaccess 1000 306
Benign 0 213

5.3.2 Clustering scores from malware trained HMM models

In this experiment, the scores from HMM models trained on malware samples

are used. We train the clustering algorithm on two malware families and generate a

cluster model. We then try to classify the third malware family and benign files using

the trained model. An example clustering model is trained and tested as follows:

∙ Prepare a 2-D train dataset such that column 1 corresponds to Winwebsec and

Zbot scores from Winwebsec trained HMM model and column 2 corresponds to

Winwebsec and Zbot scores from Zbot trained HMM model.

∙ Prepare a 2-D test dataset such that column 1 corresponds to benign and Ze-

roAccess scores from Winwebsec trained HMM model and column 2 corresponds

to benign and ZeroAccess scores from Zbot trained HMM model.

∙ Generate a clustering model using the train dataset.

∙ Fit the test dataset with the model generated in the above step.

Next, we consider a score based on these clusters to plot the Receiver Operating

Characteristic (ROC) [10] curves. the ROC curve is obtained by plotting true positive

rate against false positive rate, varying the threshold through the range of data values.

The region under the ROC curve (AUC) provides a convenient measure of the quality
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of a binary classifier [8]. An AUC of 1.0 shows perfect classification (i.e., we can

draw a threshold that will separate malware files from benign files with out any

misclassification), while an AUC of 0.5 indicates that the that the classifier is no

more fruitful than flipping a coin.

The basis for our score is the silhouette coefficient, as discussed in Section 4.1.3.2.

Given a set of clusters, where 𝑥 is an element of one, say, cluster 𝐶𝑗, to compute the

score of 𝑥, we first calculate 𝑆(𝑥), the silhouette coefficient of 𝑥. Next, as discussed

in Section 4.1.3, we calculate 𝑝𝑖𝑗 = 𝑚𝑖𝑗/𝑚𝑗, where 𝑚𝑖𝑗 is the number of elements of

family 𝑖 in cluster 𝐶𝑗 and 𝑚𝑗 is the total number of elements in cluster 𝐶𝑗. Finally,

the scoring function is defined as

score𝑖(𝑥) = 𝑝𝑖𝑗𝑆(𝑥)

where score𝑖(𝑥) is the score of 𝑥 with respect to family 𝑖.

Since our test dataset has two different samples (ZeroAccess and benign), each

test sample file will have two scores.

score0(𝑥) = benign score of file 𝑥

and

score1(𝑥) = ZeroAccess score of file 𝑥

We use score𝑖(𝑥) to plot the ROC curve.

Once the clustering algorithm is run on the 2-D data, we extend this experiment

to include more dimensions to the train and test datasets. More details about this

extended experiments are given in the Chapter 6.
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5.4 SVM Implementation

In this project we used the RapidMiner [29] to run the SVM algorithm. Rapid-

Miner is a software platform that provides an integrated environment for machine

learning, predictive analysis, data mining etc. RapidMiner provides an easy to use

web interface with several drag and drop tools to construct an SVM model. Since

SVM is a supervised learning algorithm, we should pre-process the data to include

the labels. We used the data labels 1 and -1 to represent the two classes of samples

(malware and benign). In SVM, we train an SVM model on different malware fam-

ilies and verify how well the trained model can classify new samples from the same

malware families. We use the same HMM scores that we used for clustering to train

and test the SVM models.

5.5 Experimental Setup

In this project, since we are dealing with malware samples, most of the experi-

ments are run on a virtual machine. We used the Hyper-V virtual machine manager

to configure and manage the virtual machines. Following are the specifications of

host and virtual machine instances.

Host:

- Model: Lenovo Ideapad Yoga

- Processor:Intel Core i5-3337U, CPU @ 1.80GHz

- RAM: 8.00 GB

- System Type: 64-bit

- Operating System: Windows 8.1

Guest 1:
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- Software: Hyper-V Manager

- Start-up Memory:1024 MB

- System Type: 64-bit

- Operating System: Windows 8.1

Guest 2:

- Software: Hyper-V Manager

- Start-up Memory:2048 MB

- System Type: 64-bit

- Operating System: Ubuntu 14.10

As mentioned in Section 5.2, the HMMs are trained on opcode sequences. Ex-

traction of opcode sequences from the malware and benign samples is done in Guest

2 system. Training the HMM models, clustering algorithms and SVM are performed

in Guest 1 system.
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CHAPTER 6

Results

This chapter provides a detailed description of the results. The first section

discusses the results of EM and 𝑘-means clustering algorithms. The second section

discusses the results of SVM algorithm. Finally we compare the results of clustering

and SVM to see which technique gives better results.

6.1 Clustering

In this section we present and discuss the results of EM and 𝑘-means clustering

algorithms. Since clustering is an unsupervised learning technique, no pre-processing

is required on the data. Hence the HMM scores are directly given as input to EM

and 𝑘-means algorithms.

6.1.1 Clustering results of compiler trained HMM scores

For the first experiment we consider the 7-tuple HMM scores for clustering and

compute the probability score. As mentioned in Chapter 5, the probability score is

computed using the metadata obtained along with the malware dataset. The clus-

tering algorithm is run multiple times for the same 𝐾 and the maximum probability

score of all the runs is considered for that particular 𝐾. Figure 5 shows the prob-

ability score comparison of EM and 𝑘-means algorithms. The x-axis represents the

number of clusters, 𝐾 and y-axis represents the probability score. The red line cor-

responds to the probability scores of EM algorithm for 𝐾 = 2 to 𝐾 = 15. Similarly,

the magenta line corresponds to the probability scores of 𝑘-means algorithm. The

probability scores with which Figure 5 is plotted are given in Table 5.
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Figure 5: Probability Score Comparison

It can be seen from Figure 5 that the probability score of EM algorithm is slightly

better than 𝑘-means. That is we can say that EM clustering algorithm classifies

malware samples more accurately than 𝑘-means algorithm. Also, we can observe

that with increase in 𝐾 (number of clusters), there is a slight increasing trend in the

probability score. This is because, as the number of clusters is more, data is grouped

into more number of small but comparatively pure clusters.

6.1.2 Clustering results of malware trained HMM scores

For the initial experiment with malware trained HMM scores, we start with 2-D

HMM scores (scores from two of the HMM models trained in Section 5.2.2). We

perform both EM and 𝑘-means clustering algorithms on the same data with 𝐾 = 2,

compute the scores as metioned in Section 5.3.2 and plot the ROC curves. Figure 6

shows the ROC curve for EM clustering algorithm for 2-D data.
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Table 5: Probability Scores of EM and 𝑘-means

𝐾 EM 𝑘-means
2 0.5261 0.4372
3 0.5868 0.5894
4 0.6430 0.6138
5 0.6839 0.6261
6 0.7208 0.6520
7 0.7236 0.6876
8 0.8084 0.7343
9 0.7843 0.7602

10 0.8209 0.7279
11 0.7886 0.7563
12 0.7893 0.7603
13 0.8351 0.7811
14 0.8296 0.8000
15 0.8213 0.8080

Figure 6: ROC curve for EM clustering algorithm (2-D data)

The corresponding AUC for the curve is 0.896 which implies that this clustering

model can differentiate between ZeroAccess and benign files with a probability of

89.6% . The cluster formations of the ZeroAccess and benign samples using this
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model are given in Figure 7, where x-axis represents the HMM scores of Winwebsec

model and y-axis represents the HMM scores of Zbot model.

Figure 7: Cluster formation using EM clustering algorithm (2-D data)

Figure 8 shows the ROC curve for 𝑘-means clustering algorithm for 2-D data.

The corresponding AUC for the curve is 0.81 which implies that this clustering model

can differentiate between ZeroAccess and benign files with a probability of 81% . The

clusters formations for the same data using 𝑘-means clustering model are given in

Figure 9.

From Figures 7 and 9, we can observe that the same data samples have been

put into different clusters by different clustering algorithms. Based on these different

cluster formations, the two clustering models have different levels of accuracy in

classifying ZeroAccess and benign samples.

For the next experiment we consider 3-D HMM scores (scores from all the three

HMM models trained in Section 5.2.2). Similar to the 2-D data, we perform both EM
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Figure 8: ROC curve for 𝑘-means clustering algorithm (2-D data)

Figure 9: Cluster formation using 𝑘-means clustering algorithm (2-D data)

and 𝑘-means algorithms on 3-D data for 𝐾 = 2, compute the scores and plot ROC

curves.
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Figure 10 shows the ROC curve for EM clustering algorithm for 3-D data. The

Figure 10: ROC curve for EM clustering algorithm (3-D data)

corresponding AUC for the curve is 0.856 which implies that this clustering model

can differentiate between ZeroAccess and benign files with a probability of 85.6% .

Figure 11 shows the ROC curve for 𝑘-means clustering algorithm for 3-D data.

The corresponding AUC for the curve is 0.852 which implies that this clustering model

can differentiate between ZeroAccess and benign files with a probability of 85.2% .

Next we consider 4-D HMM scores. The 4-D data is obtained by adding the

scores of NGVCK trained HMM model to the existing 3-D dataset. We perform

similar experiments on the 4-D data and plot the ROC curves.

Figure 12 shows the ROC curve for EM clustering algorithm for 4-D data. The

corresponding AUC for the curve is 0.94 which implies that this clustering model can

differentiate between ZeroAccess and benign files with a probability of 94% .

Figure 13 shows the ROC curve for 𝑘-means clustering algorithm for 4-D data.
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Figure 11: ROC curve for 𝑘-means clustering algorithm (3-D data)

Figure 12: ROC curve for EM clustering algorithm (4-D data)

The corresponding AUC for the curve is 0.977 which implies that this clustering model

can differentiate between ZeroAccess and benign files with a probability of 97.7% .
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Figure 13: ROC curve for 𝑘-means clustering algorithm (4-D data)

6.1.3 Comparison of clustering algorithms based on accuracy

In this section we compare the performance of EM and 𝑘-means clustering algo-

rithms based on accuracy measure. Accuracy gives the percentage of datapoints that

are correctly clustered into their specific category. Since our test dataset contains

two families (ZeroAccess and Benign), accuracy gives the percentage of datapoints

that are correctly classified as malware or benign. The parameters used to calculate

accuracy are,

∙ TP (True Positive), is the number of malware samples correctly classified as

malware.

∙ TN (True Negative), is the number of benign samples correctly classified as

benign.

∙ FP (False Positive), is the number of benign samples incorrectly classified as

malware.
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∙ FN (False Negative), is the number of malware samples incorrectly classified as

benign.

Accuracy is calculated using the formula,

accuracy =
TP + TN
𝑃 +𝑁

Where,

𝑃 = TP + FN and 𝑁 = TN + FP

In simple terms accuracy is given as,

accuracy =
Number of correctly classified datapoints

Total number of datapoints

In an ideal case, where all the datapoints are correctly classified, we get an

accuracy of 1.0. In general we want accuracy to be as close to 1.0 as possible. In this

experiment we calculate the accuracy of both EM and 𝑘-means algorithms by varying

the value of 𝐾 from 2 to 15. Also, we perform this experiment on dataset ranging

from 2-D to 7-D.

Figure 14, shows the accuracy measure of EM algorithm in which X-axis rep-

resents the data dimensions varying from 2-D to 7-D, Y-axis represents the number

of clusters, 𝐾 varying from 2 to 15 and Z-axis represents the accuracy value. From

Figure 14, we observe that the accuracy value in all the cases is in the range of 0.8

to 1.0.

Similarly, Figure 15, shows the accuracy measure of 𝑘-means algorithm. For

𝑘-Means algorithm also we see that the accuracy values are in the range of 0.8 to 1.0.

For better comparison of the accuracy values of EM and 𝑘-means algorithms,

we overlap the Figures 14 and 15 to obtain 16. The stem plot in Figure 16, shows
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Figure 14: Accuracy measure for EM algorithm

Figure 15: Accuracy measure for 𝑘-means algorithm

accuracy values of both EM and 𝑘-means algorithms in the same plot where the ’o’

corresponds to the accuracy value of EM algorithm and ’*’ corresponds to the accuracy

value of 𝑘-means algorithm. From Figure 16, we observe that with increase in 𝐾, the
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accuracy value of 𝑘-means algorithm is slightly greater than the EM algorithm. The

main reason behind this behavior is, since Em clustering is based on the distributions

in the data, eventhough we increase the value of 𝐾, after a certain point the algorithm

created only few data clusters and more empty clusters. On the otherhand, 𝑘-means

algorithm is based on distance measure, as a result with increase in 𝐾 the algorithm

created more small and pure clusters thereby giving better accuracy.

Figure 16: Accuracy comparison of EM and 𝑘-means algorithms

6.2 SVM

To perform the SVM experiments we need to first pre-process the data by as-

signing data labels such that malware scores are labeled as 1 and benign scores are

labeled as -1 or vice-versa.
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6.2.1 SVM results of compiler trained HMM scores

Similar to the clustering experiments we initially take the 7-tuple data and per-

form SVM. We use the same train and test datasets that we used for clustering. The

only difference is that training dataset for clustering algorithm do not contain benign

samples whereas benign samples are included in both train and test datasets of SVM.

Figure 17 shows the ROC curve of SVM algorithm for 7-tuple using radial kernel

function.

Figure 17: ROC curve for SVM algorithm (7-tuple data)

The corresponding AUC for the curve is 1.0 which implies that this SVM model

can differentiate between malware and benign files with 100% accuracy. Also, we

performed this experiment by varying the kernel functions. The kernel function and

the corresponding AUC are given in Table 6.

From the AUC values in Table 6, we can observe that most kernel functions give

100% accurate SVM binary classifier.
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Table 6: AUC for different kernel functions (7-tuple data)

Kernel Function AUC
Dot 1

Anova 1
Neural 0.82

Polynomial 1
Epachnenikov 1

6.2.2 SVM results of malware trained HMM scores

For this experiment, initially we generate an SVM model to test the 2-D data. In

this experiment we train an SVM model on a subset of Zbot and Winwebsec samples

and we test the model on remaining Zbot and Winwebsec samples. We pre-process

the data to label Zbot samples as 1 and Winwebsec samples as -1. Figure 18 shows

the ROC curve of SVM algorithm for 2-D data using radial kernel function.

Figure 18: ROC curve for SVM algorithm (2-D data)

The corresponding AUC for the curve is 0.95 which implies that this SVM model

can differentiate between the two malware families with an accuracy of 95% . Also,
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we performed this experiment by varying the kernel functions. The kernel function

and the corresponding AUC are given in Table 7.

Table 7: AUC for different kernel functions (2-D data)

Kernel Function AUC
Dot 0.83

Anova 0.95
Neural 0.65

Polynomial 0.72
Epachnenikov 0.83

Next, we test the SVM model on 3-D data by training an SVM binary classifier

on a subset Zbot and Winwebsec scores from the three HMM models trained in

Section 5.2.2 and testing the classifier on the remaining subset of Zbot and Winwebsec

scores. Figure 19 shows the ROC curve of SVM algorithm for 3-D data using radial

kernel function.

Figure 19: ROC curve for SVM algorithm (3-D data)

The corresponding AUC for the curve is 0.991 which implies that this SVM model
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can differentiate between the two malware families with an accuracy of 99.1% . Also,

we performed this experiment by varying the kernel functions.

Various kernel functions and their corresponding AUC are given in Table 8.

Table 8: AUC for different kernel functions (3-D data)

Kernel Function AUC
Dot 0.98

Anova 0.99
Neural 0.80

Polynomial 0.85
Epachnenikov 0.98

Next, we test the SVM model on 4-D data ( we add the NGVCK trained HMM

model scores to the 3-D dataset in the above experiment to get the 4-D data). Fig-

ure 20 shows the ROC curve of SVM algorithm for 4-D data using radial kernel

function.

Figure 20: ROC curve for SVM algorithm (4-D data)

The corresponding AUC for the curve is 0.995 which implies that this SVM model
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differentiates between the two malware families with an accuracy of 99.5% . Also, we

performed this experiment by varying the kernel functions. The kernel function and

the corresponding AUC are given in Table 9.

Table 9: AUC for different kernel functions (4-D data)

Kernel Function AUC
Dot 0.98

Anova 0.99
Neural 0.83

Polynomial 0.83
Epachnenikov 0.99

The results of the clustering and SVM algorithms for malware classification can

be summarized as shown in Table 10. From Table 10, we can see that as the number

of dimensions in the data increase, there is a gradual increase in the AUC values for

the three techniques that we used in this project. From this we can say that cluster

and SVM models trained on high dimensional data yield better classification results.

Table 10: Comparison of AUC

AUC of
Data EM 𝑘-means SVM
2-D 0.896 0.81 0.95
3-D 0.856 0.852 0.991
4-D 0.94 0.977 0.995

From the above results of clustering and SVM, we can observe that the cluster-

ing algorithms performed comparable to SVM in classifying different malware (and

benign) families. We can also say that when we are dealing with the problem of

classifying malware samples (on which the SVM model has been trained), SVM gives
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better accuracy rate. On the other hand when we are dealing with unknown samples,

clustering seems to give better results by placing the unknown samples in a different

cluster. Moreover the advantage with clustering is that once we train a model, we

can use that model to classify new malware without having to re-train the model.
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CHAPTER 7

Conclusion and Future Work

In this paper, we compared the accuracy of two clustering algorithms namely

EM and 𝑘-means for classifying over 8000 malware samples. We carried out different

experiments for this purpose. In the first experiment, malware and benign samples

are scored against a variety of compilers. That is we train different HMM models

on a variety of compilers and the malware samples are scored against these trained

HMM models. In the second experiment, we score the malware samples against each

other. That is we train a HMM model on a particular malware family and score the

remaining malware and benign samples against this trained HMM model. In both

the cases, the HMM scores are used as input to the clustering and SVM algorithms.

From the experiment results we observe that EM clustering algorithm performs better

than the 𝑘-means algorithm for the data we considered.

In this project, we used opcode sequences as input for training the HMM mod-

els and scoring the malware samples. Other variations of input such as call-graph

sequences instead of opcode sequences can be used for future experiments.

The initial parameters in the clustering algorithms, centroids in case of 𝑘-means

and mean and co-variance in case of EM algorithms are chosen at random. Instead

of random initialization, centroids of 𝑘-means algorithm can be selected from within

the data domain. Similarly mean and co-variance of EM algorithm can be selected

based on the actual data distribution.

The dataset we used for this project has only three dominant malware families.

The clustering model is trained on two families and tested on the third malware
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family and benign samples. For the future work we can consider adding more malware

families to the dataset and we expect to get better results with more malware families.
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