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ABSTRACT 

MAXIMIZING THE SPEED OF INFLUENCE IN SOCIAL 

NETWORKS 

by Yubo Wang 

Influence maximization in social networks is the problem of selecting a limited 

size of influential users as seed nodes so that the influence from these seed nodes can 

propagate to the largest number of other nodes in the network. Previous studies in 

influence maximization focused on three areas, i.e., designing propagation models, 

improving algorithms of seed-node selection and exploiting the structure of social 

networks. However, most of these studies ignored the time constraint in influence 

propagation. In this paper, I studied how to maximize influence propagation in a given 

time, i.e., maximizing the speed of influence propagation in social networks. I extended 

the classic Independent Cascade (IC) model to a Continuous Dynamic Extended 

Independent Cascade (CDE-IC) model. In addition, I propose a novel heuristic algorithm 

and evaluate the algorithm using two large academic collaboration data sets from 

www.arXiv.org. Comparing with previous classic heuristic algorithms on the CDE-IC 

model, the new algorithm is 9%-18% faster in influence propagation. Furthermore, I gave 

solution to calculate propagation probability between adjacent nodes by exploiting the 

structure of social networks.
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INTRODUCTION 

Maximizing the speed of influence propagation is crucial in marketing through 

social networks. In this paper, I gave a whole set of solution including improving model, 

designing a novel seed-node selection algorithm and calculating propagation probability. 

Online social networks, such as Twitter, Facebook and Pinterest, despite having different 

functionalities and target users, all connect people into a virtual society. Each user, 

represented by a node in a social network, is connected to other users based on certain 

relationships, such as followers on Twitter, or friends on Facebook. The communication 

between users is either one-way or two-way depending on the relationship. For example, 

if the relationship is “follower” on Twitter, a user can only follow the followee’s post, 

thus forming a one-way communication. If the relationship is friends on Facebook, both 

sides can post on each other’s wall, thus forming a two-way communication. The high 

frequency of communication together with the large number of users in social networks 

can lead to explosive propagation of information and provides an ideal marketing 

platform.  

In viral marketing strategy, a company invites some initial users, i.e. the seed nodes, 

to try its new products or technologies. The company would give these initial users free 

samples and hope that they will give a positive feedback in social networks. By the power 

of word-of-mouth, these users may affect their neighbors in a social network. These 

affected neighbors may subsequently propagate the influence to their own neighbors, and 
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so on. The challenge in viral marketing strategy is how to select the seed nodes to 

maximize return of investment. 

Consider the following case as an example. A Yogurt company wants to launch a 

two-week campaign to promote their product with a budget of less than $20k. The 

company would like to select 40 initial users to try their sample and ask these users to 

write a blog in their social networks. Since each initial user will cost resources including 

money, time and human labor, the company should decide carefully how to select these 

initial users to affect most of other potential customers.  

Other companies and individuals that hope to promote their new products and new 

ideas by the power of word-of-mouth through social networks face the same challenge. 

Social networks provide a great opportunity to promote new products or ideas because of 

the large number of users and the high frequency of communication. In addition, the 

propagation of information can be fairly quick if the right seed nodes are selected. 

However, the large scale of social networks and their complicated structures made it 

challenging to select the right seed nodes. We need a solution that is efficient even when 

scaling up to large social networks and guarantees to maximize the number of affected 

nodes under this solution. 

Influence maximization was first proposed as an algorithm problem by Domingos 

and Richardson in a study of viral marketing[1, 2]. Instead of viewing users as 

independent individuals and only considering the intrinsic value of each users, they made 

the selection based on a customer’s network value, which is defined as an expected total 
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profit that can be achieved from all the other customers who are influenced by this 

customer directly or indirectly. 

Kempe, Kleinberg and Tardos provided a foundation to solve the influence 

maximization problem[3]. They proved that the optimization problem of selecting the 

most influential seed nodes is NP-hard. They also presented the first provable 

approximation solution to this problem, which is within 63% (1- 1/e) of optimal under 

two different models, the Independent Cascade model (IC) and the Linear Threshold (LT) 

model.   

In particular, they modeled a social network as a graph, where nodes represent 

individuals and edges represent relationships (friends, family or followers) between users. 

Influence maximization can then be described as when starting from seed nodes of size k, 

how influence will propagate to the other nodes with a certain probability and reach a 

maximized total number of influenced nodes. They used a greedy algorithm named the 

Hill-Climbing algorithm to obtain their solution, which is an approximation result to 

optimum within bound 1-1/e (e is the natural logarithm base). One big drawback in this 

algorithm is the efficiency. Trying to calculate influence of a given size of seed nodes 

proves to be a difficult task. Instead of obtaining a precise value, they ran Monte-Carlo 

simulations on their models multiple times to obtain an accurate estimation. However, 

even finding a small seed nodes set in a moderately large network (e.g. 15000 nodes) 

would take days to finish. 

Several following studies have been carried to improve the efficiency of seed-node 

selection algorithms. Leskovec, Krause and Guestrin proposed a nearly optimal algorithm 
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called Cost Effective Lazy Forward (CELF) algorithm[4]. In this algorithm, the number 

of nodes to be considered in each round of seed selection is greatly reduced by exploiting 

the submodularity property of models. This algorithm scaled well to large data sets and 

their experiments showed that it was 700 times faster than Hill-Climbing algorithm. 

Further optimization was achieved by Goyal, Lu and Lakshmanan[5].  In their paper, they 

proposed an algorithm called CELF++, which was 35%-55% faster than CELF. There are 

also several other greedy algorithms that perform similarly as the CELF++ algorithm. 

Chen, Wang and Yang[6] tackled the efficiency issue of seed nodes selection from 

a different direction. Instead of trying to further reduce the running time of a greedy 

algorithm, they improved the heuristics methods. Their new heuristics method achieved a 

nearly matched result comparing to greedy algorithms, but with significantly reduced 

running time. The new heuristic method was more than six orders of magnitude faster 

than the existing greedy algorithms. 

All the previous studies focused on the space maximization of influence, i.e. how to 

maximize influence propagation in a social network without time constraint. In this 

thesis, I will study the speed maximization of influence propagation, i.e. how to 

maximize influence propagation in a social network in a given time frame. The meaning 

of maximized speed of influence can be illustrated in the example shown in Figure 1 and 

Figure 2.  
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    Figure 1: Star Structure  Figure 2: Linear Structure 

Suppose Figure 1 and Figure 2 are two subsets in a social network. We will select 

a seed node that will propagate its influence to all the other nodes directly or indirectly 

connected with it. Which node A should we choose as a seed node? From the point of 

view of space maximization, node A in Figure 2 is a better choice because it can 

propagate its influence to five other nodes, while node A in Figure 1 can only propagate 

its influence to four other nodes. However, from the point of view of speed 

maximization, node A in Figure 1 will be a better choice. With the assumption that 

influence can only propagate one step per unit time, node A in Figure 1 can reach more 

other nodes in one unit time,  

This example illustrates that the previous studies focusing on space maximization 

ignored one important constraint, i.e., time. A hidden assumption in those models is that 

time of influence propagation is unlimited. The process of influence propagation in a 

social network would continue until no new nodes can be affected. This assumption is not 

always true in real life. Typically, each campaign started by a company has a valid 

period. If a campaign is finished, the later affected users are not counted and less 

meaningful. Technologies also tend to have a short shelf life. When a new technology 

spreads in social networks, it shall reach users as fast as possible in order to be profitable. 
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If speed of influence propagation is slow, other competitors will emerge to challenge its 

market position. For all these reasons, time is a critical constraint that must be 

considered.  

Therefore, a similar but more important problem comparing to space 

maximization is how to maximize the number of influenced users in a given time, i.e. 

maximizing the speed of influence propagation. In this paper, I will focus on selection of 

initial seed nodes in a given social network in order to achieve maximized speed of 

influence.  

In the following sections, I first introduced previous models and seed-node 

selection algorithms. Then I showed how I extended a classic IC model to Continuous 

Dynamic Extended IC (CDE-IC) model. In addition, I proposed a novel heuristic  

seed-node selection algorithm. I then gave formulas to decide propagation probability 

between adjacent nodes. In order to test my new algorithm, I compared this algorithm 

with three other most popular heuristic algorithms in two data sets. The result showed 

that even a small modification to the existing algorithms could lead to a big boost to the 

quality of seed nodes selection. In the end, I discussed my results and gave future 

directions for the study of influence maximization. 
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RELATED WORK 

Influence maximization was first proposed as an algorithm problem by Domingos 

et al.[1] in their study of viral marketing. Viral marking originates from the notion that 

ideas spread like viruses. In contrast to direct marking that evaluates each customer 

independently, the viral marketing strategy exploits the network value of each customer.   

Let us first consider how a company finds its potential customers. If a company’s 

investment to a user is (I), e.g. sample or advertisement, and the expected return is (R), 

i.e. when user purchase product from the company, the profit (P) can be determined as    

P = R – I. Only when P is positive, will a company deem the user as a valuable customer.  

Calculation of R is different in direct marking vs. viral marketing. In direct 

marketing, each user is independent from other users. A company only considers direct 

purchase action from a user and the user will decide his purchase action independently, 

not being affected by others’ action or persuasion.  Therefore, the most valuable user is 

the user who will purchase most products from the company in direct marketing.  

Domingos et al. argued that each customer does not exist in a society 

independently, but are connected to each other in a social network. The marketing 

decision should not be based solely on each individual’s purchase action but also 

considering its network value. The total return a company can be expected from a user is 
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the sum of this individual’s value plus his network value. The network value of a user is 

the total purchase actions of other users influenced by this user directly or indirectly.  A 

user with a low individual value, which may be lower than the investment I, can still be a 

valuable potential customer to the company if he has a high network value in viral 

marketing. In viral marketing, the purchase action or opinion of a user will affect his 

connected users.  The connected users, such as friends or families of the initial user, may 

obtain information from the initial user that will affect their purchase decision. People 

tend to trust opinions from people that they are connected with.  

Studies on influence maximization in social networks are mainly focused on three 

areas. The first area is the selection and design of propagation models. A good model 

should be easy to understand, able to scale to large social networks and close to the 

complex structure of social networks. The second area is improving seed-node selection 

algorithms. There are two metrics to evaluate a selection algorithms, efficiency and 

quality. Efficiency measures how fast an algorithm can select a given size seed nodes, 

and quality measures how close the result is to optimal solution. The third area is how to 

reflect the structure of social networks in the propagation model, and how to decide the 

propagation probability between adjacent nodes. I will focus on the first two areas, i.e. 

propagation models and seed-node selection algorithms, in the following sections. The 

third area is often ignored by previous studies, and I will address it in the section of 

Solution Framework.  
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Propagation Models 

In the study of the viral marketing problem, Domingos et al. proposed that users 

do not exist in social networks independently. Each individual’s decision of whether to 

purchase a specific product is affected by opinions from his connected users. In other 

words, we should model people as networks. The two basic models of social networks are 

Linear Threshold (LT) model and Independent Cascade (IC) model. Many other models 

extended from these two basic models under different conditions. All models aim to 

reflect the relationships of people in real social networks.  

Let us first define the parameters in a social network. G is a directed graph that 

represents the entire social network. V is a node set, in which each node v in V represents 

an individual in a social network. Each node v can have a status of “active” or “inactive”. 

An active status means that node v has been affected, and an inactive status means it has 

not been affected. E is the edge set that represents all relationships between individuals. 

Each edge e in E can have a different weight to reflect the relationship strength between 

two nodes.  

Influence maximization problem can be stated as the following: if we select a size 

of k nodes from V as seed nodes, what is the optimal seed-node selection to make the 

number of affected nodes maximized in the social network. The affected nodes are 

maximized when the influences from those seed nodes propagate through existing edges 

between nodes until no more nodes can be affected.  

There are two constraints in the modeling of social networks. First, the change of 

node status is irreversible. During each step, each node is either active or inactive. 
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However, once a node changes its status from inactive to active, it cannot be changed 

back to inactive status. Secondly, the tendency of each inactive node to become an active 

node increases monotonically with its active neighbors. Specifically, the probability of an 

inactive node to become active increases as more neighbors of the inactive node become 

active.  

Under these two constraints, the influence propagation starts from an initial active 

seed node set and progresses in a cascade method that each inactive node is affected by 

its active neighbor nodes. When more neighbors of an inactive node become active, the 

inactive node may become active, and subsequently propagates the influence to its 

inactive neighbors, until no more nodes can be affected. 

Linear Threshold Model 

Linear Threshold (LT) Model was proposed by Granovetter and Schelling to 

simulate influence propagation in social networks [7, 8]. LT model is based on node-

specific threshold. The threshold represents the difficulty of switching an inactive node to 

an active node. A larger threshold value means a node is less likely to switch its status. 

In LT model, node u is connected to a set of neighbor nodes N. Each node n in set 

N is connected to node u by an edge with a weight of bu, n. The total weight of nodes in 

set N is no more than 1 (∑ bu, n ≤	  1).	  	  Each	  node	  u	  has	  a	  threshold	  θu	  (0<θu,<1)	  that	  

defines	  the	  minimum	  requirement	  of	  its	  active	  neighbor	  nodes	  set.	  When	  the	  total	  

weight	  of	  all	  active	  neighbor	  nodes	  is	  greater	  than	  θu,	  the	  inactive	  node	  u	  switches	  

its	  status	  from	  inactive	  to	  active.	  Because	  of	  the	  irreversible	  character	  of	  a	  status,	  if	  

at	  step	  t	  a	  node	  is	  active,	  it	  remains	  active	  at	  step	  t+1.	  The	  value	  of	  θu	  is	  a	  random	  
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constant	  number	  between	  [0,1].	  It	  can	  be	  obtained	  from	  a	  social	  network	  structure	  

or	  set	  to	  a	  constant	  value,	  e.g.	  ½. The	  value	  of	  θu	  reflects	  the	  tendency	  of	  a	  node	  to	  

adopt	  a	  new	  idea	  when	  it	  is	  under	  the	  influence	  of	  its	  neighbors. 

 

Figure 3: Influence propagation in LT model 

The	  process	  of	  influence	  propagation	  in	  LT	  mode	  is	  shown	  as	  in	  Figure	  3. 

Each node has the same threshold value of 0.3. The weight between any two nodes is 

labeled at the edge. At time 0, node A is selected as the seed node with an active status. 

Node A will try to propagate influence to its neighbor nodes of node B and node D. Edge 

AB has a weight value of 0.4 and edge AD has a weight value of 0.1. In this condition, 

only node B satisfies the condition of switching from an inactive status to an active status 
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as the total weight of active neighbor nodes of node B is greater than the threshold of 0.3. 

Therefore, node B turns into active status at time 1. The total weight of active neighbors 

of node D is 0.1 and node D remains inactive at time 1.  

Following the same calculation, node E turns into active status under the 

influence of node B at time 2. Although node D fails to switch into active status at time 1, 

as more of its neighbor nodes become active, node D becomes more likely to switch its 

status as the propagation proceeds. At time 2, as node E turns into active, the total weight 

of active neighbor nodes of node D becomes greater than the threshold. Therefore, node 

D switches from inactive status to active status at time 3. After time 3, there are no more 

nodes that satisfy the condition to switch and the process of influence propagation stops. 

There are two interesting observations in this propagation process. First, although 

some people will not accept new technologies at first, they are likely to change their 

minds as more of their neighbors accept the new technologies. These people are 

represented by node D in the example. Secondly, although the weight between node C 

and node F is higher than the threshold, they have no chance to switch to active status. 

Their active neighbor nodes are not powerful enough to propagate the influence to them.  

Node C and node F represent the users in social networks who are eager to accept new 

products. However, because inappropriate seed nodes are selected, the propagation 

process fails to discover these users. We have to carefully consider this during the seed 

nodes selection phase. 
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Independent Cascade Model 

The Independent Cascade (IC) model is a dynamic cascade model based on 

probability theory. The simple IC model was proposed by Goldenberg, Libai, and 

Muller[9]. In IC model, the process of influence propagation in social networks can be 

illustrated as the following steps. An initial seed-node set is selected at time 0. If node A 

becomes active at time t, it will try to influence its inactive neighbors at time t+1 with a 

probability of p. Node A will only have one chance to influence its neighbors, and will 

not try again whether it succeeds or not. If an inactive node is connected with more than 

one newly active node, these newly active nodes will try to influence the inactive node in 

a random sequence. In addition, the result of influence propagation between two nodes is 

not affected by actions of other nodes. If no more nodes can be affected, the process 

stops.  

The process of influence propagation In IC model is shown in Figure 4 and Figure 

5, each representing an outcome from a single run. In both scenario, node A is selected as 

the seed node. For each newly activated node, it will propagate its influence to its 

neighbors based on the propagation probabilities between them. Each running of the 

simulation will obtain a different result. In Figure 4, the influence propagation reaches to 

4 other nodes (D, E, F and H), while in Figure 5; the influence propagation reaches to 5 

other nodes (B, C, E, F ad H). The end results are different between these two runs. 

Therefore, we need to run the experiment multiple times in the IC model to obtain an 

accurate estimation of influence propagation with specific seed node selection. 
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Figure 4: Influence propagation in IC first try. 

 

Figure 5: Influence propagation in IC second try 
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Extensional IC Model 

LT Model and IC Model are two effective models of social networks. These two 

models explained a basic idea of how information is propagated through links between 

nodes in a social network. However, both models simplified social networks based on an 

assumption that whenever a node is active, it always try to propagate the influence to its 

neighbors. Different behaviors of users are not reflected in these two models while 

formalizing the propagation of information in a social network[10].  

Wang, Qian, and Lu proposed an Extensional Independent Cascade (EIC) model. 

In the EIC model, the influence propagation between two adjacent nodes is no longer 

decided by only one probability. Instead, the propagation process is divided into two 

phases involving a spreading phase from an active node and an adopting phase from the 

inactive node being influenced. In the spreading phase, an active node decides whether to 

spread the influence to its neighbor nodes based on a spreading probability of ps. If the 

active node decides to spread out the influence to its neighbor nodes, the adopting phase 

is similar as in the original propagation process in classic IC model. In the adopting 

phase, each inactive node decides independently whether to adopt the influence based on 

an adopting probability of pa. Here, the concept of probability pa is the same as the 

probability p in the classic IC model. 

The EIC model added one more step in the process of influence propagation. The 

new propagation probability in EIC model should be the product of probability in 

spreading phase and probability in the adopting phase, such that probability of 
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propagation pp = pa ×ps. The propagation probability in EIC model is no longer decided 

only by the adopting probability p as in the classic IC model.  

To simulate in the EIC model, Wang et al. [10] used a similar greedy algorithm as 

used by Kempe et al. in the classic IC model[3]. In the classic IC model, the Hill-

Climbing greedy algorithm tries to decide whether each edge is valid in advance. They 

throw a coin with bias pu, w, where u is a newly activated node and w is its inactive 

neighbors. If the trial is successful, then the edge is claimed as a live edge, and if the trial 

is failed, the edge is claimed as a blocked edge. In the EIC model, each active node will 

first decide whether to propagate the influence in the spreading phase with probability ps. 

If it is successful, the active node will try to activate its neighbors with the adopting 

probability of pa. If the active node fails, all its out edges will be blocked, and there is no 

need to try the adopting phase. This is a delicate extension to the classic IC model.  

The EIC model can also be illustrated in an example of transmission of infectious 

diseases. If someone catches flu, he may decide to constrain the virus by completely 

isolating himself from his connections. In this case, all his connected people will be 

prevented from catching the disease. If the infected person does not constrain from 

spreading the virus, all his connections are under the danger of being infected as well. 

However, some of his connections may decide to actively protect themselves from the 

infected person by wearing protective equipment whenever in contact with the infected 

person, thus reduce the probability of being infected.  
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Figure 6: Classic IC model 

 

 

Figure 7: EIC model  

The comparison of classic IC model and EIC model is illustrated in Figure 6 and 

Figure 7. In the classic IC model (Figure 6), node u is an active that has accepted the 

influence and node w is one of u’s inactive neighbor nodes. There is only one probability 

pu, w that decides whether node w will be affected by node u. In contrast, in EIC model 

(Figure 7), each node splits into two nodes. One node is used to show if it is active and 

the other node is to show if it has spread the influence to its neighbor nodes. The first 

node has all the original node’s in-neighbors and the second node has all of its out-

neighbor nodes.  If a newly activated node u wants to propagate its influence to its out-

neighbor nodes, node u has to decide whether to spread the influence first. If node u 
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decides not to spread the influence, the edge between uc and uv is blocked. In this case, 

none of the out-neighbor nodes of u can be affected through path uc --> uv --> wc. No 

mater how easily a neighbor node of u can be affected by its influence, the neighbor node 

will not have a chance of being influenced because node u decides not to spread the 

influence.  

Time-Delayed IC model 

The EIC model is only one example of modification to the classic IC model. 

There are other models that try to extend the classic IC models based on different 

constraints. Chen, Lu and Zhang[11] proposed a Time-Delayed IC model that handles the 

situation where the influence of an active node cannot reach its inactive neighbor nodes 

immediately.  

In Time-Delayed IC model, Chen et al. proposed that the process of influence 

propagation in social networks has a postponed phenomenon. This postponed 

phenomenon is created by the fact that not all users are available on the social networks 

at a given time. A users need to log into social networks to check updates from his 

neighbors. When an active node tries to propagate influence to its inactive neighbors, the 

process of propagation has to pause if the inactive neighbor is offline. When an inactive 

user cannot see the new updates from his active neighbor, he cannot be affected by the 

influence propagated to him. Only after the inactive user log into the social networks can 

he receive the influence. The process after this initial step of postpone is the same as 

classic IC model. The inactive user will decide whether to be influenced based on the 

propagation probability between him and the active user.   
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In Time-delayed IC model, each edge is given a meeting probability to decide the 

time-delay value in addition to the normal propagation probability. Before each 

experiment, they first decide the time delay value by throwing a coin with bias pm that is 

the probability of two users meet on the social network. 

Seed-node Selection Algorithms 

As discussed in the previous section, the study of influence maximization focuses 

on three areas, i.e. designing propagation models, optimizing seed-node selection 

algorithms, and exploiting the structure of social networks. I will focus on optimizing 

seed-node selection algorithms in this section. 

Influence maximization is the selection of a seed node set in order to reach the 

maximum number of other nodes when influence propagates in social networks. Seed-

node selection algorithms play a key role in the study of the influence maximization. 

There are two metrics to measure a seed node selection algorithm, efficiency and quality. 

Efficiency is important for a seed-node selection algorithm. A good algorithm should be 

able to scale up to a large data set with the ever-expanding size of popular social 

networks in millions or billions. If a seed-node selection algorithm can only handle a 

small data set, it is useless to real social network study.  

Quality is the other important metrics of seed-node selection algorithm. A good 

algorithm is not only fast and scalable, but it also should give a correct answer. If there is 

an optimal solution of seed-node selection, a good algorithm should be able to find these 

optimal seed nodes. Less ideally, a qualified seed-node selection algorithm should return 

a near optimal solution. Unfortunately, influence maximization problem is NP-hard in 
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both the LT Model and the IC Model[3]. There is only provable approximation for the 

optimal solution.  

Hill-Climbing Algorithm 

Kempe et al.[3] proposed the first provable approximation solution by using Hill-

Climbing algorithm. They proved that the Hill-Climbing algorithm guarantees to achieve 

an approximation solution with a factor (1- 1/e – ε) to the optimal solution in both the LT 

Model and the IC Model. Here e is the natural logarithm base and ε is a small positive 

real number. This algorithm is based on the theory of submodular functions[12].  

Kempe et al. proved their approximation by using the submodular property of the 

function. Any function f is submodular if it has the property of “diminishing return 

value”. The property can be expressed as the following formula 1[3]: f (S ∪ {v})– f (S) ≥ f 

(T ∪ {v}) – f(T). Here, S and T are two sets and S is a subset of T. v is a new element that 

does not belong to any of the two sets. The above function can be explained as the 

following: if we add a new element to a set S, the extra return value from the newly 

added element will not be less than the return value if we add it to a superset of the 

current set, set T. In other words, the earlier we add a new element to a set, the more 

return value we can obtain from this element.  

The influence maximization problem has the property of “diminishing return 

value”. We can think of seed node selection as a discrete process. Each time we add a 

new seed node to the set of already selected nodes. For any specific selected seed node, 

we will not expect more return value from it if we choose it as a seed node later. 
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In order to obtain an accurate estimation, Kempe et al. run Monte Carlo 

simulation sufficient number of times (20,000) for selecting each seed node. Chen et al. 

gave an implementation of the Hill-Climbing algorithm[6] (See Figure 8). If we want to 

select k initial seed nodes from a social network, one node per step, we need to calculate 

all possible selections to select the most influential node in each step. Then the time 

complexity of the Hill-Climbing algorithm is O (kRmn), in which m is the number of 

nodes, and n is the number of edges. Clearly, the greedy algorithm is not efficient. 

Although greedy algorithm guarantees the quality of seed nodes selection, it is not 

efficient enough for large-scale social networks. There are many following studies trying 

to improve efficiency of this algorithm. 

 

Figure 8:  Hill-Climbing Algorithm 

CELF Algorithm 

The biggest drawback of the Hill-Climbing greedy algorithm is low efficiency. 

Even selection of a small seed set in a moderate large social network took days[3]. 

Leskovec et al. tried to solve this problem using an improved greedy algorithm named 
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Cost-Effective Lazy Forward (CELF)[4]. By exploiting the property of submodularity of 

social networks, they greatly reduced the number of candidate nodes. In each step, they 

only evaluated a few candidate nodes to obtain an efficient solution that is scalable to a 

large dataset. Their experiment showed that they would get a near optimal solution while 

being 700 times faster than the simple Hill-Climbing greedy algorithm.  

Further effort of reducing the running time of the greedy algorithm was carried by 

Goyal et al.[5]. They proposed an improved CELF algorithm called “CELF++” that 

further decreases the running time by 35%-50% compared to the CELF algorithm.  

The Hill-Climbing algorithm and its improved versions can guarantee quality in 

seed node selection. By using greedy algorithms, we can always obtain an approximation 

solution to the optimal solution within a factor. However, the efficiency limited the use of 

greedy algorithms in large data sets. 

Heuristic Algorithm 

To solve the efficiency problem of greedy algorithms, heuristic algorithms were 

applied in the seed-node selection phase. In contrast to greedy algorithms, heuristic 

algorithms may not provide the best result, but they are able to obtain an acceptable result 

in much less time. Two widely used heuristic algorithms are Degree-Centered algorithm 

and Distance-Centered algorithm.   

In Degree-Centered algorithm, the nodes that have a large number of connections 

in a social network, i.e. the high degree nodes, are deemed as influential nodes. The more 

out-neighbors a node has, the more influence it is believed to have in a social network. 

This is a simple and intuitive assumption. However, a known phenomenon in social 



  
 

31 

network is that high degree nodes tend to connect to each other. Therefore, if only high 

degree nodes are selected as seed nodes, these seed nodes will have a large overlap with 

each other. The overlapped nodes will not bring any additional value to the set of seed 

nodes to maximize influence propagation. 

In Distance-centered algorithm, influential nodes are determined by computing 

the average distance from each node to other nodes in a social network. The nodes that 

have a smaller average distance to other nodes are the candidates for seed nodes. 

The Degree-Centered algorithm can achieve better influence propagation than 

other heuristic algorithms[3], but it is still not as good as greedy algorithms. In general, 

heuristic algorithms were not studied extensively in the research field because of the low 

expectation of quality. However, Chen et al. proposed an improved heuristic algorithm in 

IC Model[6]. This improved heuristic algorithm performed comparably to greedy 

algorithms. Importantly, this algorithm significantly reduced the running time in the seed-

node selection phase with six orders of magnitude.  

In this new heuristic algorithm, Chen et al. introduced the concept of “discount” 

to the degree of a node. The logic is that when a node is selected as a seed node, its 

neighbor nodes will become less influential to the social network. Therefore, there should 

be a discount on the neighbor nodes. They proposed two methods to discount the degree 

of a node. The first method is called “Single Discount”, in which the degree of all 

neighbor nodes of a selected seed node is reduced by one. The second method is more 

complicated. For each newly activated node, it will calculate the affection to its inactive 

neighbor nodes. 
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SOLUTION FRAMEWORK 

In this section, I study how to maximize the speed of influence propagation in 

social networks. I extended the classic IC model to a Continuous Dynamic Extended 

Independent Cascade (CDE-IC) model. In addition, I proposed a novel heuristic 

algorithm and evaluate the algorithm using two large academic collaboration data sets. 

Comparing with previous classic heuristic algorithms on the CDE-IC model, the new 

algorithm achieved higher speed of influence propagation. Furthermore, I discuss how to 

decide the parameters in the propagation model by exploiting the structure of social 

networks.  

Design of Propagation Model 

The Extensional Independent Cascade (EIC) model extends the process of 

influence propagation from one phase in classic IC model to two phases involving a 

spreading phase and an adopting phase[10].  In EIC model, the probability of propagation 

(pp) is decided by the probability of spreading (ps) and the probability of adopting (pa).  

The EIC model with two phases in propagation process is a good extension to the 

classic IC model, and it is more close to reality in social networks. However, The EIC 

model has the same drawbacks as the classic IC model, in that the propagation process is 

one-time and static.  

One-time refers to the assumption that a newly activated node will only try to 

propagate the influence to its neighbors once. If a node turns into active status in step t, it 

will try to propagate its influence to its inactive neighbor nodes in step t+1. No matter 
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what the result is, it will not try in later steps. Although this is simple for modeling the 

process of influence propagation, it does not reflect the reality in social networks. For 

example, if one of your friends posts a message on Facebook “Hey guys, I just got a new 

iPhone 6!!!!” What is your reaction? You probably will not go out and buy a new iPhone 

6 right away. Then, what is your reaction if this friend keeps bragging about his new 

phone everyday? Now you may be more likely to purchase one as well after keeping 

seeing the great features of the new phone. The classics IC and EIC model will not able 

to simulate this situation.  

Static in EIC model means that the probability of propagation does not change 

with time. The probability of propagation remains the same throughout the whole process 

of influence propagation. 

In this paper, I propose a new improvement on the EIC model to take into 

consideration of continuous influence, and also the dynamic nature of influence 

propagation. In this Continuous Dynamic Extended IC (CDE-IC) Model, an active node 

will keep propagating influence to its neighbor nodes until there are no more neighbor 

inactive nodes or the process of influence propagation stops. Furthermore, the probability 

of propagation between two nodes will change with time. In my experiments, I will study 

the CDE-IC model in two steps. In the first step, I extend the EIC model to Continuous 

Extended IC (CE-IC) model that studies the continuous influence of an active node. In 

the second step, I will improve the CE-IC model to CDE-model, in which the probability 

of propagation will change with time.  



  
 

34 

The process of influence propagation in CDE-IC model is shown in Figure 9. 

Suppose all edges in Figure 9 have a probability of ½. At time 0, node A is selected as a 

seed node. At time 1, node B turns active under node A's influence. At time 2, node B 

propagates influence to its neighbor node C and node E. At time 3, although node A fails 

to influence node D at time 0, it gets another opportunity and succeeds. Node D becomes 

active, so does node F. The influence process stops at time 3.  

The key difference between CE-IC Model with classic IC Model or EIC model is 

that an active node will have multiple chances to propagate its influence. If it fails the 

first time, it still has a second or a third chance to propagate. In CE-IC model, all 

activated nodes need to be considered in each step.  

 

Figure 9: Influence propagation in CDE-IC model  

Optimization of Seed-node Selection Algorithms 

Efficiency and quality are two metrics to measure seed-node selection algorithms. 

The Hill-Climbing greedy algorithm and its improvements can provide guaranteed 
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approximation solution to optimal seed node selection, but they are not efficient enough 

to scale to large social networks. Traditional heuristic algorithms such as Degree-

Centered algorithm and Distance-Centered algorithm are efficient in seed nodes 

selection, but they do not have comparable results to Hill-Climbing greedy algorithm. 

Chen et al. have shown that a properly improved heuristic algorithm can achieve a 

comparable result to greedy algorithms, but with several orders of magnitude faster[6].  

In my paper, I propose a new improved heuristic algorithm called Zero-Discount. 

I will test four algorithms, Random, Distance-Centered, Degree-Centered and Zero-

Discount in the seed-node selection phase. Distance-Centered and Degree-Centered 

algorithms are discussed in previous sections. Random algorithm is selecting seed nodes 

uniformly and randomly from a given social network. Zero-Discount is an improved 

Degree-Centered algorithm inspired by the work from Chen et al[6].  

In Single-Discount algorithm, the degree of an inactive node is decreased by one 

each time one of its neighbors turns into an active status. The reason the degree of an 

inactive node is discounted is because when a neighbor of an inactive node is selected as 

a seed node, the inactive node is no longer as influential as before, at least it will not 

affect its newly affected active neighbor node. The reason of Degree-Centered method 

cannot behave as well as greedy algorithms in quality is that there is a high degree of 

overlapping between high degree nodes. If we only select nodes with the highest degree 

into the seed nodes set, they will greatly weaken each other in the process of influence 

propagation.  
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To extremely exploit the fact of overlapping between high degree nodes, I 

propose Zero-Discount algorithm. In this algorithm, if a node is selected as a seed node, 

the degree of all of its out-neighbor nodes will be set to zero. This assumption is 

reasonable especially in my CDE-IC model. Because the propagation process of my 

model is continuous, an active node will keep trying to propagate its influence to its 

neighbor nodes. If the probability of propagation between two nodes is p, it only needs 

1/p on average attempts to succeed. Suppose the probability of propagation is 0.2, an 

active node needs an average of five times to succeed. In this condition, we can safely 

remove all out-neighbor nodes of a seed node without impairing performance 

significantly. In other hand, evenly distributed seed nodes increase the chance to 

propagate influence in social networks.  

Estimation of Propagation Probability  

In CDE-IC Model, the propagation probability between two nodes is determined 

by the spreading probability and the adopting probability. The probability can be 

estimated by three methods. The first method is to set the probability to a uniformed 

random value from [0,1], or a fixed value like ½. This method is used when it is hard or 

impossible to know the probability. However, setting the probability to a random fixed 

value does not reflect any property of real social networks.  

The second method is to use data mining techniques to analyze past record in 

social networks. For example, we can analyze all the records between individuals on 

Twitter. By analyzing the historical logs in previous events, we can get an idea of how 

nodes interact with each other, thus a more precise probability value can be assigned. 
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This method has been well discussed previously[13]. However, this method is costly and 

slow, considering the large size of logs of a popular social network.  

Because of the limitation of the above two methods, I propose a third method that 

assigning each edge an estimated probability value by analyzing the characters of social 

networks. I categorize influence sources into three classes, Star Effect, Peer Pressure and 

Social Trend. Star Effect refers to the influence coming from celebrities. They are role 

models to society and have many followers on social networks. You keep following their 

updates. However, their life is very different from yours and they may not influence you 

as much as you are by your friends. Peer Pressure refers to the influence coming from 

someone closely connected. You two not only meet in social networks, but also 

frequently communicate in daily life. He/she could be your families or childhood friends. 

These people that are closely connected to you have a strong force to affect your 

decision. Social Trend refers to the influence coming from the whole social network. If 

more and more people in social networks are under certain influence, the probability of 

an inactive node turning into active node will also increase. 

In CDE-IC model, the propagation probability is determined by the structure of 

social networks. Similar to EIC model, the propagation process is divided into two phases 

of spreading phase and adopting phase. The probability of propagation is the product of 

spreading probability and adopting probability, both of which are decided by the structure 

of social networks.  

The spreading probability of a node is the tendency of the node to spread its 

influence to its neighbor nodes. The more active a node is in social networks, the more 
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likely it will spread an influence.  A user who publishes hundreds of posts in Facebook is 

more likely to spread new information to his friends than a user who posts once a week.  

The most active users can be identified by analyzing past logs in social networks. 

However, this process is costly and time consuming. As a simplification, we may assume 

the users who have the largest number of out-neighbor nodes as the most active nodes. 

This is a reasonable simplification. The number of friends of a person reflects his 

popularity in social networks. A social person is more likely to share new technologies or 

information with his friends.  

Based on this simplification, a different spreading probability is given to each 

node according to its degree in social networks. High degree nodes will have higher 

spreading probability than low degree nodes. This is similar as Degree-Centered heuristic 

method in classic IC model.  A maximum spreading probability pmax is given to the node 

with the highest degree (pmax≤1) and a lower spreading probability is given to the node 

with a lower degree. An isolated node in a social network will have a spreading 

probability of 0. The other node with degree between 0 and the highest degree will be 

assigned a probability value based on a linear function, either by degree number or 

percentage in all nodes. The spreading probability is decided as the following formula 2: 

ps = pmin + (pmax – pmin)  (Degree(node) – Degreemin) / (Degreemax – Degreemin), in which 

degrees are out-degree of a node. 

The estimation of adopting probability is more complicated. I will estimate the 

value of adopting probability according to the source of influence. For example, if two 

persons, your best friends and a celebrity, try to persuade you to try a new technology, 
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whom will you believe more? More likely, you will take the advice from your best 

friends. The reason that your friend is more persuasive is because he/she spends more 

time/energy with you. If the energy value of each node is set to 1, this energy of 1 will be 

divided among all out-neighbor nodes of the node. As a high degree node has more out 

neighbor nodes, each neighbor node of it will only have a small fraction of its energy. 

Specifically, because a node needs a series of actions to persuade its neighbor 

nodes, a high degree node could not give much attention to every one of its out neighbor 

nodes. In contrast, a node has a relative small out-degree value could spend more time 

with its neighbors. A friend of yours, who does not have so many connections with others 

in social networks, is more likely to keep talking with you and answering your questions. 

For that reason, you will be more likely to accept his suggestion.   

The adopting probability of each edge is estimated in the following three steps. 

Firstly, check all in-neighbor nodes of a node. Secondly, calculate how much energy each 

in-neighbor node spends on it. Thirdly, normalize the total energy. The adopting 

algorithm is shown in Figure 10. 
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Figure 10: Estimation of Adopting Probability 

In addition, it has been demonstrated that the probability of influence shows an 

exponential decay behavior[13]. To model this decay behavior, I introduce a time factor 

into the estimation of adopting probability in CDE-IC model. The decay of adopting 

probability is decided as in the following formula 3: 

 pa(t) = pa(t0)  e-(t-t
0

)/	  τ	   	  

The adopting probability of a node will decrease with time in exponential number. 

τ is called the mean lifetime. The initial probability pa (t0) is the adopting probability 

when this inactive node is first exposed to an influence. Pa is maximal at this initial time. 

As time goes on, the inactive node will lose interest and become less likely to adopt an 

influence.	  

As discussed above, the propagation probability is estimated by the structure of 

social networks. The nodes with high out-degree in social networks represent celebrities. 

They are active in social networks and more likely to spread new influence to the public. 

Such nodes have a high spreading probability. However, the celebrities are not closely 

connected to each of his followers. When people receive influence from such nodes, the 
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probability of adoption is relatively low. In contrast, the nodes with low out-degree are 

average people in social networks. In fact, the low out-degree nodes are the main 

component of most social networks. Such nodes will not publish as many posts like 

celebrities, but their posts have a bigger influence on its connections. For example, if 

your friend posts in your Facebook wall, he does want to share something with you and 

think you may like it as well. Although such node has a relatively lower spreading 

probability, the adopting probability is higher.  

Social Trend also has an influence on the propagation probability. When a new 

technology was first introduced to the public, it is difficult for people to accept it 

immediately. As more and more people accept the new technology, the propagation 

probability will also increase with time.  The effect of Social Trend can be estimated by 

the percentage of active nodes in a social network.  The effect of Social Trend will also 

be added into the estimation of propagation probability.  

Data Sets 

In order to test algorithms on the CDE-IC model, I choose two real world data 

sets from www.arXiv.org. The data sets consist of academic collaboration networks that 

are believed to be a good simulation of social networks. In this data set, each node is an 

author and an edge between two nodes means there is collaboration between two authors, 

i.e. co-authorship on a paper. If there are more than one collaborations between two 

authors, the edge is given a higher value. If there are more than two co-authors in one 

paper, there will be edges between any two of the authors. I choose two different sized 
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data set, High Energy Physics (hep) data set and Physics (phy) data set, in my 

experiments. hep has 15k nodes and 59k edges, and phy has 37k nodes and 231k edges. 
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EXPERIMENTS 

In this paper, I study how to maximize speed of influence propagation in social 

networks. I compared four heuristic methods, including three popular methods (Random, 

Distance-Centered, and Degree-Centered) and my improved Zero-Discount method on 

the Continuous Dynamic Extended IC (CDE-IC) Model. I evaluated the results on two 

large academic collaboration data sets obtained from www.arXiv.org.  

I will study the CDE-IC model in two steps. In the first step, I extend the EIC 

model to Continuous Extended IC (CE-IC) model that studies the continuous influence of 

an active node. In the second step, I will improve the CE-IC model to CDE-IC model, in 

which the probability of propagation will change with time. The propagation probability 

is the product of spreading probability and adopting probability, which are estimated 

based on structure of social networks (see section of Estimation of Propagation 

Probability)  

In order to study the speed of influence propagation in social networks, the 

process of influence propagation will be discrete, which means each active node can only 

propagate influence one step further in a unit time (a second/an hour/a day). Thus, an 

active node can only affect it’s directed out-neighbors in a unit time. By recording how 

many nodes are affected in each step, we know both the instant speed at each step and the 

average speed of the whole process in influence propagation. Each method is run 100 

times to obtain an average result. I compare the running time in seed nodes selection 

phase and influence propagation speed to analyze the efficiency and quality of each 

method. 



  
 

44 

Seed-node Selection Algorithms Comparison in CE-IC Model 

I use two data sets (hep and phy) obtained from www.arXiv.org to test my CDE-

IC model and novel Zero-Discount heuristic algorithm. These data sets are academic 

collaboration results that are believed to be a good simulation of social networks. Each 

node in the data sets represents an author, and two of co-authors of a paper are connected 

by an edge. If they have co-authored more than one paper, a different weight value is 

given to edge. If there are more than two co-authors in one paper, any two of them are 

connected by an edge. There are 15233 nodes and 58891 edges in hep data set, and 37154 

nodes and 231584 edges in phy data set.   

Comparison of Efficiency 

Efficiency and quality are two metrics to evaluate seed-node selection algorithms.  

The efficiencies of four algorithms (Random, Distance-Centered, Degree-Centered, and 

Zero-Discount) are analyzed by comparing the running time in seed-node selection phase. 

Seed nodes size is 20 and the running time unit is millisecond. 

Table 1. Running time of Seed-node Selection Algorithms (ms) 

 hep phy 

Random 1 1 

Distance-Centered 13613 186193 

Degree-Centered 45 70 

Zero-Discount 143 230 
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Random method is the fastest among the four methods. As Random algorithm 

does not consider any characters of social networks, the running time of Random 

selection is only related to size of seed nodes, and is not affected by number of nodes and 

edges in a social network. One approach to randomly select seed nodes is to randomly 

sort the nodes first, and then select the first k nodes as seed nodes. The running time of 

this approach is O (m). Alternatively, considering the seed node size is very small 

comparing to the number of total nodes, we may also just randomly select a node and put 

it in the seed nodes set. If the node is already in seed node set, we can simply select 

another node until we have k nodes from the social networks. Random algorithm of this 

approach is shown in Figure 11. The running time is O(k). 

 

Figure 11: Random Seed-node Selection Algorithm 

Distance-Centered is the slowest in these four heuristic methods and does not 

scale well with large data set. The number of nodes, and more so the number of edges, 

greatly affects the efficiency of Distance-Centered method. This method has to select 

each node as a root in social networks to calculate the average distance to all other nodes. 

If two nodes are directly connected, the distance is one. If the root cannot reach another 

node, the distance between them is marked as n (n is the total number of edges). A 
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distance with value n is the maximum possible value between any two nodes. It takes 

O(n) for a root to reach all other nodes. The total time to calculate average distance of all 

nodes is O(mn). We can use a quick selection algorithm to find k seed nodes with the 

smallest average distance to all other nodes in social networks, which takes O(m). So the 

total running time of Distance-Centered selection algorithm is O(mn). The Distance-

Centered algorithm is shown in Figure 12. 

 

   

Figure 12: Distance-Centered Seed-node Selection Algorithm 

Degree-Centered algorithm is much more efficient than the Distance-Centered 

algorithm. Time complexity of is O(m + n), much efficient than Degree-Centered 

algorithm. In Degree-Centered algorithm, each node does not need to reach all other 

nodes in social networks, as in Distance-Centered algorithm.  

My novel Zero-Discount heuristic algorithm is an improvement over the Degree-

Centered algorithm. It runs slower than Degree-Centered algorithm to check more nodes, 

but it is still much efficient than Distance-Centered algorithm. In Zero-Discount 

algorithm, if a node is selected as a seed node, the degree of all its out-neighbor nodes 
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will be set to zero. Actually, there is no need to sort the nodes according to out-degree 

again. Instead, all out-neighbor nodes of a seed node is set to zero degree and put to the 

end of queue at each step. Since the size of seed nodes is much smaller than the total 

number of nodes, we can maintain a heap of size k. Each time we select a new node, we 

will check if it has a larger degree than the nodes in the heap, and also if it is an out-

neighbor of any node in the heap. The time complexity of Zero-Discount is O (mlgk+n). 

The Zero-Discount algorithm is shown in Figure 13. 

 

 

Figure 13: Zero-Discount Seed-node Selection Algorithm 

In summary( as Table 2), Random algorithm is the most efficient algorithm. 

Distance-Centered algorithm is the least efficient algorithm since it needs to reach as 
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many other nodes as possible from each node. My novel Zero-Discount algorithm is 

slower than Degree-Centered algorithm, but significantly faster than Distance-Centered 

algorithm.  

Table 2. Time Complexity of Seed-node Selection Algorithms 

Algorithm Time Complexity 

Random O(k) 

Distance-Centered O(mn) 

Degree-Centered O(m+n) 

Zero-Discount O (mlogk+n) 

 

The experiments in seed-node selection phase show that my novel Zero-Discount 

algorithm has a comparable efficiency to the Degree-Centered algorithm, and 

significantly better efficiency than Distance-Centered algorithm. Zero-Discount is about 

100 times faster than Distance-Centered method. It can also be scaled up to larger social 

networks.   

Comparison of Quality 

In this section, I will compare the quality of seed-node selection algorithms by 

analyzing how fast influence propagate in a social network. I run experiments on two 

data sets with seed nodes of size 20 and 50 respectively. Each experiment will run in 40 

units time. The total number of active nodes at the end of step 40 reflects the average 
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speed over the process of influence propagation. The number of newly activated nodes in 

each step reflects the instant speed of influence propagation.  

In the first step, I extend the EIC model to Continuous Extended IC (CE-IC) 

model that studies the continuous influence of an active node. In the second step, I will 

improve the CE-IC model to CDE-model, in which the probability of propagation will 

change with time. In addition, a correction factor to propagation probability will be 

introduced to take into account the effect of Social Trend.  



  
 

50 

 

Figure 14: Average Propagation Speeds in CE-IC Model (hep k=20) 

 

Figure 15: Instant Propagation Speeds in CE-IC Model (hep k=20) 

Comparison of the average speed of influence propagation using four heuristic 

algorithms is shown in Figure 14. The size of seed node is 20. I used hep data set to test 
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the four algorithms in CE-IC model. As expected, Random algorithm has the slowest 

average propagation speed because Random algorithm does not consider any characters 

of social networks. Although randomly selecting seed nodes is fast in the seed node 

selection phase, this method is useless in promoting influence propagation. Degree-

Centered is regarded as the best heuristic algorithm and is widely used. It is about 15% 

faster than Distance-Centered algorithm (Figure 14). My Zero-Discount algorithm has the 

fastest average propagation speed among the four algorithms. Although Zero-Discount 

algorithm is slower in the seed node selection phase than Degree-Centered algorithm, it 

increased the propagation speed by 9%.  

The instant propagation speed is shown in Figure 15. Random selection is still the 

slowest with an instant speed of close to 0 at most steps. There are two important features 

in this graph. Firstly, both Degree-Centered and Zero-Discount algorithms have 

significantly fast instant speeds at the initial steps of influence propagation. This initial 

fast instant speed is generated by inclusion of high degree nodes in the seed nodes and is 

the major contributor to the fast average speeds of Degree-Centered and Zero-Discount 

algorithms seen in Figure 14. At the later steps of influence propagation, the instant speed 

of Degree-Centered algorithm declined and was similar to Distance-Centered algorithm. 

Secondly, although the instant speeds of Zero-Discount algorithm also declined at 

later steps, there were several minor spikes during influence propagation such like data 

point 20 and data point 30. The difference in instant propagation speed between Degree-

Centered and Zero-Discount algorithm is that Degree-Centered algorithm only selects 

high degree nodes, and there is a large overlapping between the high degree nodes. As 
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the influence propagation proceeds, these high degree nodes add little additional value to 

the propagation process. In contrast, Zero-Discount algorithm tries to diversify seed 

nodes selection by eliminating neighbor nodes of already selected seed nodes, and adding 

high degree nodes from isolated sub-networks as seed nodes. As influence propagation 

proceeds, these small isolated sub-networks can be connected. That is why Zero-Discount 

algorithm performs better than Degree-Centered algorithm at the later steps of influence 

propagation.  

 

Figure 16: Average Propagation Speeds in CE-IC Model (hep k=50) 

Next, I explored how seed-node size affects the speed of influence propagation. 

Seed-node size of 50 was used for the same data set hep. The average propagation speeds 

of the four algorithms are shown in Figure 16. Obviously, increase of seed node size 

significantly increased propagation speed of all algorithms (Figure 16 vs. Figure 14). 

Similar to results obtained with a seed-node size of 20, Zero-Discount algorithm has the 
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fastest average propagation speed among the four algorithms. In addition, the average 

propagation speed of Zero-Discount algorithm is about 18% faster than Degree-Centered 

algorithm, even better than the result with the seed node size of 20. This result indicates 

that the drawback of Degree-Centered algorithm is more prominent with increasing of 

seed-node set. The Zero-Discount algorithm has more advantage over Degree-Centered 

algorithm in larger seed-node selection. 

 

Figure 17: Instant Propagation Speeds in CE-IC Model (hep k=50) 

The instant propagation speed is shown in Figure 17. It is more obvious that even 

Zero-Discount loses more speed at the first step, however, Zero-Discount can almost 

beats Degree-Centered in the following steps.  

To test if the faster propagation speed of Zero-Discount algorithm is also true for 

other data sets, similar experiment were run in a larger data set, the phy data set. The 
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average and instant propagation speeds are shown in Figure 18 and Figure 19, 

respectively. Consistently, Zero-Discount algorithm has the fastest average and instant 

propagation speeds among all four algorithms. Distance-centered algorithm performed 

much worse in this experiments. One reason of this low performance could be that the 

selected seed nodes have a lower propagation probability. 
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Figure 18: Average Propagation Speeds in CE-IC Model (phy k=20) 

 

 Figure 19: Instant Propagation Speeds in CE-IC Model (phy k=20)  

 

 

0	  

500	  

1000	  

1500	  

2000	  

2500	  

3000	  

1	   3	   5	   7	   9	   11	  13	  15	  17	  19	  21	  23	  25	  27	  29	  31	  33	  35	  37	  39	  

Random	  

Distance	  

Degree	  

ZeroDiscount	  

0	  

10	  

20	  

30	  

40	  

50	  

60	  

70	  

80	  

90	  

100	  

1	   3	   5	   7	   9	   11	  13	  15	  17	  19	  21	  23	  25	  27	  29	  31	  33	  35	  37	  39	  

Random	  

Distance	  

Degree	  

ZeroDiscount	  



  
 

56 

Seed-node Selection Algorithms Comparison in CDE-IC Model 

In the above experiments, Zero-Discount algorithm always has the fastest 

propagation speed among the four heuristic algorithms in the CE-IC model. Next step, I 

will add dynamic property into model to test if Zero-Discount is still the best in CDE-IC 

model when propagation probability changes with time. According to formula 3, the 

adoption probability of a node will decrease with time in exponential number. I set the 

half time period to 20, which is half of experiment units. I will also record at which step 

each active node tries to propagate influence at initial time for relative edges. I will test 

CDE-IC model with seed nodes set of size 50. 

 

 

Figure20: Average Propagation Speeds in CDE-IC Model (hep k=50) 

In Figure 20, we can infer similar conclusion as in CE-IC model. We can also see 

clearly the effect of exponential decreasing in adoption probability. First, the total 
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number of affected nodes in CDE-IC model is less than CE-IC model with the same 

conditions. In CE-IC model, Zero-Discount method can reach 1413 nodes on average. 

However, in CDE-IC model, only 902 nodes on average are under influence, which is 

about 1/3 less. Second, the curves in CE-IC model is more like straight line, which means 

the newly affected nodes is increasing at steady pace. Contrastingly, we can see the 

decrease in trend of the curve in CDE-IC model. 

Both CE-IC model and CDE-IC model show that my novel Zero-Discount can 

always beat all the other heuristic methods with best quality of seed nodes set. Using my 

Zero-Discount method, we can expect a higher speed of influence propagation in social 

networks. 

Finally, we can add a small correction factor to probability if considering Social 

Trend. However, this value is significant only when a large part of the social networks is 

under influence. Since we are studying speed of influence propagation, which is more 

meaningful in a short period, when not so many nodes under influence, we can safely 

ignore it. 
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CONCLUSION 

In this paper, I studied how to maximize speed of influence propagation in social 

networks. I proposed a new Continuous Dynamic Extended IC (CDE-IC) Model, which 

is an improved modification of the Extensional Independent Cascade (EIC) Model. The 

original EIC model has two drawbacks: first, an active node can only try to propagate its 

influence to its neighbors once; second, the propagation probability does not change 

between nodes. Both of these problems are solved in my CDE-IC model. 

I ran four algorithms in CDE-IC Model, Random, Distance-Centered, Degree-

Centered and my novel Zero-Discount method. Experiments on two data sets with 

different sizes of seed nodes all showed that my Zero-Discount method performed better 

than any other heuristic methods. The previous best method, Degree-Centered, was 9%-

18% slower than my method. 

In order to give a reasonable probability between two nodes, I tried to recognize 

the source of influence. Depending on whether the influence is from Peer Pressure or Star 

Effect, I calculated the probability differently, reflecting the structure of social networks. 
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FUTURE WORK 

Future directions in the study of maximizing of speed of influence in social 

networks may include: First, I only studied how to extend a classic IC model. It can also 

be extended LT model. Second, in the current model, a node can only change from 

inactive status to active status. It can be modified to allow changes in both directions to 

model a negative effect. Third, greedy algorithm can be compared with heuristic 

algorithm. 
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