
San Jose State University
SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

Spring 5-13-2015

Using Probabilistic Graphical Models to Solve NP-
complete Puzzle Problems
Fengjiao Wu
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

Part of the Artificial Intelligence and Robotics Commons, and the Theory and Algorithms
Commons

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU ScholarWorks. It has been
accepted for inclusion in Master's Projects by an authorized administrator of SJSU ScholarWorks. For more information, please contact
scholarworks@sjsu.edu.

Recommended Citation
Wu, Fengjiao, "Using Probabilistic Graphical Models to Solve NP-complete Puzzle Problems" (2015). Master's Projects. 389.
DOI: https://doi.org/10.31979/etd.cyqv-avc3
https://scholarworks.sjsu.edu/etd_projects/389

https://scholarworks.sjsu.edu?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F389&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F389&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F389&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F389&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F389&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F389&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F389&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/389?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F389&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

Using Probabilistic Graphical Models to Solve NP-complete

Puzzle Problems

A Project

Presented to

The Faculty of the Department of Computer Science

San Jose State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

by

Fengjiao Wu

April 2015

© 2015

Fengjiao Wu

ALL RIGHTS RESERVED

The Designated Project Committee Approves the Project Titled

Using Probabilistic Graphical Models to Solve NP-complete Puzzle Problems

by

Fengjiao Wu

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

SAN JOSE STATE UNIVERSITY

April 2015

Dr. Sami Khuri Department of Computer Science

Dr. Teng Moh Department of Computer Science

Dr. Thomas Austin Department of Computer Science

ABSTRACT

Using Probabilistic Graphical Models to Solve NP-complete Puzzle Problems

Probabilistic Graphical Models (PGMs) are commonly used in machine learning

to solve problems stemming from medicine, meteorology, speech recognition, image

processing, intelligent tutoring, gambling, games, and biology. PGMs are applicable

for both directed graph and undirected graph. In this work, I focus on the undirected

graphical model. The objective of this work is to study how PGMs can be applied to

find solutions to two puzzle problems, sudoku and jigsaw puzzles. First, both puzzle

problems are represented as undirected graphs, and then I map the relations of nodes

to PGMs and Belief Propagation (BP). This work represents the puzzle grid as a

bipartite graph, which contains disjoint sets S and C such that the graph’s edges

connect vertices in S only with vertices in C, and vice versa. S contains all the cells. C

contains all constraint groups. Then, I apply the well-known sum-product message

passing (MP) algorithm, which is also known as BP. In the jigsaw puzzle problem, I

aim to reconstruct an image from a collection of square image patches. I use the

neighborhood pairwise compatibility and local evidence similarity to evaluate the

correctness of a reconstruction. The sudoku and the jigsaw puzzle problems are

known to be NP-complete [16, 6]. In this work, I implement the algorithms

mentioned above, and show that PGMs are quite successful in rapidly tackling these

two problems. I am able to solve 90% of hard sudoku puzzles within 17 rounds of MP.

The jigsaw images that are reconstructed by the chosen algorithm are reasonable.

ACKNOWLEDGEMENTS

I would like to express my profound gratitude to our beloved Dr. Sami Khuri,

Professor and Chair of Computer Science Department, for providing me this

opportunity to work with him. His professional guidance, technical support, and

continuous encouragement motivated me to challenge myself and make progress

throughout this project. I am obliged to Natalia Khuri for her willingness to spend so

much time and provide invaluable suggestions in all my endeavors.

I would also like to thank my committee members, Dr. Teng Moh and Dr.

Thomas Austin for their time and advices.

Table of Contents
1. Introduction .. 1

2. Background .. 4

2.1 Probabilistic Graphical Models (PGMs) .. 4

2.2 Existing Works ... 5

3. Building the Models .. 8

3.1 PGM of Sudoku Puzzle ... 8

3.2 Jigsaw Puzzle ... 11
3.2.1 MFR of Jigsaw Puzzle .. 11
3.2.2 Patch Compatibility ... 14
3.2.3 Local Evidence ... 15

4. Message Passing and Solution Check ... 18

4.1 Sudoku Puzzle ... 18
4.1.1 Message Passing ... 18
4.1.2 Solution Check.. 22

4.2 Jigsaw Puzzle ... 23
4.2.1 Message Passing ... 23
4.2.2 Solution Check.. 25

5. Evaluation and Performance Metrics .. 27

5.1 Required Number of MP Rounds for Sudoku ... 27

5.2 Evaluation Metrics for Jigsaw .. 27
5.2.1 Direct Comparison ... 27
5.2.2 Neighborhood Comparison ... 28

6. Implementation .. 29

6.1 Data Structures for Solving Sudoku Puzzle Problems 29

6.2 Implementation for Solving Jigsaw Puzzle Problems 35
6.2.1 Image Instance .. 35
6.2.2 Patch Compatibility ... 36
6.2.3 Local Evidence and Patch Dissimilarity ... 41

6.3 Challenges and Solutions during Implementation... 47

7. Results .. 49

7.1 Sudoku Experimental Results ... 49

7.2 Jigsaw Experimental Results ... 50

8. Conclusion and Future Work ... 52

8.1 Conclusion ... 52

8.2 Future work .. 53

9. References ... 54

10. Appendix .. 56

10.1 Java Source Code for Solving Sudoku Puzzles .. 56

10.2 Java Source Code for Solving Jigsaw Puzzles .. 65

List of Figures

Figure 1. A 9×9 sudoku puzzle. (a) The puzzle problem. (b) The solution. 1

Figure 2. Jigsaw puzzles. (a) A jigsaw puzzle with patches with unique shapes.

(b) A jigsaw puzzle with square patches. ... 2

Figure 3. A 4×4 jigsaw puzzle. (a) 16 unordered patches (b) The reconstructed

image. ... 3

Figure 4. A PGM example [14]. ... 5

Figure 5. A 9×9 sudoku puzzle with cell labels and constraints. 9

Figure 6. Factor graph associated with a 9×9 sudoku puzzle. 9

Figure 7. A jigsaw puzzle instance. (a) The reconstructed image grid. (b) The

original image grid. .. 11

Figure 8. MRF for a 4×4 jigsaw puzzle. .. 12

Figure 9. Left-right relationship between patch i and patch j. 14

Figure 10. A 9×9 sudoku puzzle. ... 21

Figure 11. Solution check procedure for sudoku puzzles. .. 23

Figure 12. A 4×4 jigsaw puzzle. ... 24

Figure 13. Solution check procedure for jigsaw puzzles. .. 26

Figure 14. The file that contains sudoku puzzles. .. 30

Figure 15. A Sudoku instance. ... 30

Figure 16. The unfinished puzzle by one round of MP. .. 34

Figure 17. The completed puzzle by 11 rounds of MP. .. 35

Figure 18. An 100×100 pixels image instance. (a) Original image. (b) 16 patches

derived from (a). ... 36

Figure 19. Location node xi takes patch 1. .. 37

Figure 20. Reconstructed image with one round of MP. .. 46

Figure 21. Reconstructed image with two rounds of MP. ... 46

Figure 22. Experimental results for 40 9×9 hard sudoku puzzles. 50

Figure 23. Experimental results for five 200×200 pixels images, with 100 and

400 patches respectively. ... 51

List of Tables

Table 1. The constraints’ neighborhood relationships... 31

Table 2. Cells’ neighborhood relationships... 32

Table 3. Initialized probabilistic messages. .. 33

Table 4. Number of left unassigned cells along with increasing number of MP. 35

Table 5. Neighborhood relationships. ... 38

Table 6. Patch compatibility with patch 0. .. 39

Table 7. Patch compatibility with patch 5. .. 40

Table 8. Patch dissimilarities between patches in the original image with

patches 0, 1, 5, and 9 in the low-resolution image, computed by Equation 8.

 .. 42

Table 9. Patch dissimilarities between patches in the original image with

patches 0, 1, 5, and 9 in the low-resolution image, computed by Equation

10... 43

Table 10. The procedure of sum-product computation of location 1 sending

messages to location 0, with normalization. .. 44

Table 11. The procedure of computing beliefs of location 0 taking patches in

{0,…,15}. .. 45

1

1. Introduction

Figure 1. A 9×9 sudoku puzzle. (a) The puzzle problem. (b) The solution.

Probabilistic Graphical Models (PGMs) use a graph-based representation as the basis for

compactly encoding a complex distribution over a high-dimensional space. I explore how PGMs

can be applied to undirected Markov Networks. This work focuses on two puzzle problems:

sudoku and jigsaw puzzles. First, I represent the two puzzles as undirected graphs called Markov

networks. Then, I map the relations of nodes to Markov Random Fields (MRFs) and perform

belief propagation. MRFs work well with the Neighborhood System and Clique. I apply MRFs

to our PGMs using the notations defined in chapter 3. S is a set of lattice points containing all the

points, which are denoted as s. I denote X as the value, and I define a set of neighbors of each S,

which are denoted as c. In an 𝑁 × 𝑁 sudoku puzzle, each cell is a point in S, and each point has

(N-1) neighbors. As to the jigsaw grids, a patch location is treated as a point in MRFs, and each

point has up to four neighbors: up, down, left, and right (corner points have two neighbors and

other edging nodes have four neighbors). In this way, the two puzzle problems are mapped to

MRFs, and I can perform the theory of message passing to them accordingly.

2

 Sudoku is a popular puzzle game. An 𝑁 × 𝑁 sudoku puzzle is a grid of cells partitioned

into N smaller blocks of N elements. The objective is to fill an 𝑁 × 𝑁 grid with digits so that

each column, each row, and each of the √𝑁 × √𝑁 sub-grid (all-different constraints) contains

all of the digits from 1 to N, as shown in Figure 1. Sudoku puzzles are mathematical problems,

and many people are interested in solving sudoku puzzles in their daily lives. Usually, people use

brute-force algorithm and randomly pick a proper number to fill the empty cell, or they choose

more reasonable numbers by inspection. Sudoku has been proven to be NP-complete [15]. In

mathematics, we treat sudoku puzzles as an instance of the graph-coloring problem [14].

I represent sudoku puzzles as bipartite graphs, which are defined as graphs whose vertices

can be divided into two disjoint sets, S and C, so that the graph’s edges connect vertices in S only

to vertices in C, and vice versa. S contains all the 𝑁 × 𝑁 cells in sudoku grids, and C contains

all the 3 × 𝑁 constraints in sudoku grids. In doing so, all the cells in an 𝑁 × 𝑁 sudoku puzzle

can be mapped to s ∈ S by assigning them labels from 1 through 𝑁2 in a row-scan order, and

all the constraints can be labeled from 1 to 3 × 𝑁 in a row, column, and small sub-grid order. In

this work, I focus on solving 9 × 9 sudoku puzzles.

Figure 2. Jigsaw puzzles. (a) A jigsaw puzzle with patches with unique shapes. (b) A jigsaw puzzle with square patches.

3

In the jigsaw puzzle problem, the objective is to reconstruct an image from a collection of

none overlapping image patches, which are sampled from an original image. Jigsaw puzzles are

very challenging games, and require expertise to solve. When it comes to mathematics, jigsaw

puzzle problems are proven to be NP-complete [6] when the pairwise affinity is unreliable, since

here I only deal with square patches. In reality, most jigsaw puzzles provide patches with unique

shapes, which contains crucial pairwise affinity information as shown in Figure 2 (a). The jigsaw

puzzle discussed in this work contains only square patches as shown in Figure 2 (b).

Figure 3. A 4×4 jigsaw puzzle. (a) 16 unordered patches (b) The reconstructed image.

Figures 3 shows an example of a jigsaw with 16 patches. The way that I map the jigsaw

puzzle to PGMs is to treat the location as nodes and patches as labels. Hence, the problem is

reduced to finding a patch configuration that is most likely on the graph.

In the next chapter, I will first explain the concept of PGMs, and then show the existing

approaches for solving the two puzzle problems: sudoku and jigsaw puzzle.

4

2. Background

2.1 Probabilistic Graphical Models (PGMs)

Probabilistic graphical models are graphs in which nodes represent random variables, and

the (lack of) arcs represent conditional independence assumptions. Hence, they provide a

compact representation of joint probability distributions. Graphical models, also called Markov

Random Fields (MRFs) or Markov networks, have a simple definition of independence: two (sets

of) nodes A and B are conditionally independent given a third set, C, if all paths between the

nodes in A and B are separated by a node in C [11]. By contrast, directed graphical models also

called Bayesian Networks or Belief Networks (BNs), have a notion of independence, which

takes into account the directionality of the arcs, as I explain below. Undirected graphical models

are more popular with physics and vision communities, and directed models are more popular

with the AI and statistics communities. (It is possible to have a model with both directed and

undirected arcs, which is called a chain graph.)

5

Figure 4. A PGM example [14].

In undirected graph, variables might not be in a “causality” relation, but they can be

correlated, such as the pixels in a neighborhood in an image. An undirected graph over a set of

random variables {X1, . . . ,Xn} is called an undirected graphical model or Markov random field

(MRF) or Markov network, as shown in Figure 4.

2.2 Existing Works

 Sudoku puzzles have been solved by computer-based solutions with humanly specified

tricks. The most accurate method is brute-force, but with high time cost, which is Ο(NM), where

N is the size of the grid and M is the number of empty cells. This solution is guaranteed to find

the correct result as long as the sudoku puzzles are solvable. However, for some hard sudoku

puzzles, which have 50 to 60 empty cells in a 9 × 9 puzzle, it will be very time consuming. The

idea of using PGMs to solve sudoku is greatly motivated by the success of applying PGMs and

6

BP to decode the low-density parity-check (LDPC) code [2]. In LDPC decoding, the information

about received bits that are contained in the relative constraint is aggregated through a

neighborhood that contains the previous received information. Similarly, each sudoku cell is

mapped with 3 constraints and thus 3 groups of neighborhood systems. Since sudoku and LDPC

decoding share similar structures, I am able to apply BP to sudoku as well.

 Todd K. Moon and Jacob H. Gunther demonstrated how BP works for solving sudoku

puzzles in [3], and provided a successful instance solved by BP and a biased failed instance due

to the loopy propagation caused by loops in sudoku puzzles. Sheehan Khan et al., proved that a

heuristic algorithm that combines BP and Sinkhorn balancing will avoid the increasing impact of

loopy propagation along with the size of sudoku puzzles [4]. They also combine the sum-product

and max-product, which are two traditional methods when using BP, thus reduced the time

complexity from either methods from Ο(𝑁𝑀) to Ο(𝑁! 𝑁4) without compromising accuracy. In

my work, I use the time saving Elimination step to fill all cells with unique values, and then

apply traditional sum-product algorithm for BP. I apply logarithms to solve the underflow

problem, which occurs during MP. This work successfully shows that PGMs and BP work well

with hard sudoku puzzles. By increasing the number of BP, we can solve more puzzles.

 There are many problems in society, which can be mapped to the jigsaw puzzle problem, for

example, speech descrambling [7], reassembling archeological relics [8], and documentation

fragments [9]. The jigsaw puzzle problems that I use in this work are square patches without

pairwise or neighborhood affinity derived from the shape of the patches. This kind of jigsaw

puzzle problems are even harder and technically challenging, and have already been proven to be

NP-complete [6]. To be able to effectively apply PGMs and MP, I first need to define pairwise

affinity and local evidence. Pairwise affinity is the metric for measuring neighborhood

relationships, which are importance, since MRFs contain nodes and links. By checking the

individual pixel from a patch, I am able to find a more probable match for the patch, assuming

that nearby patch borders share similar pixel information. I need to measure four neighborhood

7

probabilities for each patch pair: up, down, left, and right. Note that I have a combination of N

choose 2. In addition, the direction of patches is fixed, which makes this problem more

manageable. Local evidence is the factor that can provide the framework of the original image. I

can never rebuild the original image without the knowledge of the layout.

In Cho’s paper [5], the author came up with PGMs combined with two strategies of building

local evidence, building sparse-and-accurate evidence, and building dense-and-noisy evidence.

In this work, I choose to use the dense-and-noisy evidence. The jigsaw puzzles that people solve

are provided with a small version of the original image. The reference version can always lead to

a low-resolution image, which is of the same size as the original image that I need to construct.

Then I can take the low-resolution image as our local evidence. The performance of this

approach heavily relies on the texture of the image, on how I make the low-resolution image, and

on which metric I use to evaluate the result. This work successfully shows that I can get a

reasonable reconstructed image after applying PGMs and MP to the jigsaw puzzles.

In the next chapter, I will show the models built for solving the sudoku and jigsaw puzzles. I

will also cover the notations used in the models, and I will explain how I compute the

probabilities.

8

3. Building the Models

3.1 PGM of Sudoku Puzzle

 The goal of solving sudoku is to fill numbers from 1 to 9 into a 9 × 9 sudoku puzzle,

and a number can only appear once in each row, each column, and each 3 × 3 sub grid. Each

row, each column, and each 3 × 3 sub grid must hold a permutation of the numbers of 1 to

9. As mentioned earlier in this work, I focus on two sets for sudoku puzzle: S for cells and C

for constraints. The cells are partially filled, and the rest of S is empty. I assume that sudoku

puzzles considered in this work have unique solutions. The notations I use in this work are

shown in Figure 5. The numbers filled in cells are the ordering number, which is in row-scan

order.

 The constraints are represented by Cm∈C, m∈{1,…,27}, where Cm={0,1}. I denote the

contents of cell n by Sn ∈ {1,. . . , 9}, meaning that numbers from 1 to 9 are candidates for

cell n, with n∈{1, 2, . . . , 81}. Cells are numbered in row-scan order as shown in Figure 5.

9

 Figure 5. A 9×9 sudoku puzzle with cell labels and constraints.

Each constraint contains and controls 9 cells as shown in Figure 6, and all the 9 cells

must take different numbers from 1 to 9 to guarantee that every number appears in each

constraint (9 cells) only once. Constraint c1 controls 9 cells, S1 to S9. Each cell is controlled

by 3 constraints, for example, cell S1 belongs to C1, C10, and C19.

Figure 6. Factor graph associated with a 9×9 sudoku puzzle.

10

 I use the same notations as defined in [3]. I define the set of cells associated with one

constraint Cm as Nm, and the set of constraints associated with one cell Sn as Mn. Therefor,

each Nm has 9 elements, and each Mn has 3 elements. By Nm,n, we mean Nm\n, excluding n

from the set. As shown in Figure 6,

 N1 = {1, 2, 3, 4, 5, 6, 7, 8, 9},

 N10 = {1, 10, 19, 28, 37, 46, 55, 44, 73},

 N19 = {1, 2, 3, 10, 11, 12, 19, 20, 21},

 M1 = {1, 10, 19},

 M2 = {1, 11, 19},

 M81 = {9, 18, 27},

 N1,3 = {1, 2, 4, 5, 6, 7, 8, 9},

 N10,10 = {1, 19, 28, 37, 46, 55, 44, 73}.

 Each cell has a message vector in the form of pn,

 pn = [P(Sn=1) P(Sn=2) … P(Sn=N)], which is the probability vector of cell Sn.

 If the cell is originally filled with number k, k∈{1,…,9}, then the kth element in the

probability vector is 1 and all other elements are 0. For example, if k = 1, then,

 pn = [1 0 0 0 0 0 0 0 0].

 In another way, if a cell has three candidate numbers, which are 1, 2, and 3 and all three

are legal, then,

11

 pn =
1

3
 [1 1 1 0 0 0 0 0 0] = [

1

3

1

3

1

3
 0 0 0 0 0 0].

3.2 Jigsaw Puzzle

3.2.1 MFR of Jigsaw Puzzle

For a jigsaw puzzle with size 𝑀 × 𝑁, where M is the number of rows in the puzzle grid

and N is the number of nodes (patches) in each row, the number of patches is 𝑀 × 𝑁.

To solve jigsaw puzzle problems, I require the square patches cut from the original

image, and the reference layout of the image. I denote locations as nodes and patches as

labels, and then map the jigsaw puzzle to MRFs. Our goal becomes filling all the nodes with

labels, which is finding a mapping configuration that is most likely to the original mapping.

Cho et al [12] solved the patch transformation problem, which is very similar to the jigsaw

puzzle problem, by assuming the existence of a low-resolution image.

Figure 7. A jigsaw puzzle instance. (a) The reconstructed image grid. (b) The original image grid.

12

I denote the reconstructed image as X = {x1,…,x16}, and denote the original one as Y =

{y1, …, y16}. Figure 7 is a 4 × 4 jigsaw puzzle, with 16 nodes and 16 labels. Both image, X

and Y have the same framework, corresponding nodes, and labels. As can be seen in Figure 7,

each location node has at most 4 neighborhood nodes. Neighbors always share one common

edge. For example, node 1 and node 2 are neighbors, since the right edge of node 1 is also

the left edge of node 2. Node 1 and node 5 are not neighbors, since they do not share a

common edge. Indices are represented by i and j, and the neighborhood set of a node i is

represented by N(i).

N(1) = {2, 5},

N(6) = {2, 5, 7, 10}.

Figure 8. MRF for a 4×4 jigsaw puzzle.

 The links in Figure 8 represent direct probabilistic dependency between node pairs. Y =

{y1,…,y16} includes all the observed nodes derived from the low resolution image. X =

13

{x1,…,x16} contains all the nodes and the pairwise affinity relationships between the nodes.

Each node in the reconstructed image has relationships with its at most 4 hidden

neighborhood nodes and one observed node.

To make the reconstructed image as similar as possible to the original image, I need to

maximize the following equation,

𝑃(𝑥; 𝑦) =
1

𝑧
∏ p(y𝑖|𝑥𝑖)𝑝𝑖, 𝑗(𝑥𝑗|𝑥𝑖)𝑝(𝑥𝑖)𝐸(𝑥)𝑁

𝑖=1 (1)

where:

Z: Normalization constant

N(i): Markov blanket of a node i, set of neighborhood nodes of node i

p(yi|xi): Local evidence used to evaluate image x to have a similar scene structure as y,

also called DataCost

pi,j(xj|xi): Probability of placing a patch xj in the neighborhood of another patch xi, also

called SmoothnessCost

p(xi): In most cases, this term is modeled as uniform distribution

E(x): Exclusion term that discourages patches from being used more than once

To make it easier to understand, I borrow the notations from [13], which represents the

MRF model by an energy equation,

𝑒𝑛𝑒𝑟𝑔𝑦(𝑌, 𝑋) = ∑ 𝐷𝑎𝑡𝑎𝐶𝑜𝑠𝑡(𝑦𝑖, 𝑥𝑖) + ∑ 𝑆𝑚𝑜𝑜𝑡ℎ𝑛𝑒𝑠𝑠𝐶𝑜𝑠𝑡(𝑥𝑖, 𝑥𝑗)𝑗=𝑁(𝑖) 𝑖 (2)

The energy function evaluates the cost of going from image X to image Y. This is a

minimization problem.

14

The DataCost function returns the cost of assigning a label value xi to data yi, and the

SmoothnessCost function returns the dissimilarity of neighborhood nodes.

3.2.2 Patch Compatibility

In this part, I define the metric of evaluating dissimilarity between two neighborhood

patches, as pi,j(xj|xi) mentioned in Equation 1 and the SomoothnessCost used in the Equation

2.

The two neighborhood patches have four kinds of relationships: up, down, left, and right,

and they share a common edge. I assume that the color difference along the nearby

boundaries should stay most similar if they are neighbors in the original image Y.

Figure 9. Left-right relationship between patch i and patch j.

Patch i and patch j are considered as 𝐾 × 𝐾 × 3 matrices, where K is the number of

pixels in each row and each column, and 3 is the number of color space. I can either use RGB

or LAB color space. I choose to use LAB color space as mentioned in [12]. I use u to

represent the right most column of patch j, and v to represent the left most column of patch i.

In the example as shown in Figure 9, K=5, so the matrix is of size 5 × 5 × 3. Patch i is put

as the right neighbor of patch j. The left-right dissimilarity equation is,

𝐷𝐿𝑅(𝑥𝑗, 𝑥𝑖) = ∑ ∑ (𝑥𝑗(𝑘, 𝑢, 𝑙) − 𝑥𝑖(𝑘, 𝑣, 𝑙))23
𝑙=1

𝐾
𝑘=1 (3)

15

In the MRFs, probabilities are used to represent all the dependencies. Therefore, I need

to convert the distance to a probability number between 0 and 1,

𝑃𝑖, 𝑗(𝑥𝑗|𝑥𝑖) ⋉ exp (−
𝐷(𝑥𝑗,𝑥𝑖)

2𝜎𝑐2) (4)

where

The up-down relationship compatibility of any patch pair is computed in the same way.

3.2.3 Local Evidence

The low-resolution image is used as our local evidence, and it provides the image layout.

If the layout is unknown, it will be extremely hard to reconstruct the correct image with only

patch compatibility. Local evidence provides the resource to compute the DataCost

mentioned in the Equation 2.

𝑝(𝑦𝑖|𝑥𝑖 = 𝑙) ⋉ 𝑒𝑥𝑝(−
(𝑦𝑖−𝑚(𝑙))2

2𝜎𝑒2) (5)

where:

m(l) is the mean color of patch l and 𝜎𝑒 = 0.4.

I explore two ways to compute the local evidence.

The first solution is to use the mean color values (R, G, B) of the whole patch, and then

take the average distance.

𝑦𝑖(𝑅) =
1

𝑁
∑ 𝑅𝑟

𝑁
𝑟=1 , 𝑦𝑖(𝐺) =

1

𝑁
∑ 𝐺𝑟

𝑁
𝑟=1 , 𝑦𝑖(𝐵) =

1

𝑁
∑ 𝐵𝑟

𝑁
𝑟=1 (6)

𝑚𝑙(𝑅) =
1

𝑁
∑ 𝑅𝑟

𝑁
𝑟=1 , 𝑚𝑙(𝐺) =

1

𝑁
∑ 𝐺𝑟

𝑁
𝑟=1 , 𝑚𝑙(𝐵) =

1

𝑁
∑ 𝐵𝑟

𝑁
𝑟=1 (7)

16

 By applying Equation 6 and Equation 7 to Equation 5, I convert the mean color distance

to a probability number between 0 and 1,

𝑝(𝑦𝑖|𝑥𝑖 = 𝑙) = exp (−
1

3
∑ (𝑦𝑖(𝑐)−𝑚𝑙(𝑐))2

𝑐={𝑅,𝐺,𝐵

2𝜎𝑒2) (8)

where:

i: Location

yi: Original patch at location i

m(l): The patch I want to put at location i

N: Number of pixels (𝑁 = 25 × 25 for this example)

𝜎𝑒: 0.4

 The second solution is to compute the mean color values (R, G, B) of each pixel, and

then take the average.

𝑦𝑖 =
1

3
∑ 𝑐 , 𝑚(𝑙)𝑖 =

1

3
∑ 𝑐𝑐={𝑅,𝐺,𝐵}𝑐={𝑅,𝐺,𝐵} (9)

 By applying Equation 9 to Equation 5, I convert the mean color distance to a probability

number between 0 and 1, and get the final equation for computing the DataCost,

𝑝(𝑦𝑖|𝑥𝑖 = 𝑙) = exp (−
1

𝑁
∑ (𝑦𝑖−𝑚(𝑙)𝑖)2𝑁

𝑖=1

2𝜎𝑒2
) or

 𝑝(𝑦𝑖|𝑥𝑖 = 𝑙) =
1

𝑁
∑ exp (−

(𝑦𝑖−𝑚(𝑙))2

2𝜎𝑒2)𝑁
𝑖=1 (10)

where:

i: Pixel at one patch

17

N: Number of pixels (𝑁 = 25 × 25 for this example).

 In this chapter, I have built the models and introduced the notations, which are used for

sudoku and jigsaw puzzles. In the next chapter, I will show the message passing and solution

check steps for solving the puzzle problems.

18

4. Message Passing and Solution Check

4.1 Sudoku Puzzle

4.1.1 Message Passing

 Before MP, I introduce the concept of elimination. From the perspective of a human

being, he or she always first fills the cells that have only one possible value candidate. When

there are no more cells with one value candidate available, he or she will fill in more

complicated cells by taking guesses.

 This elimination step is implemented by checking all the constraints associated with the

cell and excluding the numbers that are already taken by eight other neighbors in the same

constraint. At least one value will be left. If the number of possible candidates is one, then

the cell is filled. After checking and filling all 81 cells, I am able to perform another round if

at least one cell is filled with a number from the previous round. Thus, I reduce the number

of empty cells and increase the accuracy of probabilistic messages used in the Belief

Propagation Step.

 Belief Propagation is implemented by sending probabilistic messages between adjacent

nodes. Each constraint node in C is connected to N cells from S, and each cell from S is

connected to three constraint nodes from C.

 The message that constraint Cm sends to cell Sn is the probability of satisfying constraint

Cm when cell Sn takes the value x,

19

 rmn(x) = P(Cm is satisfied|Sn = x),

 rmn(x) = P(Cm|Sn = x).

 In fact, the value x is one of the values in vector [1 2 3 4 5 6 7 8 9], so the message is

passed from a constraint to a cell in the form of a message vector.

 rmn = [rmn(1) rmn(2) rmn(3) rmn(4) rmn(5) rmn(6) rmn(7) rmn(8) rmn(9)]

 rmn (x) = ∑ ∏ 𝑞𝑙𝑚(𝑥𝑙)𝑙∈𝑁𝑚,𝑛{𝑛′∈𝑁𝑚,𝑗}

𝑛=𝑥,𝑛′=𝑥𝑛′𝑎𝑙𝑙 𝑢𝑛𝑖𝑞𝑢𝑒

 (11)

 The probability message that cell Sn sends to constraint Cm is the probability that all

other constraints associated with cell Sn besides Cm are satisfied when cell Sn takes value x,

 qnm(x) = P(Sn = x|all the constraints except Cm involving Sn are satisfied)

 qnm(x) = P(Sn = x|{Cm’ , m’∈ Mn,m}).

 Similarly, the message that passed from cell Sn is also a message vector.

 qn,m(x) = 𝑃(𝑛 = 𝑥) ∏ 𝑟𝑚′𝑛(𝑥)𝑚′∈𝑀𝑛,𝑚 (12)

 By following Equation 11 and Equation 12, constraints and cells can send their

messages back and forth. Every cell is reachable to three constraints, so it can send a message

to each of the constraints with aggregated messages from two other constraints. After a

20

constraint receives messages from all the nine cells, which are under its control, the

constraint can send a message to each of the nine cells with an aggregated neighborhood

message of all nine cells. In this way, one round of message passing is performed.

 qn(x) = 𝑃(𝑛 = 𝑥) ∏ 𝑟𝑚𝑛(𝑥)𝑚∈𝑀𝑛 (13)

 I should update qn(x) with Equation 3 after each round. In this work, I treat qn(x) as

pn(x), meaning qn(x) is the updated version of pn(x). Especially in the solution check part, the

probabilistic message that I reference is qn(x).

 Each message m is a vector, which should contain all possible numbers from {1, 2, 3, 4,

5, 6, 7, 8, 9}, meaning the possibility of one number can be filled into the specific cell. The

message passing is done in this way. After several rounds of message passing, I can get a

belief vector of each cell taking nine numbers. Then in the solution check part, I assign the

number with the highest belief to a cell, until all the empty cells are successfully filled, or the

algorithm cannot move forward any further.

 PGMs of sudoku puzzles are cyclic graphs, under which circumstance the loopy belief

propagation is likely leading to a potentially biased result. Without cycles in graphs, belief

propagation theory is supposed to give a good result after a sufficiently large number of

message passing steps. However, experience has shown that the results are usually still useful

[10]. This work also successfully proves that BP works well for our problem. The only

challenge that I deal with is underflow, which occurs along with the increasing number of

message passing. I solve this problem by applying logarithms on the probabilistic messages. I

will explain the detailed solution in chapter 6.

21

Figure 10. A 9×9 sudoku puzzle.

 Initialization of the probabilistic message is the first problem that I need to solve. The

probabilistic messages sent between cells and constraints are taking each other as factors. I

need to start performing MP either with constraint to cell messages or cell to constraint

messages. Figure 10 shows a 9 × 9 sudoku instance, which contains 58 empty cells. In this

work, I choose to start from Equation 1. Take cell S1 as an example,

 M1 = {1, 10, 19},

 r1,1 = [
1

7

1

7

1

7

1

7

1

7

1

7
 0 0

1

7
],

 r10,1 = [
1

8

1

8

1

8

1

8

1

7

1

8

1

8
 0

1

8
],

 r19,1 = [
1

7

1

7

1

7
 0

1

7
 0

1

7

1

7

1

7
],

 q1,1 = [
1

6

1

6

1

6
 0

1

6
 0

1

6
 0

1

6
],

22

 q1,10 = [
1

5

1

5

1

5
 0

1

5
 0 0 0

1

5
],

 q1,19 = [
1

7

1

7

1

7

1

7

1

7

1

7
 0 0

1

7
],

 p1 = [
1

5

1

5

1

5
 0

1

5
 0 0 0

1

5
].

4.1.2 Solution Check

 After several rounds of message passing are performed, and the final pn is updated, I

start to do the solution check, which is to try to guess which value is the perfect candidate for

a blank cell.

x’ = ArgMax[pn (Sn=x) , x] (14)

 The value, which makes the highest relative probability, has the biggest potential to be

put into the cell. According to Equation 4, I start performing the solution check by actually

checking the values of pn of all blank cells in S. In this work, I introduce the concept of

relative probability from [4]. The relative probability means that the probability of a cell

takes a value divided by the summation of other related empty cells (20 relatives from three

constraints) taking the same value. There is still one question left; which cell to be filled first?

The author did not explain clearly which neighborhood to consider or which cell to assign

first in the original paper. I decided to find a cell, which has the highest probability element

among at most 81 × 9 probabilities, and chose a value for this cell. Then, I focus on the cell

I find, and try to consider all the three constraints related to the cell.

 Each time after I set the wining value to the according cell, I update the relative

constrains by removing and distributing the probability of the value from neighborhood cells,

which also take this value as a candidate. I keep checking and assigning values to cells until

23

there is no blank cell any more, meaning I succeed, or there is a conflict, meaning I fail. The

procedure is shown in Figure 11.

Figure 11. Solution check procedure for sudoku puzzles.

4.2 Jigsaw Puzzle

4.2.1 Message Passing

Unlike the sudoku puzzle problem, there is no constraint in the model of the jigsaw

puzzle, and messages cannot be sent back and forth as in the sudoku puzzle. The

neighborhood relationships that exist in the jigsaw puzzle happen between neighboring nodes,

24

which are locations. Nodes can send probabilistic messages to their neighboring nodes, and

receive messages from them accordingly.

I denote i and j as locations, and xi and xj as the patch label values that the locations take.

For example, node j sends a message to node i, with node i taking patch label xi. The

assumption is that, I have the messages of node j’s neighbors besides node i send to node j.

In addition, node j takes patch label xj. All the patches excluding the current patch xi are

candidates for xj. Node j sends aggregated messages, which are probabilities of node j taking

all the possible patches, to node i.

Figure 12. A 4×4 jigsaw puzzle.

As shown in Figure 12, Xi is capable of taking any patch label, so the message that node

j sends to node i is in the format of a vector, 𝑚𝑗𝑖 = [𝑚𝑗𝑖(𝑥1) 𝑚𝑗𝑖(𝑥2) … 𝑚𝑗𝑖(𝑥16)].

 The message that is sent from node j to a node i is,

𝑚𝑗𝑖(𝑥𝑖) ⋉ ∑ 𝑝𝑖, 𝑗(𝑥𝑖|𝑥𝑗)𝑝(𝑦𝑖|𝑥𝑗) ∏ 𝑚𝑙𝑗(𝑥𝑗)𝑙∈𝑁(𝑗)\𝑖𝑥𝑗 (15)

N(j): Markov blanket of a node j, set of neighborhood nodes of node j

N(j)\i: Markov blanket of a node j besides i, since i is the receiver of this message

p(yi|xi): Local evidence used to evaluate image x to have a similar scene structure as y,

25

also called DataCost

pi,j(xj|xi): Probability of placing a patch xj in the neighborhood of another patch xi, also

called SmoothnessCost

The message is a vector, since all the patches are possible to any locations.

4.2.2 Solution Check

 I perform a solution check, which is to begin to decide which patch to put for locations,

after several rounds of message passing. By computing the nodes’ marginal probabilities,

which are called beliefs, I make the decision of which patch to take. The belief is computed

by gathering all messages from node i’s neighborhood nodes and the local evidence,

𝑏𝑖(𝑥𝑖) = 𝑝(𝑦𝑖|𝑥𝑖) ∏ 𝑚𝑗𝑖(𝑥𝑖)𝑗∈𝑁(𝑖) (16)

 I need to decide which patch to be assigned to the image first or which location to be

filled first. There are two approaches to perform the solution check. The first approach is to

choose a location, which has the highest belief, and then assign a patch to it. The second

approach is to randomly pick a patch and assign the patch to a location, which makes the

highest belief among all the unassigned locations. I choose to use the first solution, since the

highest belief that I get is the global highest one, which also supports the decision of

assigning the winning location. The solution check is performed 16 times until all the nodes

are assigned by a patch label. The procedure is shown in Figure 13.

26

Figure 13. Solution check procedure for jigsaw puzzles.

 I explain the different message passing and solution check strategies I use for solving

sudoku and jigsaw puzzles in this chapter. In chapter 5, I will analyze the evaluations for

both puzzle problems.

27

5. Evaluation and Performance Metrics

5.1 Required Number of MP Rounds for Sudoku

 The only way to evaluate the performance of belief propagation applied on sudoku

puzzles is to check if it can provide a successful solution, which means all the cells are filled

without collisions.

In theory, the more message passing rounds I perform within the limitation of loopy

belief propagation, the closer I get to the correct solution. In this work, I test all the 40 hard

sudoku puzzles by performing message passing round from one to many, and perform

solution check after each message passing round to check if the specific number of message

passing round is enough or not.

5.2 Evaluation Metrics for Jigsaw

 Jigsaw puzzles problems have been solved through many approaches, but there aren’t

any conventional methods of evaluation. In this work, I use the direct comparison and

neighborhood comparison.

5.2.1 Direct Comparison

 I compare all the patches in the reconstructed image directly with patches in the original

image, and then count the number of differences. The direct comparison is a stricter metric of

28

evaluating a reconstructed image than the neighborhood comparison. I choose to use this

metric to show our result, since the reconstructed image is more visually pleasing to the

human eyes.

5.2.2 Neighborhood Comparison

For each patch, I consider the four neighbors in the reconstructed image to check if the

belief propagation algorithms have assigned the correct neighborhood patches.

In the next chapter, I will explain how I implement the two algorithms in Java. I will

also cover the challenges, which I encounter during implementation, and solutions that I use

to conquer these challenges.

29

6. Implementation

6.1 Data Structures for Solving Sudoku Puzzle Problems

The algorithm for solving sudoku puzzles is implemented in Java, and the source code is

attached to the appendix. I store sudoku puzzles in the format of matrices in a file, as shown

in Figure 14, where zeros mean blank cells. The algorithm reads one sudoku puzzle from the

file, and start reading the next after the MP and solution check are done on the first puzzle. I

will use multiple multi- dimensional arrays to store the puzzle and messages that I need to

use during the MP and solution check.

When a new sudoku puzzle is read into a two-dimension array: int [][] matrix = new int

[9][9], it will be serialized into a one- dimensional array: int [] S = new int [81]. While

serializing, the neighborhood relationships M and N are calculated. I use a two-dimensional

array N to store 27 constraints and their related cells: int [][] N = new int [27][9], as shown in

the Table 1. I use another two-dimension array M to store 81 cells and their related

constraints: int [][] M = new int [81][3], as shown in Table 2. All the indices in the tales start

from 0.

After I get all the mapping relationships, I am able to compute the initialized the

messages as mentioned in chapter 3. I use a two-dimensional array to store the probabilities

of a cell takes a value: double [][] P = new double [81][9], where the first index denotes the

cell and the second index denotes the value it takes. The initialized messages are shown in

Table 3, taking the instance of Figure 15 as an example.

30

Figure 14. The file that contains sudoku puzzles.

Figure 15. A Sudoku instance.

31

Table 1. The constraints’ neighborhood relationships.

Constraint 9 Cells

0 0 1 2 3 4 5 6 7 8

1 9 10 11 12 13 14 15 16 17

2 18 19 20 21 22 23 24 25 26

3 27 28 29 30 31 32 33 34 35

4 36 37 38 39 40 41 42 43 44

5 45 46 47 48 49 50 51 52 53

6 54 55 56 57 58 59 60 61 62

7 63 64 65 66 67 68 69 70 71

8 72 73 74 75 76 77 78 79 80

9 0 9 18 27 36 45 54 63 72

10 1 10 19 28 37 46 55 64 73

11 2 11 20 29 38 47 56 65 74

12 3 12 21 30 39 48 57 66 75

13 4 13 22 31 40 49 58 67 76

14 5 14 23 32 41 50 59 68 77

15 6 15 24 33 42 51 60 69 78

16 7 16 25 34 43 52 61 70 79

17 8 17 26 35 44 53 62 71 80

18 0 1 2 9 10 11 18 19 20

19 3 4 5 12 13 14 21 22 23

20 6 7 8 15 16 17 24 25 26

21 27 28 29 36 37 38 45 46 47

22 30 31 32 39 40 41 48 49 50

23 33 34 35 42 43 44 51 52 53

24 54 55 56 63 64 65 72 73 74

25 57 58 59 66 67 68 75 76 77

26 60 61 62 69 70 71 78 79 80

32

Table 2. Cells’ neighborhood relationships.

Cell Constriants

Cell Constriants

Cell Constriants

0 0 9 18

27 3 9 21

54 6 9 24

1 0 10 18

28 3 10 21

55 6 10 24

2 0 11 18

29 3 11 21

56 6 11 24

3 0 12 19

30 3 12 22

57 6 12 25

4 0 13 19

31 3 13 22

58 6 13 25

5 0 14 19

32 3 14 22

59 6 14 25

6 0 15 20

33 3 15 23

60 6 15 26

7 0 16 20

34 3 16 23

61 6 16 26

8 0 17 20

35 3 17 23

62 6 17 26

9 1 9 18

36 4 9 21

63 7 9 24

10 1 10 18

37 4 10 21

64 7 10 24

11 1 11 18

38 4 11 21

65 7 11 24

12 1 12 19

39 4 12 22

66 7 12 25

13 1 13 19

40 4 13 22

67 7 13 25

14 1 14 19

41 4 14 22

68 7 14 25

15 1 15 20

42 4 15 23

69 7 15 26

16 1 16 20

43 4 16 23

70 7 16 26

17 1 17 20

44 4 17 23

71 7 17 26

18 2 9 18

45 5 9 21

72 8 9 24

19 2 10 18

46 5 10 21

73 8 10 24

20 2 11 18

47 5 11 21

74 8 11 24

21 2 12 19

48 5 12 22

75 8 12 25

22 2 13 19

49 5 13 22

76 8 13 25

23 2 14 19

50 5 14 22

77 8 14 25

24 2 15 20

51 5 15 23

78 8 15 26

25 2 16 20

52 5 16 23

79 8 16 26

26 2 17 20

53 5 17 23

80 8 17 26

33

Table 3. Initialized probabilistic messages.

P Value

P Value

P Value

P[0][1] 0.2

P[9][7] 0.25

P[21][3] 0.2

P[0][2] 0.2

P[9][9] 0.25

P[21][5] 0.2

P[0][3] 0.2

P[10][5] 0.25

P[21][6] 0.2

P[0][5] 0.2

P[10][7] 0.25

P[21][9] 0.2

P[0][9] 0.2

P[10][8] 0.25

P[22][1] 0.25

P[1][3] 0.333333333

P[10][9] 0.25

P[22][5] 0.25

P[1][5] 0.333333333

P[12][4] 0.333333333

P[22][8] 0.25

P[1][9] 0.333333333

P[12][5] 0.333333333

P[22][9] 0.25

P[2][1] 0.25

P[12][9] 0.333333333

P[24][6] 0.333333333

P[2][3] 0.25

P[13][4] 0.25

P[24][7] 0.333333333

P[2][5] 0.25

P[13][5] 0.25

P[24][9] 0.333333333

P[2][9] 0.25

P[13][8] 0.25

P[25][5] 0.5

P[4][1] 0.25

P[13][9] 0.25

P[25][6] 0.5

P[4][4] 0.25

P[14][4] 0.25

P[26][5] 0.25

P[4][5] 0.25

P[14][5] 0.25

P[26][6] 0.25

P[4][9] 0.25

P[14][8] 0.25

P[26][7] 0.25

P[5][1] 0.2

P[14][9] 0.25

P[26][9] 0.25

P[5][3] 0.2

P[15][4] 0.333333333

P[27][3] 0.25

P[5][4] 0.2

P[15][7] 0.333333333

P[27][5] 0.25

P[5][5] 0.2

P[15][9] 0.333333333

P[27][6] 0.25

P[5][9] 0.2

P[18][1] 0.2

P[27][9] 0.25

P[7][2] 0.25

P[18][3] 0.2

P[30][1] 0.333333333

P[7][4] 0.25

P[18][5] 0.2

P[30][5] 0.333333333

P[7][5] 0.25

P[18][7] 0.2

P[30][9] 0.333333333

P[7][6] 0.25

P[18][9] 0.2

P[32][1] 0.25

P[8][2] 0.2

P[20][1] 0.166666667

P[32][5] 0.25

P[8][4] 0.2

P[20][3] 0.166666667

P[32][8] 0.25

P[8][5] 0.2

P[20][5] 0.166666667

P[32][9] 0.25

P[8][6] 0.2

P[20][7] 0.166666667

P[33][1] 0.333333333

P[8][9] 0.2

P[20][8] 0.166666667

P[33][3] 0.333333333

P[9][2] 0.25

P[20][9] 0.166666667

P[33][6] 0.333333333

P[9][5] 0.25

P[21][1] 0.2

P[34][1] 0.333333333

P[34][5] 0.333333333

P[34][6] 0.333333333

34

I perform the MP with the initialized probabilities stored in P. The messages of

constraint-to-variable are stored in a three-dimensional array: double [][][] R = new double

[27][81][9], where the first index denotes the constraint, the second index denotes the cell,

and the third index denotes the value, which the receiver cell takes. The

variable-to-constraint messages are stored in a three-dimensional array: double [][][] Q =

new double [27][81][9], where the three indices are similar to the indices in R. I start sending

the constraint-to-variable messages first, as shown in Equation 11. After all the Rs are

updated, I perform the variable-to-constraint message passing, which results in updated Qs.

Then, I update the Ps, which are posteriori beliefs. All the steps mentioned above are called

one round of MP.

MP can is run for many iterations until a predefined number of iterations is reached.

Figure 16. The unfinished puzzle by one round of MP.

As mentioned in chapter 4, I use relative probabilities in the solution check part, so I use

a two-dimensional array to store the computed relative probabilities: double [][] R_P = new

double [81][9], where the first index denotes all the cells, and the second index denotes the

values taken by the cells.

35

If I perform the solution check after one round of MP is performed on the example

instance, six cells are left empty when I am met by an obstacle and cannot go any further,

which is shown in Figure 16. I test by adding one more round of MP each time, and get the

result, as shown in the Table 4.

Table 4. Number of left unassigned cells along with increasing number of MP.

MP Round 0 1 2 3 4 5 6 7 8 9 10 11

Count of

Unassigned Cells
58 6 10 10 8 8 7 5 3 4 2 0

 I successfully fill all the cells of this sudoku puzzle after 11 rounds of MP, as shown in

Figure 17.

Figure 17. The completed puzzle by 11 rounds of MP.

6.2 Implementation for Solving Jigsaw Puzzle Problems

6.2.1 Image Instance

36

To solve jigsaw problems, a collection of image patches cut from the original image and

a low-resolution version of the original image are needed. I produce both of the two

resources by an image. For example, I cut the image instance as shown in Figure 18 (a) into

16 patches as shown in Figure 18 (b).

The size of the original image is 100 × 100 pixels, thus makes the size of each patch

25 × 25 pixels. I have the values of 100 × 100 pixels, so I am able to manipulate the pixel

values of 16 patches according to their locations in the original image.

Figure 18. An 100×100 pixels image instance. (a) Original image. (b) 16 patches derived from (a).

6.2.2 Patch Compatibility

As mentioned in chapter 4, I denote the location nodes as X = {x1,…,x16} in a row scan

order, denote the patches as {1,…,16}, and denote the probability of a node taking a patch as

p(xi=i). Figure 19 shows an example of node x1 taking patch 1.

37

Figure 19. Location node xi takes patch 1.

First, I store the neighborhood relationships into a two-dimensional array: int N[][] =

new int[PATCH_NUMBER][4], where PATCH_NUMBER means the number of patches

and 4 means the indices of the patch’s neighbors in the order of up, down, left, and right. The

contents stored in N are shown in Table 5. All the indices start from 0, and -1 means the

neighbor of that position does not exist.

For example, location 0 has two neighbors, which are to the right and under location 0,

N[0] = {-1, 4, -1, 1}.

Location 5 and location 9 have four neighbors,

N[5] = {1, 9, 4, 6}.

N[9] = {5, 13, 8 10}.

38

Table 5. Neighborhood relationships.

Location Up Down Left Right

0 -1 4 -1 1

1 -1 5 0 2

2 -1 6 1 3

3 -1 7 2 -1

4 0 8 -1 5

5 1 9 4 6

6 2 10 5 7

7 3 11 6 -1

8 4 12 -1 9

9 5 13 8 10

10 6 14 9 11

11 7 15 10 -1

12 8 -1 -1 13

13 9 -1 12 14

14 10 -1 13 15

15 11 -1 14 -1

Second, I need to compute the patch compatibility as mentioned in chapter 3. I use a

three-dimensional array to store the patch compatibility: double P_ji[][][] = new double

[PATCH_NUMBER][PATCH_NUMBER][4], where the first index is patch j, the second

index is patch i, and the third index means patch j is put to the up, down, left, and right

directions to patch j. I compute the patch compatibility before I perform the MP. The results

are shown in Table 6 and Table 7.

39

Table 6. Patch compatibility with patch 0.

 j P/D[j][0][0] P/D[j][0][1] P/D[j][0][2] P/D[j][0][3]

D

0 497.3379864 162107.4848 80137.85257 187079.6658
2 41212.54623 91.89852385 137516.141 165433.0617
3 149074.3071 63869.78191 101671.0197 180002.275
4 45374.06255 70345.65167 126034.3808 185998.0737
5 43607.90763 6261.39571 110911.4797 210.3932271
6 48329.47404 4740.511643 103172.9205 9943.294368
7 149079.1735 9207.008041 119832.9623 115446.8622
8 87526.8354 123300.1638 37490.34832 98853.48229
9 47686.92506 34656.66184 96416.61357 106326.5719
10 105539.104 7522.235034 123343.6802 95020.10745
11 149048.6926 55020.03185 104660.8241 131951.3455
12 142083.229 158147.2886 21499.93774 101778.1261
13 121041.3828 85809.03405 21534.05467 107166.6614
14 170406.6198 80574.70475 21506.35918 97984.6128
15 149079.8795 119053.0001 21486.30342 94632.24257

P

0 0.99999985 0.996256205 2.45E-94 0.999013045
2 0.99998757 0.999997874 2.32E-161 0.999127193
3 0.999955038 0.998523281 1.72E-119 0.999050364
4 0.999986314 0.998373676 5.98E-148 0.999018748
5 0.999986847 0.999855135 2.77E-130 0.99999889
6 0.999985423 0.999890321 3.03E-121 0.999947519
7 0.999955036 0.999786992 1.05E-140 0.999390835
8 0.999973601 0.997151164 1.61E-44 0.999478368
9 0.999985617 0.99919844 2.36E-113 0.999438945
10 0.999968168 0.999825967 8.31E-145 0.999498591
11 0.999955045 0.998727764 5.54E-123 0.999303778
12 0.999957146 0.996347497 7.68E-26 0.99946294
13 0.999963492 0.998016532 7.01E-26 0.999434513
14 0.999948604 0.998137411 7.55E-26 0.999482952
15 0.999955036 0.997249159 7.97E-26 0.999500637

40

Table 7. Patch compatibility with patch 5.

 j P/D[j][5][0] P/D[j][5][1] P/D[j][5][2] P/D[j][5][3]

D

0 49662.31798 160404.6876 186111.6945 167328.8949
1 6261.39571 43607.90763 210.3932271 110911.4797
2 81696.1535 4073.180705 9731.597088 142583.2542
3 179889.2088 67265.40596 114132.8747 153495.985
4 74.39637088 79285.63033 107649.0297 41320.38979
6 11443.75395 76.63602209 96335.49463 106462.4621
7 179955.0282 3012.559015 139940.3869 71045.23499
8 35574.85619 112444.7502 101636.6895 77744.46658
9 8412.534586 23987.64928 131619.1143 6.136414403
10 56479.15746 1794.425045 119374.7208 1859.514141
11 179834.4232 42876.57386 97342.21343 113834.2768
12 92695.6025 155938.4362 179083.7478 63324.56355
13 82216.91327 73212.58079 178766.7819 42141.42892
14 120461.1408 63806.83289 178291.3787 45561.43027
15 179880.7614 102401.3067 178690.4145 100858.6992

P

0 0.999351521 0.973186176 0.998974024 0.975937825
1 0.999918217 0.992638064 0.99999884 0.983985342
2 0.998933454 0.999310055 0.999946327 0.979459469
3 0.997653045 0.98866688 0.999370696 0.977904874
4 0.999999028 0.986655238 0.999406436 0.994003454
6 0.999850533 0.999987014 0.999468801 0.984622777
7 0.997652187 0.999489665 0.999228454 0.989711942
8 0.999535429 0.981127095 0.999439578 0.988747304
9 0.999890121 0.995943647 0.999274316 0.999999107
10 0.999262541 0.999695989 0.999341803 0.999729366
11 0.997653758 0.99276108 0.999463251 0.983566802
12 0.998789942 0.97392295 0.999012748 0.990824826
13 0.998926659 0.98767108 0.999014495 0.993884668
14 0.998427773 0.989246449 0.999017114 0.99339002
15 0.997653155 0.982798216 0.999014915 0.985426245

41

Table 6 and Table 7 show the patch compatibilities of all other patches to patch 0 and

patch 5. The first half part is D[j][i][], which is computed with Equation 3, and the second

half is P[j][i][], which is computed based on the values from D with Equation 4.

6.2.3 Local Evidence and Patch Dissimilarity

Third, I compute the patch dissimilarity between the patches that are in the original

image and the patches that are in the low-resolution image with Equation 5. I use a

two-dimensional array to store the patch dissimilarity: double P_YX[][] = new

double[PATCH_NUMBER][PATCH_NUMBER], where the first index represents the patch

in the low-resolution image and the second index represents the patch in the original image.

There are two ways to compute the Patch Dissimilarity, as mentioned in chapter 3. The

first approach is to take the average color of the whole patch, as shown in Equation 8. The

results are shown in Table 8.

P_YX[0][0] is the patch dissimilarity between the first patch in the low-resolution

image and the first patch in the original image. The two patches share the same location, so

P_YX[0][0] is supposed to be the highest among all the P_YX[0][i], i = {1,…,15}. Table 8

shows part of the P_YX[][], where the second index is in {0, 1, 5, 9}.

42

Table 8. Patch dissimilarities between patches in the original image with patches 0, 1, 5, and 9 in the low-resolution image,

computed by Equation 8.

i P_YX[0][i] P_YX[1][i] P_YX[5][i] P_YX[9][i]

X
i
=0 0.998980729 0.005526281 9.86E-06 6.78E-05

X
i
=1 0.004767242 0.995103836 0.145254112 0.478744206

X
i
=2 9.51E-04 0.517971432 0.584255866 0.684200782

X
i
=3 0.595693328 0.002743421 1.94E-05 5.75E-05

X
i
=4 0.005996038 0.780195847 0.035613483 0.214111691

X
i
=5 1.11E-05 0.134004128 0.999889228 0.664714582

X
i
=6 1.35E-06 0.037012756 0.837732467 0.335044363

X
i
=7 2.54E-04 0.200398498 0.67496748 0.443287085

X
i
=8 5.54E-04 0.409490005 0.670381133 0.665416819

X
i
=9 7.89E-05 0.454094927 0.643648985 0.998463179

X
i
=10 1.89E-05 0.219010073 0.937790184 0.858330379

X
i
=11 1.94E-05 0.031459993 0.466619623 0.145347246

X
i
=12 0.589625127 0.002621787 1.85E-05 5.46E-05

X
i
=13 1.64E-04 0.101224302 0.531804661 0.257376438

X
i
=14 5.10E-05 0.048904268 0.475738809 0.173167384

X
i
=15 0.356456659 0.002309948 3.51E-05 7.04E-05

43

The result of the second approach is shown in Table 9. Similar to Table 8, part of the

P_YX[][] is shown, where the second index is in {0, 1, 5, 9}.

Table 9. Patch dissimilarities between patches in the original image with patches 0, 1, 5, and 9 in the low-resolution image,

computed by Equation 10.

i P_YX[0][i] P_YX[1][i] P_YX[5][i] P_YX[9][i]

X
i
=0 0.569660491 0.005730888 1.83E-16 5.13E-28

X
i
=1 0.038091857 0.398860364 0.022261843 0.001680164

X
i
=2 0.054203159 0.043076088 0.159821569 0.208356586

X
i
=3 0.276965667 0.024105957 0.001597599 0.018942013

X
i
=4 0.025893361 0.317988402 0.015923656 0.00105132

X
i
=5 4.34E-17 0.050188961 0.364432937 0.018617752

X
i
=6 2.51E-26 0.021875205 0.095433469 0.338025328

X
i
=7 0.031764963 0.01963699 0.052553865 0.042099207

X
i
=8 0.04673934 0.052300022 0.131594316 0.214218618

X
i
=9 3.79E-20 0.024523967 0.10135803 0.810051929

X
i
=10 6.06E-26 0.023527443 0.066818164 0.136746633

X
i
=11 0.007993247 0.031762112 0.03251628 0.030824731

X
i
=12 0.251263288 0.01307282 0.009698372 0.004346259

X
i
=13 0.028489031 0.009552744 0.042566428 0.034704425

X
i
=14 0.013730906 0.005137693 0.0408317 0.009828956

X
i
=15 0.130128936 0.002575371 0.01042798 0.003032355

The probabilistic messages are computed with Sum-Product method as shown in

Equation 15. I use a three-dimensional array to store the messages: double M_ji_Xi[][][] =

new double[4][PATCH_NUMBER][PATCH_NUMBER], where the first index represents

the neighborhood location j, the second index is location i, and the third index represents the

patch assigned to location i. First, I initialize all the messages to 1 [13].

44

As I mentioned in chapter 4, the messages j sends to i are in the format of a message

vector. For example, M_ji_Xi[1][0][0] is the message that location 1 sends messages to

location 0 when location 0 takes patch 0. The procedure of how I use sum-product to

compute this message is shown in Table 10.

Table 10. The procedure of sum-product computation of location 1 sending messages to location 0, with normalization.

X
1
 P

0,1
(X

0
=0|X

1
) P(Y

1
|X

1
) Product SUM

X
1
=0 0(Exclude) 0.005526281 0

3.936439239/16=

0.246027452

X
1
=1 0.999999732 0.995103836 0.995103569

X
1
=2 0.999983321 0.517971432 0.517962793

X
1
=3 0.999977154 0.002743421 0.002743358

X
1
=4 0.999981294 0.780195847 0.780181252

X
1
=5 0.999973248 0.134004128 0.134000543

X
1
=6 0.999975186 0.037012756 0.037011837

X
1
=7 0.999972675 0.200398498 0.200393022

X
1
=8 0.999918488 0.409490005 0.409456626

X
1
=9 0.999955424 0.454094927 0.454074685

X
1
=10 0.999973139 0.219010073 0.219004191

X
1
=11 0.999939373 0.031459993 0.031458086

X
1
=12 0.999922038 0.002621787 0.002621582

X
1
=13 0.999926398 0.101224302 0.101216852

X
1
=14 0.999935402 0.048904268 0.048901109

X
1
=15 0.999906863 0.002309948 0.002309733

45

MP will be performed for several rounds before I conduct the solution check. The

procedure of how I compute the beliefs is shown in Table 11. For example, location 0

receives two message vectors from its neighbors, location 1 and location 4. Along with the

patch dissimilarity with patch 0 in the low-resolution image, the belief is computed by

multiplication.

Table 11. The procedure of computing beliefs of location 0 taking patches in {0,…,15}.

Location 0 j=1 j=4 Y=0 Belief

X
0
=0 0.246027452 0.166962934 0.998980729 0.041035596

X
0
=1 0.183980645 0.11478779 0.004767242 0.000100678

X
0
=2 0.213982035 0.153757722 9.51E-04 3.12892E-05

X
0
=3 0.239679744 0.167083558 0.595693328 0.023855459

X
0
=4 0.197289591 0.105110248 0.005996038 0.000124341

X
0
=5 0.236121501 0.163184361 1.11E-05 4.27698E-07

X
0
=6 0.19698203 0.164646213 1.35E-06 4.37837E-08

X
0
=7 0.227736383 0.163844639 2.54E-04 9.4776E-06

X
0
=8 0.220758638 0.157805642 5.54E-04 1.92997E-05

X
0
=9 0.198418918 0.152223646 7.89E-05 2.3831E-06

X
0
=10 0.232668625 0.162237845 1.89E-05 7.13431E-07

X
0
=11 0.238064649 0.166736584 1.94E-05 7.70065E-07

X
0
=12 0.245985458 7.04E-06 0.589625127 1.02043E-06

X
0
=13 0.240046826 1.93E-05 1.64E-04 7.58757E-10

X
0
=14 0.242944846 2.41E-07 5.10E-05 2.98274E-12

X
0
=15 0.239731295 1.11E-05 0.356456659 9.48421E-07

Solution check part is implemented according to the procedure in Figure 13. I keep

assigning patches to locations until all the locations are filled.

I am able to reconstruct the image accurately with one round of MP, since the fewer

patches I cut the image into, the easier I get to the correct result. Then, I cut the same image

instance into 25 patches and get the correct result after two rounds of MP.

46

Figure 20 shows the reconstructed image with one round of MP, with 23 out of 25

patches being put in the correct location. Figure 21 shows the reconstructed image with 2

rounds of MP, all of the 25 patches being reconstructed correctly. If I perform more than two

rounds of MP to this problem, the accuracy will deteriorate due to loopy belief propagation.

Figure 20. Reconstructed image with one round of MP.

Figure 21. Reconstructed image with two rounds of MP.

47

6.3 Challenges and Solutions during Implementation

 Underflow occurs during MP when solving both sudoku and jigsaw puzzles.

 All the possibilities are between 0 and 1. Since I need to perform MP for several rounds,

gathering messages (possibilities) from constraints or nodes, the possibilities and messages

decrease sharply and get to underflow after two or three rounds.

I use the logarithm to avoid the underflow. If all the probabilities are expressed in the

format of logarithm, then the speed of decreasing will be slower than previously.

I use logarithm to initialize the P as mentioned before. I use a and b to denote the

original probabilities. I use x and y to denote the probabilities after applying the logarithm.

Since I already have the x and y in hand, I need to perform the calculations of Equation 11

and Equation 12, which contain addition and multiplication. The following are the

transformations of SUM and PRODUCT:

x = lg(a) , y = lg(b)

lg(ab) = lg(a) + lg(b) = x + y (17)

lg(a+b) = lg(a×(1+
𝑏

𝑎
)) = lg(b× (

𝑎

𝑏
+ 1)) = lg(b) + lg((

𝑎

𝑏
+ 1))

x – y = lg(
𝑎

𝑏
)

2𝑥−𝑦 =
𝑎

𝑏

𝑙𝑔(2𝑥−𝑦 + 1) = 𝑙𝑔(
𝑎

𝑏
 + 1)

lg(a+b) = y + 𝑙𝑔(2𝑥−𝑦 + 1) (18)

48

If (x-y) is big enough to make (2𝑥−𝑦 + 1) overflow, then I could ignore the 1.

Therefore,

lg(a+b) = y + 𝑙𝑔(2𝑥−𝑦) = y + (x-y) = x (19)

Equation 17 is used when I perform the multiplication. In addition, Equation 18 is used

if (2𝑥−𝑦 + 1) is within the limitation of Double, and Equation 19 is applied if (2𝑥−𝑦 + 1)

leads to overflow.

During the jigsaw puzzle solving, the messages sent between locations are aggregated

based on the number of locations in each round of MP. After several rounds of message

passing, the message will become incredibly large and finally overflow. I perform

normalization for each message. Since the message is gathered from N possibilities, I use the

Mean method to normalize the message. As shown in Table 10, I take the value of message

dividing N as our final message value, where N is the number of patches in this example.

I explain how I implement the two algorithms with two example instances respectively,

in this chapter. In the next chapter, I will show the results that I get by running the puzzle

instances.

49

7. Results

7.1 Sudoku Experimental Results

In order to verify our implementation of solving sudoku puzzles, I choose 40 hard 9x9

sudoku puzzle problem instances [5] for testing; each puzzle has 50 to 60 unassigned cells.

First, I test all the puzzles with one round of MP and only two puzzles are solved. Then,

I test all the puzzles with two rounds of MP and five puzzles are solved, including the two

puzzles that have been solved in the previous test. More puzzles are solved along with the

increasing number of MP iterations. I keep testing and get 35 solved puzzles with 11 rounds

of MP. The PGM-based algorithm is able to solve 36 out of 40 (90%) sudoku puzzles within

17 rounds of MP. Figure 22 shows the success rate of solved puzzles along with the

increasing number of MP.

Usually, even if I perform more rounds of MP than needed, the puzzles are still

successfully solved. For example, a puzzle is solved with five rounds of MP for the first time

and it will stay being solved when I perform more than five rounds of MP. More rounds of

MP lead to more accurate results.

50

Figure 22. Experimental results for 40 9×9 hard sudoku puzzles.

7.2 Jigsaw Experimental Results

To test our implementation, I use problem instances with 100 patches and 400 patches

partitioned from 200 × 200 pixels images respectively. The more patches the images are cut,

the harder it becomes to get the correct result. I use the direct comparison to evaluate the

result I get, as mentioned in chapter 5.

I encounter the overflow problem during implementation and use the mean method to

deal with the overflow, as mentioned in chapter 6. Along with more rounds of MP, the

accuracy of the reconstructed image will increase until the loopy belief propagation happens,

as mentioned in chapter 6. I choose the peak value to be our final result. After testing, the

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

S
o

lv
e

d
 R

a
te

 (
%

)

Message Passing Interation Number

Sudoku Puzzles

51

PGM-based algorithm is able to reconstruct 100 and 400 patch images with average correct

rates, 83% and 30% respectively, as shown in Figure 23.

Figure 23. Experimental results for five 200×200 pixels images, with 100 and 400 patches respectively.

 Both algorithms work well with our puzzle instances and show that PGMs can lead to

good results even with loopy belief propagation. In the next chapter, I will conclude our work

and explore new topics based on our results.

0

10

20

30

40

50

60

70

80

90

100

C
o

o
re

ct
 R

a
te

 (
)%

Image1 Image 2 Image 3 Image 4 Image 5

Jigsaw Puzzles

100-patch

400-patch

52

8. Conclusion and Future Work

8.1 Conclusion

In conclusion, this work showed how sudoku and jigsaw puzzle problems could be

represented as PGMs and successfully demonstrated that the PGM-based algorithms rapidly find

good solutions. In this work, I provide the data structures of our implementations and list the

details of how I compute probabilistic messages to get to the solution step by step.

 The sudoku puzzle problems represent a series of problems, which are constraint related,

so the PGMs can also be applied to those problems as well. The patch compatibility I use in this

work is proven to be valuable to evaluate the image edge-compatible. Moreover, I focus on

square patches, thus making the reconstruction of puzzle problems with unique shapes to be

more accurate. In this work, I combine the sum-product MP and logarithm to slow down the

underflow and demonstrate that even with the loopy belief propagation, MP still works well for

both puzzle problems. In addition, by applying the sum-product method, the time complexity is

reduced from Ο(NM) to Ο(N! N4) for solving sudoku puzzle problems, where N is the size of

the puzzle and M is the number of empty cells in the puzzle.

53

8.2 Future work

This work showed that along with more rounds of MP, more sudoku puzzles are solved.

Some puzzles are first solved with five rounds of MP, while some other puzzles are first solved

with 11 rounds of MP. An interesting question is: what is the number of MP rounds a specific

sudoku puzzle needs? Similar to sudoku puzzle problems, the number of MP rounds needed for

solving a specific jigsaw puzzle is unknown unless I test it with the program. I choose the peak

value before the algorithm goes to loopy belief propagation. Therefore, finding the number of

MP rounds, which makes the peak, becomes another interesting question.

To avoid the increasing impact of loopy propagation, applying Sinkhorn balancing to solve

the two puzzle problems as mentioned in [4] and comparing with our current solution is a good

recommendation.

54

9. References

[1] Charles A. Bouman. Markov Random Fields and Stochastic Image Models. IEEE,

74(4):532--551, 1986

[2] R. G. Gallager, “Low-Density Parity-Check Codes,” IRE Trans. on Info. Theory, vol. IT-8, pp.

21–28, Jan. 1962.

[3] MOON, T. K., AND GUNTHER, J. H. Multiple constraint satisfaction by belief propagation: An

example using sudoku. Adaptive and Learning Systems, 2006 IEEE Mountain Workshop on (2006),

122 – 126.

[4] Sheehan Khan, Shahab Jabbari. Solving sudoku Using Probabilistic Graphical Models. 2007.

[5] Taeg Sang Cho, Shai Avidan, William T. Freeman etc. A probabilistic image jigsaw puzzle solver.

IEEE Conference 2010.

[6] E. D. Demaine and M. L. Demaine. Jigsaw puzzles, edge matching, and polyomino packing:

Connections and complexity. Graphs and Combinatorics, 23, 2007.

[7] Y.-X. Zhao, M.-C. Su, Z.-L. Chou, and J. Lee. A puzzle solver and its application in speech

descrambling. In ICCEA, 2007.

[8] B. J. Brown, C. Toler-Franklin, D. Nehab, M. Burns, D. Dobkin, A. Vlachopoulos, C. Doumas,

and T. W. Szymon Rusinkiewicz. A system for high-volume acquisition and matching of fresco

fragments: Reassembling Tehran wall paintings. ACM TOG (SIGGRAPH), 2008.

[9] L. Zhu, Z. Zhou, and D. Hu. Globally consistent reconstruction of ripped-up documents. IEEE

TPAMI, 2008.

[10] Y. Weiss, “Correctness of Local Probability Propagation in Graphical Models with Loops,”

Neural Computation, vol. 12, pp. 1–41, 2000.

[11] Kevin Murphy. A Brief Introduction to Graphical Models and Bayesian Networks. 1998.

[12] T. S. Cho, M. Butman, S. Avidan, and W. T. Freeman. The patch transform and its applications

to image editing. IEEE CVPR, 2008.

[13] Nghia Ho. Loopy belief propagation, Markov Random Field, stereo vision. 2012.

[14] Jack. Stanford course on Probabilistic Graphical Models. 2002.

55

[15] BONDY, J., AND MURTY, U. Graph Theory With Applications. North-Holland, 1982.

[16] YATO, T., AND SETA, T. Complexity and completeness of finding another solution and its

application to puzzles. IEICE Trans Fundam Electron Commun Comput Sci E86-A, 5 (2003), 1052

– 1060.

[17] sudoku puzzle resource: http://mypuzzle.org/sudoku

[18] M. Makridis and N. Papamarkos. A new technique for solving a jigsaw puzzle. In IEEE ICIP,

2006.

[19] H. Freeman and L. Garder. Apictorial jigsaw puzzles: the computer solution of a problem in

pattern recognition. IEEE TEC, (13):118–127, 1964.

[20] SIMONIS, H. Building industrial applications with constraint programming. Constraints in

computational logics: theory and applications (2001), 271 – 309.

http://mypuzzle.org/sudoku

56

10. Appendix

10.1 Java Source Code for Solving Sudoku Puzzles

package sudoku;

import java.io.BufferedReader;
import java.io.File;
import java.io.FileInputStream;
import java.io.InputStreamReader;
import java.util.Date;

public class SudokuPGM {

 public static int PROPAGATION_Size = 0;
 public int[][] matrix = new int[9][9];
 public int[] S = new int[81]; // scan from first row, then second row
 public int[][] N_Current = new int[27][9];
 public int[][] N = new int[27][9];// [index of constraint][cell index]
 public int[][] M = new int[81][3];// [index of S][constraint index]
 public double[][] P = new double[81][9]; //
 public double[][][] R = new double[27][81][9];
 public double[][][] Q = new double[27][81][9];
 public double[][] R_P = new double[81][9];
 public int SUDOKU = 0;
 public int incompleteCount = 81;
 public int success = 0;
 public int fail = 0;

 public static void main(String args[]) {
 String pathname = "sudoku_left";
 for (int i = 18; i <= 40; i++) { // set the MP round size
 Date start = new Date();
 SudokuPGM sudoku = new SudokuPGM();
 SudokuPGM.PROPAGATION_Size = i;
 sudoku.read(pathname);
 System.out.println("\n\nSuccess: " + sudoku.success);
 System.out.println("Fail: " + sudoku.fail);
 Date end = new Date();
 System.out.println(end.getTime() - start.getTime());
 }
 }
 // initialize the matrix, S, N, M
 public void initialMatrix() {
 // read from file
 incompleteCount = 81;
 int index = 0;
 for (int i = 0; i < 27; i++) {
 for (int j = 0; j < 9; j++) {
 N_Current[i][j] = -1;
 N[i][j] = -1;
 }
 }
 for (int i = 0; i < 9; i++) {
 for (int j = 0; j < 9; j++) {
 S[index] = matrix[i][j];
 int boxN = getBoxNumber(i, j);

57

 M[index][0] = i;
 M[index][1] = j + 9;
 M[index][2] = boxN;

 addToN(index, i);
 addToN(index, j + 9);
 addToN(index, boxN);

 // only store the real values of index into its constraints N
 if (S[index] != 0) {
 modifyN_Current(index);
 }
 for (int v = 0; v < 9; v++) {// initialize the probability of
 // 1-9 to 1
 for (int C = 0; C < 3; C++) {
 Q[M[index][C]][index][v] = Math.log10(1);
 R[M[index][C]][index][v] = Math.log10(1);
 }
 }
 index++;
 }
 }
 }

 public void read(String pathname) {
 try {
 System.out.println("MP Round: " + PROPAGATION_Size);
 File filename = new File(pathname);
 InputStreamReader reader = new InputStreamReader(
 new FileInputStream(filename));
 BufferedReader br = new BufferedReader(reader);

 String line = "";
 line = br.readLine();
 int i = 0;
 while (line != null) {
 if (!line.contains("#")) {
 String[] m = line.split(" ");
 for (int j = 0; j < 9; j++) {
 matrix[i % 9][j] = Integer.parseInt(m[j]);
 }
 if (i % 9 == 8) {
 SUDOKU += 1;
 System.out.print("P" + SUDOKU + ": ");
 initialMatrix();
 int setCount = 1;// loop until there is no updating in
 // one round
 while (setCount > 0) {
 setCount = eliminate();
 // System.out.print("SetCount:"+setCount);
 }
 if (incompleteCount > 0) {
 for (int n = 0; n < 81; n++) {
 if (S[n] == 0)
 getProbability(n);
 }
 propagation();
 int go = 1;
 int loop = incompleteCount;
 for (int g = 1; g <= loop && go > 0; g++) {
 go = guess();
 }
 }
 if (incompleteCount == 0) {
 success++;
 System.out.println(" Success!");

58

 } else {
 fail++;
 System.out.println(" Fail! " + incompleteCount
 + " unset cells.");
 }
 }
 i++;
 }
 line = br.readLine();
 }
 br.close();
 } catch (Exception e) {
 e.printStackTrace();
 }
 }

 // return 1 if success; return -1 if fail
 public int guess() {
 // printP();
 double maxP = Math.log10(0);
 int maxIndex = 0;
 // boolean flagg = true;
 for (int n = 0; n < 81; n++) {// find the max p one
 if (S[n] == 0) {
 for (int v = 0; v < 9; v++) {
 if (P[n][v] > Math.log10(0) && P[n][v] < Math.log10(1)) {
 if (P[n][v] > maxP) {
 maxP = P[n][v];
 maxIndex = n;
 }
 }
 }
 }
 }
 if (S[maxIndex] != 0) {
 return -1;
 }
 // go to deal with the max one
 double maxRP = Math.log10(0);
 int value = 0;
 int[] relatedCells = new int[20];
 int r_index = 0;
 for (int i = 0; i < 20; i++) {
 relatedCells[i] = -1;
 }
 for (int C = 0; C < 3; C++) {// in 3 constriants
 int m = M[maxIndex][C];
 for (int i = 0; i < 9; i++) {// 9 cells
 if (S[N[m][i]] == 0) {
 boolean flag = true;
 for (int ii = 0; ii <= (r_index - 1) && flag; ii++) {
 if (relatedCells[ii] == N[m][i]) {
 flag = false;
 }
 }
 if (flag) {
 relatedCells[r_index] = N[m][i];
 r_index++;
 }
 }
 }
 }
 // System.out.println("\nFor: " + maxIndex);
 for (int v = 0; v < 9; v++) {// find other possible values
 if (P[maxIndex][v] > Math.log10(0)) {// compute Relative probability

59

 double sum = Math.log10(0);
 int i = 0;
 while (relatedCells[i] != -1) {
 sum = sum_log(sum, P[relatedCells[i]][v]);
 i++;
 }
 R_P[maxIndex][v] = P[maxIndex][v] - sum;
 if (R_P[maxIndex][v] > maxRP) {
 maxRP = R_P[maxIndex][v];
 value = v + 1;
 }
 }
 }
 if (value == 0) {
 return -1;
 }
 S[maxIndex] = value;
 modifyN_Current(maxIndex);
 for (int v = 0; v < 9; v++) {// update the current cell
 P[maxIndex][v] = Math.log10(0);
 }
 for (int i = 0; i < 20; i++) {
 relatedCells[i] = -1;
 }
 r_index = 0;
 for (int C = 0; C < 3; C++) {// in 3 constriants
 int m = M[maxIndex][C];
 for (int i = 0; i < 9; i++) {// 9 cells
 if (S[N[m][i]] == 0 && P[N[m][i]][value - 1] > Math.log10(0)
 && N[m][i] != maxIndex) { // right cell
 boolean flag = true;
 for (int ii = 0; ii <= (r_index - 1) && flag; ii++) {
 if (relatedCells[ii] == N[m][i]) {
 flag = false;
 }
 }
 if (flag) {
 relatedCells[r_index] = N[m][i];
 r_index++;
 }
 }
 }
 }
 int i = 0;
 while (relatedCells[i] != -1) {
 int num = 0;
 for (int v = 0; v < 9; v++) { // possible values
 if (P[relatedCells[i]][v] > Math.log10(0)) {
 num++;
 }
 }
 double distribute = P[relatedCells[i]][value - 1]
 - Math.log10(num - 1);
 P[relatedCells[i]][value - 1] = Math.log10(0);// uodate that cell
 for (int v = 0; v < 9; v++) {
 if (P[relatedCells[i]][v] > Math.log10(0)) {
 sum_log(P[relatedCells[i]][v], distribute);
 }
 }
 i++;
 }
 return 1;
 }

 public void propagation() {
 for (int loop = 0; loop < PROPAGATION_Size; loop++) {

60

 messagePassing();
 }
 }

 public void messagePassing() {
 // R[m][n][x]=* # (1 - q[m][n'][value]) other 0 cell related in the same C
 for (int n = 0; n < 81; n++) {
 if (S[n] == 0) {
 for (int x = 0; x < 9; x++) {
 if (P[n][x] != Math.log10(0)) {// possible values!
 for (int C = 0; C < 3; C++) {
 int m = M[n][C];
 R[m][n][x] = Math.log10(1);
 String vp = getPossibleVP_R(m, n, x);
 String[] possibleVP = vp.split(",");
 String v = possibleVP[0];
 String[] p = possibleVP[1].trim().split(" ");
 double sum = permutate(n, "", v, p, Math.log10(0),
 m);
 R[m][n][x] = sum;
 }// R
 }
 }
 }// S indexS == 0
 }// indexS

 // Q[m][n][x]= P(n=x) * # R[m'][n][x], m'= other two
 for (int n = 0; n < 81; n++) {
 if (S[n] == 0) {
 for (int x = 0; x < 9; x++) {
 if (P[n][x] != Math.log10(0)) {// possible values!
 for (int C = 0; C < 3; C++) {
 int m = M[n][C];
 Q[m][n][x] = P[n][x];// P(n=x)
 for (int C_other = 0; C_other < 3; C_other++) {
 if (C_other != C) {
 int m_2 = M[n][C_other];
 Q[m][n][x] = Q[m][n][x] + R[m_2][n][x];
 }
 }
 // Q[m][n][x] = Math.log10(Q[m][n][x]);
 }
 }
 }
 }// S indexS == 0
 }// indexS

 // P[n][x]
 for (int n = 0; n < 81; n++) {
 if (S[n] == 0) {
 for (int x = 0; x < 9; x++) {
 if (P[n][x] != Math.log10(0)) {// possible values!
 for (int C = 0; C < 3; C++) {
 P[n][x] = P[n][x] + R[M[n][C]][n][x];
 }
 // P[n][x] = Math.log10(P[n][x]);
 }
 }
 }// S indexS == 0
 }// indexS
 }

 public double permutate(int n, String pre, String last, String[] position,
 double sum, int m) {
 if (last.length() == 0) {
 double product = Math.log10(1);

61

 for (int i = 0; i < pre.length(); i++) {
 int value = Integer.parseInt(pre.substring(i, i + 1));
 int indexS = Integer.parseInt(position[i]);
 product = product + Q[m][indexS][value];
 // if(n==66){System.out.println("Permutation: "+indexS+":"+value+" P:"+P[indexS][value]);}
 }
 sum = sum_log(sum, product);
 // if(n==66){System.out.println(product+" Product-SUM: "+sum);}
 return sum;
 }
 for (int i = 0; i < last.length(); i++) {
 sum = permutate(n, pre + last.substring(i, i + 1),
 last.substring(0, i) + last.substring(i + 1), position,
 sum, m);
 }
 return sum;
 }

 public String getPossibleVP_R(int m, int indexS, int value) {

 String result = "";
 for (int i = 0; i < 9; i++) {
 boolean flag = true;
 int index_NC = 0;
 while (N_Current[m][index_NC] != -1 && flag) {
 if ((i + 1) == S[N_Current[m][index_NC]]) {
 flag = false;
 }
 index_NC++;
 }
 if (flag && i != value) {
 result += String.valueOf(i);
 }
 }
 result += ",";
 for (int i = 0; i < 9; i++) {
 boolean flag = true;
 int index_NC = 0;
 while (N_Current[m][index_NC] != -1 && flag) {
 if (N[m][i] == N_Current[m][index_NC]) {
 flag = false;
 }
 index_NC++;
 }
 if (flag && N[m][i] != indexS) {
 result += String.valueOf(N[m][i]);
 result += " ";
 }
 }
 return result.trim();
 }

 // get probability from 3 constraints related to a node
 public void getProbability(int index) {

 for (int i = 0; i < 9; i++) {// initialize the probability of 1-9 to 1
 P[index][i] = Math.log10(1);
 }
 for (int C = 0; C < 3; C++) {
 getProbabilityFromEachConstraints_PRODUCT(index, M[index][C]);
 }
 int vCount = 0;
 for (int i = 0; i < 9; i++) {
 if (P[index][i] > Math.log10(0)) {
 vCount++;
 }

62

 }
 if (vCount != 0) {
 for (int i = 0; i < 9; i++) {
 P[index][i] = P[index][i] - Math.log10(vCount);
 }
 }
 getProbabilityForQ(index);
 // Q[[M[index][0]][index][0-8]=0;
 }

 // c1,c2: constraints number
 public void getProbabilityForQ(int indexS) {
 for (int C = 0; C < 3; C++) {
 for (int v = 0; v < 9; v++) {
 Q[M[indexS][C]][indexS][v] = Math.log10(1);
 }
 for (int C_other = 0; C_other < 3; C_other++) {
 if (C_other != C) { // only concern about other two constraints
 getProbabilityFromEachConstraints_Q(indexS, M[indexS][C],
 M[indexS][C_other]);
 }
 }
 int vCount = 0;
 for (int i = 0; i < 9; i++) {
 if (Q[M[indexS][C]][indexS][i] > Math.log10(0)) {
 vCount++;
 }
 }
 if (vCount != 0) {
 for (int i = 0; i < 9; i++) {
 Q[M[indexS][C]][indexS][i] = Q[M[indexS][C]][indexS][i]
 - Math.log10(vCount);
 }
 }
 }
 }

 public void getProbabilityFromEachConstraints_Q(int index, int m,
 int realConstraintNum) {
 int num = 0;
 while (N_Current[realConstraintNum][num] != -1) {
 int indexS = N_Current[realConstraintNum][num];
 Q[m][index][S[indexS] - 1] = Math.log10(0);
 num++;
 }
 }

 public void getProbabilityFromEachConstraints_PRODUCT(int index,
 int constraintNum) {
 int num = 0;// get the number of values in the constraints
 while (N_Current[constraintNum][num] != -1) {
 int indexS = N_Current[constraintNum][num];// index of S
 // System.out.println(indexS + ": " + S[indexS]);
 P[index][S[indexS] - 1] = Math.log10(0);
 num++;
 }
 }

 // add value to all the constrains
 public void modifyN_Current(int index) {
 incompleteCount -= 1;
 for (int C = 0; C < 3; C++) {
 addToN_Current(M[index][C], index);
 }
 }

63

 public void addToN(int indexS, int N_number) {
 int index = 0;
 while (N[N_number][index] != -1) {// find the next place to put new
 index++;
 }
 N[N_number][index] = indexS;
 }

 // add real value to one constraint
 public void addToN_Current(int constraintNum, int indexS) {
 int index = 0;
 while (N_Current[constraintNum][index] != -1) {
 // System.out.println(SUDOKU+"
"+constraintNum+"]["+index+":"+N_Current[constraintNum][index]+
 // "Want to put"+indexS+":"+S[indexS]);
 index++;
 }
 N_Current[constraintNum][index] = indexS;
 }

 public int getBoxNumber(int i, int j) {
 int number = 0;
 if (i % 9 <= 2) {
 number = 18;
 } else if (i % 9 <= 5) {
 number = 21;
 } else {
 number = 24;
 }
 if (j % 9 >= 3 && j % 9 <= 5) {
 number += 1;
 } else if (j % 9 > 5) {
 number += 2;
 }
 return number;
 }

 public void print() {
 int e = 0;
 for (int i = 0; i < 9; i++) {
 for (int j = 0; j < 9; j++) {
 System.out.print(S[e++] + " ");
 }
 System.out.println();
 }
 System.out.println();
 }

 // loop to get the probability
 public int eliminate() {
 int setCount = 0; // count the number of values set in this round
 double maxP = Math.log10(0);
 int targetIndex = -1;
 int targetValue = 0;
 for (int i = 0; i < 81; i++) {
 if (S[i] == 0) {
 getProbability(i);
 int count = 0; // number of values with probability != 0
 int value = 0; // when count == 1, this value is unique
 for (int j = 0; j < 9; j++) {
 if (P[i][j] != Math.log10(0)) {
 if (P[i][j] > maxP) {
 maxP = P[i][j];
 targetIndex = i;
 targetValue = j + 1;
 }

64

 count++;
 value = j + 1;
 }
 }
 if (count == 1) {
 S[i] = value;
 modifyN_Current(i);
 setCount++;
 }
 }
 }
 return setCount;
 }

 public void printP() {
 for (int i = 0; i < 81; i++) {
 for (int v = 0; v < 9; v++) {
 if (S[i] == 0 && P[i][v] > Math.log10(0))
 System.out.println("P[" + i + "][" + (v + 1) + "]" + " "
 + Math.pow(10, P[i][v]));
 }
 }
 }

 public void printN() {
 System.out.println("Constraints: ");
 for (int i = 0; i < 27; i++) {
 System.out.print(i + " ");
 for (int j = 0; j < 9; j++) {
 System.out.print(N[i][j] + " ");
 }
 System.out.println();
 }
 System.out.println();
 }

 public void printM() {
 System.out.println("Cells: ");
 for (int i = 0; i < 81; i++) {
 System.out.print(i + " ");
 for (int j = 0; j < 3; j++) {
 System.out.print(M[i][j] + " ");
 }
 System.out.println();
 }
 System.out.println();
 }

 public double sum_log(double a, double b) {
 if (a == Double.NEGATIVE_INFINITY) {
 return b;
 } else if (b == Double.NEGATIVE_INFINITY) {
 return a;
 } else {
 double x, y, c = 0;
 if (a > b) {
 x = a;
 y = b;
 } else {
 x = b;
 y = a;
 }
 double decide = Math.pow(10, x - y);
 if ((decide + 1) == Double.POSITIVE_INFINITY) {// overflow
 c = x;
 } else {

65

 decide += 1;
 c = y + Math.log10(decide);
 }
 return c;
 }
 }
}

10.2 Java Source Code for Solving Jigsaw Puzzles

package jigsaw;
import java.awt.Color;
public class ColorSpaceConvert {
 public double[] D50 = {96.4212, 100.0, 82.5188};
 public double[] D55 = {95.6797, 100.0, 92.1481};
 public double[] D65 = {95.0429, 100.0, 108.8900};
 public double[] D75 = {94.9722, 100.0, 122.6394};
 public double[] whitePoint = D65;
 public double[] chromaD50 = {0.3457, 0.3585, 100.0};
 public double[] chromaD55 = {0.3324, 0.3474, 100.0};
 public double[] chromaD65 = {0.3127, 0.3290, 100.0};
 public double[] chromaD75 = {0.2990, 0.3149, 100.0};
 public double[] chromaWhitePoint = chromaD65;
 public double[][] M = {{0.4124, 0.3576, 0.1805},
 {0.2126, 0.7152, 0.0722},
 {0.0193, 0.1192, 0.9505}};
 public double[][] Mi = {{ 3.2406, -1.5372, -0.4986},
 {-0.9689, 1.8758, 0.0415},
 { 0.0557, -0.2040, 1.0570}};

 public ColorSpaceConvert() {
 whitePoint = D65;
 chromaWhitePoint = chromaD65;
 }

 public ColorSpaceConvert(String white) {
 whitePoint = D65;
 chromaWhitePoint = chromaD65;
 if (white.equalsIgnoreCase("d50")) {
 whitePoint = D50;
 chromaWhitePoint = chromaD50;
 }
 else if (white.equalsIgnoreCase("d55")) {
 whitePoint = D55;
 chromaWhitePoint = chromaD55;
 }
 else if (white.equalsIgnoreCase("d65")) {
 whitePoint = D65;
 chromaWhitePoint = chromaD65;
 }
 else if (white.equalsIgnoreCase("d75")) {
 whitePoint = D75;
 chromaWhitePoint = chromaD75;
 }
 }

 /**
 * @param H Hue angle/360 (0..1)
 * @param S Saturation (0..1)
 * @param B Value (0..1)
 * @return RGB values
 */

66

 public int[] HSBtoRGB(double H, double S, double B) {
 int[] result = new int[3];
 int rgb = Color.HSBtoRGB((float) H, (float) S, (float) B);
 result[0] = (rgb >> 16) & 0xff;
 result[1] = (rgb >> 8) & 0xff;
 result[2] = (rgb >> 0) & 0xff;
 return result;
 }

 public int[] HSBtoRGB(double[] HSB) {
 return HSBtoRGB(HSB[0], HSB[1], HSB[2]);
 }

 /**
 * Convert LAB to RGB.
 * @param L
 * @param a
 * @param b
 * @return RGB values
 */
 public int[] LABtoRGB(double L, double a, double b) {
 return XYZtoRGB(LABtoXYZ(L, a, b));
 }

 /**
 * @param Lab
 * @return RGB values
 */
 public int[] LABtoRGB(double[] Lab) {
 return XYZtoRGB(LABtoXYZ(Lab));
 }

 public double[] LABtoXYZ(double L, double a, double b) {
 double[] result = new double[3];

 double y = (L + 16.0) / 116.0;
 double y3 = Math.pow(y, 3.0);
 double x = (a / 500.0) + y;
 double x3 = Math.pow(x, 3.0);
 double z = y - (b / 200.0);
 double z3 = Math.pow(z, 3.0);

 if (y3 > 0.008856) {
 y = y3;
 }
 else {
 y = (y - (16.0 / 116.0)) / 7.787;
 }
 if (x3 > 0.008856) {
 x = x3;
 }
 else {
 x = (x - (16.0 / 116.0)) / 7.787;
 }
 if (z3 > 0.008856) {
 z = z3;
 }
 else {
 z = (z - (16.0 / 116.0)) / 7.787;
 }

 result[0] = x * whitePoint[0];
 result[1] = y * whitePoint[1];
 result[2] = z * whitePoint[2];

 return result;

67

 }
 public double[] LABtoXYZ(double[] Lab) {
 return LABtoXYZ(Lab[0], Lab[1], Lab[2]);
 }

 public double[] RGBtoHSB(int R, int G, int B) {
 double[] result = new double[3];
 float[] hsb = new float[3];
 Color.RGBtoHSB(R, G, B, hsb);
 result[0] = hsb[0];
 result[1] = hsb[1];
 result[2] = hsb[2];
 return result;
 }

 public double[] RGBtoHSB(int[] RGB) {
 return RGBtoHSB(RGB[0], RGB[1], RGB[2]);
 }
 public double[] RGBtoLAB(int R, int G, int B) {
 return XYZtoLAB(RGBtoXYZ(R, G, B));
 }
 public double[] RGBtoLAB(int[] RGB) {
 return XYZtoLAB(RGBtoXYZ(RGB));
 }

 public double[] RGBtoXYZ(int R, int G, int B) {
 double[] result = new double[3];
 // convert 0..255 into 0..1
 double r = R / 255.0;
 double g = G / 255.0;
 double b = B / 255.0;

 // assume sRGB
 if (r <= 0.04045) {
 r = r / 12.92;
 }
 else {
 r = Math.pow(((r + 0.055) / 1.055), 2.4);
 }
 if (g <= 0.04045) {
 g = g / 12.92;
 }
 else {
 g = Math.pow(((g + 0.055) / 1.055), 2.4);
 }
 if (b <= 0.04045) {
 b = b / 12.92;
 }
 else {
 b = Math.pow(((b + 0.055) / 1.055), 2.4);
 }

 r *= 100.0;
 g *= 100.0;
 b *= 100.0;

 // [X Y Z] = [r g b][M]
 result[0] = (r * M[0][0]) + (g * M[0][1]) + (b * M[0][2]);
 result[1] = (r * M[1][0]) + (g * M[1][1]) + (b * M[1][2]);
 result[2] = (r * M[2][0]) + (g * M[2][1]) + (b * M[2][2]);

 return result;
 }
 public double[] RGBtoXYZ(int[] RGB) {
 return RGBtoXYZ(RGB[0], RGB[1], RGB[2]);

68

 }
 public double[] xyYtoXYZ(double x, double y, double Y) {
 double[] result = new double[3];
 if (y == 0) {
 result[0] = 0;
 result[1] = 0;
 result[2] = 0;
 }
 else {
 result[0] = (x * Y) / y;
 result[1] = Y;
 result[2] = ((1 - x - y) * Y) / y;
 }
 return result;
 }

 public double[] xyYtoXYZ(double[] xyY) {
 return xyYtoXYZ(xyY[0], xyY[1], xyY[2]);
 }
 public double[] XYZtoLAB(double X, double Y, double Z) {
 double x = X / whitePoint[0];
 double y = Y / whitePoint[1];
 double z = Z / whitePoint[2];
 if (x > 0.008856) {
 x = Math.pow(x, 1.0 / 3.0);
 }
 else {
 x = (7.787 * x) + (16.0 / 116.0);
 }
 if (y > 0.008856) {
 y = Math.pow(y, 1.0 / 3.0);
 }
 else {
 y = (7.787 * y) + (16.0 / 116.0);
 }
 if (z > 0.008856) {
 z = Math.pow(z, 1.0 / 3.0);
 }
 else {
 z = (7.787 * z) + (16.0 / 116.0);
 }
 double[] result = new double[3];
 result[0] = (116.0 * y) - 16.0;
 result[1] = 500.0 * (x - y);
 result[2] = 200.0 * (y - z);

 return result;
 }
 public double[] XYZtoLAB(double[] XYZ) {
 return XYZtoLAB(XYZ[0], XYZ[1], XYZ[2]);
 }

 public int[] XYZtoRGB(double X, double Y, double Z) {
 int[] result = new int[3];

 double x = X / 100.0;
 double y = Y / 100.0;
 double z = Z / 100.0;

 // [r g b] = [X Y Z][Mi]
 double r = (x * Mi[0][0]) + (y * Mi[0][1]) + (z * Mi[0][2]);
 double g = (x * Mi[1][0]) + (y * Mi[1][1]) + (z * Mi[1][2]);
 double b = (x * Mi[2][0]) + (y * Mi[2][1]) + (z * Mi[2][2]);

 // assume sRGB
 if (r > 0.0031308) {

69

 r = ((1.055 * Math.pow(r, 1.0 / 2.4)) - 0.055);
 }
 else {
 r = (r * 12.92);
 }
 if (g > 0.0031308) {
 g = ((1.055 * Math.pow(g, 1.0 / 2.4)) - 0.055);
 }
 else {
 g = (g * 12.92);
 }
 if (b > 0.0031308) {
 b = ((1.055 * Math.pow(b, 1.0 / 2.4)) - 0.055);
 }
 else {
 b = (b * 12.92);
 }
 r = (r < 0) ? 0 : r;
 g = (g < 0) ? 0 : g;
 b = (b < 0) ? 0 : b;
 // convert 0..1 into 0..255
 result[0] = (int) Math.round(r * 255);
 result[1] = (int) Math.round(g * 255);
 result[2] = (int) Math.round(b * 255);
 return result;
 }
 public int[] XYZtoRGB(double[] XYZ) {
 return XYZtoRGB(XYZ[0], XYZ[1], XYZ[2]);
 }
 public double[] XYZtoxyY(double X, double Y, double Z) {
 double[] result = new double[3];
 if ((X + Y + Z) == 0) {
 result[0] = chromaWhitePoint[0];
 result[1] = chromaWhitePoint[1];
 result[2] = chromaWhitePoint[2];
 }
 else {
 result[0] = X / (X + Y + Z);
 result[1] = Y / (X + Y + Z);
 result[2] = Y;
 }
 return result;
 }
 public double[] XYZtoxyY(double[] XYZ) {
 return XYZtoxyY(XYZ[0], XYZ[1], XYZ[2]);
 }

 public static void main(String args[]){
 ColorSpaceConvert csc = new ColorSpaceConvert("D65");
 csc.RGBtoLAB(110, 71, 146);
 }
 }

package jigsaw;

//Use Low resolution picture, no log M/PatcchNUmber
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import java.util.ArrayList;
import java.util.Collections;
import java.util.LinkedList;
import java.util.List;
import java.util.Queue;
import javax.imageio.ImageIO;
// http://html-color-codes.info/

70

//RGB # color
//http://www.colorspire.com/rgb-color-wheel/
//online RGB LAB
//http://www.easyrgb.com/index.php?X=CALC#Result

public class JigsawPGM {
 public int MP_Round = 3;
 public int Current_MP = 0;
 public String fileName = "100_0.jpg";// 200_1.jpg";
 public String fileName_low = "100_00.jpg";
 public String newFileName = "1_new";
 // public int logSIZE = 10;

 public int HEIGHT;
 public int WIDTH;
 public int Pixels;
 public int PATCH_SIZE = 25;

 public int PATCH_NUMBER;
 public int ROW_SIZE;// 20patches in each row
 public int COL_SIZE;// 20 patches in each column
 public LAB[][] LABData;
 // public L
 public int[][] RGBInteger;
 public int[][] RGBInteger_low;
 public BufferedImage image = null;
 public BufferedImage image_low = null;
 public int N[][]; // up down left right
 public static double M_ji_Xi_0[][][]; // Message: v- Neighbor Relation
 // (N[i][v]=j) -- Current Location
 // i-- Current Patch Xi
 public static double M_ji_Xi_1[][][];
 public static double P_ji[][][]; // patch dissimilarity: patch j, patch i,
 // relation: patch j is at the UDLR of
 // patch i
 public int LOCATION_STATE[]; // [location]=patch,
 public boolean PATCH_STATE[];
 public Queue<Integer> Guess = new LinkedList<Integer>();
 public double P_YX[][];
 public int OverFlow = 0;

 // public double [][][] original ;
 public void init() {

 try {
 image = ImageIO.read(new File(fileName));// ye 11851.jpg
 // 10375/01.jpg
 image_low = ImageIO.read(new File(fileName_low));

 HEIGHT = image.getHeight();
 WIDTH = image.getWidth();
 Pixels = HEIGHT * WIDTH;

 // PATCH_SIZE = getGCD(HEIGHT, WIDTH);
 // PATCH_SIZE = 50;
 ROW_SIZE = WIDTH / PATCH_SIZE;
 COL_SIZE = HEIGHT / PATCH_SIZE;
 PATCH_NUMBER = ROW_SIZE * COL_SIZE;
 // PATCH_ROW =
 N = new int[PATCH_NUMBER][4];
 System.out.println(HEIGHT + " " + WIDTH + ": " + PATCH_NUMBER);
 System.out.println("MP: " + MP_Round);
 M_ji_Xi_0 = new double[4][PATCH_NUMBER][PATCH_NUMBER];
 M_ji_Xi_1 = new double[4][PATCH_NUMBER][PATCH_NUMBER];
 P_ji = new double[PATCH_NUMBER][PATCH_NUMBER][4];
 LOCATION_STATE = new int[PATCH_NUMBER];

71

 PATCH_STATE = new boolean[PATCH_NUMBER];
 P_YX = new double[PATCH_NUMBER][PATCH_NUMBER];

 initNeighbor();

 // System.out.println(image_low.getHeight()+" "+image_low.getWidth());
 RGBInteger = new int[HEIGHT][WIDTH];
 RGBInteger_low = new int[HEIGHT][WIDTH];
 LABData = new LAB[HEIGHT][WIDTH];// =new
 // String[image.getHeight()][image.getWidth()];
 // // where we'll put the image
 ColorSpaceConvert csc = new ColorSpaceConvert("D65");
 String HexString = "";
 for (int i = 0; i < HEIGHT; i++) {
 for (int j = 0; j < WIDTH; j++) {
 RGBInteger[i][j] = image.getRGB(j, i);
 RGBInteger_low[i][j] = image_low.getRGB(j, i);
 HexString = Integer.toHexString(RGBInteger[i][j]);
 int R = Integer.parseInt(HexString.substring(2, 4), 16);
 int G = Integer.parseInt(HexString.substring(4, 6), 16);
 int B = Integer.parseInt(HexString.substring(6, 8), 16);
 LABData[i][j] = new LAB();
 LABData[i][j].lab = csc.RGBtoLAB(R, G, B);
 }
 }

 YCompatibility_RGB();
 setAnchorPatch();
 patchCompatibility();
 process();

 } catch (IOException e) {
 System.out.println("No file");
 }
 }

 public void process() {
 for (int d = 0; d < 4; d++) {
 for (int i = 0; i < PATCH_NUMBER; i++) {
 for (int Xi = 0; Xi < PATCH_NUMBER; Xi++) {
 M_ji_Xi_0[d][i][Xi] = 0;
 M_ji_Xi_1[d][i][Xi] = 0;
 }
 }
 }
 Current_MP = 0;

 while (Current_MP <= MP_Round) {
 initialMessage(Current_MP == 0 ? false : true);
 setAnchorPatch();
 guess();
 // permutationGuess();
 File newFile = new File(newFileName + Current_MP + ".jpg");
 try {
 ImageIO.write(image, "JPEG", newFile);
 } catch (IOException e) {
 e.printStackTrace();
 }
 Current_MP++;
 }
 }

 public void setAnchorPatch() {
 for (int i = 0; i < PATCH_NUMBER; i++) {
 LOCATION_STATE[i] = -1;
 PATCH_STATE[i] = false;

72

 }
 }

 public void initNeighbor() {
 for (int i = 0; i < PATCH_NUMBER; i++) {

 N[i][0] = (i - ROW_SIZE >= 0) ? (i - ROW_SIZE) : -1;
 N[i][1] = (i + ROW_SIZE < PATCH_NUMBER) ? (i + ROW_SIZE) : -1;

 N[i][2] = (i % ROW_SIZE == 0) ? -1 : i - 1;
 N[i][3] = ((i + 1) % ROW_SIZE == 0) ? -1 : i + 1;
 }
 }

 // M = SUM(P_ji),j for 399
 public void initialMessage(boolean not_init) {
 // M_ji_Xi[][][]: Message: v- Neighbor Relation (N[i][v]=j) -- Current
 // Location i-- Current Patch Xi
 int SIZE = 8;
 double[] sum = new double[SIZE];

 double[][][] M0 = M_ji_Xi_0, M1 = M_ji_Xi_1;
 if (Current_MP % 2 == 1) {
 M0 = M_ji_Xi_1;
 M1 = M_ji_Xi_0;
 }
 for (int i = 0; i < PATCH_NUMBER; i++) {
 for (int Xi = 0; Xi < PATCH_NUMBER; Xi++) {
 for (int d = 0; d < 4; d++) {
 M0[d][i][Xi] = 0;// location j = N[i][d];
 for (int s = 0; s < SIZE; s++) {// initial sum
 sum[s] = 0;
 }
 if (N[i][d] != -1) {
 for (int Xj = 0; Xj < PATCH_NUMBER; Xj++) {// PATCH
 double P = P_ji[Xj][Xi][d] * P_YX[N[i][d]][Xj]; //
 if (not_init) {// Real MP
 for (int dd = 0; dd < 4; dd++) {// location j =
 // N[i][d];
 int l = N[N[i][d]][dd];
 if (l != -1 && l != i) {
 P = P * M1[dd][N[i][d]][Xj];
 }
 }
 }
 int index = Xj % SIZE;

 sum[index] = sum[index] + P;
 }// Xj
 for (int s = 0; s < 4; s++) {
 sum[s] = sum[s] + sum[s + 4];
 }
 M0[d][i][Xi] = (sum[0] + sum[1] + sum[2] + sum[3])
 / PATCH_NUMBER;
 }
 }// neighbor
 }// Xi

 }// i

 }

 public void iniGuess() {
 // Guess.add(0);
 for (int i = 0; i < PATCH_NUMBER; i++) {
 if (LOCATION_STATE[i] != -1) {

73

 for (int d = 0; d < 4; d++) {
 if (N[i][d] != -1 && LOCATION_STATE[N[i][d]] == -1)
 Guess.add(N[i][d]);
 }
 }
 }
 }

 // bi(xi) = II j (m_ji_Xi)
 public void guess() {
 // iniGuess();
 int count = 0;
 int misDistance = 0;
 int total = 0;
 double M[][][] = M_ji_Xi_0;
 if (Current_MP % 2 == 1) {
 M = M_ji_Xi_1;
 }
 // for(int i =0;i<PATCH_NUMBER;i++){//location
 while (total < PATCH_NUMBER) {
 // int i=Guess.poll();
 double maxB = 0;
 int maxPatch = 0;
 int maxLocation = 0;
 for (int i = 0; i < PATCH_NUMBER; i++) {
 if (LOCATION_STATE[i] != -1) {
 continue;
 }
 for (int Xi = 0; Xi < PATCH_NUMBER; Xi++) {
 if (PATCH_STATE[Xi]) {
 continue;
 }
 double II = P_YX[i][Xi];
 for (int d = 0; d < 4; d++) {
 if (N[i][d] != -1) {
 II = II + M[d][i][Xi];
 }
 }

 if (II > P_YX[i][Xi] && II >= maxB) {
 maxB = II;
 maxPatch = Xi;
 maxLocation = i;
 }
 }
 }
 // System.out.println(maxLocation+": "+maxPatch+" "+maxB);
 total++;
 int distance = Math.abs(maxLocation - maxPatch);
 // misDistance+=distance;
 if (maxB > 0 && distance == 0) {
 count++;
 System.out.println("Correct:-- " + maxLocation);
 } else {
 System.out.println(maxLocation + ": " + maxPatch);
 }
 setPatch(maxLocation, maxPatch);
 PATCH_STATE[maxPatch] = true;
 LOCATION_STATE[maxLocation] = maxPatch;

 }
 System.out.println(Current_MP + " " + count + " " + converge());
 }

 public void permutationGuess() {
 maxG = 0;

74

 maxGuess = new int[PATCH_NUMBER];
 int[] GuessPatch = new int[PATCH_NUMBER];
 int[] patchState = new int[PATCH_NUMBER];
 double[][] B = new double[PATCH_NUMBER][PATCH_NUMBER];
 double M[][][] = M_ji_Xi_0;
 if (Current_MP % 2 == 1) {
 M = M_ji_Xi_1;
 }
 for (int i = 0; i < PATCH_NUMBER; i++) {
 for (int Xi = 0; Xi < PATCH_NUMBER; Xi++) {
 B[i][Xi] = P_YX[i][Xi];
 for (int d = 0; d < 4; d++) {
 if (N[i][d] != -1) {
 B[i][Xi] += M[d][i][Xi];
 }
 }
 }
 }
 int count = 0;
 permutationGuess2(0, B, patchState, GuessPatch);
 for (int i = 0; i < PATCH_NUMBER; i++) {
 setPatch(i, maxGuess[i]);
 if (i == maxGuess[i]) {
 count++;
 }
 }
 System.out.print(count + " out of! ");

 }

 public double maxG = 0;
 public int[] maxGuess;

 public void permutationGuess2(int cur, double[][] B, int[] patchState,
 int[] GuessPatch) {
 if (cur == PATCH_NUMBER) {
 double R = 1;
 for (int i = 0; i < PATCH_NUMBER; i++) {
 R *= B[i][GuessPatch[i]];
 }
 if (R > maxG) {
 maxG = R;
 System.out.print(maxG + ": ");
 for (int i = 0; i < PATCH_NUMBER; i++) {
 System.out.print(GuessPatch[i]);
 maxGuess[i] = GuessPatch[i];
 }
 System.out.println();
 }
 return;
 }
 for (int i = 0; i < PATCH_NUMBER; i++) {
 if (patchState[i] != 1) {
 GuessPatch[cur] = i;
 patchState[i] = 1;
 permutationGuess2(cur + 1, B, patchState, GuessPatch);
 patchState[i] = 0;
 }
 }
 return;
 }

 public double converge() {
 double sum = 0;
 for (int i = 0; i < PATCH_NUMBER; i++) {
 for (int j = 0; j < PATCH_NUMBER; j++) {

75

 for (int n = 0; n < 4; n++) {
 sum += Math.abs(M_ji_Xi_1[n][i][j] - M_ji_Xi_0[n][i][j]);
 }
 }
 }
 return sum;
 }

 public void print(double[][][] m) {
 for (int i = 0; i < 1; i++) {
 for (int j = 0; j < PATCH_NUMBER; j++) {
 System.out.print(i + ": " + j + ": ");
 System.out.println(m[0][i][j] + " " + m[1][i][j] + " "
 + m[2][i][j] + " " + m[3][i][j] + "; ");
 }
 System.out.println();
 System.out.println();
 }
 }

 // test if the best neighbor is right according to the original picture
 public void test() {
 int count = 0, total = 0;
 for (int i = 0; i < PATCH_NUMBER; i++) {
 System.out.print(i + ": ");
 for (int d = 0; d < 4; d++) {
 double max = Double.MIN_VALUE;
 int minJ = -1;
 for (int j = 0; j < PATCH_NUMBER; j++) {
 // if(j!=i)
 if (P_ji[j][i][d] > max) {
 max = P_ji[j][i][d];
 minJ = j;
 }
 }
 if (N[i][d] != -1)
 total++;
 if (minJ == N[i][d])
 count++;
 System.out.print(N[i][d] + "-" + minJ + " ");
 }
 System.out.println();
 }
 System.out.println("Count: " + count + " / " + total);
 }

 public static int getGCD(int m, int n) {
 while (m % n != 0) {
 int temp = m % n;
 m = n;
 n = temp;
 }
 return n;
 }

 public void patchCompatibility() {// Up Down Left Right
 double Min[] = new double[4], Min2[] = new double[4], a[] = new double[4];
 for (int i = 0; i < PATCH_NUMBER; i++) {// for patch i
 for (int d = 0; d < 4; d++) {
 Min[d] = Double.MAX_VALUE;
 Min2[d] = Double.MAX_VALUE;
 }
 for (int j = 0; j < PATCH_NUMBER; j++) {
 if (j == i) {
 for (int r = 0; r < 4; r++)
 P_ji[j][i][r] = 0;

76

 } else {
 P_ji[j][i][0] = DUD_DDU(j, i, true);
 P_ji[j][i][1] = DUD_DDU(j, i, false);
 P_ji[j][i][2] = DLR_DRL(j, i, true);
 P_ji[j][i][3] = DLR_DRL(j, i, false);
 for (int d = 0; d < 4; d++) {
 if (P_ji[j][i][d] < Min[d]) {
 Min2[d] = Min[d];
 Min[d] = P_ji[j][i][d];
 } else if (P_ji[j][i][d] > Min[d]
 && P_ji[j][i][d] < Min2[d]) {
 Min2[d] = P_ji[j][i][d];
 }
 }
 }
 }// j
 for (int d = 0; d < 4; d++)
 a[d] = 2 * (Min2[d] - Min[d]) * (Min2[d] - Min[d]);
 for (int j = 0; j < PATCH_NUMBER; j++) {
 if (j != i)
 for (int d = 0; d < 4; d++) {
 P_ji[j][i][d] = Math.exp((P_ji[j][i][d] / a[d]) * (-1));
 }
 }
 }
 }

 public void YCompatibility_RGB() {
 double RGB_Y[][] = new double[PATCH_NUMBER][3];// Mean color of R G B
 double RGB_X[][] = new double[PATCH_NUMBER][3];

 for (int i = 0; i < PATCH_NUMBER; i++) {
 int row = i / ROW_SIZE * PATCH_SIZE, col = i % ROW_SIZE
 * PATCH_SIZE;
 for (int index = 0; index < 3; index++) {
 RGB_Y[i][index] = 0;
 RGB_X[i][index] = 0;
 }
 String HexS;
 for (int r = 0; r < PATCH_SIZE; r++) {
 for (int c = 0; c < PATCH_SIZE; c++) {
 HexS = Integer.toHexString(RGBInteger[row + r][col + c]);
 RGB_X[i][0] += Integer.parseInt(HexS.substring(2, 4), 16);
 RGB_X[i][1] += Integer.parseInt(HexS.substring(4, 6), 16);
 RGB_X[i][2] += Integer.parseInt(HexS.substring(6, 8), 16);
 HexS = Integer
 .toHexString(RGBInteger_low[row + r][col + c]);
 RGB_Y[i][0] += Integer.parseInt(HexS.substring(2, 4), 16);
 RGB_Y[i][1] += Integer.parseInt(HexS.substring(4, 6), 16);
 RGB_Y[i][2] += Integer.parseInt(HexS.substring(6, 8), 16);
 }
 }
 // System.out.println(i+" -- "+RGB_Y[i]+": "+RGB_X[i]);
 for (int index = 0; index < 3; index++) {
 RGB_Y[i][index] = RGB_Y[i][index] / (PATCH_SIZE * PATCH_SIZE)
 / 100;
 RGB_X[i][index] = RGB_X[i][index] / (PATCH_SIZE * PATCH_SIZE)
 / 100;
 }
 }
 int fitCount = 0;
 for (int Y = 0; Y < PATCH_NUMBER; Y++) {
 double maxP = Double.NEGATIVE_INFINITY;
 int maxX = -1;
 for (int X = 0; X < PATCH_NUMBER; X++) {
 double sumS = 0;

77

 for (int i = 0; i < 3; i++) {
 sumS += (RGB_Y[Y][i] - RGB_X[X][i])
 * (RGB_Y[Y][i] - RGB_X[X][i]);
 }
 P_YX[Y][X] = Math.exp(sumS * (-1) / (2 * 0.16));
 // if(Y==15)System.out.println(P_YX[Y][X]);
 // P_YX[Y][X] = Log(P_YX[Y][X]);

 if (P_YX[Y][X] > maxP) {
 maxP = P_YX[Y][X];
 maxX = X;
 }
 }

 if (Y == maxX) {// System.out.println("Fit: "+Y);
 fitCount++;
 }// System.out.println(Y+" Max fit Patch:-- "+maxX);
 }
 System.out.println("Fit Count:-- " + fitCount);
 }

 public void YCompatibility() {
 double RGB_Y[] = new double[PATCH_NUMBER];
 double RGB_X[] = new double[PATCH_NUMBER];

 for (int i = 0; i < PATCH_NUMBER; i++) {
 int row = i / ROW_SIZE * PATCH_SIZE, col = i % ROW_SIZE
 * PATCH_SIZE;
 RGB_Y[i] = 0;
 RGB_X[i] = 0;
 for (int r = 0; r < PATCH_SIZE; r++) {
 for (int c = 0; c < PATCH_SIZE; c++) {
 RGB_X[i] += Integer.parseInt(
 Integer.toHexString(RGBInteger[row + r][col + c])
 .substring(2, 8), 16);
 RGB_Y[i] += Integer.parseInt(
 Integer.toHexString(
 RGBInteger_low[row + r][col + c])
 .substring(2, 8), 16);
 }
 }
 // System.out.println(i+" -- "+RGB_Y[i]+": "+RGB_X[i]);
 RGB_Y[i] = RGB_Y[i] / (PATCH_SIZE * PATCH_SIZE) / 1000000;
 RGB_X[i] = RGB_X[i] / (PATCH_SIZE * PATCH_SIZE) / 1000000;

 }
 int fitCount = 0;
 for (int Y = 0; Y < PATCH_NUMBER; Y++) {
 double maxP = Double.NEGATIVE_INFINITY;
 int maxX = -1;
 for (int X = 0; X < PATCH_NUMBER; X++) {
 P_YX[Y][X] = Math.exp((RGB_Y[Y] - RGB_X[X])
 * (RGB_Y[Y] - RGB_X[X]) * (-1) / (2 * 0.16));
 if (Y == 6)
 System.out.println(Y + " -- " + X + ": "
 + (RGB_Y[Y] - RGB_X[X]) * (RGB_Y[Y] - RGB_X[X])
 * (-1) / (2 * 0.16) + " " + P_YX[Y][X]);
 // P_YX[Y][X] = Log(P_YX[Y][X]);

 if (P_YX[Y][X] > maxP) {
 maxP = P_YX[Y][X];
 maxX = X;
 }
 }
 if (Y == maxX)
 fitCount++;// System.out.println(Y+" Max fit Patch:-- "+maxX);

78

 }
 System.out.println("Fit Count:-- " + fitCount);
 }

 // //i j:patch locations, last col in J, first col in i
 public double DLR_DRL(int j, int i, Boolean Left) {
 int rowJ, rowI, colJ, colI;
 if (Left) { // j is the left Neighbor of i: DLR
 rowJ = j / ROW_SIZE * PATCH_SIZE;
 colJ = j % ROW_SIZE * PATCH_SIZE + (PATCH_SIZE - 1);
 rowI = i / ROW_SIZE * PATCH_SIZE;
 colI = i % ROW_SIZE * PATCH_SIZE;
 } else {// j is the right Neighbor of i: DRL
 rowJ = j / ROW_SIZE * PATCH_SIZE;
 colJ = j % ROW_SIZE * PATCH_SIZE;
 rowI = i / ROW_SIZE * PATCH_SIZE;
 colI = i % ROW_SIZE * PATCH_SIZE + (PATCH_SIZE - 1);
 }
 // System.out.println(rowJ +" "+ colJ);
 double result = 0;
 for (int k = 0; k < PATCH_SIZE; k++) {
 for (int l = 0; l < 3; l++) {
 result += (LABData[rowJ + k][colJ].lab[l] - LABData[rowI + k][colI].lab[l])
 * (LABData[rowJ + k][colJ].lab[l] - LABData[rowI + k][colI].lab[l]);
 }
 }
 // System.out.print(j+": "+result);
 return result;
 }

 public double DUD_DDU(int j, int i, Boolean Up) {
 int rowJ, rowI, colJ, colI;
 if (Up) { // j is the UP Neighbor of i: DUD
 rowJ = j / ROW_SIZE * PATCH_SIZE + (PATCH_SIZE - 1);
 colJ = j % ROW_SIZE * PATCH_SIZE;
 rowI = i / ROW_SIZE * PATCH_SIZE;
 colI = i % ROW_SIZE * PATCH_SIZE;
 } else {// j is the DOWN Neighbor of i: DDU
 rowJ = j / ROW_SIZE * PATCH_SIZE;
 colJ = j % ROW_SIZE * PATCH_SIZE;
 rowI = i / ROW_SIZE * PATCH_SIZE + (PATCH_SIZE - 1);
 colI = i % ROW_SIZE * PATCH_SIZE;
 }
 double result = 0;
 // System.out.println(j+" "+i+" "+Up+" "+rowJ+" "+colJ+" "+rowI+" "+colI);
 for (int k = 0; k < PATCH_SIZE; k++) {
 for (int l = 0; l < 3; l++) {
 // System.out.println(LABData[rowJ][colJ+k]==null);
 result += (LABData[rowJ][colJ + k].lab[l] - LABData[rowI][colI
 + k].lab[l])
 * (LABData[rowJ][colJ + k].lab[l] - LABData[rowI][colI
 + k].lab[l]);
 }
 }
 return result;
 }

 public void shuffle() {
 List<Integer> list = new ArrayList<Integer>();
 for (int i = 0; i < PATCH_NUMBER; i++) {
 list.add(i);
 }
 Collections.shuffle(list);
 for (int i = 0; i < PATCH_NUMBER; i++) {// location
 int source = list.get(i);// get patch number(content in original
 // same location)

79

 setPatch(i, source);
 }
 }

 // set content to Real Image File
 public void setPatch(int destination, int source) {
 int rowD = destination / ROW_SIZE * PATCH_SIZE, colD = destination
 % ROW_SIZE * PATCH_SIZE;
 int rowS = source / ROW_SIZE * PATCH_SIZE, colS = source % ROW_SIZE
 * PATCH_SIZE;
 for (int i = 0; i < PATCH_SIZE; i++) {
 for (int j = 0; j < PATCH_SIZE; j++) {// [rowD+i][colD+j]
 image.setRGB(colD + j, rowD + i, RGBInteger[rowS + i][colS + j]);
 }
 }

 }

 public double sum_log(double a, double b) {

 if (a == Double.NEGATIVE_INFINITY) {
 return b;
 } else if (b == Double.NEGATIVE_INFINITY) {
 return a;
 } else {
 double x, y, c = Double.NEGATIVE_INFINITY;
 if (a > b) {
 x = a;
 y = b;
 } else {
 x = b;
 y = a;
 }
 double decide = Math.pow(10, x - y) + 1;
 if (decide == Double.POSITIVE_INFINITY) {// overflow
 OverFlow++;
 c = x;
 } else {
 c = y + Log(decide);
 }
 // System.out.println("SUM:"+Math.pow(10,a)+" + "+Math.pow(10,b)
 // +" = " +Math.pow(10,c));
 return c;
 }
 }

 public void DLR_DRL_test() {
 double firstMin = Double.MAX_VALUE, secondMin = Double.MAX_VALUE;
 int XI = 10;
 double[] record = new double[ROW_SIZE * COL_SIZE];
 for (int j = 0; j < PATCH_NUMBER; j++) {
 record[j] = DLR_DRL(j, XI, true);
 // double P = Math.exp((d/0.08)*(-1));
 if (record[j] < firstMin) {
 firstMin = record[j];
 } else if (record[j] > firstMin && record[j] < secondMin) {
 secondMin = record[j];
 }
 }
 double a = 2 * (secondMin - firstMin) * (secondMin - firstMin);
 for (int i = 0; i < PATCH_NUMBER; i++) {
 double P = Math.exp((record[i] / a) * (-1));
 System.out
 .println(" " + (secondMin - firstMin) + " P: " + P);
 }
 }

80

 public double Log(double value) {
 return Math.log10(value) / Math.log10(10);
 }

 class LAB {
 public double[] lab;// = new double[3];
 @Override
 public String toString() {
 // TODO Auto-generated method stub
 return lab[0] + " " + lab[1] + " " + lab[2];
 }
 }
 // 100*100, 5*5 patch,
 public static void main(String[] args) {
 JigsawPGM IIT = new JigsawPGM();
 IIT.init();
 }
}

	San Jose State University
	SJSU ScholarWorks
	Spring 5-13-2015

	Using Probabilistic Graphical Models to Solve NP-complete Puzzle Problems
	Fengjiao Wu
	Recommended Citation

	tmp.1431549863.pdf.vUcc9

