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ABSTRACT 

Using Hidden Markov Models to Detect DNA Motifs 

by Santrupti Nerli 

 

During the process of gene expression in eukaryotes, mRNA splicing is one of the key 

processes carried out by a complex called spliceosome. Spliceosome guarantees proper 

removal of introns and joining of exons before the translation process. Precise splicing is 

essential for the production of functional proteins. Spliceosome detects specific sequence 

motifs within an mRNA sequence called splice sites. Two of the splice sites are the 5’ and 3’ 

sites that border all the introns. Normal splicing process if disrupted by mutation may lead to 

fatal diseases. In this work, we predict splice sites in a human genome using hidden Markov 

models (HMMs). 

Prior to hidden Markov models, we tried to predict splice sites using higher order position 

weight matrices. Position Weight Matrix (PWM) is a conventional computational method 

used to represent splice sites or any sequence motif. In a set of aligned sequences, PWM 

captures the distribution of nucleotides at each position. The performance of simple PWMs in 

classifying authentic 5 and 3 splice sites and predicting cryptic splice sites in human genes 

is resonably well [1, 2, 3]. However, they are built by making a strong independence 

assumption between contiguous and non- contiguous nucleotide positions. Therefore, we 

developed a higher order PWM method that incorporates maximal dependence 

decomposition algorithm (MDD) [4] to successfully identify statistically significant splice 

sites. 

Simple PWM also fails to capture sites that lie in both splice site and non-splice site regions. 

Therefore, we implemented HMMs to overcome this limitation of PWM. 



  

 
 

We performed 10-fold cross validation of all the three methods for 5 and 3 authentic human 

splice sites from the HS3D database [5] and observed that MDD outperforms the other two 

methods with area under the Receiver Operating Characteristic curve (ROC) to be 0.96 and 

0.93, respectively. Similarly, we performed classification of 5 and 3 putative cryptic splice 

sites in the beta-globin (HBB) and breast cancer type 1 susceptibility protein (BRCA1) genes. 

We observed that MDD performs very well in classifying both BRCA1 and HBB cryptic 

splice sites with area under ROC of 0.99, 0.95, 0.89 and 1.0 respectively. However, we also 

observed that HMMs perform fairly well in classifying splice sites and cryptic splice sites 

compared to traditional PWM method. 
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CHAPTER 1 

Introduction 

Proteins are the building blocks of living organisms. In order to produce functional proteins 

in eukaryotes, messenger ribonucleic acid (mRNA) undergoes a process called alternative 

splicing. Alternative splicing is a process where some introns are removed and exons are 

fused to ready the mRNA for translation process. This process is carried out by a complex 

called spliceosome. Spliceosome is intelligent enough to identify the extremes of all introns 

called 5’ and 3’ splice sites. Spliceosome can sometimes be misled due to mutations at these 

sites causing it to splice unintended regions. This may trigger production of dysfunctional 

proteins in turn leading to malignant diseases.  

Prediction of splice sites is essential as they play most significant role in protein production. 

In this work, we build a predictor in silico that will identify splice sites in the human genome. 

1. 1 Background 

Splice site oligomers can be represented computationally using a popular method known as 

position weight matrix (PWM). Position weight matrix identifies unknown sites by scoring 

them with a matrix that is constructed by taking into account the probabilities of observing 

specific nucleotides at specific positions of aligned sequences. 

More precisely, a PWM is a four by K matrix. Four rows for nucleotides {A, C, G, T} and K 

is the size of an oligomer. Each cell represents a distribution of that nucleotide at position p, 

where 1 ≤ p ≤ K. PWMs are known to perform fairly well in predicting splice sites, however 

they are built with a strong assumption. They assume that nucleotides at various positions are 

independent of one another which is rarely the case with splice sites. In order to overcome 

independence assumption, we constructed a sophisticated model that takes into account the 
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interdependencies between nucleotide positions. This model constructs a higher order 

position weight matrix and makes use of the maximal dependence decomposition (MDD) 

algorithm. The accuracy of prediction of splice sites using MDD is very high and can be 

observed in later chapters.  

In the next chapter, we will study PWMs in detail. 
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CHAPTER 2 

Position Weight Matrix 

The position weight matrix (PWM) is one of the most popular computational methods to 

represent DNA motifs. For splice sites, a PWM is a 4xK matrix where rows represent the four 

nucleotides and columns represents the size of each motif. To construct the PWM for splice 

sites, we have to align multiple splice site motifs, and then compute the frequency of every 

nucleotide at every position.  

Let x represent a nucleotide and j the position, then frequency of observing x at position j is 

given by 

𝑓𝑥,𝑗 =  
𝑁𝑥,𝑗

𝑁
 

where, 𝑁𝑥,𝑗  is total number of times x is observed at position j and N is the total number of 

nucleotides at position j.  

Consider the following set of aligned sequences. 

AGTGTAAGT 

TTCGTAAGT 

AGGGTAAGA 

CAGGTGGGG 

GAGGTGAGT 

ACGGTAACT 

CTCGTAAGT 

TAAGTAAGC 

CTGGTGGGT 

CAGGTGAGG 

 

Example 1: Sample splice sites oligomers from HS3D [5] 



  

4 
 

These are ten splice site motifs from Homo Sapiens Splice Site Database (HS3D). Let us 

construct a PWM for the sample sequences. 

Frequency of observing x = {A, C, G, T} at position 1 is given by: 

𝑓𝐴,1 =  
3

10
        𝑓𝐶,1 =  

4

10
        𝑓𝐺,1 =  

1

10
        𝑓𝑇,1 =  

2

10
 

Similarly, we compute the frequencies of all nucleotides at all positions [6] and construct 

Table 1 for the sample sequences. 

Table 1: Position weight matrix for the same sequences 

Position 1 2 3 4 5 6 7 8 9 

Nucleotide 

A 0.3 0.4 0.1 0.0 0.0 0.6 0.8 0.0 0.1 

C 0.4 0.1 0.2 0.0 0.0 0.0 0.0 0.1 0.1 

G 0.1 0.2 0.6 1.0 0.0 0.4 0.2 0.9 0.2 

T 0.2 0.3 0.1 0.0 1.0 0.0 0.0 0.0 0.6 

 

2.1 Pseudocounts 

In the above example sequences, some of the nucleotides at a few positions are not observed 

at all. For example, nucleotides C and T are not observed at position 8. However, this is 

seldom true in reality. The example sequences represent a small set of the entire population of 

sequences. Due to this data insufficiency, we might not observe some nucleotides at a few 

positions. This problem can be eliminated by taking pseudocounts into account before 

computing the probabilities. By adding pseudocounts, we are considering unobserved 

nucleotides at that position.  

We can make use of Laplace smoothing [7] and add a pseudocount of 1.  
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We recalculate the frequencies of nucleotides as follows: 

𝑓𝑥,𝑗 =  
𝑁𝑥,𝑗 + 1

𝑁 + 4
 

Frequencies with pseudocounts for position 1 are now recalculated as: 

𝑓𝐴,1 =  
3 + 1

10 + 4
        𝑓𝐶,1 =  

4 + 1

10 + 4
        𝑓𝐺,1 =  

1 + 1

10 + 4
        𝑓𝑇,1 =  

2 + 1

10 + 4
 

Updating Table 1 with pseudocounts, we get Table 2. 

Table 2: PWM for the example sequences with pseudocounts 

Position 1 2 3 4 5 6 7 8 9 

Nucleotide 

A 0.286 0.357 0.143 0.071 0.071 0.500 0.643 0.071 0.143 

C 0.357 0.143 0.214 0.071 0.071 0.071 0.071 0.143 0.143 

G 0.143 0.214 0.500 0.786 0.071 0.143 0.214 0.714 0.214 

T 0.214 0.286 0.143 0.071 0.786 0.071 0.071 0.071 0.500 

 

2.2 Log Likelihood Ratios 

The scores obtained previously i.e. the scores from Table 2, can sometimes be misleading. 

This is because, PWM constructed using training sequences will score the unknown sequence 

higher if the composition of unknown sequence is somewhat similar to the PWM. It may 

score another unknown sequence with a very low score if it deviates from a norm even a little 

but, still belongs to family of sequences used for training.  

To overcome this bias, we take the ratio of observed frequency and the frequency of that 

nucleotide from a large population of sequences, also known as the expected frequency or 

background frequency.  
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Therefore,  

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑠𝑐𝑜𝑟𝑒 =  
𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦

𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦
 

In our case, we can assume that the expected frequency among all the nucleotides is 

equiprobable. So, expected frequencies E of nucleotides are 

E(A) = E(C) = E(G) = E(T) = 0.25 

 Hence, normalized scores, say r of nucleotides at position 1 will be: 

𝑟𝐴,1 =  
0.286

𝐸(𝐴)
        𝑟𝐶,1 =  

0.357

𝐸(𝐶)
        𝑟𝐺,1 =  

0.143

𝐸(𝐺)
        𝑟𝑇,1 =  

0.214

𝐸(𝑇)
 

We can further update the scoring tables by taking logs of the ratios we computed. Taking 

logs will help us avoid underflows and reduce round off errors propagated by multiplication 

of odds scores. Therefore, the log-odds scores of each nucleotide at position 1 will now 

become 

Log-odds score for A = log2 (
0.286

0.25
) 

Log-odds score for C = log2 (
0.357

0.25
) 

Log-odds score for G = log2 (
0.143

0.25
) 

Log-odds score for T = log2 (
0.214

0.25
) 

Updating Table 2 with log-odds scores, we get Table 3. 
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Table 3: PWM with log-odds with log base 2 score and expected frequency of 0.25 

Position 1 2 3 4 5 6 7 8 9 

Nucleotide 

A 0.194 0.514 -0.806 -1.816 -1.816 1.000 1.363 -1.816 -0.806 

C 0.514 -0.806 -0.224 -1.816 -1.816 -1.816 -1.816 -0.806 -0.806 

G -0.806 -0.224 1.000 1.653 -1.816 -0.806 -0.224 1.514 -0.224 

T -0.224 0.194 -0.806 -1.816 1.653 -1.816 -1.816 -1.816 1.000 

 

2.3 Scoring Sequences 

Once we have finished the construction of PWM as shown in Table 3, we can score any 

unknown sequence and check if it is a splice site or not. To score a sequence motif, we have 

to add up the corresponding entries in the PWM. For example, to score the sequence 

AGTGTAAGT, we add up entries corresponding to nucleotides at that position highlighted in 

Table 4. 

Table 4: PWM with highlighted score of sequence AGTGTAAGT 

Position 1 2 3 4 5 6 7 8 9 

Nucleotide 

A 0.194 0.514 -0.806 -1.816 -1.816 1.000 1.363 -1.816 -0.806 

C 0.514 -0.806 -0.224 -1.816 -1.816 -1.816 -1.816 -0.806 -0.806 

G -0.806 -0.224 1.000 1.653 -1.816 -0.806 -0.224 1.514 -0.224 

T -0.224 0.194 -0.806 -1.816 1.653 -1.816 -1.816 -1.816 1.000 

 

Score of AGTGTAAGT = 0.194 + (-0.224) + (-0.806) + 1.653 + 1.653 + 1.000 + 1.363 + 1.514 

+ 1.000 = 7.347 

The computed score is compared against a threshold. If the score is above the threshold, then 

we classify the sequence as a splice site otherwise we do not. 
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Thresholds are determined by using Receiver Operating Characteristic Curves (ROC). ROCs 

are explained in detail in Chapter 5. 

2.4 Information Content and Sequence Logos 

Information content is the amount of information about nucleotides at some position j and is 

represented in bits. It is given by [6] 

𝐼𝑗 = 2 +  ∑ 𝑓𝑥,𝑗 log2(𝑓𝑥,𝑗)

𝑥 ∈ {𝐴,𝐶,𝐺,𝑇}

 

where 𝐼𝑗  is the information content at position j.  𝑓𝑥,𝑗  is the relative frequency of nucleotide x 

at position j. If a nucleotide is very popular at any position specific position, the information 

content is very high. The highest value for information content is 2 bits. The information 

content is lowest if the nucleotides are equally distributed at any position j i.e. 𝑓𝑥,𝑗  is 0.25. 

Information content can be represented as a logo as shown in Figure 1. In the sequence logo, 

the height of a character is proportional to its information content [6]. 

 

Figure 1: Sequence logo representing Example 1 [11] 

In Figure 1, nucleotide G at position 4 and nucleotide T at position 5 are highly conserved 

and have the highest information content of 2 bits at their respective positions. Thus we can 

infer that most of the times, we will observe a G and a T in positions 4 and 5. However, 
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positions 1 and 2 do not show any nucleotides and hence the information content at these 

positions is very low. 

2.5 Limitations of PWMs 

PWMs are very simple and perform fairly well for the prediction of splice sites. However, 

they make a strong independence assumption between nucleotides at distinct positions which 

is rarely true. If we consider the example sequences, whenever there is a G in position 4, 

there is a T is position 5. It means, almost all the times, G and T appear together in splice 

sites. But, PWM fails to capture this interdependence. In order to overcome this limitation, 

we have used Maximal Dependence Decomposition (MDD) [4]. 

Lastly, PWMs also fails to recognize a sequence that contains part of splice site region and 

part of the non-splice site region. The percentage of sequences that belong to this category is 

very small, but these sites are also equally important. In order to score any sequence fairly, 

we have developed Hidden Markov Model (HMM). 

In the next chapter, we will look into the working of MDD method that is used to address one 

of the drawbacks of PWMs. 
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CHAPTER 3 

Maximal Dependence Decomposition 

Maximal Dependence Decomposition (MDD) estimates the degree of dependence of 

nucleotide at position j on nucleotide at position i. More precisely, depending on nucleotide at 

position i being a consensus or not, MDD captures the dependence of nucleotide at position j 

on position i. Based on position i, splice site sequences are divided into two groups, 𝐶𝑖  and 

𝐶�̅� depending on whether the nucleotide at position i is a consensus nucleotide or not, 

respectively. In each group, we have to compute nucleotide frequencies at every position j. 

For any position j, we use chi-squared statistic to compare the two sets of frequencies. If there 

is dependence between positions i and j, then the frequencies are very different from one 

another. If there is no dependence between positions i and j, then the frequencies are very 

close. We can define chi-squared statistic as follows [6] 

(𝑁 ×  𝑓𝐴 −  𝑁𝐴)2

𝑁 ×  𝑓𝐴

+  
(𝑁 ×  𝑓𝐶 −  𝑁𝐶)2

𝑁 ×  𝑓𝐶

+  
(𝑁 ×  𝑓𝐺 −  𝑁𝐺)2

𝑁 ×  𝑓𝐺

+  
(𝑁 × 𝑓𝑇 −  𝑁𝑇)2

𝑁 ×  𝑓𝑇

 

                     (3.1)     

where, 

N: Number of sequences in 𝐶𝑖  

fA, fG, fC, fT: Frequencies of nucleotides at position j in sequences from 𝐶�̅�. 

NA, NG, NC, NT: Observed number of nucleotides at position j in sequences from𝐶𝑖 . 

3.1 Algorithm 

In this procedure, we iteratively quantify the dependence of position j on position i using chi-

squared statistic, 𝜒2(𝑗|𝑖). Splice site sequences are divided at every iteration and the end 
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result is a tree with leaves representing a family of sequences which are alike. Each family of 

sequences is best represented with its own PWM that can be used to score unknown splice 

sites.  The steps to carry out the MDD procedure are as follows [6]: 

Step 1: Compute 𝑆𝑖 =  ∑ 𝜒2(𝑗, 𝑖)𝑗 ≠𝑖   // Quantify the dependence on position i 

Step 2: Select i such that 𝑆𝑖  is maximum. 

Step 3: Divide all the sequences into two groups 𝐶𝑖  and 𝐶�̅� based on position i. 

Step 4: Repeat steps 1, 2 and 3 for all the sequences in 𝐶𝑖  and 𝐶�̅� 

Step 5: Terminate if there are less sequences or if there is not significant dependence between 

positions. 

3.2 MDD Example 

Let us consider a hypothetical example that consists of six sequences as shown below. 

CGGG 

CGTG 

CGGC 

ATGG 

ATGT 

ATGG 

CGGG 

Example 2: Hypothetical splice sites that show dependence between positions 1 and 2 [6] 

We will now construct a table that captures dependencies between various nucleotide 

positions. 
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Table 5: χ
2
 distribution table 

Position i Consensus Position j Sum 

  1 2 3 4  

1 C -     

2 G  -    

3 G   -   

4 G    -  

 

In Table 5, Position i represents distinct positions in a splice site. Consensus shows the 

consensus nucleotide at every position. Every cell is filled by computing the χ
2
 value that 

shows the dependence between positions i and j. Sum column contains all the χ
2
 values added 

up from that row. This completes the first step in MDD procedure. 

For example: Let i = 1 and j = 2. 

The consensus nucleotide at position 1 is C. Divide the sequences into groups 𝐶𝑖  and 𝐶�̅� such 

that 𝐶𝑖  has all the sequences that contain C in position 1 and 𝐶�̅� does not have C in position 1. 

Therefore, we have the following table that shows the sequences in 𝐶𝑖  and 𝐶�̅�  

Table 6: Sequences in 𝐶𝑖  and 𝐶�̅� after dividing based on C in position 1 

𝐶𝑖  𝐶�̅� 

CGGG ATGG 

CGTG ATGT 

CGGC ATGG 

CGGG  
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Let us now compute the χ
2
 statistic as per the formula mentioned in 3.1. For the above 

example, when i = 1 and j = 2, we have: 

N = 8 (Assuming Laplace correction/pseudocounts) 

𝑓𝐴 =  
1

7
       𝑓𝐶 =  

1

7
        𝑓𝐺 =  

1

7
        𝑓𝑇 =  

1

7
 

𝑁𝐴 =  1       𝑁𝐶 =  1        𝑁𝐺 =  5       𝑁𝑇 =  1 

χ2 =  
(8 ×  0.143 −  1)2

8 × 0.143
+  

(8 ×  0.143 −  1)2

8 × 0.143
+  

(8 ×  0.143 −  5)2

8 × 0.143
+ 

(8 ×  0.571 −  1)2

8 × 0.571
 

Therefore, χ
2
 = 15.850. 

In Table 7, χ
2
 statistic is high when i = 1 and j = 2 or i = 2 and j = 1. This shows that we do 

observe some dependence between positions 1 and 2 in the sequences from Example 2. 

Table 7: χ
2
 statistic table showing dependencies between positions i and j 

Position i Consensus Position j Sum 

  1 2 3 4  

1 C - 15.850 0.750 1.480 18.081 

2 G 15.850 - 0.751 1.480 18.082 

3 G 3.000 3.000 - 0.750 6.750 

4 G 0.662 0.662 0.553 - 1.887 

 

As per step 2, we select i such that Sum at i in Table 7 is the highest. In our case, i = 2. Based 

on position 2, we divide sequences into groups 𝐶𝑖  and 𝐶𝑖
̅̅ ̅. Therefore, we will now have 

sequences in 𝐶𝑖  that contain nucleotide G in position 2 and sequences in 𝐶�̅� that does not 

contain G in position 2, as shown in Table 8. 
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Table 8: Division of sequences into groups 𝐶𝑖  and 𝐶�̅� based on nucleotide G in position 2 

𝐶𝑖  𝐶�̅� 

CGGG ATGG 

CGTG ATGT 

CGGC ATGG 

CGGG  

 

We continue this iteratively until there is no significant dependence between nucleotide 

positions or if there is insufficient data. In our example, as seen in Table 8, the number of 

sequences in each group is less and hence there is insufficient data.  

We will terminate the MDD procedure and build PWMs for each leaf of MDD tree. MDD for 

Example 2 will be: 

 

Figure 2: MDD tree for Example 2 

PWMs for each leaf along with their sequence logos for Example 2: 
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Table 9: PWM for sequences in 𝐶𝑖  

Position 1 2 3 4 

Nucleotide 

A -1.163 -1.163 -1.163 -1.163 

C 1.506 -0.816 -0.816 0.184 

G -0.816 1.506 1.184 1.184 

T -1.163 -1.163 -0.163 -1.163 

 

 

Figure 3: Sequence logo for sequences in 𝐶𝑖  

Table 10: PWM for sequences in 𝐶�̅� 

Position 1 2 3 4 

Nucleotide 

A 1.029 -0.971 -0.971 -0.971 

C -0.623 -0.623 -0.623 -0.623 

G -0.623 -0.623 1.377 0.962 

T -0.971 1.029 -0.971 -0.029 
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Figure 4: Sequence logo for sequences in 𝐶�̅� 

3.3 Scoring Sequences 

If an unknown sequence is given, then we can make the new sequence traverse down the tree 

until it reaches a leaf. Once the sequence reaches a leaf, we can use the PWM constructed for 

leaf to score the unknown sequence. 

Consider an unknown sequence ATGC. In Figure 2, we divided the original sequences into 

two groups based on observing G at position 2. Therefore, while scoring an unknown 

sequence ATGC, check position 2 and assign it to one of the groups based on nucleotide 

observed at that position. Clearly, the unknown sequence does not belong to group 𝐶𝑖  since it 

has T in position 2. So, we traverse to the right tree and check if it is a leaf. In our case, it is a 

leaf and hence we stop the traversal and score the unknown sequence with PWM of the leaf. 

Hence, 

Score of ATGC =   1.029 + 1.029 + 1.377 - 0.623 = 2.812 

Again, we shall use ROC curves to determine a threshold to compare the score of unknown 

sequence against the threshold and classify it as a splice site or non-splice site. 

MDDs work very well in capturing dependencies and overcoming the drawback of PWMs. In 

the next chapter, we shall address another drawback of PWMs by delving deeper into HMMs. 
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CHAPTER 4 

Hidden Markov Models 

Hidden Markov Model is a probabilistic model that contains a finite set of states. Each state 

is accompanied by a probability distribution. Transition probabilities are the probabilities that 

govern the transition among different states. Each state emits certain observation with some 

probability and this is termed as emission probability. For any observation sequence, the set 

of states that emitted each outcome is hidden. 

We have used HMM to address the second drawback of PWMs. PWMs do not recognize the 

sequences that are neither splice sites nor non-splice sites. They will classify these kinds of 

sequences as either splice or non-splice site categories. Therefore, we shall use HMMs that 

capture splice sites, non-splice sites and sites that contain both splice and non-splice site 

regions. 

4.1 Definition 

N: Number of hidden states 

          Set of states  𝑄 =  {1, 2, … , 𝑁} 

M: Number of symbols 

         Set of symbols 𝑉 =  {1, 2, … , 𝑀} 

A: State-transition probability matrix 

𝑎𝑖𝑗 = 𝑃(𝑞𝑡+1 = 𝑗|𝑞𝑡 = 𝑖)                                   1 ≤ 𝑖, 𝑗 ≤ 𝑁 

B: Emission probability distribution; k is a symbol 

 𝑏𝑗(𝑘) = 𝑃(𝑜𝑡 = 𝑘|𝑞𝑡 = 𝑗)                                   1 ≤ 𝑖, 𝑗 ≤ 𝑀 
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The initial state distribution π 

 𝜋𝑖 = 𝑃(𝑞1 = 𝑖) 

The model is given by [14] 

 𝜆 =  (𝐴, 𝐵, 𝜋). 

4.2 Algorithm 

Given an observation sequence 𝑂 =  {𝑜1, 𝑜2, 𝑜3, … , 𝑜𝑇} we shall estimate the model 

parameters 𝜆 =  (𝐴, 𝐵, 𝜋) that maximize 𝑃(𝑂|𝜆) using Baum-Welch algorithm [13, 14]. 

Step 1: Initial condition 

Set 𝜆 =  (𝐴, 𝐵, 𝜋) such that the initial, emission and transition probabilities are chosen using 

the information from the data. Section 4.4 discusses how we set initial, emission and 

transition probabilities for our project. 

Step 2: Compute forward variable, 𝛼𝑡(𝑖) = 𝑃(𝑜1, 𝑜2, 𝑜3, … , 𝑜𝑇 , 𝑞𝑡 =  𝑖|𝜆) where 𝛼𝑡(𝑖)  

is the probability of observing the partial sequence {𝑜1, 𝑜2, 𝑜3, … , 𝑜𝑡}  and landing in state i 

at stage t. 

The forward variable is computed using the recurrence relation 

Initialization: 

𝛼1(𝑖) =  𝜋𝑖𝑏𝑖(𝑜1) 

 

 

(4.1) 



  

19 
 

Recursion: 

𝛼𝑡+1(𝑗) =  𝑏𝑗(𝑜𝑡+1) [∑ 𝛼𝑡(𝑖)

𝑁

𝑖=1

𝑎𝑖𝑗] 

Alternatively, one could use the backward algorithm.  

Step 3: Compute backward variable, 𝛽𝑡(𝑖) = 𝑃(𝑜1, 𝑜2, 𝑜3, … , 𝑜𝑡|𝑞𝑡 = 𝑖, 𝜆), where 𝛽𝑡(𝑖) 

is the probability of observing partial sequence {𝑜1, 𝑜2, 𝑜3, … , 𝑜𝑡} at the end given that the 

starting state is i at time t. 

Backward variable is computed using the recurrence relation 

Initialization: 

𝛽𝑇(𝑖) = 1 

Recursion: 

𝛽𝑖(𝑡) =  ∑ 𝑎𝑖𝑗𝑏𝑗(𝑜𝑡+1)𝛽𝑡+1(𝑗)

𝑁

𝑗=1

 

Step 4: We will use the forward and backward variables computed in steps 2 and 3 to 

compute temporary variable γ and ξ using Bayes’ theorem  

𝛾𝑖(𝑡) = 𝑃(𝑞𝑡 = 𝑖|𝑂, 𝜆) =  
𝛼𝑖(𝑡) 𝛽𝑖(𝑡)

∑ 𝛼𝑗(𝑡) 𝛽𝑗(𝑡)𝑁
𝑗=1

 

where γ is the probability of being in state i given that the observed sequence is O and 

parameters are λ at time t.  

(4.5) 

(4.2) 

(4.3) 

(4.4) 
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If ξ is the probability of observing a sequence O with parameters λ such that you are in states 

i and j at times t and t+1, then we have: 

𝜉𝑖𝑗(𝑡) =  
𝛼𝑖(𝑡) 𝑎𝑖𝑗 𝛽𝑗(𝑡 + 1) 𝑏𝑗(𝑜𝑡+1)

∑ 𝛼𝑘(𝑡) 𝛽𝑘(𝑡)𝑁
𝑘=1

 

Step 5: Update initial, transition and emission probabilities 

𝜋𝑖
∗ =  𝛾𝑖(1)  

Equation 4.7 represents the expected frequency in state i at time, t = 1:  

𝑎𝑖𝑗
∗ =  

∑ 𝜉𝑖𝑗(𝑡)𝑇−1
𝑡=1

∑ 𝛾𝑖(𝑡)𝑇−1
𝑡=1

 

Equation 4.8 represents the expected number of transitions from state i to state j compared to 

expected total number of transitions away from state i 

𝑏𝑖
∗(𝑣𝑘) =  

∑ 1𝑜𝑡= 𝑣𝑘
𝛾𝑖(𝑡)𝑇

𝑡=1

∑ 𝛾𝑖(𝑡)𝑇
𝑡=1

 

where  

1𝑜𝑡= 𝑣𝑘
= {

1, 𝑖𝑓 𝑦𝑡 = 𝑞𝑘

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  

𝑏𝑖
∗(𝑣𝑘) is the expected number of times, we observe the nucleotide vk  in state i over the 

expected total number of times we observe all the nucleotides in state i. 

Step 6: Repeat from step 2 until convergence is reached. 

 

 

(4.6) 

(4.8) 

 (4.9) 

(4.7) 
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4.3 Multiple Observation Sequences 

Multiple observation sequences are required for a model to have reliable estimates of all the 

model parameters. Hence we have to re-estimate formulas for multiple observation sequences 

[15]. Assuming that there are K observation sequences,  

𝑂 =  {𝑂(1), 𝑂(2), … , 𝑂(𝐾)} 

Where 𝑂(𝑘) =  {𝑜1(𝑘), 𝑜2(𝑘), 𝑜3(𝑘), … , 𝑜𝑇(𝑘)} is the k
th

 observation sequence. 

Assuming that all the observation sequences are independent of one another, we can 

maximize the model parameter for all the observation sequences as follows: 

𝑃(𝑂|𝜆) =  ∏ 𝑃(𝑂(𝐾)|𝜆)

𝐾

𝑘=1

 

Emission and transition probability formulas for re-estimation are given by 

𝑎𝑖𝑗
∗ =  

∑ ∑ 𝜉𝑖𝑗(𝑡)𝑇−1
𝑡=1

𝐾
𝑘=1

∑ ∑ 𝛾𝑖(𝑡)𝑇−1
𝑡=1

𝐾
𝑘=1

 

𝑏𝑖
∗(𝑣𝑘) =  

∑ ∑ 1𝑜𝑡= 𝑣𝑘
𝛾𝑖(𝑡)𝑇

𝑡=1
𝐾
𝑘=1

∑ ∑ 𝛾𝑖(𝑡)𝑇
𝑡=1

𝐾
𝑘=1

 

where  

1𝑜𝑡= 𝑣𝑘
= {

1, 𝑖𝑓 𝑦𝑡 = 𝑞𝑘

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

Initial probabilities πi is not re-estimated. 
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4.4 Initial Parameters 

During the learning process of HMM, we assume initial estimates of all the probabilities 

based on the data. Assume we have M splice sites and N non-splice sites, each sequence is K 

nucleotides long. We construct a hidden Markov model with 2K states as shown below.  

 

 

 

Figure 5: Model showing 2K states  

The first K states represent all K positions in splice sites and the last K states represent all K 

positions in non-splice sites. Based on this assumption, we can compute initial, transition and 

emission probabilities. 

Initial Probabilities, π: 

Since any sequence can belong to either a splice site or non-splice site, so it can either start 

from state 1 or state K+1 i.e., the first nucleotide of splice site or non-splice site oligomer. 

Hence, we can update initial probabilities as follows: 

Table 11: Initial probabilities for 2K states 

States 1 2 …………… K+1 …………. 2K 

Π 0.5 0 …………… 0.5 …………. 0 

 

In a human genome, we know the distribution of splice sites is much less compared to that of 

non-splice sites so, we can tune the initial probabilities from Table 11 even more by reducing 

the probability to state 1 and increasing the probability to state K+1. 

2K 

S 

1 2 3 K 

K+1 K+2 K+3 
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0.3 

0.7 

0.9 0.9 0.9 0.9 

0.9 0.9 0.9 0.9 

0.1 
0.1 

0.1 
0.1 

0.1 
0.1 

0.1 
0.1 

Transition Probabilities, A: 

From the data, we have 2K matching states. From any state k in Figure 5, we can go to the 

next state, k+1 in splice site region (1 ≤ k < k+1 ≤ K) or the next state, K+k+1 in the non-

splice site region (K+1 < K+k+1 ≤ 2K) only. But, the transition from a state in splice site 

region to splice site region is higher than the transition from a state in splice site region to 

non-splice site region and vice versa. Therefore, we can assume that the transitions from one 

region to itself and another follow the distribution as shown in Table 12.  

Table 12: Transition probabilities from one region to another and itself 

Region Splice Site Non-splice site 

Splice Site 0.9 0.1 

Non-splice site 0.1 0.9 

 

Updating these probabilities in Figure 5, we get the model of Figure 6. 

 

 

 

Figure 6: Model showing 2K states with initial probabilities and transition probabilities  

Emission Probabilities, B: 

Emission probabilities at specific state are initialized based on distribution of nucleotides at 

that position. For example, from a set of aligned splice sites, the distribution of nucleotides at 

position 1 constitutes the emission probabilities at state 1, distribution of nucleotides at 

position 2 constitute the emission probabilities at state 2 and so on. From a set of aligned non-

2K 

S 

1 2 3 K 

K+1 K+2 K+3 
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splice sites, distribution of nucleotides at position 1 constitutes the emission probabilities at 

state K+1, distribution of nucleotides at position 2 constitute the emission probabilities at 

state K+2 and so on. 

4.5 Scoring Sequences 

Once we learn the model using the Baum-Welch algorithm, we need to use it to score the 

unknown sequences in order to classify them as splice sites or non-splice sites.  

In order to score an unknown sequence, O, we first need to find the optimal state sequence 

associated with O since the states are hidden. This is called decoding. Once the decoded 

states are obtained, we use them to compute P(O). This probability represents the score of an 

unknown sequence O. 

To find the optimal state sequence, we use Viterbi algorithm. Instead of exhaustively 

searching for the most likely path of unknown sequence, we use dynamic programming to 

find the best path. 

Viterbi Algorithm [14, 16]: 

Let 𝛿𝑡(𝑖) be the highest probability path ending in state i at time t, we have to compute 

𝛿𝑡(𝑖) =  max
𝑞1,𝑞2,…,𝑞𝑡

𝑃(𝑞1, 𝑞2, … , 𝑞𝑡 = 𝑖, 𝑜1, 𝑜2, … , 𝑜𝑡|𝜆) 

The recursion procedure for the Viterbi is as follows: 

Initialization:  

𝛿1(𝑖) =  𝜋𝑖𝑏𝑖(𝑜1)                  1 ≤ 𝑖 ≤ 𝑁 

𝜓1(𝑖) =  0 
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Recursion: 

                𝛿𝑡(𝑗) =  max
1 ≤ 𝑖 ≤ 𝑁

[𝛿𝑡−1(𝑗)𝑎𝑖𝑗] 𝑏𝑗(𝑜𝑡) 

𝜓𝑡(𝑗) =  max
1 ≤ 𝑖 ≤ 𝑁

[𝛿𝑡−1(𝑗)𝑎𝑖𝑗]                 1 ≤ 𝑖 ≤ 𝑁, 2 ≤ 𝑡 ≤ 𝑇 

Termination: 

𝑃𝑇
∗ =  max

1 ≤ 𝑖 ≤ 𝑁
[𝛿𝑇(𝑖)] 

𝑞𝑇 =  arg max
1 ≤ 𝑖 ≤ 𝑁

[𝛿𝑇(𝑖)] 

where  

𝑃𝑇
∗ =  𝑃 (𝑞1, 𝑞2, … , 𝑞𝑇|𝑂, 𝜆) 

We can obtain the maximum likelihood path 𝑞∗ =  (𝑞1
∗, 𝑞2

∗ , … , 𝑞3
∗) where 

𝑞𝑡
∗ =  𝜓𝑡+1(𝑞𝑡+1

∗ )                  𝑡 = 𝑇 − 1, 𝑇 − 2, … , 1 

4.6 Using Logarithms to Avoid Underflow 

Multiplication of probabilities in every step of training will lead to underflows. For our case, 

we observe underflow at the very first iteration of training. In order to avoid them, we have 

used logarithms and rewritten all the formulas mentioned in algorithm [17].  

Using logarithms for equations 4.1 and 4.2 from forward procedure, we get: 

log𝑒 𝛼1(𝑖) =  log𝑒 𝜋𝑖 +  log𝑒 𝑏𝑖(𝑜1)         (4.10) 

log𝑒 𝛼𝑡+1(𝑗) = log𝑒 𝑏𝑗(𝑜𝑡+1) +   log𝑒 ∑ 𝑒log𝑒 𝛼𝑡(𝑖)+log𝑒 𝑎𝑖𝑗𝑁
𝑖=1      (4.11) 
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Using logarithms for equations 4.3 and 4.4 from forward procedure, we get: 

log𝑒 𝛽𝑖(𝑇) = 0           (4.12) 

log𝑒 𝛽𝑖(𝑡) =  log𝑒 ∑ 𝑒log𝑒 𝑎𝑖𝑗+log𝑒 𝑏𝑗(𝑜𝑡+1)+log𝑒 𝛽𝑡+1(𝑗)𝑁
𝑗=1       (4.13) 

Using logarithms for equations 4.5 and 4.6 that are used to compute the temporary variables, 

we get: 

log𝑒 𝛾𝑖(𝑡) = log𝑒 𝛼𝑖(𝑡) +  log𝑒 𝛽𝑖(𝑡) −  log𝑒 ∑ 𝑒log𝑒 𝛼𝑗(𝑡)+log𝑒 𝛽𝑗(𝑡)𝑁
𝑗=1     (4.14) 

log𝑒 𝜉𝑖𝑗(𝑡) =  log𝑒 𝛼𝑖(𝑡) +  log𝑒 𝑎𝑖𝑗 +  log𝑒 𝛽𝑗(𝑡 + 1) +  log𝑒 𝑏𝑗(𝑜𝑡+1) 

                          − log𝑒 ∑ 𝑒log𝑒 𝛼𝑘(𝑡)+log𝑒 𝛽𝑘(𝑡)𝑁
𝑘=1         (4.15) 

Using logarithms for equations 4.7, 4.8 and 4.9 used to update HMM parameters, we get: 

log𝑒 𝜋𝑖
∗ =  log𝑒 𝛾𝑖(1)           (4.16) 

log𝑒 𝑎𝑖𝑗
∗ =  log𝑒 ∑ 𝑒log𝑒 𝜉𝑖𝑗(𝑡)𝑇−1

𝑡=1 −  log𝑒 ∑ 𝑒log𝑒 𝛾𝑖(𝑡)𝑇−1
𝑡=1       (4.17) 

log𝑒 𝑏𝑖
∗(𝑣𝑘) = log𝑒 ∑ 𝑒log𝑒 1𝑜𝑡=𝑣𝑘

+ log𝑒 𝛾𝑖(𝑡)𝑇
𝑡=1 −  log𝑒 ∑ 𝑒log𝑒 𝛾𝑖(𝑡)𝑇

𝑡=1       (4.18) 

The above approach works very well in avoiding underflows, but it is computationally 

expensive since it requires calculation of logarithms in each step. 

4.7 HMM Example 

In the previous subsections, we have seen how to set initial parameters and train the HMM 

for splice site and non-splice site oligomers. In this section, we assume that the sites in 

Example 3 are hypothetical splice sites and non-splice sites. By using them, we are going to 

construct the HMM and train them. 
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In a normal human genome, the number of splice sites is much less than those of non-splice 

sites. In order to replicate the same, we have considered skewed dataset consisting of less 

splice sites than those of the non-splice sites. 

     Splice Sites   Non-splice Sites 

CGGG    ATGG 

CGTG    ATGT 

CGGC    ATGG 

ATTT 

ATGC 

ATGA 

Example 3: Hypothetical splice site and non-splice site oligomers 

Looking at the length of sequences, we can assume that there are 2K states where, K = 4 

being the length of each sequence. Hence, the HMM without transition and emission 

probabilities will be: 

 

 

 

Figure 7: Model showing 8 states that represents sequences from Example 3  

Step 1: Initial condition. Based on data, let us set the initial parameters 

Initial Probabilities, π: 

Initial probability to state 1 (first position of splice sites) 

8 

S 

1 2 3 4 

5 6 7 
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log𝑒 𝜋𝑖 =  log𝑒(0.3) =  −1.204 

Initial probability to state 5 (first position of non-splice sites) 

log𝑒 𝜋𝑖 =  log𝑒(0.7) =  −0.357 

Assuming initial probabilities to other states is 0 and hence (assuming -99 is infinity in our 

case) 

log𝑒(0) =  −99 

Table 13: Initial probabilities for 8 states for Example 3 

States 1 2 3 4 5 6 7 8 

π -1.204 -99 -99 -99 -0.357 -99 -99 -99 

 

Transition Probabilities, A: 

From any state k, we are moving only to two states, k+1 or K+k+1 where 1 ≤ k < K/2 and k 

to k+1 or K-k+1 where K/2 ≤ k < K with probabilities 0.9 and 0.1, respectively. 

Transition probability from state k to state k+1 is 0.9,  

log𝑒(0.9) =  −0.22 

Transition probability to state k to K+k+1 or K-k+1 is 0.1,  

log𝑒(0.1) =  −1.609 

Transition probabilities to any other states from k is 0, 

log𝑒(0) =  −99 
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-1.204 

-1.204 

-0.223 -0.223 -0.223 

-0.223 -0.223 -0.223 

-1.609 
-1.609 

-1.609 
-1.609

4 

-1.204  

-1.204  

-1.609

4 

-1.204  

-1.204  

-1.609

4 

-1.204  

-1.204  

Table 14: Transition probabilities that follow Table 12 for Example 3 

States 1 2 3 4 5 6 7 8 

1 -99 -0.223 -99 -99 -99 -99 -99 -99 

2 -99 -99 -0.223 -99 -99 -99 -99 -99 

3 -99 -99 -99 -0.223 -99 -99 -99 -99 

4 -99 -99 -99 -99 -0.223 -99 -99 -99 

5 -99 -1.609 -99 -99 -99 -0.223 -99 -99 

6 -99 -99 -1.609 -99 -99 -99 -0.223 -99 

7 -99 -99 -99 -1.609 -99 -99 -99 -0.223 

8 -99 -99 -99 -99 -99 -99 -99 -99 

 

 

 

 

Figure 8: Model showing 8 states with initial and transition probabilities for Example 3 

Emission Probability, B: 

Emission probabilities are calculated using pseudocounts. Let us count the first entry in Table 

15. Number of A’s at first position in splice site data is 0 out of 3 sequences. Therefore, 

emission probability of A at state 1 is given by: 

𝑏1(𝐴) =  
0 + 1

3 + 4
= 0.1428 

log𝑒(0.1428) =  −1.946 

8 

S 

1 2 3 4 

5 6 7 



  

30 
 

Other entries are also calculated in a similar fashion and are used to fill Table 15. 

Table 15: Emission probabilities of nucleotides table for all 8 states for Example 3 

States 1 2 3 4 5 6 7 8 

Nucleotides 

A -1.946 -1.946 -1.946 -1.946 -0.357 -2.303 -2.303 -1.609 

C -0.559 -1.946 -1.946 -1.253 -2.303 -2.303 -2.303 -1.609 

G -1.946 -0.559 -0.847 -0.847 -2.303 -2.303 -0.511 -1.204 

T -1.946 -1.946 -1.253 -1.945 -2.303 -0.357 -1.609 -1.204 

 

Step 2: Take one training sequence, CGGG for example and for that training sequence, 

perform the following: 

Compute forward probabilities 

Using formulas 4.10 and 4.11, Table 16 is filled. 

For example: When i = 1 (entry in the first cell of Table 16) 

log𝑒 𝛼1(𝑖) =  −1.204 − 0.559 =  −1.764 

Similarly, we compute the first column of Table 16 which is the initialization in the forward 

procedure. 

We now compute the first entry in the second column. Therefore, j = 1, t+1 = G 

log𝑒 𝛼𝑡+1(𝑗) =  −1.946 +  log𝑒(𝑒−1.764−99 +  𝑒−100.95−99 +  … ) =  −102.367 

Similarly, we fill the entries in column 2 and then use the column 2 to fill column 3 and so 

on. 
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Table 16: Forward probabilities of nucleotides for all 8 states for Example 3 

Nucleotides C G G G 

States 

1 -1.764 -102.367 -103.332 -104.364 

2 -100.946 -2.449 -101.608 -102.602 

3 -100.946 -100.826 -3.504 -102.208 

4 -100.253 -100.826 -101.197 -4.552 

5 -2.659 -102.058 -102.813 -103.409 

6 -101.303 -5.185 -103.346 -104.289 

7 -101.303 -100.646 -5.919 -102.654 

8 -100.609 -101.339 -101.605 -7.346 

 

Step 3: Compute backward probabilities 

We use formulas 4.12 and 4.13, to fill the entries of Table 17. 

For example: When i = 1,  

log𝑒 𝛽𝑖(𝑇) =  0 

We fill the last column of Table 17 with 0 which is the initialization in backward procedure. 

We now compute the first entry in the third column. Therefore, i = 1, t = G 

log𝑒 𝛽𝑖(𝑡) =  log𝑒(𝑒−99−1.946+0 +  𝑒−0.223−0.559+0 +  … ) =  −0.783 

Similarly, we fill the entries in column 3 and then use the column 3 to fill column 2 and so 

on. 
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Table 17: Backward probabilities of nucleotides for all 8 states for Example 3 

Nucleotides C G G G 

States 

1 -2.924 -1.853 -0.783 0.000 

2 -4.667 -2.141 -1.070 0.000 

3 -5.235 -3.596 -1.070 0.000 

4 -4.997 -4.164 -2.526 0.000 

5 -3.565 -2.472 -1.638 0.000 

6 -5.177 -1.683 -0.569 0.000 

7 -6.621 -4.982 -1.122 0.000 

8 -100.972 -99.337 -98.017 0.000 

 

Step 4: Calculate temporary variables γ and ξ 

Using formula 4.14, we fill the entries of Table 18. 

For example: When i = 1, we compute the first entry in the first column of Table 18. 

Therefore, i = 1, t = C 

log𝑒 𝛾𝑖(𝑡) = −1.76 − 2.92 − log𝑒(𝑒−1.8−2.92 + 𝑒−100.95−4.67 +  … ) = −0.195 

Similarly, we fill each cell in Table 18 that forms the γ table used to update HMM 

parameters. 
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Table 18: Table representing temporary variable γ for all 8 states for Example 3 

Nucleotide C G G G 

States 

1 -0.195 -99.728 -99.622 -99.871 

2 -101.120 -0.098 -98.186 -98.109 

3 -101.688 -99.929 -0.081 -97.716 

4 -100.758 -100.498 -99.230 -0.059 

5 -1.732 -100.037 -99.959 -98.916 

6 -101.988 -2.376 -99.423 -99.797 

7 -103.431 -101.136 -2.548 -98.162 

8 -197.089 -196.184 -195.130 -2.854 

 

Using formula 4.15, we fill the entries of Tables 19 and 20.  

For example: When i = 1 and j = 1 (keeping j constant), we compute the first entry in the first 

column of Table 19. Therefore, i = 1, j = 1, t = C 

log𝑒 𝜉𝑖𝑗(𝑡) = −1.8 − 99 − 1.9 − 1.95 − log𝑒(𝑒−1.8−2.92 + 𝑒−100.95−4.67 +  … ) 

log𝑒 𝜉𝑖𝑗(𝑡) = −100.07 

Similarly, we fill each entry in Table 19 that forms the ξ table for 1 state (say j = 1) used to 

update HMM parameters. 
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Table 19: Table representing temporary variable ξ for 1
st
 state for Example 3 

 
  

 

 

 

 

 

 

 

 

We perform the same for each state j from 1 to N. So, we will get 8 tables with entries as 

shown in Tables 19 and 20. These are two of the 8 tables we need to compute the temporary 

variable ξ. 

Once the temporary variables are calculated, new HMM parameters are updated using 

formulas 4.16, 4.17 and 4.18. This is for a single observation sequence. The process from 

Step 2 needs to be performed for all the observation sequences and parameters are updated as 

per section 4.3. The training continues till convergence is reached. 

 

 

 

 

Nucleotide C G G G 

State 

1 -100.070 -199.603 -199.786 0.000 

2 -0.195 -99.728 -99.622 0.000 

3 -100.715 -198.792 -198.687 0.000 

4 -101.283 -200.248 -198.687 0.000 

5 -101.045 -200.816 -200.142 0.000 

6 -100.257 -199.747 -200.142 0.000 

7 -101.764 -198.507 -198.351 0.000 

8 -196.812 -296.096 -199.044 0.000 
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Table 20: Table representing temporary variable ξ for 2
nd

 state for Example 3 

 
 

 

 

 

 

 

 

 

 

Once the HMM is built, we use the Viterbi algorithm to decode the sequence and score it 

using the decoded sequence which represents the score of an unknown sequence. Once the 

score is computed, it is compared against the threshold to classify it as a splice site or not. 

The threshold is obtained a using ROC curve which is discussed in the next chapter. 

 

 

 

 

 

 

Nucleotide C G G G 

State 

1 -199.253 -99.685 -198.061 0.000 

2 -198.154 -98.587 -196.675 0.000 

3 -101.120 -0.098 -98.186 0.000 

4 -200.465 -100.329 -196.963 0.000 

5 -200.228 -100.898 -198.418 0.000 

6 -199.439 -99.829 -198.418 0.000 

7 -200.947 -98.589 -196.626 0.000 

8 -295.994 -196.178 -197.319 0.000 
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CHAPTER 5 

Receiver Operating Characteristic Curve 

In our method, we need to compare the scores of unknown sequences to a threshold value. 

The threshold value is determined by two factors: sensitivity and specificity. Sensitivity is the 

true positive rate meaning the fraction of real positives identified correctly. Specificity is the 

true negative rate meaning the fraction of real negatives identified correctly [8]. These two 

values describe how well our model discriminates between match (with splice site) or not. 

 

Figure 9: Receiver Operating Characteristic Curve 

The receiver operating characteristic (ROC) curve is a plot of true positive rate vs the false 

positive rate for different scores of a test. As shown in Figure 9, ROC curve is a plot of 

sensitivity vs 1-specificity. A trade-off between sensitivity and specificity gives the score 

which we use as the threshold or the optimum cut-off value. So, we aim at maximizing the 

true positive rate with acceptable false positive rate. 
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Accuracy of the test is higher if in ROC space, we are closer to the upper left corner. The area 

under the curve (AUC) is one of the popular measures that determine the model’s 

discrimination potential. Entire AUC is 1.0. If any test results in AUC = 1.0, then it is a 

perfect model for given set of training and testing data. However, if AUC = 0.5, then we will 

observe a diagonal line which indicates that it does not yield any meaningful result. It just 

means that we are performing the test by randomly guessing which is equivalent to tossing a 

coin.  

If we see that the curve is closer to the lower right corner, then it is a perfectly worst test 

since it is performing worse than random guessing. In such cases, we just flip the data (i.e. we 

change the positive set to negative set and vice versa) so that it becomes a perfect test with 

high AUC. 

In the next chapter, we use the ROC curves to evaluate our models and determine the 

threshold scores that we use to classify unknown sites as splice sites or not. 
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CHAPTER 6 

Datasets and Results 

We obtained the splice site data from Homo Sapiens Splice Site Database (HS3D) [5]. The 

database has a collection of authentic 5’ and 3’ splice sites. The database has data for both 

splice sites and non-splice sites. The dataset consisted of long sequences from which 5’ and 

3’ splice sites were extracted for splice sites and non-splice sites. Once the sites are extracted, 

they are aligned. Aligned sites are used to train and test our methods. We also performed ten-

fold cross validation to evaluate our models. 

We also collected cryptic splice sites datasets for breast cancer type1 susceptibility (BRCA1) 

protein and beta globin gene (HBB) from the literature. We then trained and tested our 

models with cryptic splice sites and found interesting results.  

6.1 Ten-Fold Cross Validation Procedure 

In each round of cross-validation procedure, we divide the data into non-overlapping subsets. 

We train the model with one subset of data and validate it with the other subset. In order to 

reduce the bias of one round of cross-validation, we perform multiple rounds with distinct 

splits. The results of validation are then averaged over all the rounds [10]. 

Positive and negative scores are obtained after every round of ten-fold cross-validation and 

ROC curves are generated. We compute the average of all the ten area under ROC curves 

(AUC) which is considered as a final value.   

The ROC curves are color coded with threshold scores shown on the right. Depending on 

trade-off between sensitivity and specificity, we can choose the best threshold for our dataset. 

Next we examine the ROCs of different methods for our dataset. 
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6.2 5’ Splice Site Dataset 

Length of sites: 9 

Training set containing true sites: 2516 

Training set containing false sites: 7560 

Testing set containing true sites in one fold: 280 

Testing set containing false sites in one fold: 840 

 

Figure 10: 10-fold ROC curve for simple PWM for 5’ splice site model 

Figure 10 shows the performance of simple PWM for 5’ splice site model. We choose the 

threshold score such that the classification error is the lowest. With a threshold score of 12, 

we get high true positives and tolerable number of false positives. The prediction accuracy of 

PWM for 5’ splice site oligomers is 0.91 with a threshold score of 12 and is computed as an 

average of prediction accuracies of each fold in a 10-fold cross validation procedure.  
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Figure 11: 10-fold ROC curve for MDD for 5’ splice site model 

Figure 11 shows the performance of MDD for 5’ splice site model. With a threshold score of 

12.2, we get a good balance of true positives and false positives. The prediction accuracy of 

MDD for 5’ splice site oligomers is 0.96 with a threshold score of 12.2 and is computed as an 

average of prediction accuracies of each fold in a 10-fold cross validation procedure.  
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Figure 12: 10-fold ROC curve for HMM for 5’ splice site model 

Figure 12 shows the performance of HMM for 5’ splice site model. The performance of 

HMM is greatly affected by varying initial probabilities. To achieve the best prediction 

accuracy, we trained the model with initial probabilities of 0.2 and 0.8 to splice site state and 

non-splice site state respectively. With a threshold score of -4.1, we get a good balance of 

true positives and false positives. The prediction accuracy of HMM for 5’ splice site 

oligomers is 0.93 with a threshold score of -4.1 and is computed as an average of prediction 

accuracies of each fold in a 10-fold cross validation procedure. 

As can be seen from Figures 10, 11 and 12, we can conclude that MDD performs very well 

with the AUC of 0.96 for 5’ splice site dataset. 
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6.3 3’ Splice Site Dataset 

Length of sites: 14 

Training set containing true sites: 2592 

Training set containing false sites: 7776 

Testing set containing true sites in one fold: 288 

Testing set containing false sites in one fold: 864 

 

Figure 13: 10-fold ROC curve for simple PWM for 3’ splice site model 

Figure 13 shows the performance of simple PWM for 3’ splice site model. With a threshold 

score of 13.5, we get high true positives and tolerable number of false positives. The 

prediction accuracy of PWM for 3’ splice site oligomers is 0.9 with a threshold score of 13.5 

and is computed as an average of prediction accuracies of each fold in a 10-fold cross 

validation procedure.  
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Figure 14: 10-fold ROC curve for MDD for 3’ splice site model 

Figure 14 shows the performance of MDD for 3’ splice site model. With a threshold score of 

15.1, we get a good balance of true positives and false positives. The prediction accuracy of 

MDD for 3’ splice site oligomers is 0.93 with a threshold score of 15.1 and is computed as an 

average of prediction accuracies of each fold in a 10-fold cross validation procedure.  
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Figure 15: 10-fold ROC curve for HMM for 3’ splice site model 

Figure 15 shows the performance of HMM for 3’ splice site model. To achieve the best 

prediction accuracy, we trained the model with initial probabilities of 0.3 and 0.7 to splice 

site state and non-splice site state respectively. With a threshold score of -13.5, we get a good 

balance of true positives and false positives. The prediction accuracy of HMM for 5’ splice 

site oligomers is 0.89 with a threshold score of -13.5 and is computed as an average of 

prediction accuracies of each fold in a 10-fold cross validation procedure. 

As can be seen from Figures 13, 14 and 15, we can conclude that MDD performs very well 

with the AUC of 0.93 for 3’ splice site dataset given that the threshold score is above 15.1. 
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6.4 BRCA1 5’ Cryptic Splice Site Dataset 

Length of sites: 9 

Training set containing true sites: 29 

Training set containing false sites: 87 

Testing set containing true sites: 29 

Testing set containing false sites: 87 

For BRCA1 5’cryptic splice sites, the data used for training and testing the models are the 

same. 

 

Figure 16: ROC curve for simple PWM for 5’ BRCA1 cryptic splice site model 

Figure 16 shows the performance of simple PWM for BRCA1 5’ cryptic splice site model. 

With a threshold score of 10.8, we get high true positives and tolerable number of false 



  

46 
 

positives. The prediction accuracy of PWM for BRCA1 5’ cryptic splice site oligomers is 0.9 

with a threshold score of 10.8.  

 

Figure 17: ROC curve for MDD for 5’ BRCA1 cryptic splice site model 

Figure 17 shows the performance of MDD for BRCA1 5’ cryptic splice site model. With a 

threshold score of 10.7, we get a good balance of true positives and false positives. The 

prediction accuracy of MDD for BRCA1 5’ cryptic splice site oligomers is 0.99 with a 

threshold score of 10.7. 
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Figure 18: ROC curve for HMM for 5’ BRCA1 cryptic splice site model 

Figure 18 shows the performance of HMM for BRCA1 5’ cryptic splice site model. To 

achieve the best prediction accuracy, we trained the model with initial probabilities of 0.3 and 

0.7 to cryptic splice site state and non- cryptic splice site state respectively. With a threshold 

score of -3.1, we get a good balance of true positives and false positives. The prediction 

accuracy of HMM for BRCA1 5’ cryptic splice site oligomers is 0.93 with a threshold score 

of -3.1. 

As can be seen from Figures 16, 17 and 18, we can conclude that MDD performs well with 

the AUC of 0.99 for BRCA1 5’ cryptic splice site dataset given that the threshold score is 

above 10.7. 
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6.5 BRCA1 3’ Cryptic Splice Site Dataset 

Length of sites: 14 

Training set containing true sites: 28 

Training set containing false sites: 85 

Testing set containing true sites: 28 

Testing set containing false sites: 85 

For BRCA1 3’cryptic splice sites, the data used for training and testing the models are the 

same. 

 

Figure 19: ROC curve for simple PWM for 3’ BRCA1 cryptic splice site model 

Figure 19 shows the performance of simple PWM for BRCA1 3’ cryptic splice site model. 

With a threshold score of 7.5, we get high true positives and tolerable number of false 



  

49 
 

positives. The prediction accuracy of PWM for BRCA1 3’ cryptic splice site oligomers is 

0.77 with a threshold score of 7.5. 

 

Figure 20: ROC curve for MDD for 3’ BRCA1 cryptic splice site model 

Figure 20 shows the performance of MDD for BRCA1 3’ cryptic splice site model. With a 

threshold score of 10.6, we get a good balance of true positives and false positives. The 

prediction accuracy of MDD for BRCA1 3’ cryptic splice site oligomers is 0.95 with a 

threshold score of 10.6. 
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Figure 21: ROC curve for HMM for 3’ BRCA1 cryptic splice site model 

Figure 21 shows the performance of HMM for BRCA1 3’ cryptic splice site model. To 

achieve the best prediction accuracy, we trained the model with initial probabilities of 0.3 and 

0.7 to cryptic splice site state and non- cryptic splice site state respectively. With a threshold 

score of -16.1, we get a good balance of true positives and false positives. The prediction 

accuracy of HMM for BRCA1 3’ cryptic splice oligomers is 0.72 with a threshold score of -

16.1. 

As can be seen from Figures 19, 20 and 21, we can conclude that MDD performs well with 

the AUC of 0.95 for BRCA1 3’ cryptic splice site dataset given that the threshold score is 

above 10.6. 
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6.6 HBB 5’ Cryptic Splice Site Dataset 

Length of sites: 9 

Training set containing true sites: 11 

Training set containing false sites: 33 

Testing set containing true sites: 11 

Testing set containing false sites: 33 

For HBB 5’cryptic splice sites, the data used for training and testing the models are the same. 

 

Figure 22: ROC curve for simple PWM for 5’ HBB cryptic splice site model 

Figure 22 shows the performance of simple PWM for HBB 5’ cryptic splice site model. With 

a threshold score of 6.8, we get high true positives and tolerable number of false positives. 

The prediction accuracy of PWM for HBB 5’ cryptic splice site oligomers is 0.67 with a 

threshold score of 6.8. 
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Figure 23: ROC curve for MDD for 5’ HBB cryptic splice site model 

Figure 23 shows the performance of MDD for HBB 5’ cryptic splice site model. With a 

threshold score of 7.6, we get a good balance of true positives and false positives. The 

prediction accuracy of MDD for HBB 5’ cryptic splice site oligomers is 0.89 with a threshold 

score of 7.6. 
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Figure 24: ROC curve for HMM for 5’ HBB cryptic splice site model 

Figure 24 shows the performance of HMM for HBB 5’ cryptic splice site model. To achieve 

the best prediction accuracy, we trained the model with initial probabilities of 0.2 and 0.8 to 

cryptic splice site state and non- cryptic splice site state respectively. With a threshold score 

of -7.1, we get a good balance of true positives and false positives. The prediction accuracy 

of HMM for HBB 5’ cryptic splice oligomers is 0.82 with a threshold score of -7.1. 

As can be seen from Figures 22, 23 and 24, we can conclude that MDD performs very well 

with the AUC of 0.89 for HBB 5’ cryptic splice site dataset given that the threshold score is 

above 7.6. 
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6.7 HBB 3’ Cryptic Splice Site Dataset 

Length of sites: 14 

Training set containing true sites: 6 

Training set containing false sites: 18  

Testing set containing true sites: 6 

Testing set containing false sites: 18 

For HBB 3’cryptic splice sites, the data used for training and testing the models are the same. 

 

Figure 25: ROC curve for simple PWM for 3’ HBB cryptic splice site model 

Figure 25 shows the performance of simple PWM for HBB 3’ cryptic splice site model. With 

a threshold score of 8.2, we get high true positives and tolerable number of false positives. 

The prediction accuracy of PWM for HBB 3’ cryptic splice site oligomers is 0.81 with a 

threshold score of 8.2. 



  

55 
 

 

Figure 26: ROC curve for MDD for 3’ HBB cryptic splice site model 

Figure 26 shows the performance of MDD for HBB 3’ cryptic splice site model. With a 

threshold score of 13.68, we get a good balance of true positives and false positives. The 

prediction accuracy of MDD for HBB 3’ cryptic splice site oligomers is 1 (perfect 

classification) with a threshold score of 13.68. 
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Figure 27: ROC curve for HMM for 3’ HBB cryptic splice site model 

Figure 24 shows the performance of HMM for HBB 3’ cryptic splice site model. To achieve 

the best prediction accuracy, we trained the model with initial probabilities of 0.2 and 0.8 to 

cryptic splice site state and non- cryptic splice site state respectively. With a threshold score 

of -14.4, we get a good balance of true positives and false positives. The prediction accuracy 

of HMM for HBB 3’ cryptic splice oligomers is 0.8 with a threshold score of -14.4. 

As can be seen from Figures 25, 26 and 27, we can conclude that MDD performs well with 

the AUC of 1 for HBB 3’ cryptic splice site dataset given that the threshold scores are above 

13.68. 

 

 

 



  

57 
 

6.8 Comparative Analysis 

Table 21: Performance of three models over six data sets 

Method PWM MDD HMM 

Dataset 

5’ Splice sites 0.91 0.96 0.93 

3’ Splice sites 0.9 0.93 0.89 

BRCA1 5’ cryptic splice sites 0.9 0.99 0.93 

BRCA1 3’ cryptic splice sites 0.77 0.95 0.72 

HBB 5’ cryptic splice sites 0.67 0.89 0.82 

HBB 3’ cryptic splice sites 0.81 1.0 0.8 

 

Table 21 gives a summary of the results of all the three models with six datasets. For all the 

datasets under consideration, MDD performs the best. We can observe that intelligent 

methods like MDD and HMM perform consistently better compared to simple PWM for the 

prediction of splice site and cryptic splice site oligomers. 

In the next chapter, we conclude by discussing some of the findings in our project and the 

future directions. 
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CHAPTER 7 

Conclusion and Future Work 

All the methods that we analysed have their own advantages and disadvantages. The 

approach to be chosen depends heavily on the dataset. Splice site and cryptic splice site 

datasets exhibits a characteristic that shows dependence between nucleotide positions. Hence 

for our case, we need sophisticated models, such as MDD, that captures this property of the 

dataset. Also, from the results it is evident that MDD performs very well.  

In this project, we also developed the HMM that represents positions in splice sites and 

cryptic splice sites and demonstrated that HMMs can be used to detect splice sites with good 

accuracy. It is very clear from the result that HMM outperforms the conventional methods, 

such as PWM, in most of the cases.  

From our results, we can say that the MDD method can be used to successfully predict splice 

sites with good accuracy. However, there is a danger of overfitting for such models. Hence, it 

is always best to use robust and consistent models, such as HMMs, since they perform pretty 

well and without bias for most of the datasets.  

 As a future extension of this work, we might want to extend the HMM to include sequences 

that contain gaps. Currently, the HMM designed does not account for insertions or deletions. 

If we have sequences where we observe the gaps, HMM can be remodelled to accommodate 

insert and delete states.  
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APPENDIX 

Source Code 

Formatting the input sequences if necessary (Perl) 

format.pl 

# 

# 

# @author: Santrupti Nerli, SJSU, January 2015  

# 

# 

#!/usr/perl/bin -w 

 

open (READ_FILE, "<",$ARGV[0]) or die("Couldn't open file:$!"); 

open (WRITE_FILE, ">",$ARGV[1]) or die("Couldn't open file:$!"); 

 

# This will convert the input sequence to all uppercase without any spaces 

inbetween  

sysread(READ_FILE,$_,1); 

$flag = 0; 

if(/>/) { 

    while($_ ne "\n") 

    { 

        sysread(READ_FILE,$_,1); 

    } 

    $_  = ''; 

    $flag = 1; 

} 

 

$endFlag = 0; 

do { 

    if(/>/ && $flag == 1) { 

        $endFlag = 1; 

    } 

    else { 

        if(/[acgtACGT]/) { 

            print(WRITE_FILE uc($_)) 

        } 

        else { 

            # Any character other than ACGT/acgt will be reported as a 

warning to the user. 

            if(/[bd-fh-su-zBD-FH-SU-Z]/) { 

                print("**Warning: The input sequence contains character 

$_\n"); 

                print(WRITE_FILE uc($_)) 

            } 

        } 

    } 

}while(sysread(READ_FILE,$_,1) && !$endFlag); 

 

close(READ_FILE) or die("Couldn't close file:$!"); 

close(WRITE_FILE) or die("Couldn't close file:$!"); 

exit; 

 

# End of formatting 
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Extracting oligomers using sliding window (Perl) 

sliding_window.pl 

# 

# 

# @author: Santrupti Nerli, SJSU, January 2015  

# 

# 

 

#!/usr/perl/bin -w 

 

# Read file handles will read input sequence from sequence file. 

open(READ_FILE, "<",$ARGV[0]) or die("Couldn't open file:$!"); 

 

my @arr; 

 

# Write the extracted sequences into output file 

open(WRITE_FILE, ">output.out") or die("Couldn't open file:$!"); 

 

# Read the sequence to identify the sites. 

while($line = <READ_FILE>) 

{ 

    chomp($line); 

    push(@arr, split('',$line)); 

} 

 

$limit = $ARGV[1]; 

 

for(my $i=0;$i<@arr-$limit+1;$i++) 

{ 

    my @new_arr = @arr; 

     

    # @sub_seq is the subsequence obtained by moving the window one at a 

time. 

    my @sub_seq = splice(@new_arr,$i,$limit); 

     

    # for 5' splice site 

    if( $limit == 9 && $arr[$i+3] eq 'G' && $arr[$i+4] eq 'T') 

    { 

        print WRITE_FILE @sub_seq; 

        print WRITE_FILE "\n"; 

    } 

    # for 3' splice site 

    if( $limit == 14 && $arr[$i+10] eq 'A' && $arr[$i+11] eq 'G') 

    { 

         

        print WRITE_FILE @sub_seq; 

        print WRITE_FILE "\n"; 

    } 

} 

 

close(READ_FILE) or die("Couldn't close file:$!"); 

close(WRITE_FILE) or die("Couldn't close file:$!"); 

 

exit; 

 

# End of sliding window 
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Position Weight Matrix and Maximal Dependence Decomposition (C) 

functions.h 

/* 

 *  

 * @author: Santrupti Nerli, SJSU, March 2015 

 *  

 * */ 

 

/* Variables to hold alphabets {A, C, G, T} for nucleotides */ 

int no_groups; 

char *groups; 

 

/* condition for stopping the construction of tree*/ 

long long int limit; 

 

/* laplace smooting */ 

long long int pseudo_n, pseudo_d; 

 

/* degrees of freedom for chi-squared test */ 

static float df[2] = {45.5579,65.4750}; 

 

/* structure of a node in classification tree */ 

struct node 

{ 

    struct node *left; 

    struct node *right; 

    char **seq; 

    long long int position; 

    char nucleotide; 

    float **pwm; 

    long long int no_ele; 

    long long int *seq_no; 

}; 

typedef struct node * NODE; 

 

/* Definition of frees in file free.c */ 

void freenode(NODE set); 

 

void free_ptr(float *row, float *N_X, float *f_X, char *consensus, long 

long int *ci_row, long long int *ci_inv_row, long long int *prev, float 

*total_check, long long int *stack, char *line); 

 

void free_children(NODE cur); 

 

/* Definition of computation in file computation.c */ 

float square(float x); 

 

float compute_chi(float N,float *N_X,float *f_X); 

 

void find_consensus(char *con, char **sequences, long long int row, long  

long int column); 

 

long long int check(float *arr, long long int row); 

 

void create_pwm(NODE root, int no_groups); 

 

int nucleotide(char ch); 

 

NODE compute_weights(NODE root, int col, int no_groups); 
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/* Definition of tree operations in tree.c */ 

NODE getnode(); 

 

void display(NODE tree); 

 

NODE split(NODE set, char nucleotide, long long int pos, long long int row, 

long long int col, long long int *ci_row, long long int *ci_inv_row, char 

max_nucltd, long long int max_pos, int is_root); 

 

float traverse(NODE root, char *sequence); 

 

void formation(NODE root, long long int n, float *row, float *N_X, float 

*f_X, char *consensus, float pseudo_n, float pseudo_d,long long int 

no_sequences, long long int N, long long int *ci_row, long long int 

*ci_inv_row, long long int r, long long int ri,long long int *prev,float 

*total_check, long long int *stack, long long int top, long long int dir, 

int df_ind); 

 

 

main.c 

/* 

 *  

 * @author: Santrupti Nerli, SJSU, March 2015 

 *  

 * */ 

 

#include<stdio.h> 

#include<stdlib.h> 

#include<string.h> 

#include<math.h> 

#include"functions.h" 

 

/* main function */ 

int main(int argc, char *argv[]) 

{ 

 

    /* consensus: string to the store the consensus sequence. 

       n        : Number of nucleotides in the consensus sequences (it is 

the column). 

       pos_i    : column in the chi-squared table. 

       pos_j    : row in the chi-squared table. 

       row      : row holds values of one row in a chi-squared table. 

       max      : holds the max of total of rows of the chi-squared table. 

       max_index    : index which is used to fetch the conserved 

nucleotide. 

       N        : Total number of sequences in ci. 

       N_X      : Total number of sequences that have X in a particular 

position (say j). 

       f_X      : Relative frequency of nucloetide X in the sequences in 

ci_inv. 

       pseudo_n : pseudocount for the numerator. 

       pseudo_d : pseudocount for the denominator. 

       ci_row   : Number of sequences in ci set. 

       ci_inv_row: Number of sequences in ci_inv set. 

       no_sequences: number of sequences in the input file which has 

training data. 

    */ 

    char *consensus, *line; 

    long long int *prev; 

    long long int *stack, top = -1; 

 

    float *row, N, *N_X, *f_X, *total_check; 
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    long long int *ci_row,*ci_inv_row; 

    long long int no_sequences = 100000, n=30; 

    int df_ind = -1; 

    extern long long int pseudo_n, pseudo_d; 

    extern int no_groups; 

 

    char lines[n], filename[250]; 

 

    long long int r = 0,ri = 0; 

 

    long long int i,j,k; 

    extern long long int limit; 

    char *method = (char*)malloc(sizeof(char)*4); 

     

    if(argc < 4 || (!strcmp(argv[1],"-h"))) 

    { 

        printf("Usage: <executable> <method: PWM|MDD> <groups> 

<train_file_path> <test_file_path>\n"); 

        exit(0); 

    } 

     

    if(!strcmp(argv[1], "PWM")) { 

        strcpy(method, argv[1]); 

    } 

    else { 

        if(!strcmp(argv[1], "MDD")) { 

            strcpy(method, argv[1]); 

        } 

        else { 

            printf("Invalid method name: %s\n", argv[1]); 

            exit(0); 

        } 

    } 

     

    no_groups = argc-4; 

    pseudo_n = 1; 

    pseudo_d = no_groups; 

    extern char *groups; 

    groups = (char *)malloc(sizeof(char)*no_groups); 

    for(i=1;i<no_groups+1;i++) { 

        groups[i-1] = argv[i+1][0]; 

    } 

 

    /* root: It is a root of a tree which has all the sequences from a 

file. 

       cur : It represents current which holds the tree while calculating 

chi-squared table. 

    */ 

    NODE root = NULL; 

 

    /* open input file for reading the training data. */ 

    FILE *fp = fopen(argv[argc-2],"r"); 

    FILE *fptr = NULL, *fout = NULL; 

 

    for(i=0; !feof(fp); i++)  

    fscanf(fp,"%s",lines); 

 

    no_sequences = i-1; 

    limit = 0.15*no_sequences; 

    fclose(fp); 

    fp = fopen(argv[argc-2],"r"); 
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    /* Get the root ready to store the training data. Read from the file 

and store it in root. */ 

    root = getnode(); 

    root->seq = (char**)malloc(sizeof(char *)*no_sequences); 

    root->seq_no = (long long int*)malloc(sizeof(long long 

int)*no_sequences); 

    if(root->seq == NULL) 

        printf("Allocation failed\n"); 

    for(i=0; i<no_sequences; i++) 

    { 

        root->seq[i] = (char*)malloc(sizeof(char)*(n+1)); 

        if(root->seq[i] == NULL) 

            printf("Allocation failed\n"); 

        fscanf(fp,"%s",root->seq[i]); 

    root->seq_no[i] = i; 

    } 

     

    if(!strcmp(method, "PWM")) { 

        root->position = -1; 

        root->nucleotide = '\0'; 

    } 

      

    root->left = NULL; 

    root->right = NULL; 

 

    /* Now, i has the actual number of sequences which is stored in 

appropriate variable no_sequences. */ 

     

    root->no_ele = no_sequences; 

    printf("no_sequences=%lld\n",no_sequences); 

 

     

    n = strlen(root->seq[0]); 

    consensus = (char*)malloc(sizeof(char)*(n+1)); 

 

    prev = (long long int *)malloc(sizeof(long long int)*n); 

    stack = (long long int *)malloc(sizeof(long long int)*100); 

 

    /* Allocate memory for row, N_X and f_X. */ 

    row = (float*)malloc(sizeof(float)*n); 

    N_X = (float*)malloc(sizeof(float)*no_groups); 

    f_X = (float*)malloc(sizeof(float)*no_groups); 

    total_check = (float*)malloc(sizeof(float)*n); 

 

    if(n == 9) 

    df_ind = 0; 

    else 

    { 

    if(n == 14) 

        df_ind = 1; 

    } 

 

    for(i=0; i<n; i++) 

    { 

        prev[i] = -1; 

        total_check[i] = 0.0; 

    } 

 

    /* Allocate memories to ci_row and ci_inv_row. */ 

    ci_row = (long long int*)malloc(sizeof(long long int)); 

    ci_inv_row = (long long int*)malloc(sizeof(long long int)); 
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    if(!strcmp(method, "MDD")) { 

        formation(root, n, row, N_X, f_X, consensus, pseudo_n, pseudo_d, 

no_sequences, N, ci_row, ci_inv_row, r, ri, prev, total_check, stack, top, 

0, df_ind); 

    } 

 

    create_pwm(root, no_groups); 

    display(root); 

     

    fptr = fopen(argv[argc-1],"r"); 

    fout = fopen("output","a"); 

    line = (char*)malloc(sizeof(char)*(n+1)); 

 

    while(!feof(fptr)) 

    { 

        if(fscanf(fptr,"%s",line) != 1) break; 

        fprintf(fout,"%s\t%f\n",line,traverse(root,line)); 

    } 

 

    fclose(fp); 

    fclose(fptr); 

    fclose(fout); 

 

    free_ptr(row, N_X, f_X, consensus, ci_row, ci_inv_row, prev, 

total_check, stack, line); 

    freenode(root); 

 

    return 0; 

} 

 

 

tree.c 

/* 

 *  

 * @author: Santrupti Nerli, SJSU, March 2015 

 *  

 * */ 

 

#include<stdio.h> 

#include<stdlib.h> 

#include<string.h> 

#include<math.h> 

#include"functions.h" 

 

/* getnode() is a function which allocates memory for a new node. */ 

NODE getnode() 

{ 

    NODE temp; 

    temp=(NODE)malloc(sizeof(struct node)); 

    if(temp==NULL) 

    { 

        printf("Memory allocation failed"); 

        return NULL; 

    } 

    return temp; 

} 

 

void print(NODE tree, FILE* fp, int noSeq) { 

    int i = 0; 

    for(i = 0; i < noSeq; i++) { 

    fprintf(fp, "%s\n", tree->seq[i]); 

    } 
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} 

 

void display(NODE tree) 

{ 

    int i, j, k, col; 

    if(tree == NULL) 

        return; 

    FILE *fp = fopen("PWM1.txt", "a"); 

    if(tree->nucleotide != '\0' && tree->left != NULL && tree->right != 

NULL) 

    { 

        fprintf(fp, "\n%lld|%c|%lld\nPWM\n-------\n",tree->position+1,tree-

>nucleotide,tree->no_ele); 

    for(i=0;i<no_groups;i++) 

    { 

        fprintf(fp, "%f\n",tree->pwm[i][0]); 

    } 

    //print(tree, fp, tree->no_ele); 

    } 

    else 

    { 

    if(tree->nucleotide != '\0') 

    { 

        fprintf(fp, "Node without one child\n"); 

        fprintf(fp, "\n%lld|%c|%lld\nPWM\n-------\n",tree->position+1,tree-

>nucleotide,tree->no_ele); 

    } 

    else 

        fprintf(fp, "Leaf|%lld\n",tree->no_ele); 

    col = strlen(tree->seq[0]); 

    for(i=0;i<no_groups;i++) 

    { 

        for(j=0;j<col;j++) 

            fprintf(fp, "%f\t",tree->pwm[i][j]); 

        fprintf(fp, "\n"); 

    } 

    } 

    fclose(fp); 

    display(tree->left); 

    display(tree->right); 

} 

 

/* Give only one set to split that is only one node. Based on the 

nucleotide at that position, 

   sequences are split into two groups which are the children of set. 

 

   Parameters:      set: It is a root for which we need to find children. 

            nucleotide and pos: based on nucleotide and position, splitting 

happens. 

            row and col: rows and columns of set(i.e, no. of sequences and 

no. of nucleotides in each sequence). 

            ci_row and ci_inv_row: attributes which hold the count of 

sequences in ci and ci_inv. 

*/ 

NODE split(NODE set, char nucleotide, long long int pos, long long int row, 

long long int col, long long int *ci_row, long long int *ci_inv_row, char 

max_nucltd, long long int max_pos, int is_root) 

{ 

    long long int i,j,k; 

    /* lchild and rchild are the children of set that are created by split. 

*/ 

    NODE lchild = NULL,rchild = NULL; 
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    long long int lflag = 0,rflag = 0; 

 

    if(set==NULL)return; 

 

    lchild = getnode(); 

    rchild = getnode(); 

 

    lchild->seq = (char**)malloc(sizeof(char*)*row); 

    rchild->seq = (char**)malloc(sizeof(char*)*row); 

 

    lchild->seq_no = (long long int*)malloc(sizeof(long long int)*row); 

    rchild->seq_no = (long long int*)malloc(sizeof(long long int)*row); 

 

    /* If the nucleotide matches the position for a particular sequence, 

add it to left child else to the right child. */ 

    j = 0; 

    k = 0; 

    for(i=0; i<row; i++) 

    { 

        if(set->seq[i][pos] == nucleotide) 

        { 

            lflag = 1; 

            lchild->seq[j] = (char*)malloc(col*sizeof(char)); 

            strcpy(lchild->seq[j], set->seq[i]); 

        lchild->seq_no[j] = set->seq_no[i]; 

            j++; 

 

        } 

        else 

        { 

            rflag = 1; 

            rchild->seq[k] = (char*)malloc(col*sizeof(char)); 

            strcpy(rchild->seq[k], set->seq[i]); 

        rchild->seq_no[k] = set->seq_no[i]; 

            k++; 

        } 

    } 

 

    lchild->right = NULL; 

    lchild->left = NULL; 

 

    rchild->right = NULL; 

    rchild->left = NULL; 

 

    if(lflag == 0) 

    { 

        free(lchild->seq); 

        lchild->seq = NULL; 

    free(lchild); 

    lchild = NULL; 

    } 

    if(rflag == 0) 

    { 

        free(rchild->seq); 

        rchild->seq = NULL; 

    free(rchild); 

    rchild = NULL; 

    } 

 

    if(is_root) 

    { 

    if((j != 0 && j <= limit) || (k != 0 && k <= limit)) 
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        return set; 

    } 

 

    /* Attach the children to the parent and return the parent to the 

calling function. */ 

    set->left = lchild; 

    set->right = rchild; 

 

    set->nucleotide = max_nucltd; 

    set->position = max_pos; 

 

    /* Imp: ci_row and ci_inv_row are pointers because we need the no. of 

sequences in each 

       of ci and ci_inv and the only way to get it is through this 

function. It is because, 

       this is the function that creates these sets. */ 

 

    if(lchild != NULL) 

    { 

        set->left->no_ele = j; 

    set->left->nucleotide = '\0'; 

    set->left->position = -1; 

    } 

    if(rchild != NULL) 

    { 

    set->right->no_ele = k; 

    set->right->nucleotide = '\0'; 

    set->right->position = -1; 

    } 

    *ci_row = j; 

    *ci_inv_row = k; 

 

    return set; 

} 

 

/* Rewrite traverse so that it scores the sequence */ 

float traverse(NODE root, char *sequence) 

{ 

    float score = 0.0; 

    int nuc = -1, i, j; 

    char *temp_seq; 

    if(root == NULL) 

        return 0; 

 

    temp_seq = (char *)malloc(sizeof(char)*(strlen(sequence)+1)); 

    strcpy(temp_seq, sequence); 

 

    while(root != NULL) 

    { 

    for(j=0;j<no_groups;j++) 

        if(root->nucleotide == groups[j]) 

            nuc = j; 

 

        if(root->position != -1 && root->nucleotide == sequence[root-

>position]) 

    { 

        if(root->left != NULL && root->right != NULL) 

            score = score + root->pwm[nuc][0]; 

        else 

        score = score + root->pwm[nuc][root->position]; 

        sequence[root->position] = 'X'; 

        root = root->left; 
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    } 

        else 

    { 

        if(root->right == NULL || root->nucleotide == '\0') 

        { 

            for(i=0;i<strlen(sequence);i++) 

            { 

                if(sequence[i] == 'X') 

                { 

                    //Do nothing 

                } 

                else 

                { 

                    for(j=0;j<no_groups;j++) 

                        if(sequence[i] == groups[j]) 

                            nuc = j; 

                    score = score + root->pwm[nuc][i]; 

                } 

            }    

        } 

        root = root->right; 

    } 

    } 

    strcpy(sequence, temp_seq); 

    free(temp_seq); 

    return score; 

} 

 

/* formation() function will build a tree. */ 

void formation(NODE root, long long int n, float *row, float *N_X, float 

*f_X, char *consensus, float pseudo_n, float pseudo_d,long long int 

no_sequences, long long int N, long long int *ci_row, long long int 

*ci_inv_row, long long int r, long long int ri,long long int *prev,float 

*total_check, long long int *stack, long long int top, long long int dir, 

int df_ind) 

{ 

    long long int pos_i = 0,pos_j = 0, max_index = 0; 

    long long int i,j,k,l; 

    float max = -1, total; 

    long long int flag = 0; 

    NODE cur = NULL; 

 

    if(root == NULL || root->seq == NULL) 

        return; 

    if(root->no_ele <= limit) 

    { 

    prev[stack[top--]] = -1; 

    return; 

    } 

    find_consensus(consensus, root->seq, no_sequences, n); 

 

    /* Loop through till you fill the entire chi-squared table. */ 

    for(pos_i=0; pos_i<n; pos_i++) 

    { 

    cur = root; 

        /* based on consensus nucleotides, split each time for each row and 

fill the table. */ 

        cur = 

split(root,consensus[pos_i],pos_i,no_sequences,(n+1),ci_row,ci_inv_row,'\0'

,0,0); 

 

        /* Add the pseudocount (pseudo_n) to N. */ 
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        N = *ci_row + pseudo_d; 

 

        /* This loop will calculate the row of the table one by one. */ 

        for(pos_j=0; pos_j<n; pos_j++) 

        { 

            if(pos_i == pos_j) 

            { 

                row[pos_j] = 0.0; 

            } 

            else 

            { 

                for(i=0; i<no_groups; i++) 

                { 

                    N_X[i] = 0; 

                    f_X[i] = 0; 

                } 

                /* To find N_X. */ 

                for(i=0; i<*ci_row; i++) 

                { 

            for(l=0;l<no_groups;l++) 

            if(cur->left->seq[i][pos_j] == groups[l]) 

                N_X[l]++; 

                } 

        for(l=0;l<no_groups;l++) 

                    N_X[l] += pseudo_n; 

                 

                /* To find f_X. */ 

                for(i=0; i<*ci_inv_row; i++) 

                { 

            for(l=0;l<no_groups;l++) 

            if(cur->right->seq[i][pos_j] == groups[l]) 

                f_X[l]++; 

                } 

        for(l=0;l<no_groups;l++) 

                    f_X[l] = (f_X[l] + pseudo_n)/(*ci_inv_row + pseudo_d); 

                 

                row[pos_j] = compute_chi(N,N_X,f_X); 

            } 

        } 

        total = 0.0; 

        for(i=0; i<n; i++) 

        { 

            total += row[i]; 

        } 

        if(max - total < 0.0) 

        { 

            if(prev[pos_i] != 1) 

            { 

                max = total; 

                max_index = pos_i; 

            } 

        } 

        free_children(cur); 

    cur = NULL; 

    } 

    root = 

split(root,consensus[max_index],max_index,no_sequences,(n+1),ci_row,ci_inv_

row,consensus[max_index],max_index,1); 

    r = *ci_row; 

    ri = *ci_inv_row; 

 

    if((r <= limit && r != 0) || (ri <= limit && ri != 0)) 
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    return; 

 

    if(dir == 0) 

    { 

        stack[++top] = max_index; 

    } 

    total_check[max_index] = max; 

    prev[max_index] = 1; 

 

    if(r <= limit && ri <= limit && (max - df[df_ind]) < 0.0 ) 

    { 

    prev[stack[top--]] = -1; 

        return; 

    } 

    else 

    { 

        no_sequences = *ci_row; 

 

        formation(root->left, n, row, N_X, f_X, consensus, pseudo_n, 

pseudo_d, no_sequences, N, ci_row, ci_inv_row, r, ri, prev,total_check, 

stack, top, 0, df_ind); 

        *ci_row = r; 

        *ci_inv_row = ri; 

    } 

 

    if(r <= limit && ri <= limit && (max - df[df_ind]) < 0.0 ) 

        return; 

    else 

    { 

        no_sequences = *ci_inv_row; 

 

        formation(root->right, n, row, N_X, f_X, consensus, pseudo_n, 

pseudo_d, no_sequences, N, ci_row, ci_inv_row, r, ri, prev,total_check, 

stack, top, 1, df_ind); 

        *ci_row = r; 

        *ci_inv_row = ri; 

    } 

} 

 

 

computation.c 

/* 

 *  

 * @author: Santrupti Nerli, SJSU, March 2015 

 *  

 * */ 

 

#include<stdio.h> 

#include<stdlib.h> 

#include<string.h> 

#include<math.h> 

#include"functions.h" 

 

/* compares floating point values */ 
long long int check(float *arr, long long int row) 

{ 

    while(--row>0 && abs(arr[row]-arr[0]) > 0.00001); 

    return row!=0; 

} 

 

/* square() is a function which squares the given number and returns the 

result. */ 
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float square(float x) 

{ 

    return (x*x); 

} 

 

/* 

   compute_chi() is a function which will compute the chi value as per the 

formula 

   chi = Summation(square(observed-expected)/expected) 

*/ 
float compute_chi(float N,float *N_X,float *f_X) 

{ 

    float res = 0; 

    long long int i; 

    for(i=0; i<no_groups; i++) 

    { 

        res += (square((N*f_X[i])-N_X[i]))/(N*f_X[i]); 

    } 

    return res; 

} 

 

/* find_consensus() function will determine the consensus sequence given a 

set of sequences. */ 

void find_consensus(char *con, char **sequences, long long int row, long 

long int column) 

{ 

    /* counter : Keeps the count of each nucleotide ACGT in a column in 

that order. 

       max     : Keeps the maximum count of the nucleotide in a particular 

column. 

       index   : stores the index of the consensus nucleotide. 

    */ 

    long long int counter[no_groups]; 

    long long int i,j,k,max = 0,index = 0, l; 

    if(sequences == NULL) 

    { 

        con = NULL; 

        return; 

    } 

 

    /* Count the ACGT occurance in each column. */ 

    for(i=0; i<column; i++) 

    { 

    for(l=0;l<no_groups;l++) 

            counter[l] = 0; 

        for(j=0; j<row; j++) 

        { 

        for(l=0;l<no_groups;l++) 

                if(sequences[j][i] == groups[l]) 

                    counter[l]++; 

        } 

        /* Find the consensus nucleotide based on the count. */ 

        max = 0; 

        index = 0; 

        for(k=0; k<no_groups; k++) 

        { 

            if(max < counter[k]) 

            { 

                max = counter[k]; 

                index = k; 

            } 

        } 
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    con[i] = groups[index]; 

    } 

    con[i] = '\0'; 

} 

 

/* constructs a PWM for a given node */ 

NODE compute_weights(NODE root, int col, int no_groups) 

{ 

    extern long long int pseudo_n, pseudo_d;  

    float exp, denominator; 

    float group_count[no_groups]; 

    long long int i, j, temp, k, l; 

    char consensus = '\0'; 

        if(no_groups != 0) 

            exp = 1.0/no_groups; 

     

    root->pwm = (float**)malloc(sizeof(float*) * no_groups); 

    for(i=0;i<no_groups;i++) 

    { 

        root->pwm[i] = (float *) malloc(sizeof(float) * col); 

    } 

     

    for(j=0;j<col;j++) 

    { 

        for(k=0;k<no_groups;k++) 

            group_count[k] = 0.0; 

         

        temp = j; 

        for(i=0;i<root->no_ele;i++) 

        { 

            if(root->position != -1 && root->left != NULL && root->right != 

NULL) 

            { 

                j = root->position; 

            } 

            consensus = root->seq[i][j]; 

            for(l=0;l<no_groups;l++) 

                if(consensus == groups[l]) 

                    group_count[l]++; 

        } 

        denominator = root->no_ele+pseudo_d; 

 

        j = temp; 

        for(l=0;l<no_groups;l++) 

            root->pwm[l][j] = 

(log(((group_count[l]+pseudo_n)/(denominator))/exp))/log(2); 

    } 

    return root; 

} 

 

/* Traverses tree and calls compute_weights to construct PWM for  

    leaf or parent without a child */ 

void create_pwm(NODE root, int no_groups) 

{ 

    int col = 0; 

    if(root == NULL) 

        return; 

    if(root->position != -1 && root->left != NULL && root->right != NULL) 

        col = 1; 

    else 

        col = strlen(root->seq[0]); 

    compute_weights(root, col, no_groups); 
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    create_pwm(root->left, no_groups); 

    create_pwm(root->right, no_groups); 

} 

 

 

free.c 

/* 

 *  

 * @author: Santrupti Nerli, SJSU, March 2015 

 *  

 * */ 

 

#include<stdio.h> 

#include<stdlib.h> 

#include<string.h> 

#include<math.h> 

#include"functions.h" 

 

/* freenode() will free the memory of a node. */ 

void freenode(NODE set) 

{ 

    long long int i; 

 

    if(set == NULL) return; 

    freenode(set->left); 

    freenode(set->right); 

    for(i=0; i<set->no_ele; i++) 

    { 

        free(set->seq[i]); 

    set->seq[i] = NULL; 

    } 

    for(i=0;i<4;i++) 

    { 

        free(set->pwm[i]); 

    set->pwm[i] = NULL; 

    } 

    free(set->pwm); 

    set->pwm = NULL; 

    free(set->seq); 

    set->seq = NULL; 

    free(set); 

    set = NULL; 

} 

 

/* Traverse through the tree and keep freeing the nodes */ 

void free_children(NODE cur) 

{ 

    long long int i; 

    if(cur->left != NULL)    

    { 

        if(cur->left->seq != NULL) 

            { 

                    for(i=0; i<cur->left->no_ele; i++) 

                    { 

                        if(cur->left->seq[i] != NULL) 

                                free(cur->left->seq[i]); 

                    } 

                    if(cur->left->seq != NULL) 

                        free(cur->left->seq); 

            } 

        if(cur->left->seq_no != NULL) 

        { 
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            free(cur->left->seq_no); 

            cur->left->seq_no = NULL; 

        } 

            if(cur->left != NULL) 

        { 

                    free(cur->left); 

            cur->left = NULL; 

        } 

    } 

    if(cur->right != NULL)   

    { 

        if(cur->right->seq != NULL) 

            { 

                    for(i=0; i<cur->right->no_ele; i++) 

                    { 

                        if(cur->right->seq[i] != NULL) 

                                free(cur->right->seq[i]); 

                    } 

                    if(cur->right->seq != NULL) 

                        free(cur->right->seq); 

            } 

        if(cur->right->seq_no != NULL) 

        { 

            free(cur->right->seq_no); 

            cur->right->seq_no = NULL; 

        } 

            if(cur->right != NULL) 

        { 

                    free(cur->right); 

            cur->right = NULL; 

        } 

    } 

} 

 

 

/* free_ptr() frees all the pointers. */ 

void free_ptr(float *row, float *N_X, float *f_X, char *consensus, long 

long int *ci_row, long long int *ci_inv_row, long long int *prev, float 

*total_check, long long int *stack, char *line) 

{ 

    if(N_X != NULL) 

    { 

        free(N_X); 

        N_X = NULL; 

    } 

    if(f_X != NULL) 

    { 

        free(f_X); 

        f_X = NULL; 

    } 

    if(consensus != NULL) 

    { 

        free(consensus); 

        consensus = NULL; 

    } 

    if(ci_row != NULL) 

    { 

        free(ci_row); 

        ci_row = NULL; 

    } 

    if(ci_inv_row != NULL) 

    { 
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        free(ci_inv_row); 

        ci_inv_row = NULL; 

    } 

    if(prev != NULL) 

    { 

        free(prev); 

        prev = NULL; 

    } 

    if(total_check != NULL) 

    { 

        free(total_check); 

        total_check = NULL; 

    } 

    if(line != NULL) 

    { 

        free(line); 

        line = NULL; 

    } 

    if(stack != NULL) 

    { 

        free(stack); 

        stack = NULL; 

    } 

    if(row != NULL) 

    { 

        free(row); 

        row = NULL; 

    } 

} 

 

 

makefile 

# 

#  

# @author: Santrupti Nerli, SJSU, March 2015 

#  

# 

 

.phony:clean compile link debug run leakcheck all 

 

TRAIN = "F:/SJSU/Fall_2014/CS_280/MDD/testFiles/EI_train.txt" 

TEST = "F:/SJSU/Fall_2014/CS_280/MDD/testFiles/EI_positives.txt" 

METHOD = “MDD” 

clean: 

    if [ -a *_pwm ]; \ 

    then \ 

        rm *_pwm; \ 

    fi; 

    rm *.o *.out output 

compile: 

    gcc -c main.c free.c tree.c computation.c 

link: 

    gcc main.o free.o tree.o computation.o -lm 

run: 

    a.exe $(METHOD) A C G T $(TRAIN) $(TEST) 

debug: 

    gdb a.exe 

leakcheck: 

    valgrind --tool=memcheck --leak-check=yes --show-reachable=yes --track-

origins=yes a.exe 

all: 

    make compile link run 
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Hidden Markov Model (Java) 

HMMEntry.java 

/* 

 *  

 * @author: Santrupti Nerli, SJSU, March 2015 

 *  

 * */ 

 

package hmm_main; 

 

import java.io.BufferedReader; 

import java.io.FileNotFoundException; 

import java.io.FileReader; 

import java.io.IOException; 

 

public class HMMEntry { 

 

    // members to store sequences, their count along with  

    // various other parameters 

    public String[] ssSeq; 

    public String[] nssSeq; 

    public String method; 

    private static int noSsSeq; 

    private static int noNssSeq; 

    private static int states; 

    private static int vocabSize; 

    public static int[] codeSeq = {0, 1, 2, 3}; 

    public static int T; 

    public static final int MAX_ITERATIONS = 20; 

     

     

    // HMM Parameters 

    private double[][] emissionProb; 

    private double[][] transitionProb; 

    private double[] initialProb; 

     

    // Old HMM Parameters (required to check for convergence) 

    private double[][] emissionProbOld; 

    private double[][] transitionProbOld; 

     

    //Keep track of convergence 

    double transitionDiff; 

    double emissionDiff; 

     

    // For updating multiple sequence observations 

    public double[][] emissionProbNum; 

    public double[][] emissionProbDen; 

    public double[][] transitionProbNum; 

    public double[][] transitionProbDen; 

     

    // constructor 

    public HMMEntry() { 

        ssSeq = null; 

        method = "HMM"; 

        noSsSeq = 0; 

        noNssSeq = 0; 

        vocabSize = 4; 

        transitionDiff = 0.0; 

        emissionDiff = 0.0; 
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    } 

     

    // open the training file to count the length of each sequence and 

total number of sequences 

    public void setSsNssSeqNo(String ssFile, String nssFile) throws 

FileNotFoundException, IOException { 

     

        BufferedReader brSs = new BufferedReader(new FileReader(ssFile)); 

        BufferedReader brNss = new BufferedReader(new FileReader(nssFile)); 

         

        try{ 

            String line = brSs.readLine(); 

            int ctr = 0; 

             

            T = line.length(); 

             

            while(line != null) { 

                if(line.charAt(0) != '>') { 

                    ctr++; 

                } 

                line = brSs.readLine(); 

            } 

             

            noSsSeq = ctr; 

             

            ctr = 0; 

            line = brNss.readLine(); 

             

            while(line != null) { 

                if(line.charAt(0) != '>') { 

                    ctr++; 

                } 

                line = brNss.readLine(); 

            } 

             

            noNssSeq = ctr; 

             

        } catch(Exception e){ 

            System.out.println("setSsSeqNo(): " + e); 

        } finally { 

            brSs.close(); 

            brNss.close(); 

        } 

    } 

     

    // Read the splice site set into ssSeq and non-splice site set into 

nssSeq 

    public void ReadSsNssFile(String ssFile, String nssFile) throws 

FileNotFoundException, IOException  { 

         

         

        BufferedReader brSs = new BufferedReader(new FileReader(ssFile)); 

        BufferedReader brNss = new BufferedReader(new FileReader(nssFile)); 

         

        try{ 

            String line; 

            int ctr = 0; 

             

            line = brSs.readLine();  

             

            setStates(line.length() * 2); 

            System.out.println("No. of states: " + states); 
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            ssSeq = new String[noSsSeq]; 

             

            while(line != null) { 

                ssSeq[ctr] = new String(line.toUpperCase()); 

                ctr++; 

                line = brSs.readLine(); 

            } 

             

            line = brNss.readLine();  

            ctr = 0; 

            nssSeq = new String[noNssSeq]; 

             

            while(line != null) { 

                nssSeq[ctr] = new String(line.toUpperCase()); 

                ctr++; 

                line = brNss.readLine(); 

            } 

     

        } catch(Exception e){ 

            System.out.println("ReadSsNssFile(): " + e); 

        } finally { 

            brSs.close(); 

            brNss.close(); 

        } 

    } 

     

    // parse cli arguments, fetch the file names to look for splice site 

and non splice site training sequences 

    public void parseCliArgs(String[] args) { 

        try { 

            if(args.length < 4 || args[0].equalsIgnoreCase("-h")) { 

                System.out.println("Usage: java <class_name> 

<splice_site_train_file_path> <non_splice_site_train_file_path> 

<test_file_path> <output_file_path>"); 

                System.exit(0); 

            } 

            String ssFilePath = args[0]; 

            String nssFilePath = args[1]; 

 

            System.out.println("Splice Site File - " + ssFilePath); 

            System.out.println("Non-splice Site File - " + nssFilePath); 

         

            this.setSsNssSeqNo(ssFilePath, nssFilePath); 

            this.ReadSsNssFile(ssFilePath, nssFilePath); 

             

            // these are variables required to compute probabilities for 

multiple observation sequences 

            emissionProbNum = new double[getVocabSize()][getStates()]; 

            emissionProbDen = new double[getVocabSize()][getStates()]; 

            transitionProbNum = new double[getStates()][getStates()]; 

            transitionProbDen = new double[getStates()][getStates()]; 

             

            emissionProbOld = new 

double[HMMEntry.getVocabSize()][HMMEntry.getStates()]; 

            transitionProbOld = new 

double[HMMEntry.getStates()][HMMEntry.getStates()]; 

             

        } catch (Exception e) { 

            System.out.println("parseArgs(): " + e); 

        } 

    } 



  

82 
 

     

    // print sequences 

    public void printSeq() { 

        for(int i = 0; i < ssSeq.length; i++) { 

            System.out.println(ssSeq[i]); 

        } 

         

        System.out.println("Splice sites end."); 

    } 

     

    // setters 

    public void setEmissionProb(double[][] matrix) { 

        emissionProb = matrix; 

    } 

     

    public void setTransitionProb(double[][] matrix) { 

        transitionProb = matrix; 

    } 

     

    public void setIntialProb(double[] matrix) { 

        initialProb = matrix; 

    } 

     

    public void setStates(int s) { 

        states = s; 

    } 

     

    public void setHMMParameters(double[][] eP, double[][] tP, double[] iP) 

{ 

        this.emissionProb = eP; 

        this.transitionProb = tP; 

        this.initialProb = iP; 

    } 

     

    // getters 

    public double[][] getEmissionProb() { 

        return emissionProb; 

    } 

     

    // getter to fetch total number of splice site and non-splice site 

sequences 

    public int getTotalSeq() { 

        return (noSsSeq + + noNssSeq); 

    } 

     

    public double[][] getTransitionProb() { 

        return transitionProb; 

    } 

     

    public double[] getIntialProb() { 

        return initialProb; 

    } 

     

    public static int getStates() { 

        return states; 

    } 

     

    public static int getVocabSize() { 

        return vocabSize; 

    } 

     

    public static int getNoSeq() { 
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        return noSsSeq; 

    } 

     

    // nucleotides are coded to integers {A, G, C, T} = {0, 1, 2, 3} 

    public static int[] computeCode(String seq) { 

         

        int[] code = new int[seq.length()]; 

         

        for(int i = 0; i < seq.length(); i++) { 

            switch(seq.charAt(i)) { 

            case 'A': code[i] = 0; break; 

            case 'C': code[i] = 1; break; 

            case 'G': code[i] = 2; break; 

            case 'T': code[i] = 3; break; 

            } 

        } 

        return code; 

    } 

     

    // storing current HMM parameters before the next iteration starts 

    public void storeCurrentValues() { 

         

        for(int i = 0; i < getStates(); i++) { 

            for(int j = 0; j < getStates(); j++) { 

                transitionProbOld[i][j] = transitionProb[i][j];  

            } 

        } 

         

        for(int i = 0; i < HMMEntry.getVocabSize(); i++) { 

            for(int j = 0; j < getStates(); j++) { 

                emissionProbOld[i][j] = emissionProb[i][j];  

            } 

        } 

    } 

     

    // check if convergence has reached 

    public boolean checkConvergence(double[][] tP, double[][] eP, int 

iteration) { 

        double transitionDiff = 0.0; 

        double emissionDiff = 0.0; 

        for(int i = 0; i < getStates(); i++) { 

            for(int j = 0; j < getStates(); j++) { 

                transitionDiff += Math.abs(tP[i][j]-

transitionProbOld[i][j]);  

            } 

        } 

         

        for(int i = 0; i < HMMEntry.getVocabSize(); i++) { 

            for(int j = 0; j < getStates(); j++) { 

                emissionDiff += Math.abs(eP[i][j]-emissionProbOld[i][j]);  

            } 

        } 

         

        if(iteration != 0 && (transitionDiff > this.transitionDiff || 

emissionDiff > this.emissionDiff)) { 

            return true; 

        } 

         

        this.transitionDiff = transitionDiff; 

        this.emissionDiff = emissionDiff; 

         

        return false; 
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    } 

     

    // print probability tables 

    public static void printMatrix(double[][] matrix, int row, int col) { 

        for(int i = 1; i <= col; i++) { 

            System.out.print("\t" + i + "\t"); 

        } 

        System.out.println(); 

         

        for(int i = 0; i < row; i++) { 

            System.out.print(i+1 + "\t"); 

            for(int j = 0; j < col; j++) { 

                System.out.printf("%f\t", matrix[i][j]); 

            } 

            System.out.println(); 

        } 

    } 

     

    // print probability tables of row x 1 

    public static void printArray(double[] matrix, int row) {        

        for(int i = 0; i < row; i++) { 

                System.out.printf("%f\t", matrix[i]); 

        } 

    } 

     

    // main method 

    public static void main(String[] args) throws IOException { 

 

        HMMEntry hmmObject = new HMMEntry(); 

        hmmObject.parseCliArgs(args); 

         

        TrainHMM train = new TrainHMM(0, args[2], args[3]); 

        train.startTraining(hmmObject); 

    } 

 

} 

 

InitialSetting.java 

/* 

 *  

 * @author: Santrupti Nerli, SJSU, March 2015 

 *  

 * */ 

 

package initializeHMM; 

 

import hmm_main.HMMEntry; 

 

public class InitialSetting { 

     

    // Laplace smoothing 

    public static int pseudocountN; 

    public static int pseudocountD; 

     

    // constructor 

    public InitialSetting() { 

        pseudocountN = 1; 

        pseudocountD = 4; 

    } 

     

    // computes emission probabilities for splice sites and non-splice 

sites 



  

85 
 

    public double[][] formEmissionProbTable(String[] Seq) { 

         

        double[][] emissionProb = new 

double[HMMEntry.getVocabSize()][Seq[0].length()];  

         

        try { 

            for(int k = 0; k < Seq[0].length(); k++) { 

                int ctrA = 0, ctrC = 0, ctrG = 0, ctrT = 0; 

                for(int j = 0; j < Seq.length; j++) { 

                    switch(Seq[j].charAt(k)) { 

                    case 'A': ctrA++; break; 

                    case 'C': ctrC++; break; 

                    case 'G': ctrG++; break; 

                    case 'T': ctrT++; break; 

                    } 

                } 

                 

                emissionProb[0][k] = Math.log((double)(ctrA + 

pseudocountN)) - Math.log((Seq.length + pseudocountD)); 

                emissionProb[1][k] = Math.log((double)(ctrC + 

pseudocountN)) - Math.log((Seq.length + pseudocountD)); 

                emissionProb[2][k] = Math.log((double)(ctrG + 

pseudocountN)) - Math.log((Seq.length + pseudocountD)); 

                emissionProb[3][k] = Math.log((double)(ctrT + 

pseudocountN)) - Math.log((Seq.length + pseudocountD)); 

            } 

             

        } catch(Exception e) { 

            System.out.println("formEmissionProbTable(): " + e); 

        } 

         

        return emissionProb; 

    } 

     

    // combines both splice site and non-splice site emission probabilities 

to form emission probability matrix 

    public double[][] computeEmissionProb(String[] ssSeq, String[] nssSeq) 

{ 

         

        double[][] emissionProb = new 

double[HMMEntry.getVocabSize()][HMMEntry.getStates()]; 

        double[][] eProbss; 

        double[][] eProbnss; 

         

        eProbss = formEmissionProbTable(ssSeq); 

        eProbnss = formEmissionProbTable(nssSeq); 

         

        for(int i = 0; i < HMMEntry.getVocabSize(); i++) { 

            for(int j = 0; j < ssSeq[0].length(); j++) { 

                emissionProb[i][j] = eProbss[i][j]; 

                emissionProb[i][j+ssSeq[0].length()] = eProbnss[i][j]; 

            } 

        } 

         

        return emissionProb; 

    } 

     

    // compute transition probabilities, defaults are 0.8 and 0.2 from 

position k to k+1 and K+k+1 

    public double[][] computeTransitionProb() { 

         

        final int DIMENSION = HMMEntry.getStates(); 
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        double[][] transitionProb = new double[DIMENSION][DIMENSION]; 

         

        double highProb = Math.log(0.8); 

        double lowProb = Math.log(0.2); 

         

        for(int i = 0; i < DIMENSION; i++) { 

            for(int j = 0; j < DIMENSION; j++) { 

                if(i == j-1 && i < (DIMENSION/2)) { 

                    transitionProb[i][j] = highProb; 

                    transitionProb[i][j+(DIMENSION/2)-1] = lowProb; 

                } 

                else if(i == j-1 && i >= (DIMENSION/2)) { 

                    transitionProb[i][j] = highProb; 

                    transitionProb[i][j-(DIMENSION/2)] = lowProb; 

                } 

                else { 

                    transitionProb[i][j] = -99; 

                } 

            } 

        } 

        return transitionProb; 

    } 

     

    // compute initial probabilities, defaults are 0.3 to splice site 

region and 0.7 to non-splice site region 

    public double[] computeInitialProb() { 

         

        final int DIMENSION = HMMEntry.getStates(); 

         

        double[] initialProb = new double[DIMENSION]; 

         

        initialProb[0] = Math.log(0.3); 

         

        for(int i = 1; i < DIMENSION; i++) { 

            initialProb[i] = -99; 

        } 

         

        initialProb[4] = Math.log(0.7); 

        return initialProb; 

    } 

} 

 

TrainHMM.java 

/* 

 *  

 * @author: Santrupti Nerli, SJSU, March 2015 

 *  

 * */ 

 

package hmm_main; 

 

import java.io.BufferedReader; 

import java.io.BufferedWriter; 

import java.io.FileReader; 

import java.io.FileWriter; 

import java.io.IOException; 

 

import forwardAlgo.ForwardProcedure; 

import initializeHMM.InitialSetting; 

import update.CalcTempVar; 

import update.UpdateParameters; 

import viterbi.ViterbiDecoding; 
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import backwardAlgo.BackwardProcedure; 

 

public class TrainHMM { 

     

    // variables to store HMM parameters 

    double[][] emissionProb; 

    double[][] transitionProb; 

     

    // stores iteration number 

    int i; 

     

    // file paths 

    String outFile; 

    String testFile; 

     

    // constructor 

    public TrainHMM(int i, String outFile, String testFile) { 

         

        this.outFile = outFile; 

        this.testFile = testFile; 

         

        transitionProb = new 

double[HMMEntry.getStates()][HMMEntry.getStates()]; 

        emissionProb = new 

double[HMMEntry.getVocabSize()][HMMEntry.getStates()]; 

        this.i = i; 

    } 

     

    // update transition probabilities 

    public void updateTP(double[][] tpN, double[][] tpD) { 

        for(int i = 0; i < HMMEntry.getStates(); i++) { 

            for(int j = 0; j < HMMEntry.getStates(); j++) { 

                transitionProb[i][j] = Math.log(tpN[i][j]) - 

Math.log(tpD[i][j]); 

            } 

        } 

    } 

     

    // update emission probabilities 

    public void updateEP(double[][] epN, double[][] epD) { 

        for(int i = 0; i < HMMEntry.getVocabSize(); i++) { 

            for(int j = 0; j < HMMEntry.getStates(); j++) { 

                emissionProb[i][j] = Math.log(epN[i][j]) - 

Math.log(epD[i][j]); 

            } 

        } 

    } 

     

    // start training for every observation sequence in every iteration 

    public void startTraining(HMMEntry hmmObject) throws IOException { 

         

        InitialSetting randomSet = new InitialSetting(); 

        

hmmObject.setEmissionProb(randomSet.computeEmissionProb(hmmObject.ssSeq, 

hmmObject.nssSeq)); 

        hmmObject.setIntialProb(randomSet.computeInitialProb()); 

        hmmObject.setTransitionProb(randomSet.computeTransitionProb()); 

     

        System.out.println("\nInitial Prob"); 

        HMMEntry.printArray(hmmObject.getIntialProb(), 

HMMEntry.getStates()); 

        System.out.println("\nEmission Prob"); 
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        HMMEntry.printMatrix(hmmObject.getEmissionProb(), 

HMMEntry.getVocabSize(), HMMEntry.getStates()); 

        System.out.println("\nTransition Prob"); 

        HMMEntry.printMatrix(hmmObject.getTransitionProb(), 

HMMEntry.getStates(), HMMEntry.getStates()); 

         

        int iteration; 

         

        for(iteration = 0; iteration < HMMEntry.MAX_ITERATIONS; 

iteration++) { 

             

            hmmObject.storeCurrentValues(); 

         

            for(int steps = 0; steps < hmmObject.ssSeq.length + 

hmmObject.nssSeq.length; steps++) { 

         

                int[] codedSeq; 

                if(steps < hmmObject.ssSeq.length) { 

                    codedSeq = 

HMMEntry.computeCode(hmmObject.ssSeq[steps]); 

                } 

                else { 

                    codedSeq = HMMEntry.computeCode(hmmObject.nssSeq[steps-

hmmObject.ssSeq.length]); 

                } 

             

                ForwardProcedure f = new ForwardProcedure(); 

                f.alphaRecurrence(hmmObject, codedSeq); 

         

                BackwardProcedure b = new BackwardProcedure(); 

                b.betaRecurrence(hmmObject, codedSeq); 

         

                CalcTempVar c = new CalcTempVar(hmmObject, f, b, codedSeq); 

                c.computeGamma(); 

                c.computeEta(); 

                 

                UpdateParameters u = new UpdateParameters(hmmObject, c, 

codedSeq, steps); 

                u.updateInitialProb(); 

                u.updateTransitionProb(hmmObject); 

                u.updateEmissionProb(hmmObject); 

                 

            } 

             

            updateTP(hmmObject.transitionProbNum, 

hmmObject.transitionProbDen); 

            updateEP(hmmObject.emissionProbNum, hmmObject.emissionProbDen); 

             

            if(hmmObject.checkConvergence(transitionProb, emissionProb, 

iteration)) { 

                break; 

            } 

             

            hmmObject.setEmissionProb(emissionProb); 

            hmmObject.setTransitionProb(transitionProb); 

             

        } 

         

        System.out.println("\nInitial Prob"); 

        HMMEntry.printArray(hmmObject.getIntialProb(), 

HMMEntry.getStates()); 

        System.out.println("\nEmission Prob"); 
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        HMMEntry.printMatrix(hmmObject.getEmissionProb(), 

HMMEntry.getVocabSize(), HMMEntry.getStates()); 

        System.out.println("\nTransition Prob"); 

        HMMEntry.printMatrix(hmmObject.getTransitionProb(), 

HMMEntry.getStates(), HMMEntry.getStates()); 

     

        System.out.println("Converging after iterations: " + iteration); 

         

        BufferedWriter brw = new BufferedWriter(new FileWriter(outFile)); 

        BufferedReader brr = new BufferedReader(new FileReader(testFile)); 

        String line = brr.readLine(); 

        while(line != null) { 

            ViterbiDecoding v = new ViterbiDecoding(hmmObject, line); 

            double score = v.decode(hmmObject); 

            brw.write(line + "\t" + score + "\n"); 

            line = brr.readLine(); 

        } 

        brw.close(); 

        brr.close(); 

    } 

} 

 

ForwardProcedure.java 

/* 

 *  

 * @author: Santrupti Nerli, SJSU, March 2015 

 *  

 * */ 

 

package forwardAlgo; 

 

import hmm_main.HMMEntry; 

 

public class ForwardProcedure { 

     

    // variable that holds forward values 

    private static double[][] alpha; 

     

    // HMM parameters 

    double[][] emissionProb; 

    double[][] transitionProb; 

    double[] initialProb; 

    int[] seq; 

     

    // constructor 

    public ForwardProcedure() { 

        alpha = new double[HMMEntry.getStates()][HMMEntry.T]; 

    } 

     

    // getter that returns forward variable 

    public double[][] getAlpha() { 

        return alpha; 

    } 

     

    // compute forward values using dynamic programming technique 

    public void computeAlpha() { 

         

        for(int i = 0; i < HMMEntry.getStates()/2; i++) { 

            alpha[i][0] = initialProb[i] + emissionProb[seq[0]][i]; 

            alpha[i + HMMEntry.T][0] = initialProb[i + HMMEntry.T] + 

emissionProb[seq[0]][i + HMMEntry.T]; 

        } 
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        for(int t = 0; (t+1) < HMMEntry.T; t++) { 

            for(int j = 0; j < HMMEntry.getStates()/2; j++) { 

                double evaluate1 = 0.0, evaluate2 = 0.0; 

                for(int i = 0; i < HMMEntry.getStates(); i++) { 

                    evaluate1 = evaluate1 + Math.pow(Math.E, (alpha[i][t] + 

transitionProb[i][j])); 

                    evaluate2 = evaluate2 + Math.pow(Math.E, (alpha[i][t] + 

transitionProb[i][j + HMMEntry.T])); 

                } 

                alpha[j][t+1] = emissionProb[seq[t+1]][j] + 

Math.log(evaluate1); 

                alpha[j + HMMEntry.T][t+1] = emissionProb[seq[t+1]][j + 

HMMEntry.T] + Math.log(evaluate2); 

            } 

        } 

    } 

     

    // API that calls interface to compute forward variable 

    public void alphaRecurrence(HMMEntry hmmObject, int[] codedSeq) { 

         

        emissionProb = hmmObject.getEmissionProb(); 

        initialProb = hmmObject.getIntialProb(); 

        transitionProb = hmmObject.getTransitionProb(); 

        seq = codedSeq; 

         

        computeAlpha(); 

    } 

} 

 

BackwardProcedure.java 

/* 

 *  

 * @author: Santrupti Nerli, SJSU, March 2015 

 *  

 * */ 

 

package backwardAlgo; 

 

import hmm_main.HMMEntry; 

 

public class BackwardProcedure { 

 

    // beta stores the backward variable 

    private static double[][] beta; 

     

    // HMM parameters 

    double[][] emissionProb; 

    double[][] transitionProb; 

    double[] initialProb; 

    int[] seq; 

     

    // constructor 

    public BackwardProcedure() { 

        beta = new double[HMMEntry.getStates()][HMMEntry.T]; 

    } 

     

    // getter to get backward variable 

    public double[][] getBeta() { 

        return beta; 

    } 
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    // computes backward variable using dynamic programming technique 

    public void computeBeta() { 

         

        for(int i = 0; i < HMMEntry.getStates(); i++) { 

            beta[i][HMMEntry.T-1] = 0; 

        } 

 

        for(int t = HMMEntry.T-2; t >= 0; t--) { 

            for(int i = 0; i < HMMEntry.getStates()/2; i++) { 

                double sum1 = 0, sum2 = 0; 

                for(int j = 0; j < HMMEntry.getStates(); j++) { 

                    sum1 = sum1 + Math.pow(Math.E, (beta[j][t+1] + 

transitionProb[i][j] + emissionProb[seq[t+1]][j])); 

                    sum2 = sum2 + Math.pow(Math.E, (beta[j][t+1] + 

transitionProb[i + HMMEntry.T][j] + emissionProb[seq[t+1]][j])); 

                } 

                beta[i][t] = Math.log(sum1); 

                beta[i + HMMEntry.T][t] = Math.log(sum2); 

            } 

        } 

    } 

     

    // API that calls interface to compute backward variable 

    public void betaRecurrence(HMMEntry hmmObject, int[] codedSeq) { 

         

        emissionProb = hmmObject.getEmissionProb(); 

        initialProb = hmmObject.getIntialProb(); 

        transitionProb = hmmObject.getTransitionProb(); 

        seq = codedSeq; 

         

        computeBeta(); 

    } 

} 

 

CalcTempVar.java 

/* 

 *  

 * @author: Santrupti Nerli, SJSU, March 2015 

 *  

 * */ 

 

package update; 

 

import backwardAlgo.BackwardProcedure; 

import forwardAlgo.ForwardProcedure; 

import hmm_main.HMMEntry; 

 

public class CalcTempVar { 

 

    // store temporary variables gamma and eta 

    double[][] gamma; 

    double[][][] eta; 

     

    // we need forward and backward variables to compute gamma and eta 

    double[][] alpha; 

    double[][] beta; 

     

    // represents sequence of observation 

    int[] seq; 

     

    // HMM parameters 

    double[][] emissionProb; 



  

92 
 

    double[][] transitionProb; 

    double[] initialProb; 

     

    // constructor 

    public CalcTempVar(HMMEntry hmmObject, ForwardProcedure f, 

BackwardProcedure b, int[] codedSeq) { 

        alpha = f.getAlpha(); 

        beta = b.getBeta(); 

         

        gamma = new double[HMMEntry.getStates()][HMMEntry.T]; 

        eta = new 

double[HMMEntry.getStates()][HMMEntry.getStates()][HMMEntry.T]; 

         

        emissionProb = hmmObject.getEmissionProb(); 

        initialProb = hmmObject.getIntialProb(); 

        transitionProb = hmmObject.getTransitionProb(); 

         

        seq = codedSeq; 

    } 

     

    // getters 

    public double[][] getGamma() { 

        return gamma; 

    } 

     

    public double[][][] getEta() { 

        return eta; 

    } 

     

    // denominators while computing gamma and eta are same 

    public double denominator(int t) { 

         

        double value = 0; 

        for(int j = 0; j < HMMEntry.getStates(); j++) { 

            value = value + Math.pow(Math.E, (alpha[j][t] + beta[j][t])); 

        } 

        return Math.log(value); 

    } 

     

    // compute gamma 

    public void computeGamma() { 

        for(int t = 0; t < HMMEntry.T; t++) { 

            double den = denominator(t); 

            for(int i = 0; i < HMMEntry.getStates()/2; i++) { 

                gamma[i][t] = alpha[i][t] + beta[i][t] - den; 

                gamma[i + HMMEntry.T][t] = alpha[i + HMMEntry.T][t] + 

beta[i + HMMEntry.T][t] - den; 

            } 

        } 

    } 

     

    // compute eta 

    public void computeEta() { 

         

        for(int t = 0; t < HMMEntry.T-1; t++) { 

            double den = denominator(t); 

            for(int i = 0; i < HMMEntry.getStates()/2; i++) { 

                for(int j = 0; j < HMMEntry.getStates()/2; j++) { 

                    eta[i][j][t] = alpha[i][t] + transitionProb[i][j] + 

beta[j][t+1] + emissionProb[seq[t+1]][j] - den; 
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                    eta[i][j + HMMEntry.T][t] = alpha[i][t] + 

transitionProb[i][j + HMMEntry.T] + beta[j + HMMEntry.T][t+1] + 

emissionProb[seq[t+1]][j + HMMEntry.T] - den; 

                    eta[i + HMMEntry.T][j][t] = alpha[i + HMMEntry.T][t] + 

transitionProb[i + HMMEntry.T][j] + beta[j][t+1] + 

emissionProb[seq[t+1]][j] - den; 

                    eta[i + HMMEntry.T][j + HMMEntry.T][t] = alpha[i + 

HMMEntry.T][t] + transitionProb[i + HMMEntry.T][j + HMMEntry.T] + beta[j + 

HMMEntry.T][t+1] + emissionProb[seq[t+1]][j + HMMEntry.T] - den; 

                } 

            } 

        } 

         

        System.out.println("Eta"); 

        for(int i = 0; i < HMMEntry.getStates(); i++) { 

            System.out.println("State: " + i); 

            HMMEntry.printMatrix(eta[i], HMMEntry.getStates(), HMMEntry.T); 

        } 

         

        System.exit(0); 

    } 

} 

 

UpdateParameters.java 

/* 

 *  

 * @author: Santrupti Nerli, SJSU, March 2015 

 *  

 * */ 

 

package update; 

 

import hmm_main.HMMEntry; 

 

public class UpdateParameters { 

 

    // observation sequence 

    int[] seq; 

     

    // temporary variables 

    double[][] gamma; 

    double[][][] eta; 

     

    // number of observations 

    int K; 

     

    // HMM parameters 

    double[] initialProb; 

     

    // constructor 

    public UpdateParameters(HMMEntry hmmObject, CalcTempVar c, int[] 

codedSeq, int steps) { 

         

        final int DIMENSION = HMMEntry.getStates(); 

         

        initialProb = new double[DIMENSION]; 

         

        gamma = c.getGamma(); 

        eta = c.getEta(); 

         

        seq = codedSeq; 
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        K = steps; 

    } 

     

    // update initial probability after training 

    public void updateInitialProb() { 

 

        for(int i = 0; i < HMMEntry.getStates(); i++) { 

            initialProb[i] = gamma[i][1]; 

        } 

    } 

     

    // update transition probability after training 

    public void updateTransitionProb(HMMEntry hmmObject) { 

        for(int i = 0; i < HMMEntry.getStates()/2; i++) { 

            for(int j = 0; j < HMMEntry.getStates()/2; j++) { 

                double etaSum1 = 0, etaSum2 = 0, etaSum3 = 0, etaSum4 = 0;; 

                for(int t = 0; t < HMMEntry.T-1; t++) { 

                    etaSum1 += Math.pow(Math.E, eta[i][j][t]); 

                    etaSum2 += Math.pow(Math.E, eta[i][j + HMMEntry.T][t]); 

                    etaSum3 += Math.pow(Math.E, eta[i + HMMEntry.T][j][t]); 

                    etaSum4 += Math.pow(Math.E, eta[i + HMMEntry.T][j + 

HMMEntry.T][t]); 

                } 

                hmmObject.transitionProbNum[i][j] += etaSum1; 

                hmmObject.transitionProbNum[i][j + HMMEntry.T] += etaSum2; 

                hmmObject.transitionProbNum[i + HMMEntry.T][j] += etaSum3; 

                hmmObject.transitionProbNum[i + HMMEntry.T][j + HMMEntry.T] 

+= etaSum4; 

                 

                double sum1 = sumGamma(i); 

                double sum2 = sumGamma(i + HMMEntry.T); 

                hmmObject.transitionProbDen[i][j] += sum1; 

                hmmObject.transitionProbDen[i][j+ HMMEntry.T] += sum1; 

                hmmObject.transitionProbDen[i+ HMMEntry.T][j] += sum2; 

                hmmObject.transitionProbDen[i+ HMMEntry.T][j+ HMMEntry.T] 

+= sum2; 

            } 

        } 

    } 

     

    // computes summation of temporary variable gamma required to update 

both transition and emission probabilities 

    public double sumGamma(int i) { 

        double sum = 0; 

        for(int t = 0; t < HMMEntry.T-1; t++) { 

            sum = sum + Math.pow(Math.E, gamma[i][t]); 

        } 

        return sum; 

    } 

     

    // update emission probability after training 

    public void updateEmissionProb(HMMEntry hmmObject) { 

         

        for(int k = 0; k < HMMEntry.getVocabSize(); k++) { 

            for(int i = 0; i < HMMEntry.getStates()/2; i++) { 

                double numerator1 = 0, numerator2 = 0; 

                for(int t = 0; t < HMMEntry.T-1; t++) { 

                    if(seq[t] == k) { 

                        numerator1 += Math.pow(Math.E, gamma[i][t]); 

                        numerator2 += Math.pow(Math.E, gamma[i + 

HMMEntry.T][t]); 

                    } 
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                } 

                hmmObject.emissionProbNum[k][i] += numerator1; 

                hmmObject.emissionProbNum[k][i + HMMEntry.T] += numerator2; 

                 

                hmmObject.emissionProbDen[k][i] += sumGamma(i); 

                hmmObject.emissionProbDen[k][i + HMMEntry.T] += sumGamma(i 

+ HMMEntry.T); 

            } 

        } 

    } 

} 

 

ViterbiDecoding.java 

/* 

 *  

 * @author: Santrupti Nerli, SJSU, March 2015 

 *  

 * */ 

 

package viterbi; 

 

import hmm_main.HMMEntry; 

 

public class ViterbiDecoding { 

     

    // HMM parameters  

    private double[][] emissionProb; 

    private double[][] transitionProb; 

    private double[] initialProb; 

     

    // unknown sequence for which we will find the most likely path 

    private String unknownSeq; 

     

    // states in HMM 

    int states; 

    int[] state; 

     

    // constructor 

    public ViterbiDecoding(HMMEntry hmmObject, String scoreSeq) { 

        emissionProb = hmmObject.getEmissionProb(); 

        transitionProb = hmmObject.getTransitionProb(); 

        initialProb = hmmObject.getIntialProb(); 

         

        states = HMMEntry.getStates(); 

        unknownSeq = scoreSeq; 

         

        state = new int[states]; 

        for(int i = 0; i < states; i++) { 

            state[i] = i; 

        } 

    } 

     

    // decode the unknown sequence using Viterbi algorithm 

    public double decode(HMMEntry hmmObject) { 

         

        double[][] T1 = new double[states][unknownSeq.length()]; 

        int[][] T2 = new int[states][unknownSeq.length()]; 

        int[] z = new int[unknownSeq.length()]; 

        int[] x = new int[unknownSeq.length()]; 

         

        int[] codedSeq = HMMEntry.computeCode(unknownSeq); 
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        for(int i = 0; i < states; i++) { 

            T1[i][0] = initialProb[i] + emissionProb[codedSeq[0]][i]; 

            T2[i][0] = 0; 

        } 

         

        double intermediate; 

        for(int i = 1; i < unknownSeq.length(); i++) { 

             

            intermediate = 0.0; 

            for(int j = 0; j < states; j++) 

            { 

                T1[j][i] = (T1[0][i-1] + transitionProb[0][j] + 

emissionProb[codedSeq[i]][j]); 

                for(int k = 1; k < states; k++) 

                { 

                    intermediate = (T1[k][i-1] + transitionProb[k][j] + 

emissionProb[codedSeq[i]][j]); 

                    if(T1[j][i] < intermediate) 

                    { 

                        T1[j][i] = intermediate; 

                        T2[j][i] = k; 

                    } 

                } 

            } 

        } 

         

        double max = -999.99; 

        for(int k = 0; k < states; k++) 

        { 

            if(max < T1[k][unknownSeq.length()-1]) 

            { 

                max = T1[k][unknownSeq.length()-1]; 

                z[unknownSeq.length()-1] = k; 

            } 

        } 

         

        x[unknownSeq.length()-1] = state[z[unknownSeq.length()-1]]; 

 

        for(int i = unknownSeq.length()-1; i > 0; i--) 

        { 

            z[i-1] = T2[z[i]][i]; 

            x[i-1] = state[z[i-1]]; 

        } 

         

        System.out.println("\nDecoded Sequence:"); 

        for(int i = 0; i < x.length; i++) { 

            System.out.print((x[i]+1) + " "); 

        } 

        System.out.println(); 

         

        ScoreSequences s = new ScoreSequences(hmmObject, x, 

unknownSeq.length(), codedSeq); 

        double score = s.score(); 

        return score; 

    } 

} 

 

ScoreSequences.java 

/* 

 *  

 * @author: Santrupti Nerli, SJSU, March 2015 

 *  
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 * */ 

 

package viterbi; 

 

import hmm_main.HMMEntry; 

 

public class ScoreSequences { 

     

    // HMM parameters  

    private double[][] emissionProb; 

    private double[][] transitionProb; 

    private double[] initialProb; 

     

    // sequence to score 

    private int[] Seq; 

    private int[] codedSeq; 

    private int seqLen; 

     

    // constructor 

    public ScoreSequences(HMMEntry hmmObject, int[] scoreSeq, int len, 

int[] coded) { 

        emissionProb = hmmObject.getEmissionProb(); 

        transitionProb = hmmObject.getTransitionProb(); 

        initialProb = hmmObject.getIntialProb(); 

         

        Seq = scoreSeq; 

        codedSeq = coded; 

        seqLen = len; 

    } 

     

    // score any sequence using initial, transition and emission 

probabilities 

    public double score() { 

        double score = initialProb[Seq[0]]; 

        for(int i = 1; i < seqLen; i++) { 

            score += emissionProb[codedSeq[i]][i] + transitionProb[i-1][i]; 

        } 

        return score; 

    } 

 

} 
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