
San Jose State University
SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

Spring 2012

Link IDE : A Real Time Collaborative
Development Environment
Kevin Grant
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

Part of the Computer Sciences Commons

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU ScholarWorks. It has been
accepted for inclusion in Master's Projects by an authorized administrator of SJSU ScholarWorks. For more information, please contact
scholarworks@sjsu.edu.

Recommended Citation
Grant, Kevin, "Link IDE : A Real Time Collaborative Development Environment" (2012). Master's Projects. 227.
DOI: https://doi.org/10.31979/etd.rqpj-pj3k
https://scholarworks.sjsu.edu/etd_projects/227

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by SJSU ScholarWorks

https://core.ac.uk/display/70409851?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.sjsu.edu?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F227&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F227&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F227&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F227&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F227&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/227?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F227&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

1

Link IDE : A Real Time Collaborative Development Environment

A Project Report

Presented to

The Faculty of the Department of Computer Science

San José State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science in Computer Science

by

Kevin Grant

May 2012

2

© 2012

Kevin Grant

ALL RIGHTS RESERVED

3

SAN JOSE STATE UNIVERSITY

The Undersigned Project Committee Approves the Project Titled

Link : A Real Time Collaborative Development Environment

by
Kevin Grant

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

SAN JOSÉ STATE UNIVERSITY

May 2012

--
Dr. Soon Tee Teoh, Department of Computer Science

Date

--
Dr. Chris Pollett, Department of Computer Science

Date

--
Prof. Frank Butt, Department of Computer Science

Date

APPROVED FOR THE UNIVERSITY

--
Associate Dean Office of Graduate Studies and Research

Date

4

ABSTRACT

Link: A Real Time Collaborative Development Environment

by Kevin Grant

While working on large scale development projects all software engineers find

themselves, at some point, working with a source control system in order to add or re-

vert changes to code. With software projects involving a multitude of programmers this

is a crucial part of successful development. When working on a smaller project howev-

er, with a tight knit group, setting up and dealing with such a system can become more

work than it is worth. To solve this problem a real time collaborative integrated devel-

opment environment could be used. The IDE’s focus would be on providing a collabora-

tive setting for programming teams or pair programming by taking advantage of real

time text editing, the ability to build and run code, chat, and various other team and task

oriented features. Instead of running into code conflicts at check-in time, users would be

able to see conflicts appearing in real-time. This would allow small programming teams

to bypass source control, avoid wasting time, and spend more time collaborating. Real

time text editing has recently become popular with its appearance in Google Docs.

There are a number of open source applications that support real time text editing. Real

time editing by multiple users allows not only for excellent collaborative programming

but can also be very effective in teaching sessions of programming. Other features such

as chatting and task lists would also help to create a fully immersive and organized col-

laborative environment where users do not need outside tools in order to collaborate.

5

ACKNOWLEDGEMENTS

I would just like to say thank you to all the people who have helped me with my project.

Thank you very much Dr. Soon Tee Teoh. You have been of tremendous help and

guidance the past months. I would like to thank Dr. Chris Pollett and Frank Butt for

agreeing to lend their time and be a part of my committee. I would also like to thank my

friends and family for the encouragement. Thanks to all the random people on the inter-

net who have offered wisdom. I would like to thank the three users who helped me test

run this program. God knows they spent a lot of time dealing with the bugs that so in-

evitably lurk in a program such as this.

6

Table of Contents

1. Introduction 8

1.1. Introduction 8

1.2. Justification 8

2. Related Work 11

2.1. Browser Based 11

2.1.1. eXo Cloud IDE 11

2.1.2. Cloud9 IDE 12

2.1.3. Comparison to Link IDE 12

2.2. Eclipse Communication Framework Project 13

3. Research Topics 14

3.1. Real Time Collaborative Editing 14

3.1.1. Operational Transform 14

3.1.2. Differential Synchronization 19

3.1.3. Cursor Preservation 20

3.1.3.1. Absolute Referencing 20

3.1.3.2. Context Matching 21

4. Design and Implementation 22

4.1. GUI Decisions 22

4.1.1. Framework choice 24

4.1.2. Docking Panels 24

4.1.3. Code Editor 26

4.2. Persistence 27

4.2.1. SQL Database 27

4.2.2. FTP Server 29

4.2.3. Storing local data 29

7

4.3. Compilation / Building Code 29

4.4. Collaborative implementations 31

4.4.1. Project/User Authentication 31

4.4.2. Task List 32

4.4.3. Chatting 34

4.4.4. Real-Time Collaborative Editing 36

4.4.4.1. Difference and Patching Algorithm 37

4.4.4.2. Differential Synchronization 38

4.4.4.3. Cursor Preservation 40

5. Usability Testing 41

5.1. Test one – Project Creation, Resume project, Build Project 41

5.2. Test two – Synchronous editing 43

5.3. Test three – Communication, Task Lists, Overview 44

5.4. Final Test 45

6. Future Implementations 46

6.1. Synchronous Locks 46

6.2. Concurrent Performance 46

6.3. Multiple Visible Cursors 47

6.4. Fully Web Hosted Servers 47

6.5. Fully Designed GUI – Custom Windows / Controls 47

7. Conclusion 48

8. References 49

8 . Figures and Code Example Page Reference 51

8

1. Introduction

1.1 Introduction

 Distributed computing involves multiple computer systems communicating with

each other through a network to achieve a common goal. As distributed computing, also

known as cloud computing, becomes more popular more applications are moving to-

wards accessible and flexible network based designs. As applications begin to take ad-

vantage of these designs, systems are beginning to cater to the user, offering on de-

mand access to data as well as instant communication with other users. One of the ad-

vantages of these types of systems is the ease at which collaboration can occur be-

tween users. Developing your application with a cloud based design can eliminate fac-

tors limiting collaboration such as distance or time zone [2]. Applications, such as

Google Docs, have introduced real time collaborative editing to users and have become

widely successful. These new methods collaborative lead to effective teamwork and an

improved product. Given these trends it’s likely that more developers will not only begin

coding more cloud applications but that these applications themselves will be coded in

the cloud as well [1]. The focus of my project is on the creation and analysis of an IDE

which takes full advantage of this ideology and the collaborative benefits it provides.

The program’s development title is Link IDE.

1.2 Justification

 Although for smaller groups of programmers it may not be ideal, currently, the

best way to collaborate on a software project is with the use of a source control system.

There are a few ways to setup a source control system and a few options for that.

Common choices are SVN, CVS, and a now popular system named Git. CVS and SVN

9

require setting up a central location for version control info and everyone must connect

and write there. Git offers an alternative by having a simple .git folder in your project di-

rectory which each user writes to and then can later merge with another users'. The key

thing to understand here is that in order for a user to have source control in their project

they must understand source control. They have to spend time researching which pro-

gram is most suitable for them, how to set it up, and how to use it. Of course this is trivi-

al work in a large software development team where the main project is in development

for many months. But consider a small group of people, maybe even a pair of program-

mers. They have been assigned a programming assignment. They each have their own

laptop and they want to start coding. If they wish to work effectively as a group their only

option, other than merging manually, is a source control system. If it is their first time

using a source control system they have to take the time to set it up. This may take a

very long time for someone to figure out the first time. And imagine the project is not

very large and with not that much coding necessary. Setting up the source control might

end up taking almost as much or even more time than the project. But even with the

system already in place, time can be lost using these types of systems. Often times

conflicts in code can occur. Imagine again the pair of programmers. They are working

primarily on one file in the project. They wish to add random implementations here and

there as they are working side by side. They may overlap certain sections of code and

form conflicts. These conflicts may or may not resolve at the time of checking in. This

could lead to potentially frustrating problems and more time spent on source control re-

lated issues. The thing once again to understand is that for these two programmers a

source control system is not ideal but it is the only option. They spend too much time

setting it up, taking occasional breaks to check code in, and possibly spending time re-

10

solving conflicts. But what other option do they really have? This is where my project

would be most useful. In small scale projects setting up a source control system can

become more work than it’s worth. The constant reminder that you have to check in

code to avoid conflicts and to distribute code to teammates can completely disrupt the

programming flow. In my program, the pair of programmers would not need to spend

any time setting up a system. They would be able to bounce ideas off each other in real

time by writing code and seeing each other's edits. Collaboration on a project like this

should be a simple process that should only increase productivity and not waste time.

There are no conflicts in this system as conflicts arising can be seen in real time by the

users.

 The use of a real-time collaborative IDE where users can write and build code

simultaneously would greatly enhance programming teaching/tutoring sessions. If you

have ever tutored programming, especially remotely, you may have already thought

about this sort of idea. The tutor and student would connect to each other and start a

project. The tutor can showcase some ideas and programming without having to be at

or type on the computer with the student. When the student makes a mistake the tutor

can quickly fix it while the student continues. This type of instant feedback can greatly

increase the effectiveness of a tutoring session.

 Aside from how real-time editing can be a valuable substitute for source control

and a valuable addition for tutoring, Link IDE's other collaborative features also make it

a good development choice. However, one cannot simply add synchronous editing to an

IDE and think of it as a collaborative environment. Multiple users editing the same doc-

ument sounds extremely chaotic and when working with delicate structures like pro-

gramming projects it can get very messy. To organize the collaboration there are a

11

number of major features including a task list, personalized user names, network sto-

rage of project, and chat features. Web storage of code is especially useful because it

gives developers access to code and offers a less expensive build infrastructure and

opens the potential for an expandable development [1]. The combination of all these fea-

tures, which will be explained in detail later, truly forms a collaborative environment

which should be a common choice of development for programming projects today.

2. Related Work

As a part of my project it is important to examine the already existing implementa-

tions of a collaborative integrated development environment (IDE). I decided to show-

case two browser based implementations and then a plug-in that has been developed

for the very popular Eclipse IDE.

2.1. Browser Based Collaborative IDEs

2.1.1. eXo Cloud IDE

eXo Cloud IDE is a browser based development environment that allows for

the collaborative development of applications that can be deployed directly to a

Heroku PaaS environment [11]. Heroku is a very powerful web based platform for

Ruby, JavaScript including node.js, and they have recently added Java web app

support. They boast that deploying directly within a PaaS environment allows for

quick migration from the development stage to deployment [11]. It also contains a

real time collaborative editor for use with up to five people.

12

2.1.2. Cloud9 IDE

Cloud9 IDE is a web based IDE for Javascript and Node.js applications along with

HTML, CSS, PHP, Java, Ruby and 23 other languages [12]. Cloud9, like eXo Cloud, is a

browser based implementation of a collaborative IDE. Cloud9 IDE is primarily for Node.js

and Javascript developers. Cloud9 has many of the features available in popular IDEs

such as syntax highlighting, the ability to run and debug code, and keyboard shortcuts

[12]. It has formed a fairly large user base by now and is pretty successful.

2.1.3. Comparison to Link IDE

Obviously it is hard to compare my own project which has been worked on

by only myself in a short span to implementations that have been in development

for years with many developers on staff. However just as some of their features

are advantageous to my approach, I do feel that some of the differences between

my implementation and theirs can highlight the benefits in my choices. Although

browser based solutions are inherently more accessible, I feel many users might

find it awkward to work in an only browser setting. There are also various limita-

tions to working in a browser. Browsers can be very limited when it comes to

performing computation on a local level and thus rely on servers to process much

information [14, 364]. Mark Silver describes the various usability issues with

browser based applications in “Browser-based Applications: Popular but

Flawed?”. These include ambiguity between browser functions and the applica-

tion functions (Back button), performance issues regarding screen updates, re-

liance on page orientation, and the inherent statelessness of web pages [14].

Cloud9 IDE and eXo Cloud IDE may or may not suffer from these problems. One

13

thing worth noting is that these IDEs focus mainly on web based development.

Development of more performance intensive code such as mobile apps, graphic

related applications, or even artificial intelligence type programs that train and

predict while using intense processing might definitely require a desktop applica-

tion based IDE which takes full advantage of available computing power. Al-

though the browser based model is useful for web based development I do be-

lieve that for many situations a more traditional desktop application might be pre-

ferred as the model for a collaborative IDE.

2.2. Eclipse Communication Framework Project

The Eclipse Communication Framework project (ECF) is a project aimed

at creating distributed applications for Eclipse. One part of this specifically is the

Cola plug-in which allows for synchronous editing between users in Eclipse [13].

The Cola plug-in can be seen as one very important step in creating a

collaborative IDE. Eclipse is already such a developed IDE that millions of people

enjoy using for development. It is an incredible step forward to begin to integrate

these types of features into Eclipse. The feature is at this time only a plug-in that

must be downloaded, installed, and configured to work with Eclipse. Although it is

a very useful plug-in it is only one step in the process of collaboration. I included

features such as a task list and chatting in my program along with the

synchronous editing so that users could organize their work in an efficient way.

Having a task list allows the collaboration to live on even when there are not

multiple users currently signed in. I think the Cola plug-in is a remarkable tool but

14

it does not necessarily qualify the Eclipse IDE as a collaborative environment.

3. Research Topics

3.1 Real Time Collaborative Editing

 A key feature of the my project’s implementation was allowing users to simulta-

neously edit a document and see each other’s edits as they appear. This is known as

real time collaborative editing (RTCE). RTCE has a long history and actually appeared

first in 1968. For over 40 years it was largely overlooked as an important tool because

of performance issues. With the advent of Web 2.0 and web applications such as

Google Docs, RTCE has become a very beloved feature among teams. Google docs is

the most successful real time collaborative editor so far. It has revolutionized the way

students work on group reports, excel sheets, or presentations. This type of collabora-

tive editing has been slow to be adopted by programmers. Recently the code behind

Etherpad, the company who implemented the technology that serves as the basis for

Google Docs’ RTCE, was made open source. This, along with many other advances in

the field, has opened the door for the development of new RTCE applications. As a re-

sult more and more applications dealing with word processing have added this feature

[1]. The two most common and efficient means of implementing RTCE are two methods

known as Operational Transformation and Differential Synchronization.

3.1.1 Operational Transformation

Operational transform is the breaking down of each action inside a text

editor (insert character,delete,tab,enter) into a series of operations which are

15

each transformed to conform to the operation preceding them [4,472]. To illu-

strate this, the following rather simple example can be used, See Figure 1.

Figure 1 – Before Edits

Suppose that two people at Site 1 and Site 2 are working in a collaborative set-

ting with a text editor that currently contains the word “Car”. The user at Site 1 in-

serts the character ‘s’ as the first character at the same time the user at site 2 de-

letes the letter ‘r’. In operational transform this would yield the following two

transformations sent to the server copy.

Figure 2 – After edit with no transformation

16

Suppose the server receives the 1st operation and then the 2nd operation. Insert-

ing the 's' into the 0 position and deleting the character at position 2 will lead to

the string sCr. This is obviously wrong because the second user wished to delete

the letter ‘r’. The idea of operational transform is that each operation be trans-

formed with respect to previous operations so that concurrency can be achieved.

In other words after the server parses the insertion of ‘s’ at position 0 it will in-

crement the position of each operation according to their position.

Figure 3 – After operation transformed

Getting the server to correctly transform the operations is however more compli-

cated than incrementing indices. In order to maintain consistency among the

documents at all the sites collaborating on a single document there are a number

of different models with underlying properties that must be followed.

An Example of the base consistency model is the causality convergence model.

17

Causality Convergence Model

- Causality Property : Makes sure all edits which are causally dependent

produce the same effects as was intended in the collaboration

process[4,475].

- Convergence Property : Ensures all copies of a single collaboration document

are equal (Operations have been applied to all sites) [4,475]

To implement operational transform it is important to know that it requires a sys-

tem of components. The two main parts of an operational transformation system

are the transformation control algorithm and the basic transformation operations.

1. Transformation Control Algorithm

a. Generally determines the order of transformations

2. Transformation Operations

a. Insert,Delete,Enter

There are generally 2 different types of operational transformation control func-

tions.

1. Inclusion Transformation: IT(O1, O2) or T(O1,O2), transforms O1 with re-

spect to the effect of O2. [15]

2. Exclusion Transformation: ET (O1, O2) or T − 1(op1,op2), transforms O1

without respect to the effect of O2. [15]

This means each operation that is received by the server is processed in pairs in

a sorted order according to when they were received. Concurrent operations

must be analyzed and possibly transformed with the inclusion function. To de-

termine if two operations need to be transformed one must decide if they conflict.

According to Du Li and Rui Li. in their paper on operational transformation [4],

18

two concurrent operations are conflicting if they possess one of following charac-

teristics

 (1) It is a deletion operation operating on the same character.

(2) One of the operations is deleting the character and the other is updating it.

(3) Both operations update the same attribute of the same character [4,477].

There are various implementations of the inclusion transformation and it general-

ly varies based on the type of file you wish to collaboratively edit.

OT transform is by far the most popular method in solving the real time collabora-

tive editing problem. The following is a list of software that currently uses opera-

tional transform.

Collaborative plain text editors

• Subethaedit (commercial)

• Ace (free, open-source)

• Gobby (free, open-source)

• MoonEdit(free for non-commercial use)

Web-based applications

• Google Docs & Google Wave.

• EtherPad (Purchased by Google)

3.1.2 Differential Synchronization

Another interesting method of implementing real time collaborative editing is with

differential synchronization. Differential synchronization is a symmetrical algo-

rithm created by Neil Fraser at Google as a part of the Google Mob Write project.

19

Figure 4 – Overview of Differential Synchronization [5]

Neil Fraser gives the visualization in Figure 4 and steps to go along with how exactly

differential synchronization works.

1. Client Text is diff’d (get difference) against the Common Shadow.

2. This returns a list of edits which have been performed on Client Text.

3. Client Text is copied over to Common Shadow. This copy must be identical to the

value of Client Text in step 1, so in a multi-threaded environment a snapshot of

the text should have been taken.

4. The edits are applied to Server Text on a best-effort basis.

20

5. Server Text is updated with the result of the patch. Steps 4 and 5 must be atom-

ic, but they do not have to be blocking; they may be repeated until Server Text

stays still long enough.[5]

Differential Synchronization is a very interesting topic and alternative to OT. The algo-

rithm does not have as much conceptual theory behind it as operational transformation

as it is fairly new method composed of a few already established parts. Neil Fraser, the

protocols designer, gives a wonderful Google Tech Talks lecture in the following video.

http://www.youtube.com/watch?v=S2Hp_1jqpY8

3.3 Cursor Preservation

 As multiple people type text into the same text box, cursor behavior becomes im-

portant to control. This may not be obvious at first but consider you are typing at cursor

position 20 on an editor and someone comes along and inserts five characters starting

at cursor position zero. The position you were previously editing will have moved up po-

sition 25 but your cursor would have stayed at 20 and been left behind. This is neces-

sary to be fixed before a collaborative editor is usable. There are two correct ways to

sufficiently implement cursor preservation.

3.3.1 Absolute Referencing

Absolute Referencing, based on storing character and cursor offsets, is the most

popular technique for cursor preservation [3]. The start and end characters of each us-

ers’ cursors are stored. If an insertion is received that starts at or before one of these

points then the offsets are incremented by the length of the edit. If a deletion is received

that starts before or at one of these points then the offsets are incremented by the

http://www.youtube.com/watch?v=S2Hp_1jqpY8

21

length of the deletion. Any deletions and insertions received after these points have no

effect on the cursor. The following is a simple example whose form was taken from [3]

showcasing absolute referencing.

The cursor is currently at offset 24, just before the word "filthy":

`Door sailiig, and the ^filthy doves

The following edits arrive from a remote user (strike-through represents a deletion, underline
represents an insertion):

`Door sailiig, and& the filthy doves

Three characters were deleted and one was added. If there were no deltas made to the cursor off-
set, the cursor would shift by two characters:

`Door sailiig, & the fi^lthy doves

By subtracting three and adding one to the cursor location, the cursor is moved to the expected
location:

`Door sailiig, & the ^filthy doves” [3]

3.3.2 Context Matching

Re-Positioning a cursor to its previous location after a remote edit by finding its

previous context is known as context matching. In context matching a variable number

of characters before and after the cursor start and end location are remembered. The

location of the start and beginning points are also remembered. When a remote edit is

received the text is patched and a fuzzy match algorithm is executed in order to find the

location in the text that most closely matches the previously stored context. The algo-

rithm by default will take into account both the difference in context and the offset be-

tween the old cursor and possible new locations and use this as a tie-breaker for equal-

ly probable context matches. The following example whose form was taken from [3] can

accurately portray context matching.

22

Consider the the following text where ^ denotes the cursor position

`Door sailiig, and the filthy toves
 Did gyre and ^gimble in the wabe: CONTEXT = S:yre and E:gimble i
All simsy were the porogoves,
 And the moth waths outgrobe.

And the following edit is received.

`Door sailiig, and the filthy toves
All simsy were the porogoves,
 Did yre and& gGimble in the Wabe:
 And the moth waths outgrobe. [3]

Following the edit the algorithm will begin searching the new text for the context at

around position 52. Eventually it will find the position of the new cursor at position 80

with a Levenshtein distance of 4 compared to the old context.

 Context matching performs fairly well although there can be problems when there

are duplicate lines. Google Docs uses context matching as a part of its real time colla-

borative editing.

4 Designs and Implementation

4.1 GUI Decisions

4.1.1. GUI Framework

 One very large consideration I had when starting my project was which GUI

framework to use. This is a very important choice for a number of reasons. First off the

choice of GUI framework basically dictates the coding style. How complex will the code

be? Do new languages need to be learned to adopt the framework? These are two

23

questions to consider when choosing a framework. Secondly, each GUI has different

strengths and weaknesses. Lastly there are always factors to consider such as compa-

tibility with various operating systems. I was able to conglomerate the following possible

choices for the GUI.

Name Windows OSX LINUX Familiar

Language

Silverlight Yes Yes with

Mono-light

Yes with

Mono-light

1/2

WPF Yes Not at this

time

Not at this

time

1/2

GTK+ Yes Yes Yes Yes

Java Swing Yes Yes Yes Yes

WinForms Yes Yes with

Mono

Yes with

Mono

Yes

However this table is obviously inadequate in making a decision. I eliminated WinForms

and Java Swing right away as their age renders them basically obsolete. GTK+ is the

standard linux GUI toolkit. Its compatibility across all popular operating systems makes

it very worthy of attention. However I did find its available tools and controls and com-

plexity rather dated. I was also disappointed to learn that its most recent version GTK+

3.0 was only available with C++,python, and various other functional programming lan-

guage wrappers. At the end of the day I was looking at two main choices for my envi-

ronment.

24

a. Silverlight

Microsoft Silverlight is a framework specified at creating applications that

have heavy internet integration. Like WPF, Silverlight uses the Extensible Appli-

cation Markup Language (XAML) programming language to describe frames and

windows of the GUI. Although Silverlight applications can run outside a browser

the vast majority of Silverlight applications run inside a browser. Silverlight is ob-

viously the choice when building an internet application. Its cross compatibility

with Linux and OSX when you use the ported version Mono-light is also a big

plus.

b. WPF

Windows Presentation Foundation is a graphical subsystem for rendering

user interfaces in Windows. WPF like Silverlight uses the XAML language to dec-

lare user interface objects and dynamically link these objects with items in the

code. Each WPF file has an XAML file and a code behind file. WPF’s most native

language is C#. Using C# and XAML it is simple to create very dynamic, nice

looking, and animated GUIs. The main downfall of WPF, although this may

change, is that it is only compatible with windows at this time.

I ended up choosing WPF as the framework I would work in. This was mainly due to the

fact that I felt more comfortable using it and felt Silverlight, although attractive with its

cross compatibility, its browser driven platform might not be suitable for this project.

4.1.2. Docking Panels

The docking system of an IDE is very important as it gives users the freedom to de-

cide what their user interface looks like and how they interact with it. To handle dock-

25

ing I once again looked to an open source control for docking called AvalonDocking.

It behaves almost identically to Visual Studio 2010 which was in fact coded in WPF.

Panels can be docked to the bottom, right, left, top and outside of the program itself

as a stand-alone window.

Figure 5 – Docking Capabilities

4.1.3. Code Editor

The text editor of an IDE is one of its most important members. A capable pro-

gramming text editor is however quite complicated. It must handle syntax highlighting,

line numbering, and in many cases code completion. In this project the text editor com-

ponent has added complexity due to the aspiration for text editing to be collaborative

26

between many people in real time. This means the text editor is the essential compo-

nent of this project.

Figure 6 – Code editor

The process of creating a line numbered and syntax highlighting text editor can be time

consuming. Instead of trying to mimic current implementation I decided to use a popular

open source “code style” text editor called Avalon Edit. Avalon Edit supports syntax hig-

hlighting in multiple languages such as XML,Java,C++,and C#. It supports line number-

ing and has a built in mechanism for implementing a code completion. I felt this text edi-

tor was perfectly suited to my needs. I did however change much of source code in or-

der to work with the networking aspect of the program

27

4.2 Persistence

To keep track of individual projects, users, tasks, and other user data my project

takes advantage of many popular methods for persistence.

4.2.1. SQL Database

When a user first opens the Link IDE, he or she will see the project data screen.

In this screen users can either create a project or resume an existing project. To

resume an existing project they double click the project name as it appears in the

left. At this time the user will be prompted to enter the project password. After they

have entered the correct password they will reach a user login screen for that

project where they must login as a specific user. Each project that is created is

stored in a web-hosted SQL database in a table named Projects. Here the pass-

word is stored. Each project’s info is loaded from SQL when the program starts up.

The usernames for that project are also stored in a SQL table named Usernames

with a foreign key pointing to the project they belong to. The usernames are loaded

once the user enters the correct password for the project. Using a SQL server for

this information is an efficient method of storing project and user information.

28

Figure 7 Sql Projects Usernames and create new project Page

Users can also create tasks for other users or themselves. These tasks designate work

that needs to be done. In order to have constant access to the list of tasks each task

and its information is stored in a SQL table ProjectTasks with a foreign key pointing to

the project they belong to.

Figure 8 – SQL table and Create Task List

29

4.2.2. FTP Server

The storage of Link project files on the web is handled by a dedicated FTP server.

When a user selects an existing project and enters the correct authentication then the

files are downloaded from the folder on the FTP server with the name of the project. It

will then create a folder for this project in the selected Link project workspace. On the

creation of a new project a folder is created on the FTP server for that project name and

a folder is created in the user’s workspace. The class that handles the FTP operations

runs the FTP requests in a background thread so as to not to disturb the UI.

Figure 9 – FTP relationship for projects

The presence of the FTP server is very useful because it allows users to have their

code backed up without having to worry about it themselves. It also allows them to pick

up where they left off no matter what computer they happen to working with.

4.2.3. Storing local data

Local data such as where the workspace for projects is stored are written to an iso-

lated storage file. Isolated storage files are kept in a computer’s hard drive memory and

persist. This is useful because the user should have to select a new workspace upon

using the program on a new computer.

30

4.3 Compilation and Building of Code

As of right now Link IDE supports only one language, java, and runs via the us-

er’s java compiler. When I started the project I realized that I should probably focus

on one language and Java happened to be the one language I knew most about. A

typical IDE does not usually come packaged with a compiler. It will expect users to

have the required compilers installed on their systems in order for them to develop

inside Link. Not including a compiler reduces complexity and reduces installation

size to keep the program quick and responsive.

With that being said, the compilation and running procedures are actually very

simple. As files are added to the project, the program tries to recognize which files

are for code and add them to a sort of list to be compiled. The user must then mark

the main class by right clicking and selecting “Set As Main” in the context menu that

pops up. Then upon pressing compile the code is compiled and outputted to the

output pane at the bottom. Any errors will be found in the error tab at the bottom in

the same pane as the output (Figure 10).

In order to compile code, the java compiler exe is started with the arguments be-

ing the source code of the current project. Similarly, to run the code the Java exe is

ran with the main file as the argument. Both of these actions are done via

Processes in C# (See Code Example 1).

System.Diagnostics.ProcessStartInfo compileStartInfo =
new System.Diagnostics.ProcessStartInfo("javac");

System.Diagnostics.ProcessStartInfo runStartInfo =
new System.Diagnostics.ProcessStartInfo("Java");

Code Example 1 – Starting Java and Javac via Processes in C#

31

Errors received at run time are simply printed to the output window. Errors at

compile time however are more complex to deal with. The compile error output

stream must be read and parsed to separate errors and store their specific informa-

tion. After the errors have been parsed they are stored in a collection that is shown

the error listview which has details such as Name, Line Number, and Error Descrip-

tion (Figure 10)

Figure 10 – Error list

Double Clicking on an error will automatically open or switch focus to the file contain-

ing the error.

4.4 Collaborative Implementations

4.4.1. Project/User Authentication

Requiring project authentication based on a project password and usernames

offers obvious security benefits but also identifies each user and allows the system

and users to analyze and assign work respectively. Because one is logged in when

one makes changes, the system could potentially track user activity and efficiency.

This might include graphs or bar charts showing the number of edits each user has

done. This would be useful to tell who might not be doing enough work or who is

32

doing too much. Most likely a feature like this would influence people to work more

to stay in balance with the others. More importantly assigning users each a personal

name allows users to communicate more effectively whether it is by chatting or by

delegating tasks.

4.4.2. Task List

The inclusion of a task list is a necessity to organize the otherwise chaos

synchronous editing on the same document. Upon logging into a project users can

start delegating tasks to other users by creating them in the create task menu. A task

has a Name, Owner, Class File where task is to be implemented, Priority, Date due,

and a Description. After a task is created, a signal is sent to the server and each user

is triggered to refresh their task list. Tasks for the current user will then appear in the

left pane along in the tab titled TaskList (Figure 11).

Figure 11 – Create Task

Tasks for the entire project are also visible via a task overview list. This will show each

task’s information. This operates in two different views, a list view and a tile view. The

tasks are color coded depending on their progress. Finished tasks are green, in

progress tasks are yellow, and not started tasks are red.

33

Figure 12 – Two task list view versions

Double clicking a task will open a window where that task can be modified and updated

(Figure 13). Updates are simultaneously received by all users at the point of update.

Left clicking a task will bring up a context menu where the task can be deleted

(completed task and by owner only) and where the update menu can be found again

(Figure 13).

Figure 13 – Update Task

34

4.4.3. Chatting

Chatting through a global chat room and instant messaging is an important tool

of communication between users that increases collaboration. In link there are two

window panes which are vertically bounded at the bottom. One of these is to enter a

chat message and the other is to view all the chat messages of the users (Figure

14). Docked to the left side of the window along with the task list and project explor-

er tree is a Messenger tab. This tab contains all the names for the users currently

connected to the project. Double clicking a username will open an instant message

window where one can hold a private conversation with only that user. Having this

feature allows users to coordinate work on tasks that they may share without typing

it directly into the real-time editor.

Figure 14 – Chat Functionality

35

Chatting with users operates through the same server as the real time collaborative

editing. The server used for this was a Windows Communication Foundation (WCF)

based server. WCF is a service oriented API for .Net that has excellent compatibility

with WPF applications. The chat service implemented a few different methods relat-

ing to chat functionality.

 public void Say(Message msg)
 {
 lock (syncObj)
 {
 foreach (IChatCallback callback in clients.Values)
 {
 callback.Receive(msg);
 }
 }
 }

 public void Whisper(Message msg, Client receiver)
 {
 foreach (Client rec in clients.Keys)
 {
 if (rec.Name == receiver.Name)
 {
 IChatCallback callback = clients[rec];
 callback.ReceiveWhisper(msg, rec);

 }
 }
 }

Code Example 2 – Say and Whisper message server side.

These two methods implemented by the chat server are called by the user when they

want to send a message to the chat box. When a say message is sent to the server it is

then broadcasted to the entire list of users connected. When a whisper message is sent

to the server it is sent only to the recipient. For the server to broadcast these messages

36

it needs to have the callback object call its Receive and ReceiveWhisper messages.

The callback object is each client that has subscribed to the service and is implementing

the service’s interface. For chat functionality this interface requires that the user imple-

ment the following functions (Code Example 3) [17].

 [OperationContract(IsOneWay = true)]

 void RefreshClients(List<Client> clients);

 [OperationContract(IsOneWay = true)]
 void Receive(Message msg);

 [OperationContract(IsOneWay = true)]
 void ReceiveTaskChangeSignal();

 [OperationContract(IsOneWay = true)]
 void ReceiveWhisper(Message msg, Client receiver);

Code Example 3 – Call back methods on server side to be implemented by client

On the client side these implementations are fairly trivial and involve simple adding the

messages received to UI components such as list boxes.

4.4.4. Real Time Collaborative Editing

In order to make the code editor inside the Link IDE a real time collaborative editor I

roughly followed and implemented the Google Mobwrite protocol. Implementing this re-

quired me to have the three main functionalities of the protocol present. These functio-

nalities include a version of differential synchronization, a difference and patching algo-

rithm, and a cursor preservation method.

37

4.4.4.1. Difference and Patching algorithm

Neil Fraser, the designer of the Mobwrite protocol, has open sourced much of his

work and included in that are the difference and patching algorithms for Mobwrite. I

used his C# implementations as a part of the WCF server that controls most of the

real-time collaborative functions in my project. Inside the service there are two me-

thods that needed to form a patch and apply the patch (Code Example 4). First a

diff_match_patch() object is created. This object can then call the function

patch_make(String old, String new) in order to find the difference between the two

strings and create “patch” object. This patch object can then be applied with function

patch_apply(Patch p, String toBePatched). The following example shows how this

would work.

diff_match_patch dmp = new diff_match_patch();
String toBePatched =“This is to be patched”;

dmp.apply(dmp.patch_make(toBePatched,”This was to be patched”),toBePatched);
Console.WriteLine(toBePatched) => ”This was to be patched”

Code Example 4 – Creating a diff and patching it into text

Using this I created a function diffAndPath(String newText, String filename) inside my pro-

gram which return an Array object containing the patched text and the edit length (Code Ex-

ample 5).

 private Object[] diffAndPatch(String newText, String fileName)
 {
 String oldText = textFile[fileName];

Object[] results = dmp.patch_apply(dmp.patch_make(oldText, newText), oldText);
 textFile[fileName] = (String)results[0];
 int editLength = ((String)results[0]).Length - oldText.Length;
 results[1] = editLength;
 return results;
 }
Code Example 5 – Server side function for finding difference and patching it

38

 The Edit Length is especially important for cursor preservation

4.4.4.2. Differential Synchronization

The implementation of differential synchronization in my project varies in a few

ways from how it is implemented in the Google Mobwrite protocol. Neil Fraser initially

designed the algorithm with dropped packets on the internet in mind and thus it does

some extra work to ensure consistency among all parties text. For use in my project I

simplified the protocol.

The differential synchronization process runs on the same WCF server as the

project’s chat functionality and new task signaling. The first step in the implementation

was to put a listener on the code editor of the program. Opening a file will automatical-

ly establish that file in the server. Establishing a file means that the server will now

track its contents and allow multiple users to edit those contents. Upon entering any

text in the editor this method is called (Code Example 6).

//NOT EXACT SAME CODE AS IN PROGRAM, MODIFIED FOR SIMPLICITY FOR PAPER
 private void editorTextInput(object sender, EventArgs e)
 {
 if (this.localClient != null)
 {

SendTextChanges(Editor.Text.ToString(), Editor.Tag.ToString(),
this.localClient, Editor.CaretOffset);

 }
 }

Code Example 6 – Listener placed on text editor to send text changes to server

39

This method will send the text changes, along with the files name and the cursor posi-

tion of the edit to the server. Upon receiving the message the following method will be

executed on the server side (Code Example 7).

public void SendText(String text, String fileName,Client client,int
carretPositionOfEdit)
 {
 Object[] newTextAndLength = diffAndPatch(text, fileName);
 foreach (Client sender in clients.Keys)
 {
 if (sender.Name != client.Name)
 {
 IChatCallback callback = clients[sender];

 callback.ReceiveText((String)newTextAndLength[0], fileName,
(int)newTextAndLength[1], carretPositionOfEdit -
(int)newTextAndLength[1],carretPositionOfEdit,false);

 }
 }
}
Code Example 7 – Server side response to text changing

This method first forms the diff between the new and old text, which is stored on the

server, and then goes on to apply the path (Code Example 4). It then goes on to broad-

cast the changes to each client except for the sender by sending the callback message

ReceieveText. The ReceiveText is then executed on the client side.

public void ReceiveText(String text, String fileName, int editLength,
int carretPositionOfEditStart, int carretPositionOfEditEnd, bool tag)
{
 int newCarretOffset = 0;
 bool changeCarret = false;
 if (openedDocuments.ContainsKey(fileName))
 {
 if ((openedDocuments[fileName]).Equals(editor.SelectedItem) && !tag)
 {
 int differenceBetweenCarretPositions = carretPositionOfEditStart –
 openedDocuments[fileName].Content).CaretOffset;
 if (differenceBetweenCarretPositions < 0)
 {

40

newCarretOffset = openedDocuments[fileName].Content).CaretOffset + edit-
Length);

 changeCarret = true;
 }
 }

//Remove the Text editor listener before adding text and then re-apply the listener
 openedDocuments[fileName].Content.TextChanged -= editorTextInput;
 openedDocuments[fileName].Content.Text = text;
 openedDocuments[fileName].Content.TextChanged += editorTextInput;

//If carret should be changed then change it
if (changeCarret)
 (openedDocuments[fileName].Content).CaretOffset = newCarretOffset;

 }
}

Code Example 8 – Client method for receiving text and adjusting cursor

Receiving the text and changing the editor to represent the new text changes is the

easy part in this method. The complicated handling in this method comes from trying to

preserve the cursor.

4.4.4.3. Cursor Preservation

Cursor Preservation as explained earlier is the necessity to move the cursor algo-

rithmically every time an edit is made to the text in a collaborative editor. Without con-

trolling this behavior in the correct manner, cursor locations might jump and move and

the editor becomes basically unusable. For the purposes of my project I implemented

an Absolute Reference cursor preservation method that is similar to the method used

in the retired Google Wave.

In Code Example # 6 you can see that when a text change signal is sent to the serv-

er the cursor position of the edit is also sent as well. Following that the server deter-

mines the length of the edit and relays this information along with the cursor position

41

to each receiver. It is important to know the position of the edit and the length because

we want to determine if the edits full encompassing length and position intersect with

any other cursors in the program. If they do intersect their cursors are moved up ac-

cording to the length of the edit. This is an efficient and clean method because it

works for deletion just the same as additions.

5. Usability Testing

In a further step to validate my work on the Link IDE I found it imperative to carry

out a usability test with the input of a few real life users. I called on the help of 3 us-

ers to test the program. User 1 is a graduate student of biomedical engineering. Us-

er 2 is a middle aged high school computer science teacher. User 3 is a graduate

student in computer science. I tested each User separately three different times us-

ing three different tests where I would be present each time so that we could work

together in a pair programming model. After these tests I scheduled a test with all

three users and myself present and created a sample project. This final step was

recorded on video and is available as a link referenced in this paper [16].

5.1. Test one – Project Creation, Resume project, Build Project

Test one involved asking the user to first create a project and add a few files.

Next the user would exit the program and then resume the project. Finally the user

would be asked to write some sort of simple program (ie Hello World) and then build

and run it.

42

5.1.1. User 1

User 1 opened the program and initially did not know how to begin. Before

using the “Create New Project” page he tried to do a “File - > New Project” route

but found out it did not exist. After a short while he noticed the new project page

and began filling out the necessary information. He had no trouble creating the

project and creating his username. He found adding new files or existing files

easy. There was no problem resuming the project or writing code but building the

project was at first confusing. User 1 needed help in order to realize you had to

set the main class of your program before running it.

5.1.2. User 2

User 2 had no problems creating a project. Upon resuming he realized he

must have mistyped his password and could not get back in. After making a new

user and exiting the program, he was able to login to the new user. Writing the

program was very swift but he also ran into problems when attempting to run the

program as he had not set the main class yet.

5.1.3. User 3

User 3 had little problems with the entire test. Because he spent time right

clicking the project files he saw the context menu option to set a file as main and

thus figured you must do that. He did however comment that he could see how

that could be overlooked.

43

5.1.4. Analysis of Test 1 results

The main problem users encountered in the first test was that they did not

realize that you had to set the main class that will be run. This is an obvious

shortcoming of my project and it was something that I did not get to in the time I

had. Because the program was still functional without it I left it as is. In a future

version this will be fixed. User 2’s interesting dilemma with his password being

lost made me think I might want to add some sort of password recovery service.

5.2. Test two – Synchronous editing

In this test I asked the users to start a server and have me connect. Then

they would disconnect and connect to a server I would start. Then we would both

open the same document. The user would add a print statement with the variable

“x” and I would initialize the variable and then we would run the program.

5.2.1. User 1

User 1 had problems figuring out his own IP when attempting to host the col-

laborative server and had to be helped. Connecting to my hosted server went

without problem. The editing worked nicely.

5.2.2. User 2

User 2 also had some issues at first when hosting his own server but quickly

understood. Connecting to my server was no problem. The editing was interest-

ing at first because we were both editing in same area but quickly we adapted.

44

5.2.3. User 3

User 3 had no problem hosting or connecting to the server and found the

synchronous editing to be responsive and impressive.

5.2.4. Analysis of test

This test was short and was mostly just to familiarize the user with the basic

synchronous testing. Based on the confusion with IPs, it might be useful to add

an automatic local IP recognizer.

5.3. Test three – Communication, Task Lists, Overview

The third experiment involved having users test the chat functionality as well

as the task list. The test was also kind of an overview test because it incorpo-

rated most of all the functions of the application. Users would be asked to host a

server for myself to connect to, complete the task I assign them and assign me a

task to complete. During this test I would not be in the room with the user so that

the chat functionality had to be utilized.

5.3.1. User 1

User 1 did not have a problem resuming the project from earlier and re-

membered how to host a server this time. User 1 had a bit of an issue seeing

which tasks where assigned to him but after receiving instructions via the in ap-

plications chat window it was not a problem. Assigning a task was not an issue.

45

5.3.2. User 2

User 2 had no problems resuming the project and found the task screen

right away and assigned myself a task. I assigned him a task and he was able to

find it by exploring the applications window panes.

5.3.3. User 3

User 3 did not encounter any issues resuming his project. He was able to

add tasks easily and realized quickly where the tasks showed up as they were

added. User 3 had little problems with test 3.

5.3.4. Analysis of test

Test 3 was more of an introduction for the users to the task list and chat

functionalities than a usability test. It was important to lay the groundwork and es-

tablish the understanding for the final step of usability testing.

5.4. Final Test

For the final step of usability testing I scheduled a time where all 3 users

could be online at the same time so that a project could be worked on collabora-

tively together. The program assignment would be a simplified GUI calculator.

The GUI would be composed up of 3 text fields and 4 buttons. There would be

two text fields for the left and right numbers and one text field for the result. Each

of the 4 buttons would compute the result of the addition, subtraction, multiplica-

tion, and division of the two numbers and display them in the result box.

46

After letting the users deliberate and decide how they were going to pro-

gram I told them to record their work on the project. The video turned out to be

an excellent way to see how efficient work could be done using this tool. This

video is available in the link referenced in [16].

6. Future Work / Implementations

This section is dedicated to ideas I have had during my time working on the project

that I did not have enough time to implement. If I ever make a real push to get Link IDE

ready for a release then some of these will be a necessity.

6.1. Synchronous Locking

It may be useful to include some sort of mechanism for locking a specific docu-

ment in the project. This would allow team members who do not wish to be disturbed

by other users to work alone on a certain class file.

6.2. Concurrent Performance

It would be useful to parallelize all the code in the program in order to receive

performance boosts. Network operations such as downloading project files from FTP

could also be parallelized in order to increase the latency. Having separate servers

for chatting and real time collaborative editing may increase robustness and speed

as well.

47

6.3. Multiple Cursors Visible

One thing my program does not contain is the ability to see where each user’s

cursors are at and what their current selections are. This type of behavior would

work similarly to Google Docs and would be beneficial to see possible conflicts in

positioning edits.

6.4. Fully Web Hosted Servers

As of right now I have set up a single web hosted server in my own home to hold

examples for outside of network. In the future I would want to deploy a web hosted

version of the server so that users would not have to open ports to work with people

on outside networks.

6.5. Fully Designed GUI.

Although the GUI is roughly designed at this point it is not complete. Interesting

and aesthetically pleasing elements still need to be added. Certain UI elements

can still be modified to have custom styles so they do not look like common WPF

user interfaces. However this is something that would be done near the end of de-

velopment when all the functionality is complete and mostly bug free

48

6. Conclusion

The Link IDE has been useful to showcase the possibilities of real time collaboration

inside an IDE. Having organized user and project authentication along with web storage

for projects allows for work to be continued at any location. Real time collaborative edit-

ing can be a new fresh air approach to source control that may suit some parties better.

Combining this type of synchronous editing with a task list that users can easily access

and follow gives project members a good idea of what needs to be done and allows

work to move forward in an organized manner. There simply is no reason that there

shouldn’t be an IDE that allows users to work together in such a close environment. In

the next few years it is inevitable that more and more software moves to real time colla-

borative formats including IDEs [7]. The most popular and actually used forms of exist-

ing implementations of collaborative IDES including Cloud9 and eXo are browser

based. Although browser based applications are naturally more accessible than tradi-

tional desktop applications they are also limited in their processing power. Certainly

graphics oriented, data intensive, or mobile applications could at this time not be devel-

oped in a browser. For this reason I think that traditional desktop collaborative IDE’s like

Link IDE will also become popular in the coming years. It is also necessary that future

collaborative IDEs focus not only on being web accessible but also offering tools for or-

ganizing collaboration outside of the cloud such as task lists. The Cola plug-in for Ec-

lipse to allow for synchronous editing is a mind blowing tool but it would be nice to see a

product similar to Eclipses quality or even a version of Eclipse that supports this and

other collaborative features out of the box. In the future I hope to work more on Link IDE

and possibly with the help of other developers make it ready for a release.

49

7. References

[1] Binstock, A. (2012). Developers love IDEs. InformationWeek, (1322), 36-36.
http://search.proquest.com/docview/922481313?accountid=10361

[2] Collaboration 2.0. (2009). Library Technology Reports, 45(4), 16.

[3] Cursor Preservation, Neil Fraser

http://neil.fraser.name/writing/cursor/

[4] Li, Du, and Rui Li. "An Operational Transformation Algorithm And Performance Evaluation."
Computer Supported Cooperative Work: The Journal Of Collaborative Computing 17.5/6 (2008):
469-508. Academic Search Premier.

[5] Sun, D.; Chengzheng Sun; , "Context-Based Operational Transformation in Distributed Col-
laborative Editing Systems," Parallel and Distributed Systems, IEEE Transactions on , vol.20,
no.10, pp.1454-1470, Oct. 2009
doi: 10.1109/TPDS.2008.240
URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4668339&isnumber=5226185

[6] Neil Fraser, Differential synchronization, Proceedings of the 9th ACM symposium on Docu-
ment engineering, September 16-18, 2009, Munich, Germany

[7] Riemer, Kai, and Frank Frößler. "Introducing Real-Time Collaboration Systems: Develop-
ment Of A Conceptual Scheme And Research Directions." Communications Of AIS 2007.20
(2007): 204-225. Business Source Complete.

[8] Understanding and Applying Operational Transformation, Code Commit

http://www.codecommit.com/blog/java/understanding-and-applying-operational-

transformation

[9] Avalon Edit

http://wiki.sharpdevelop.net/AvalonEdit.ashx

[10] Avalon Dock

http://avalondock.codeplex.com/

[11] eXo Cloud Ide Website

http://search.proquest.com/docview/922481313?accountid=10361
http://ieeexplore.ieee.org.libaccess.sjlibrary.org/stamp/stamp.jsp?tp=&arnumber=4668339&isnumber=5226185
http://dl.acm.org/citation.cfm?id=1600198&CFID=77262851&CFTOKEN=37261805
http://dl.acm.org/citation.cfm?id=1600198&CFID=77262851&CFTOKEN=37261805
http://www.codecommit.com/blog/java/understanding-and-applying-operational-transformation
http://www.codecommit.com/blog/java/understanding-and-applying-operational-transformation
http://www.codecommit.com/blog/java/understanding-and-applying-operational-transformation
http://wiki.sharpdevelop.net/AvalonEdit.ashx
http://avalondock.codeplex.com/

50

 http://www.cloud-ide.com/about.html

[12] Cloud9 IDE Website

 http://c9.io/

[13] Eclipse Communication Framework Project Cola Project

http://live.eclipse.org/node/543

[14] Silver, Mark. "Browser-Based Applications: Popular But Flawed?." Information Systems &

E-Business Management 4.4 (2006): 361-393. Business Source Complete. Web. 15 Apr. 2012.

[15] C. Sun, X. Jia, Y. Zhang, and Y. Yang, “Reversible inclusion and exclusion trans-
formation for string-wise operations in cooperative editing systems,” In Proc. of The 21st
Australasian Computer Science Conference, pp. 441-452, Springer-Verlag, Perth, Feb.
1998.

[16]Usability Test Video
http://www.youtube.com/watch?v=pHKuf6Rt5MQ&feature=youtu.be

[17] A WCF-WPF Chat Application By Islam ElDemery | 15 Apr 2008 | Article

http://www.codeproject.com/Articles/25261/A-WCF-WPF-Chat-Application#xx0xx

http://www.cloud-ide.com/about.html
http://c9.io/
http://live.eclipse.org/node/543
http://www.codeproject.com/script/Membership/View.aspx?mid=3956886
http://www.codeproject.com/script/Articles/Types.aspx?#Article

51

8. Figures and Code Example Page Reference
8.1. Figures / Images

• Figure 1 : – Before Edits 15
Error! Bookmark not defined.

• Figure 2 : – After edit with no transformation 15
Error! Bookmark not defined.

• Figure 3: – After operation transformed 16
Error! Bookmark not defined.

• Figure 4 : – Overview of Differential Synchronization 19
Error! Bookmark not defined.

• Figure 5 : – Docking Capabilities 25
Error! Bookmark not defined.

• Figure 6 : – Code editor 26
Error! Bookmark not defined.

• Figure 7 : -- Sql Projects Usernames and create new project Page 28
Error! Bookmark not defined.

• Figure 8 : – SQL table and Create Task List 28
Error! Bookmark not defined.

• Figure 9 :– FTP relationship for projects 29
Error! Bookmark not defined.

• Figure 10 :– Error list 31
Error! Bookmark not defined.

• Figure 11 :– Create Task 32
Error! Bookmark not defined.

• Figure 12 :– Two task list view versions 33
Error! Bookmark not defined.

• Figure 13 :– Update Task 33
Error! Bookmark not defined.

• Figure 14 :– Chat Functionality 34
Error! Bookmark not defined.

8.2. Code Examples
• Code Example 1 : – Starting Java and Javac via Processes in C# 30
• Code Example 2 : – Say and whisper messages server side 35
• Code Example 3 : – Call back methods on server side to be 35

implemented by client
• Code Example 4 : – Creating a diff and patching it into text 37

52

• Code Example 5 : – Server side functions for finding 37
difference and patching it

• Code Example 6 : – Listener placed on text editor to send 38
text changes to server

• Code Example 7 : – Server side response to text changing 39
• Code Example 8 : – Client method for receiving and adjusting 40

cursor

	San Jose State University
	SJSU ScholarWorks
	Spring 2012

	Link IDE : A Real Time Collaborative Development Environment
	Kevin Grant
	Recommended Citation

	[8] Understanding and Applying Operational Transformation, Code Commit
	[13] Eclipse Communication Framework Project Cola Project
	[17] A WCF-WPF Chat Application By Islam ElDemery | 15 Apr 2008 | Article

