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Linearly-Constrained Entropy 

Maximization Problem with Quadratic 


Cost and Its Applications to 

Transportation Planning Problems1 


S. C. FANG 

North Carolina State University, Operations Research Program and Industrial Engineering Department, 
Raleigh, North Carolina 27695 

H.-8. J. TSAO 

University ofCalifornia, Institute of Transportation Studies, Berkeley, California 94720 

Many transportation problems can be formulated as a linearly-constrained convex program­
ming problem whose objective function consists of entropy functions and other cost-related 
terms. In this paper, we propose an unconstrained convex programming dual approach to 
solving these problems. In particular, we focus on a class of linearly-constrained entropy 
maximization problem with quadratic cost, study its Lagrangian dual, and provide a globally 
convergent algorithm with a quadratic rate of convergence. The theory and algorithm can be 
readily applied to the trip distribution problem with quadratic cost and many other entropy­
based formulations, including the conventional trip distribution problem with linear cost, the 
entropy-based modal split model, and the decomposed problems of the combined problem of 
trip distribution and assignment. The efficiency and the robustness of this approach are 
confirmed by our computational experience. 

Many transportation problems can be formu­
lated as a linearly-constrained convex program­
ming problem whose objective function consists 
of entropy functions and other cost-related 

9 15 16 21 22 23termsP· 6• · · · • • 1 To study these transporta­
tion planning problems, we first consider the fol­
lowing mathematical optimization model: 

Program PJL: 
n 

Minimize fJL(x) = J1- I: x)nx1 
j~1 

1 
+ CTX + -xTDx 

2 

subject to: Ax = b, (1.a) 

X ;;. 0, (l.b) 

1 Accepted by Mark S. Daskin. 

where J1- > 0, x ERn, c ERn, b E Rm, D is an 
n X n diagonal matrix with diagonal elements d ;;.

1 
0, for j = 1, ... , n, A is an m X n (m ~ n) matrix, 
and 0 is the n-dimensional zero vector. 

Note that when J1- = 1, c = 0, D = 0, and A de­
notes a trip matrix, Program PJL represents the 
basic entropy-based trip distribution model; when 
only D = 0, it becomes the trip distribution model 
with linear cost. Furthermore, when c = 0, D = 0, 
and A represents the modal trip matrix and associ­
ated cost-weighing constraints, Program PJL reduces 
to an entropy-based modal split modeU161 Therefore 
Program PJL not only encompasses many existing 
transportation planning models but also extends 
them. 

Tomlin[221 pointed out that the linear cost (e.g., 
travel time) per unit flow from an origin to a desti­
nation in a trip distribution problem is an oversim­
plification. Assuming a convex quadratic cost that 
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reflects the cost increase due to congestion in Pro­
gram PJL should be a better approximation of the 
actual cost. The diagonal matrix D in the quadratic 
term of the objective function accommodates the 
possibility of difference in quadratic approxima­
tions for the n origin/destination pairs. Strongly 
motivated by the trip distribution problem with 
quadratic cost, we shall focus on studying the more 
general setting described by Program PJL' 

Although the optimization model PJL is more real­
istic and desirable, the task of designing an effi­
cient algorithm is challenging. While relatively lit­
tle theory has been known about the general model, 
various algorithms have been proposed for solving 
an important special case of this model, namely 
entropy maximization with linear cost subject to 
linear constraints. Better known algorithms include 
MART (multiplicative algebraic reconstruction 
technique)P4• 181 Bregman's method,[ 171 Jacobi 
method, Gauss-Seidel method,[5 l and Newton's 
method)6

•
81 None of them possesses the property of 

being globally convergent with a quadratic rate of 
convergence. In fact, for some of these methods,[5 l 

even the number of iterations required to reach the 
optimum could be very sensitive to the individual­
ity and size of the problem. This presents a poten­
tial problem for solving real-life large-scale applica­
tions. 

In this paper, we take a dual approach and de­
sign an efficient and robust computational algo­
rithm for solving not only the entropy maximiza­
tion problem with linear constraints but also the 
more general model of Program PJL. With this ap­
proach, the solution methods for several important 
classes of models can be treated in a unified man­
ner. 

The rest of the paper is organized as follows. In 
Section 1, we discuss some basic ideas which moti­
vated model PJL, via a specific example of trip distri­
bution problem with quadratic cost. In Section 2, 
we derive the Lagrangian dual DJL for Program PJL, 
which turns out to be a convex optimization prob­
lem without any explicit constraints. Moreover, un­
der some typical and mild conditions, it is shown 
that no duality gap exists between PJL and Dw We 
also provide a simple conversion formula for obtain­
ing a primal optimal solution from a corresponding 
dual optimal solution. Section 3 briefly introduces 
the curved search method and customizes it to 
obtain a quadratically convergent global algorithm 
for solving Program DJL and hence Program PJL. In 
Section 4, the dual approach developed in Section 2 
is specialized for the specific problem of trip distri­
bution with quadratic cost. Some computational re­

-----------------...C~giJ'~)'P'F~i9fFhH-tJ/:i:J-©2001 /\11 Ri§t-lts ReseFV"ed 

suits on the trip distribution problem are reported 
in Section 5. Section 6 concludes this paper. 

1. A LINEARLY-CONSTRAINED ENTROPY 
MAXIMIZATION MODEL WITH QUADRATIC 

COST 

FoR SIMPLICITY, we assume that all mathematical 
programs stated in this section have a unique opti­
mal solution that satisfies the Kuhn-Tucker condi­
tion. To motivate the study of model PJL, we consider 
a trip distribution problem with a quadratic cost 
structure. Suppose that there are K origins and L 
destinations. Let x, denote the number of trips

1 
from origin i to destination j. The problem can be 
represented by: 

Program Q: 
K L K L 

Minimize L L x,1 lnx;1 + a L L c,1 x;1 
t=l}=l i=l}=l 

subject to: 
L 

L x,
1 

= 0" i = 1,2, ... ,K, (2) 
j=l 

K 

L x, = D
1 

, j = 1, 2, ... , L, (3)
1 

!= 1 

X!) ;;. 0' i = 1' 2' ... ' K' 

and j = 1,2, ... ,£. (4) 

Note that, without the quadratic cost terms, Pro­
gram Q is equivalent to the well-known gravity 
model. In this special case, the optimal solution has 
the following form: 

{5) 

1where r = eA, s = e ~'-1 c = e- and A and " are 
l ' J ' ' l ,.....}

the Lagrange multipliers associated with the con­
straints. The exponential term is a decreasing func­
tion of c,

1 
, which may represent distance, cost or 

some notion of generalized cost. This exponential 
term is referred to as the "exponential deterrence" 
in the literature, which is different from the 
"quadratic deterrence" in the Newtonian gravity 
law. 

With the quadratic terms, the model is no longer 
a classic gravity model. Instead, its optimal solu­
tion, as can be seen later, satisfies the following 
equation: 

{6) 



This differs from Equation (5) of the gravity model 
in that x , appears in the exponent in the right­

1 
hand-side expression and the optimal solution is no 
longer explicitly solvable as a function of the pro­
gram parameters. When all f3d,;'s are very small, 
Program Q produces approximately the gravity 
model. However, the quadratic terms have the fol­
lowing "self-deterrence" or "self-regulation" effect 
on the optimal solution. By increasing the value of 
one particular f3d, but keeping all other parame­

1 
ters the same, the corresponding optimal trip num­
ber x, decreases. Moreover, for any particular posi­

1 
tive value of f3d,

1 
, the larger the optimal x,

1 
of the 

gravity model is, the larger the decrease to the 
optimal x , of the new model is. This characteristic

1 
can be used to model deterrence due to congestion 
in the stage of trip distribution. Moreover, solving 
the combined trip distribution and assignment 
problem often involves a problem decomposition 
where the trip distribution is a component which 
is required to be solved repeatedly. This self­
regulation feature of Program Q could benefit the 
convergence rate due to its ability to reflect, at the 
stage of distribution, the congestion cost obtained 
in the assignment stage. This possibility is being 
studied by the authors. For ease of discussion, we 
will refer to this new model as the "self-deterrent 
gravity model" in the rest of this paper. We keep 
the notion of gravity in the name because the opti­
mal solution x, is still a decreasing function of c,r

1 
We now offer an alternative motivation for study­

ing Program Q. It is well-known that the gravity 
model can be derived via several other approaches. 
In particular, the optimal solution of the following 
mathematical program is of the gravity form. 

K L we may consider 
ProgramR: Minimize I: I: x ,)nx,1 

z~1;~1 

L 

subject to: I: x,1 = 0" i = 1,2, ... ,K, 
j~1 calibration process. 

K 

I: X lj = D)' j = 1' 2' ... ' L' 
z~ 1 

K L 

I: L:c,1 x,1 =C, 
z~1;~1 

x,
1 
~ 0, i = 1,2, ... ,K, 

and j = 1, 2, ... , L. 

Similarly, the self-deterrent gravity model defined 
by Equation (6) can be derived as the optimal solu-
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tion of the following mathematical program: 

K L 


ProgramS: Minimize I: I: x ,)nx,1 

z~ 1 j~ 1 

L 

subject to: I: x, = 0,, i = 1,2, ... ,K,
1 

j~1 

K 


L:x, =D , j=1,2, ... ,L,

1 1 

,~ 1 

K L 

I: I: c,1 x,1 = C, 
z~1;~1 

1 K L 

- I: I: d,1 x;1 = D, 
2i~1j~1 

X lj ~ 0' i = 1' 2' ... ' K' 

and j=1,2, ... ,L. 

It is easy to verify that when the quadratic con­
straint in Program S is replaced by a slightly gener­
alized constraint 

1 K L K L 

- I: I: d, x;1 + I: I: f. x,1 = D, (7) 
2 i~1j~1 1 i~1j~1 1 

the self-deterrent gravity model has the following 
form: 

Note that when the parameter Dis not known with 
confidence or the equality constraint is too strong, 

a corresponding inequality con­
straint. Also note that, as pointed out by WILSON[241 

about parameter a, the parameter f3 of the self­
deterrent gravity model does not have to be known 
exactly at the beginning. It could be found in the 

A particular application of Program S is as fol­
lows. In formulating and solving trip distribution 
problems, the planner often has information about 
the past trip distributions. This information often 
leads to certain "target values" for the current 
planning cycle. There are different ways to model 
such target values. One way is to use the target 
values as the "prior" and formulate a cross-entropy 
minimization problem, i.e., minimization of Kull­
back's discrimination information measure. An­
other way is to impose a constraint on a weighted 
sum of the squared deviation of the distribution x ,

1 
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from the target values p, , i.e.,
1 

K L 

L L wJx, - p,)2 
= T, (9.a)1 

i=1 }=1 

or, equivalently, 

1 K L K L 

- L L d,1 x~1 + L L f,1 xi1 = D, (9.b) 
2 t=1}=1 i=1;=1 

where d,1 = 2w,
1 

, t;1 = - 2wi
1 
p,1 and D = T 

-"[,~=1 L.f=lw,Jp';J. L.f=l L.f= 1w,}x,1 - p,)2 has 
been used as a measure for the "distance" between 
x,1 and p,1 [e.g., 4]. 

Gravity models with additional constraints other 
than the production, attraction, and cost have been 
proposed and studiedP01 So far all those additional 
constraints have been considered in linear form. 
The proposed quadratic cost term (or the quadratic 
constraint) provides a new dimension of possible 
models for transportation planning. The additional 
parameter {3 of the self-deterrent gravity model 
provides one more degree of freedom in model iden­
tification and calibration. In addition, as will be 
shown later in this paper, the new model can be 
solved efficiently, in both theory and practice. 

2. AN UNCONSTRAINED DUAL APPROACH 

WE FIRST PROVIDE the condition under which Pro­
gram P,.. achieves a finite minimum at a unique 
point x*( p.) ~ 0, for each p. > 0. 

LEMMA 1. If Program P,.. has a feasible solution, 
then it achieves a finite minimum at a unique point 
x*( p.) E Rn for each p. > 0. 

Proof. With the convention of OlnO = 0, the ob­
jective function f,..(x) is continuous on its entire 
domain {xlx ~ 0}. For each j = 1, ... , n, if x = 0,

1 
f,..}x) =p.x}nx + c1x + ~d1 xJ = 0. It is obvious 
that f,..}x) ~ oo 

1 
as x1 

1 
~ oo. Therefore, f/x) ~ oo 

as llxll ~ oo in the effective domain {xlx ~ 0} of f,.. 
and hence all level sets {xI f,..(x) ,;;;; a}, a E R, of f,. 
are bounded. The continuity of the objective func­
tion implies that these level sets are also closed. 
Therefore, all level sets are compact. Clearly, the 
intersection of any of these level sets and the feasi­
ble region fl = {xiAx = b, x ~ 0} is also compact. 
By the assumed feasibility of P,.., there exists one 
level set L~ such that L~ n fl is non-empty. Since 
this intersection is compact and f,..(x) is continuous 
on it, by the well-known fact that any continuous 
function on a compact set always attains its opti­
mum (Theorem of Weierstrass), Program P,.. attains 
its finite minimum. Finally, the fact that f,..}x) is 
strictly convex over the domain [0, oo) for each j, f,.. 

is strictly convex. This and the convexity of fl 
imply that P,.. achieves the finite minimum at a 
unique point x*( p.) ~ 0, for each p. > 0. o 

Like all interior-point methods, we assume 
throughout this paper that Program P,.. has an 
interior feasible solution x > 0. We now derive the 
Lagrangian dual D,.. of P,.. By defining the La­
grangian 

n n 1 n 

L(x, w) = p. L x}nx1 + L c x + - L d xJ1 1 1 
}=1 ;=1 2;=1 

•~1 w, L~1 a,JxJ- b,)' 
where w, E R, i = 1, 2, ... , m, the Lagrangian dual 
program becomes 

Program D~: max min L(x, w). 
wERm x~O 

Setting the partial derivative of L(x, w) with re­
spect to x to zero gives us

1 

m 

p. + p.lnx + c + d x - L a,1w, = 0. (10)
1 1 1 1 

t= 1 

LEMMA 2. Equation (10) defines an implicit func­
tion x = h/w) > 0 for all wE Rm. Moreover, h is

1 1 
continuously differentiable. 

Proof. For x > 0 and w E Rm, define
1 

~(x1 , w) = d x + p.lnx
1 1 1 

m (11) 
- L a,1 w, + c1 + p.. 

t= 1 

Apparently, ~ is continuously differentiable over 
its effective domain. Since, in addition, a~jax =F 0

1 
throughout its domain, by the Implicit Function 
Theorem [1, p. 147], Equation (11) indeed defines 
an implicit function x = h/w) for all w E Rm.

1 
Moreover, by the same theorem, the implicit func­
tion is continuously differentiable over its entire 
domain. o 

The strict convexity of f,..(x) and the linearity of 
the equality constraints (l.a) of Program P,.. imply 
that, given any w E Rm, L(x, w) is strictly convex 
in x. Therefore, h/w) > 0 indeed defines the mini­
mal solution of minx;, 0 L(x, w) for each w. Conse­
quently, the dual Program D~ is equivalent to 

ProgramD;: max L(x, w), where x
1 

= h/w). 
WERm 

Copynght © 2001 All Rights Reserved 



Multiplying both sides of Equation (10) by xi and 
then summing both sides over j give 

n n 1 n 


JL L x}nx1 + L cjx1 + - L d1 xJ 

}=1 }=1 2]=1 

m n 1 n n 

- L L w,a,1 x1 = -- L d1 xJ - JL L xr 
i=1j=1 2}=1 ]=1 

Therefore, Program n; is equivalent to 

ProgramDJ.L: 

max dJ.L(w)
wERm 

1 n n m 

=-- L d1 h7(w)- JL L h/w) + L b,w,, 
2 ]=1 }=1 •=1 

where, for any wE Rm, h/w) > 0 is defined as the 
unique solution of the following equation: 

m 

djh/w) + JLlnh)w) = L a,1 w, - c1 - JL. (12) 
i= 1 

Note that, treating h/w) as a variable, Equation 
(12) is a single-variable equation which could be 
solved by a straightforward one-dimensional search. 
Also note that, in the absence of the quadratic term 
in the primal objective function, h/w) can be solved 
explicitly and be expressed as a gravity model in 
the form of Equation (5). 

We devote the rest of this section to establishing 
duality theorems. 

THEOREM 1. (Weak Duality Theorem) Suppose Pro­
gram PJ.L has a feasible solution. Then, Min(PJ.L);;;. 
Sup(DJ.L). 

Proof. This theorem follows immediately from the 
Lagrangian duality theory. o 

THEOREM 2. Given that w* E Rm and x* E Rn 
such that Ax* = b and x* > 0, if 

m 

d x; + JLlnx; = L a, w7 - c - JL, (12')1 1 1 
i= 1 

then x* is an optimal solution to Program PJ.L and 
w* is an optimal solution to Program DJ.L. Moreover, 
Min(PJ.L) = Max(DJ.L). 

Proof. Multiplying both sides of Equation (12') 
by xJ and then summing over j establish the equal­
ity of the two objective function values. Given the 
feasibility of w* and x*, this theorem follows from 
Theorem 1. o 

LEMMA 3. The dual objective function dJ.L(w) is con­
tinuously twice differentiable. 

Copyright© 2001 All Rights Reserved 
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Proof. By Lemma 2, h/w) is continuously differ­
entiable. Therefore, d)w) is also continuously dif­
ferentiable and the k-th element of its gradient 
vector is given by 

1 n ah/w)-- L 2d h-(w)-----'-­
2 j= 1 J J awk 

(13) 
~ ah/w) 

- JL £.... + bk' 
j= 1 awk 

where ah / w)I aw k can be obtained as follows. First 
denote h/w) by x and define

1 

~(x1 , w) = d x + JLlnx1 1 1 

m (14) 
- L a,jw, + cJ + IL· 

t= 1 

Then, by Equation (12) and the chain rule, we have 

a~ ax1 a~ 
--+- =0 (15)
ax} awk awk ' 

or equivalently, 

In other words, 

ak h}w)1 (17)
JL d h/w) + JL · d +­ 1 

J X 
J 

Plugging (17) into equation (13), we finally have 

(18) 

n 

- L ak1 h/w) + bk. 
J=l 

Since h/w) is continuously differentiable, dJw) is 
continuously twice differentiable. o 

THEOREM 3. Program DJ.L has a concave objective 
function dJ.L(w). If the constraint matrix A in Pro­
gram PJ.L has full row-rank, then dJw) is strictly 
concave. 
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Proof. By Lemma 3, diL(w) is continuously twice 
differentiable. The (k 1, k 2)-th element of the Hes­
sian Matrix is simply 

Since h/w) > 0, ~ 0, and J.t > 0, we haved1 
-h/w)j(d

1 
h/w) + J.t) < 0. Consequently, the Hes­

sian matrix can be written as AD/w)Ar, where 
Dr(w) is an n X n diagonal matrix with negative 
diagonal elements r

1
(w) = -h/w)j(d

1 
h/w) + J.L). 

(Since J.t > 0, d1 ~ 0 and h/w) > 0, r/w) is well 
defined for all wE Rm.) Therefore, d)w) is con­
cave. (In fact, concavity follows immediately from 
the Lagrangian duality theory.) By matrix theory, 
the Hessian matrix must be nonsingular and nega­
tive definite as long as A has full row-rank. There­
fore, d)w) is strictly concave ifA has full row-rank. 

0 

THEOREM 4. Given J.t > 0, if Program PIL has an 
interior feasible solution then Program DIL attains a 
finite maximum and Min(P) = Max(diL). If, in ad­
dition, its constraint matrix A has full row-rank, 
then Program DIL has a unique optimal solution 
w*( J.L) E Rm. In either case, formula (12') provides 
a dual-to-primal conversion that defines the optimal 
solution x*( J.L) of Program PIL. 

Proof. By Lemma 1, Program PIL attains its mini­
mum at a unique optimal solution. By the Interior­
Point Assumption and the Lagrangian duality the­
ory [e.g., 20, p. 154], there is no duality gap between 
Programs PIL and DIL and there exists a w at which 
Program DIL attains its finite maximum. Since diL(w) 
is differentiable over Rm, the first order optimality 
conditions hold at any optimal solution w*( J.L). By 
setting Vd)w*( J.L)) = 0, the conditions are 

n 

L ak1h/w*( J.t)) = bk, 
(20)j=l 

for k = 1, 2, ... , m. 

By defining x;(J.L) = h/w*(J.L)) > 0 according to 
(12'), Equation (20) becomes Ax*( J.L) = b. The opti­
mality of x;< J.L) follows from Theorem 2. The rna­

trix A having full row-rank implies the strict con­
cavity of diL and hence the uniqueness of the opti­
mal solution w*( J.L). o 

Based on this strong duality theorem, we can 
solve the constrained Program PIL by first solving 
the unconstrained Program DIL and then obtaining 
a primal optimal solution via the conversion equa­
tion. This unique setting allows us to exploit vari­
ous unconstrained convex optimization methods for 
solving the general model. Different methods of 
course lead to different performance. Later in this 
paper, we will customize the "curved-search algo­
rithm",[21 a global algorithm with a quadratic rate 
of convergence, for solving the Lagrangian dual of 
the trip distribution problem with quadratic cost, 
which is a special case of Program PIL. 

3. A QUADRATICALLY CONVERGENT GLOBAL 
ALGORITHM 

IN THIS SECTION, we outline a computational proce­
dure for solving PIL, briefly describe the curved­
search method, and prove the convergence proper­
ties. 

The computational procedure is as follows: 

Step 1: Select an arbitrary initial dual solution w 0 • 

Step 2: Determine h/w) according to equation (12) 
and use unconstrained convex optimization 
techniques to find an optimal solution 
w*( J.L) of Program DIL. 

Step 3: Compute the optimal solution x*( J.L) of Pro­
gram PIL according to equation (12'). 

It is clear that Step 2 accounts for the major com­
putation effort. In this paper, we report our compu­
tational experience with the "curved-search 
method."[21 Instead of solving Program DIL directly, 
we solve the following equivalent convex minimiza­
tion problem: 

ProgramD~: 

Most classical iterative methods improve a cur­
rent solution by moving along a straight line. The 
basic idea of the curved-search method is to im­
prove a current solution by moving along a 
quadratic curve which is determined by minimizing 
a certain model of the objective function subject to 
suitable constraints. BEN-TAL ET ALPl showed that 
the quadratic curve used in their method turns out 
to be a nonlinear combination of the "signed" New­
ton direction and the steepest descent direction. 

More precisely, for an unconstrained convex min­
imization problem with a twice continuously differ­
entiable objective function f, their curved-search 

Copyright© 2001 All R1ghts Reserved 



method moves from one solution w k to the next 
solution wk+ 1 along the quadratic curve (in vari ­
able t) 

where 

IVf(wk )1 2 

d=-{3-------"7""--­1
k k VfT(wk)[V 2 f(wk)] - Vf(wk) 

1
X [V 2f(wk)] - Vf(wk) and 

zk = - akiVf(wk )IVf(wk ). 

By searching for an appropriate step-length tk such 
that 

tk E 	 arg min f(wk + tdk + ~t 2 zk), (21)
t>O 	 2 

a new solution w k + 1 is defined by 

1 2 
wk+ 1 = wk + tkdk + 2,tk zk. (22) 

Given a small e ;;. 0, the optimality is considered 
reached if IVf(wk+ 1)1 ~ e. Notice that ak and {3k 
are adjustable positive parameters associated with 
the constraints with which the above-mentioned 
model of the objective function is minimized. There­
fore, Equations (21) and (22) actually define a fam­
ily of curved-search algorithms. The performance of 
this family of algorithms can be fine-tuned by 
choosing appropriate values of ak and {3k. Also 
notice that when ak = 0, the curved-search algo­
rithm becomes the (signed) Newton method. When 
{3k =0, it becomes the steepest descent algorithm. 

Note that, in applying this curved search algo­
rithm to solving Program D~, the presence of the 
implicit functions h

1
, j = 1, 2, ... , n, actually does 

not require any additional care except the need for 
a simple line search routine to solve for x

1 
= h}w). 

Since the dual objective function, the gradient vec­
tor and the Hessian matrix can all be expressed in 
terms of h/s, calling the simple line search routine 
prior to their calculation suffices. 

We now establish the property of global conver­
gence and the quadratic rate of local convergence. 

THEOREM 5. Suppose that the constraint matrix A 
has full row-rank and Program P~ is strictly feasi­
ble. Then, the curved-search algorithm either stops 
after finitely many steps or generates an infinite 
sequence {wk E Rmlk = 1, 2, ...} such that 

(i) 	 d)wk+ 1) > d)wk) for all k; 
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(ii) 	 {wk E Rmlk EN} has at least a cluster point 
we in the level set = {w E RmldJw) ;;.L 0 

dJw0 )}; 

(iii) 	for each such cluster point we, IVdJwe)l ~ e. 

Proof. Lemma 3 establishes that d~ is twice con­
tinuously differentiable. If we can further show 
that the level set L 0 is compact, then Theorem 5 is 
a direct consequence of Theorem 3.1 of[2]. As shown 
in the proof for Theorem 4, the level set of the dual 
objective associated with the maximum contains 
only the optimal solution w*( ~-t). Since -d~ is a 
convex function, Corollary 8.7.1 of [19] directly im­
plies that all level sets are bounded. The continuity 
of d~ guarantees the closedness of the level sets. 
Therefore, all level sets, including L 0 , are compact. 

D 

Note that, under the assumptions of Theorem 5, 
since D~ has a unique optimal solution w*( ~-t) satis­
fying the first order optimal condition, the sequence 
generated by the algorithm, with e = 0, converges 
to the unique cluster point we = w*( ~-t). Moreover, 
this infinite sequence has a quadratic rate of con­
vergence. 

THEOREM 6. Under the assumptions of Theorem 5, 
suppose that the sequence {wk E Rmlk EN} gener­
ated by the curved-search algorithm converges to 
w*( ~-t). The rate of convergence is quadratic. 

Proof. We establish the quadratic rate of conver­
gence by showing that the following four conditions 
of Theorem 4.4 of[2] are satisfied: (i) {wk E Rmlk E 

N} converges to w*( ~-t), (ii) Vd~(w*( ~-t)) = 0, (iii) 
V 2d~(w*( 1-L)) is negative definite and (iv) HO = 
V2d)·) is locally Lipschitz-continuous in a neigh­
borhood of w*. 

The first three conditions have already been es­
tablished. To prove condition (iv), recall that H = 

AD/w)AT, where Dr(w) is a diagonal matrix with 
r}w) as its j-th diagonal element. Since d h}w) +

1 
1-t > 0 and h}w) is differentiable, r}w), j = 

1, 2, ... , n, is also differentiable. Therefore, every 
element of H is a finite combination of differen­
tiable functions. Since differentiability implies Lip­
schitz continuity, condition (iv) is also satisfied and 
the proof is complete. o 

4. THE TRIP DISTRIBUTION PROBLEM WITH 
QUADRATIC COST 

IN THIS SECTION, we apply the theory developed in 
Section 2 to the specific problem of trip distribution 
with quadratic cost defined in Section 1, i.e., Pro­
gram Q. To put the problem in the form of Program 
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P~-' defined in Introduction, rewrite Program Q as 
follows. 

ProgramP~: 


Minimize {~-'(x) 


K L K L 

=JL L L x,1 lnx,1 + L L c,1 x,1 
i~1j~1 i~1J~1 

1 k L 

+2 L L:d,1 x~ 
~~ 1 J ~ 1 

L 

subjectto: E xi = Oi, i = 1,2, ... ,K, (23)
1 

j~1 

K 


ExiJ=D
1 

, j= 1,2, ... ,L, (24) 

~~ 1 

x,
1 
~ 0, i = 1,2, ... ,K, 

and j = 1, 2, ... , L. (25) 

K L 

Note that E 0, = L D
1 

and one of the K + L 
~~ 1 j~ 1 

equality constraints is redundant. Therefore, for 
obtaining a full-rank constraint matrix, we delete 
the last equality constraint. To make the format of 
Program P~ consistent with that of Program P~-', we 
relabel the variables from 1 through K X L row­
wise, i.e., 

xk =x[k/LJ+l,k-([k/LJxL)' k = 1,2, ... ' K XL, (26) 

where [·] is the integer truncation symbol. More­
over, the constraint matrix A can be partitioned as: 

(27) 

A2where N =[a1 .] =[a2 .] and 
!} ' !) ' 

aL=1, if(i-1)XL<j,;;;ixL, (28) 

0 otherwise; 

a~i = 1, if j = (k - 1) X L + i 

for some k = 1, 2, ... , K, (29) 

0 otherwise. 

The k-th element of the gradient, after some alge­
braic manipulation, becomes: 

L 

gk = L h/w) + bk, 
j~(k-1)XL+1 

if k = 1, 2, ... , K; (30) 
K 

L h<k-K)+Lx(J-1/w) + bk, 
j~1 

if k = K + 1, K + 2, ... , K + L - 1. 

The Hessian matrix of the dual objective function 
can be partitioned into a 2 X 2 block symmetric 
matrix, in which the upper-left (1,1) block and the 
lower-right (2,2) block are diagonal. The k 1-th, k 1 

= 1, 2, ... , K, diagonal element of the Hessian ma­
trix, i.e., the k 1-th diagonal element of the (1,1) 
diagonal block, is 

The k 1-th, k = K + 1, K + 2, ... , K + L- 1, diago­
nal element of the Hessian matrix, i.e., the (k 1 ­

K)-th diagonal element of the (2,2) diagonal block, 
is 

Hk,,k, 

= _ [, h(k-1)XL+k 1 -K(W) 

k~1 d(k-1)XL+k 1 -Kh(k-l)XL+k 1 -K(W) + JL. 

(32) 

The (k 1 , k 2 ), k 1 = 1, 2, ... , K and k 2 = K + 1, K + 
2, ... , K + L - 1, element of the Hessian matrix, 
i.e., the (k 1, k 2 - K), element of the upper-right 
(1,2) block, is: 

d(k -l)XL+(k -K)h(k 1 -l)XL+(k -K)(W) + JL.1 2 2 

(33) 

Note that the special structure of the matrix A 
associated with the trip distribution problems sim­
plifies the calculation of both the gradient and the 
Hessian matrix. In the case of gradient, each ele­
ment of the gradient vector requires a summation 
of only either L or K terms, instead of K X L terms 
required otherwise. As for the Hessian matrix, each 
of its diagonal element involves the summation of 
either K or L terms, as opposed to K X L terms. 
Moreover, the calculation of any off-diagonal ele­
ment involves no such summations at all. It tums 
out that the inversion of the Hessian matrix can 
also be facilitated by using the block matrix inver­
sion formula. 

Given any invertible matrix 

(34) 
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its inverse B - 1 can be obtained as follows: 

[Bn - B12B2"21B21J-
1 

B-1 = 

[ -B2"21B21(Bn- B12B2lB21J­

Since the (1,1) and (2,2) blocks of the Hessian 
matrix are diagonal, the inversion of the Hessian 
matrix can be reduced to the inversion of one K X K 
matrix and one (L - 1) X (L - 1) matrix plus some 
elementary matrix multiplications. 

5. COMPUTATIONAL EXPERIENCE 

WE FIRST BRIEFLY describe how the test problems 
are randomly generated. The quadratic coefficients 
are generated randomly by multiplying a random 
number uniformly distributed in (0,1) by a scaling 
factor. The positivity guarantees the convexity of 
the primal objective function. We will report the 
sensitivity of the algorithm performance with re­
spect to the quadratic scale ranging from 0.01 to 
1.0. The linear coefficients are generated similarly. 
The scaling factor for the linear coefficients ranges 
from 1.0 to 100.0. The weight of the entropy term is 
set to three possible values, 5.0, 0.5, or 0.05. The 
right-hand-side of each of the primal constraint is 
generated by multiplying a random number uni­
formly distributed between (0,1) by a demand scale, 
which ranges from 100.0 to 5000.0. 

A major indicator for the robustness of a particu­
lar algorithm is its performance as a function of the 
size of the problem. In what follows, we will use the 
notation of #0 X #D to denote the size of a prob­
lem with #0 origins and #D destinations. To high­
light the sensitivity of the algorithm to the size of 
the problem, we chose to (i) generate the right­
hand-sides, for most of the test problems, using a 
common demand scale, 1000.0, (ii) use a common 
weight of 0.5 for the entropy term, (iii) use the 
common linear scale of 10.0. With these parameters 
fixed and the quadratic scale set at a particular 
value, we compare the performance of the algo­
rithm with respect to the problem size. We also 
vary the quadratic scale and compare its perfor­
mance as a function of this scale. The reason for 
varying the quadratic scale is to gauge the sensitiv­
ity of the performance with respect to the coeffi­
cients of the highest-order polynomial terms. Due 
to the large number of possible combinations of 
parameter values, we fix the size of 100 origins and 
100 destinations as the base size and vary some 
other parameters for gauging the performance sen­
sitivity. Also, to make sure that this algorithm can 
consistently solve large-size problems, we ran four 
sets of 4000 X 400D problems, with only the 
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-B1/B12(B22- ~~1B!/~12r 1 l· (35)1 
(B22 - B21B11 B12J 

quadratic scale varying and the linear scale, the 
weight of the entropy term and the demand scale 
fixed at 10.0, 0.5 and 1000.0 respectively. 

The selected demand scale of 1000.0, in our opin­
ion, should be large enough. For example, in a 
4000 X 400D problem, this scale would amount to 
on average 80 million trips. We had selected this 
large number to demonstrate the power of this 
algorithm. In solving PJL, only the relative magni­
tude, not their absolute magnitude, of the quadratic 
scale, linear scale and the weight of the entropy 
term matters. For example, the optimal solution of 
the problem defined by the three scales set respec­
tively at 1.0, 100.0, and 5.0 is the same as that of 
the problem defined by 0.1, 10.0, and 0.5. We be­
lieve that the (relative) ranges we have chosen 
indeed cover most practical cases of interest. The 
relative magnitude selected for studying the sensi­
tivity of the performance with respect to the prob­
lem size is 0.1, 10.0, and 0.5. At these scales, none 
of the three terms in the primal objective domi­
nates any of the other terms. 

Our goal here is to demonstrate the property of 
global convergence, the rate of convergence, and the 
robustness of this algorithm with respect to varying 
individuality of the test problems. It is not our 
intention to provide evidence on the fastest possible 
implementation of this algorithm. The matrix in­
version used in our implementation is done by 
Gaussian elimination, not by Cholesky factorization 
or any other more efficient methods which could 
further improve the performance. Both ak and {3k 
are set to 1 in all test cases. The initial solution for 
the unconstrained dual problem is set at (0, 0, ... , 0) 
for all test problems. We stop the algorithm only 
when the norm of gradient becomes zero or no 
better point can be found by the line search. The .c:'s 
used are 10- 5 and 10- 10 respectively and, for eas­
ier comparison, they are set at these same values 
regardless of problem size. The progression of the 
objective values does not play any role in the stop­
ping rule. (It is apparent in our test results that the 
already low number of iterations can be further cut 
even in half had we chosen to stop the algorithm 
when the progression does not improve the current 
objective by more than 0.1%.) For use of this algo­
rithm on real problems, the matrix inversion could 
be performed using more efficient methods, the 
progression of the objective values may also be used 
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as a stopping criterion, and the ak, {3k, and e's and 
other parameters needed for numerical search 
should be "fine tuned" for the specific problem size. 
Also, the performance could benefit from a more 
intelligent initial solution. 

All tests are done on a SUN SPARCstation 2 and 
the results are tabulated in Table I. Each horizon­
tal block in the table corresponds to one common 
seed in random problem generation. This arrange­
ment is to enable the study of the role played by the 
different parameters, e.g., the size of the quadratic 
scale. The first column contains the test case num­
ber. The next two columns, the number of origins 
and that of destinations, represent the size of the 
problem. The fourth and the fifth columns give the 
quadratic scale and the linear scale. The sixth col­
umn gives the demand scale. The seventh column 
contains the weight of the entropy term. The last 
three columns provide the performance measures: 
the number of iterations, and the gross and the 
per-iteration CPU time consumption. Note that the 
CPU seconds are provided only as a reference. 

Here are some observations derived from the test 
results. 

(1) The number of iterations increases very slowly 
as the size of the problem grows. (See the blocks for 
100 X 10D and 500 X 50D, the first three test 
problems in each of the two 1000 X 100D blocks, 
the blocks for 2000 X 200D and 3000 X 300D, 
and finally the four 4000 X 400D blocks.) Aside 
from the first block of 4000 X 400D problems and 
test case 35, the number of iterations hardly in­
creases with the problem size at all and basically 
remain at around 10. Let us reiterate that had we 
chosen to stop the algorithm when the objective 
function does not improve by more than 0.1%, most 
of these numbers can even be further cut in half. 
This shows an amazingly low degree of sensitivity 
to the problem size. 

(2) For the smaller problems, the number of itera­
tions tends to increase as the magnitude of the 
quadratic scale goes up. However, this is no longer 
valid for the larger problems. (Compare the three 
test problems within each of the blocks pointed out 
in (1).) 

(3) The number of iterations tends to increase as 
the magnitude of the linear scale goes up. (Com­
pare, for example, the second and the sixth test 
problems in the second 1000 X 100D block, i.e., 
case 13 and 17.) 

(4) The number of iterations tends to increase, but 
only very slightly, as the weight of the entropy term 
goes up. (Compare, for example, the fourth and the 

fifth test problems of the second 1000 X 100D 
block, i.e., cases 15 and 16.) 

(5) Also, the number of iterations tends to increase, 
but very slightly, as the magnitude of the demand 
scale goes up. (Compare, for example, the second, 
the eighth and the ninth test problems in the sec­
ond 1000 X 100D block, i.e. cases 19 and 20.) 

(6) When we increase the magnitude of more than 
one parameter, the effect on the number of itera­
tions seems to compound. For example, increasing 
both the linear scale and the demand scale simulta­
neously would increase noticeably the number of 
iterations. (Compare the second and the fourth test 
problems in the first 1000 X 100D block, i.e., cases 
8 and 10.) Also, increasing the quadratic scale, the 
linear scale and the demand scale simultaneously 
would increase the number of iterations even more. 
(Compare the second and the fifth test problems in 
the first 1000 X 100D block, i.e., cases 8 and 11.) 

(7) Note that some of these test problems may not 
be realistic and are created simply to test the limit 
of this algorithm. As mentioned earlier, the perfor­
mance can be further improved in several ways, 
some of which depend on the specifics of the practi­
cal problems being solved. 

For the pure entropy maximization problem with 
linear constraints, the average number of iterations 
grows very slowly from 5 for 10 X 100 problems to 
14 for 500 X 1000 problems.l11 l Our experience with 
two other classes of problems[12

•
131 is very similar. 

For larger problems, the major computational re­
quirements at each iteration come from the inver­
sion of the Hessian matrix. Since the calculation of 
the Hessian matrix has been significantly simpli­
fied, the proportion of computation effort spent 
on solving the one-dimensional implicit functions 
is significant but decreases as the problem size 
increases. 

By setting the unit quadratic costs d,
1 

in Pro­
gram P~ to zero, we can use the computational 
procedure and the curved search algorithm to solve 
the trip distribution problem with only linear cost. 
A well-known algorithm for solving such a problem 
is the Bregman's balancing algorithmP 71 In the 
rest of this section, we compare and discuss the 
difference in performance between these two meth­
ods. 

Bregman's balancing method is applicable in a 
setting more general than entropy optimization 
with linear constraints. When applied to solving 
such entropy optimization problems, Bregman's 
method can be viewed as one which minimizes the 
dual objective with respect to one variable at a 

----------------~----------------~C~9~~~)~'Fi~§~AtH®wz2UU001AI·~IRRffiig~MtRs~R~e~s~e~lo~e~d---------------------------
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TABLE I 

Trip Distribution with Quadratic Cost: Computatwnal Results 

Case# #0 #D qs Is ds J.L #(lter) cpu(s) cpuj1ter 

1 10 10 0.01 10.0 1000.0 0.5 10 3.83 0.38 
2 10 10 0.1 10.0 1000.0 0.5 10 4.00 0.40 
3 10 10 1.0 10.0 1000.0 0.5 20 10.13 0.51 

4 50 50 0.01 10.0 1000.0 0.5 8 70.28 8.78 
5 50 50 0.1 10.0 1000.0 0.5 8 74.94 9.37 
6 50 50 1.0 10.0 1000.0 0.5 17 192.27 11.31 

7 100 100 0.01 10.0 1000.0 0.5 7 329.76 47.10 
8 100 100 0.1 10.0 1000.0 0.5 8 376.02 47.00 
9 100 100 1.0 10.0 1000.0 0.5 10 503.54 50.35 

10 100 100 0.1 100.0 5000.0 0.5 22 1981.59 90.07 
11 100 100 1.0 100.0 5000.0 0.5 36 3346.44 92.96 

12 100 100 0.01 10.0 1000.0 0.5 9 432.81 48.09 
13 100 100 0.1 10.0 1000.0 0.5 9 415.67 46.18 
14 100 100 1.0 10.0 1000.0 0.5 16 770.62 48.16 
15 100 100 0.1 10.0 1000.0 0.05 11 748.14 68.01 
16 100 100 0.1 10.0 1000.0 5.0 16 848.80 53.05 
17 100 100 0.1 100.0 1000.0 0.5 16 1248.57 78.03 
18 100 100 0.1 1.0 1000.0 0.5 7 322.77 46.11 
19 100 100 0.1 10.0 5000.0 0.5 10 591.92 59.19 
20 100 100 0.1 10.0 100.0 0.5 8 378.48 47.31 

21 200 200 0.01 10.0 1000.0 0.5 12 2391.57 199.29 
22 200 200 0.1 10.0 1000.0 0.5 10 2211.48 221.15 
23 200 200 1.0 10.0 1000.0 0.5 11 3023.25 274.84 

24 300 300 O.Dl 10.0 1000.0 0.5 12 8196.24 683.02 
25 300 300 0.1 10.0 1000.0 0.5 10 7242.34 724.23 
26 300 300 1.0 10.0 1000.0 0.5 13 9953.42 765.65 

27 400 400 0.01 10.0 1000.0 0.5 24 39390.30 1641.26 
28 400 400 0.1 10.0 1000.0 0.5 23 37666.60 1637.67 
29 400 400 1.0 10.0 1000.0 0.5 28 51081.20 1824.33 

30 400 400 0.01 10.0 1000.0 0.5 11 17745.00 1613.18 
31 400 400 0.1 10.0 1000.0 0.5 10 16861.70 1686.17 
32 400 400 1.0 10.0 1000.0 0.5 12 21771.70 1814.31 

33 400 400 0.01 10.0 1000.0 0.5 12 20850.90 1737.58 
34 400 400 0.1 10.0 1000.0 0.5 13 21614.30 1662.64 
35 400 400 1.0 10.0 1000.0 0.5 24 45410.50 1892.10 

36 400 400 0.01 10.0 1000.0 0.5 8 13613.00 1701.63 
37 400 400 0.1 10.0 1000.0 0.5 9 15279.60 1697.73 
38 400 400 1.0 10.0 1000.0 0.5 10 18138.20 1813.82 

timeP 71 Therefore, the number of iterations re­
quired grows very rapidly with respect to the size of 
the problem. As pointed out by JORNSTEN and LUND­

GREN,r16l Bregman's method is computationally effi­
cient when all constraint coefficients a, have the

1 
value of zero or one. This is because, with this 
special structure, no line searches are required. 
However, with the presence of any non-zero-one 
coefficients a, in a constraint, the computational

1 
effort required for the associated iteration becomes 
much larger. Compounded with the rapid increase 
of the number of iterations as the problem size 
grows, the computational effort required for general 
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problems grows rapidly. Therefore, the number of 
general constraints must be limitedP6 l 

Our experience shows that, for the trip distribu­
tion problems with only linear cost, in general 
Bregman's method tends to be more efficient than 
our method. Although the number of Bregman iter­
ations grows very fast with respect to the problem 
size while its counterpart in our approach barely 
grows, the small computational effort per iteration 
compensates for the huge number of iterations. 
However, one clear advantage of our approach is 
robustness. We demonstrate it by comparing the 
performance of the two algorithms against two 
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well-known "benchmark" entropy optimization 
problem with trip distribution (transportation) con­
straints. The problems are posed as matrix scaling 
problems. 

The matrix scaling problem is to find two diago­
nal matrices, D 1 and D 2 , for a given square matrix 
M such that the scaled matrix D 1MD2 has pre­
scribed row and column sums. This problem is 
equivalent to solving for a gravity model and hence 
equivalent to a trip distribution problem with lin­
ear cost. Two matrix scaling problems, denoted by 
P1 and P2 , respectively, with 

[ 10' 
M1 = 102 1 

102 1 

102 

Tl 
102 


1~ 2 1 


1 

and M 2 = [10' 104 0 l. 

102 

were studied by ELFVING and others.l5 l Note that 
scaling M 1 is equivalent to a trip distribution prob­
lem with J-L = 1, 

-Zn(10 4 ) 

-Zn(10 2 ) 

1 1 1-Zn(10 2 ) 

0 0 0-ln(10 2 ) 
0 0 0

cl = AI=-ln(1) ' 1 0 0 
-ln(1) 0 1 0 

-Zn(10 2 ) 0 0 1 
-ln(1) 


-ln(1) 


Since the rank of matrix A 1 is 5 (one of the scaling 
constraints is redundant), we can eliminate the last 
constraint to obtain a full-rank matrix. P2 is de­
fined similarly. Note that there are two zeros in 
M 2 . We replace them by a small number 10- 10 

before applying the two algorithms. 
Both algorithms stop when the maximum viola­

tion of the primal constraints is no larger than a 
preset threshold. (For the curved-search algorithm, 
we set the other parameters to the same values 
used for the earlier tests.) Two selected thresholds 
are 0.001 and 0.00001. The performance results for 
the two methods are shown in Table II and Table 
III, respectively. Note that the performance of the 
Bregman's method is very sensitive to the individu­
ality of these two problems while that of the 
curved-search method is unaffected. The robustness 
of the latter, compared to some other entropy opti­
mization methods, was also shown in [11]. 

We make the following remarks regarding the 

TABLE II 
Performance ofBregman's Method 

Max Vwlation ~ 0 001 Max Vwlatmn ~ 0 00001 

Problem IteratiOns CPU Seconds Iterations CPU Seconds 

125 0.03 185 0.04 
1710 0.37 24900 5.32 

TABLE III 
Performance of Curved-Search Method 

Max Violation~ 0.001 Max Vmlatwn ~ 0 00001 

Problem IteratiOns CPU Seconds lteratwns CPU Seconds 

6 0.08 8 0.1 
4 0.05 6 0.08 

two different methods before closing this section. 
Our method solves a more general optimization 
problem, which accommodates quadratic cost in the 
objective function. Its performance seems very in­
sensitive to the individuality of the problem and is 
not affected as drastically as the Bregman's method 
when the constraint matrix contains non-zero-one 

0 0 0 0 0 0 1 
1 1 1 0 0 0 1 
0 
1 

0 
0 

0 
0 

1 
1 

1 
0 

1 
0 

and bl= 
1 
1 

0 1 0 0 1 0 1 
0 0 1 0 0 1 1 

entries. The number of iterations, as a function of 
problem size, grows very slowly, which makes it 
especially attractive for the case of large-size gen­
eral constraint matrix AP 11 As mentioned earlier, 
our algorithm can be fine tuned to improve the 
performance, e.g., using the factorization tech­
niques to speed up matrix inversion. A comprehen­
sive computational comparison among several ma­
jor algorithms for the entropy optimization problem 
with linear constraints is a worthy subject for fu­
ture study. 

6. CONCLUSION 

IN THIS PAPER, we present a general entropy opti­
mization model, together with an efficient dual­
based algorithm, which not only encompasses many 
existing transportation planning models but also 
extends them. In addition to the capability of ac­
commodating quadratic cost in Program P~-', our 
approach has several important advantages. First 
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of all, the strong duality theorem holds under very 
mild conditions and the dual program DJL is an 
unconstrained convex program. A primal optimal 
solution can be easily obtained from the dual opti­
mal solution through a simple conversion equation. 
Second, the post-optimality analysis, including 
parametric programming and sensitivity analysis, 
can benefit from the unconstrained nature of the 
dual. Third, the robustness and efficiency of the 
curved-search algorithm make this approach par­
ticularly suitable for large-size real-life problems. 
More sophisticated implementations of the algo­
rithm can further improve the already impressive 
performance and the high degree of "parallelizabil ­
ity" of most of the computation can be further 
exploited for higher efficiency. 
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