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Analytical Models for Vehicle/Gap 
Distribution on Automated 

Highway Systems1 
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Department of Industrial and System.<~ Engineering. University of Southern California, Los Angeles, Califomia 90089 

INDRAJIT CHATTERJEE 

Department of Industrial Engineering and Operations Resean·h, Unit,ersity of California, Berkeley, California 94720 

Highway congestion has in recent years become a pervasive problem for urban and suburban 
areas alike. The concept of Automated Highway Systems is based on the belief that integration 
o{ sensing. communication, and control technologies into vehicles and htghways ca11 Lead to a 
Large improvement in capacity and safety without requiring a significant amount of additional 
highway right-of-way. A fundamental determinant of Automated Highway Systems capacity is 
the vehicle-following rule, the rule that got•ems the behavior of vehicles trm.:eling along a 
common lane (e.g., the spacing betu'een any tu·o longitudinally adjacent r·ehicles). Vehicle 
following affects the longitudinal capacity (achievable flow within a lane). the lateral capacity 
(achiel'able f7ow between lanes) and the conf7icting relationship between the longitudinal f7ow 
and lateral capacity. The issues are im·estigated bJ' deeeloping probabilistic models for vehicle I 
platoon and gap distributions, for vehicles that trat•el in platoons, in slots, or as free-agents. 
Mathematical models are also developed to estimate the completion time of a lane change, 
which can be used as a surrogate for the lateral capacity. Numerical results for the three major 
vehicle-following rules and their comparison arc also provided. 

H ighway congestion has in recent years become 
a pervasive problem for urban and suburban areas 
alike. The amounts of lost time. highway fatalities 
and injur·ies, and air pollution are no longer accept
able. The traditional approach to meeting the de
mand for automobile travel is to expand existing 
highways and/or build more highways. However, 
given the saturation of land dedicated to existing 
highways and the difficulty in acquiring private 
land for highway expansion and con!>truction, this 
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traditional approach is becoming prohibitive. The 
concept of Automated Highway Systems CAHS) is 
based on the belief that an appropr·inte integration 
of sensing, communication, and control technologies 
placed on the vehicle and on the highway can signif
icantly decrease the average longitudinal spacing 
between vehicles and hence lead to a large improve
ment in capacity and safety without requiring a 
significant amount of additional right-of-way. Stem
ming from this belief are various conceptual scenar
ios for vehicle/highway automation. For a brief in
troduction to major AHS design options and issues, 
see TSAO, HALL, and SHLADOVEit (1993l. '!'his article 
focuses on the fully automated AHS, i.e., those that 
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enable "hands-off" and "feet-off" driving on dedi
cated lanes. 

AHS Capacity 

An AHS consists of two major components: vehi
cle/highway automation technology and highway op
erating strategy. This article concentrates on the 
operating strategy and assumes the feasibility of the 
automation technology that supports it. The desir
ability of an AHS hinges on its performance. Crucial 
performance categories of AHS operation include 
safety, capacity, and comfort [TSAO, HALL, and 
SHLADOVER (1993); TSAO et al. (1993)]. This article 
focuses on AHS capacity. 

The definition of capacity and its calculation for 
AHS with traffic needing no lane changes is rela
tively straightforward. In such a case, capacity of a 
lane can be defined and measured as the maximum 
achievable flow, subject to safety constraints, of ve
hicles per lane per hour. Note that this definition 
does not reflect at all the lateral flow- the flow of 
vehicles between lanes. When lane changes are re
quired, this definition no longer suffices. 

Consider an example AHS that consists of two 
automated lanes. Suppose that a vehicle can change 
lanes only if it encounters a sufficiently large gap in 
the destination lane. Also suppose that there is a 
nonzero speed differential between the two lanes. 
Then, when the longitudinal flow in one lane is 
maximized by packing the lane with vehicles, no 
vehicles can change into the lane. On the other 
hand, if there is no traffic at all in that lane, lane
changing incurs no waiting. This conflicting and 
non-linear relationship between the longitudinal 
flow and lateral capacity must be explicitly consid
ered in predicting the capacity of an AHS. This 
article results from an attempt to study this rela
tionship. We use the time required for a successful 
lane change (or lane-change completion time for 
short), without any interference by other lane 
change maneuvers, to represent lateral capacity. 
The exact defmition of a lane-change maneuver may 
vary, depending on how the AHS is operated. Invari
ably, a lane-change maneuver is initiated as the 
vehicle decides to begin a sequence of steps that 
culminates in the lateral movement. A possible se
quence consists of the following four steps: (i) using 
sensors or communication to determine if a suffi
ciently large gap in the destination lane is adjacent 
or nearby and approaching, (ii) establishing commu
nication with nearby vehicles, if any, to express the 
desire to change lanes, (iii) negotiation with those 
vehicles for the use or creation of a gap in the des
tination lane and for a safe lateral movement from 
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the origin lane, and (iv) the actual lateral move
ment. The lane change completion time is the differ
ence between the time a vehicle initiates the lane
change maneuver (i.e., the beginning of step (i)) and 
the time it has completed the lateral movement into 
the gap (i.e., the end of step (iv)). 

A Fundamental AHS Operating Rule: 
Vehicle-Following Rule 

The vehicle-following rule governs the behavior of 
vehicles traveling along a common lane, particularly 
the spacing between any two longitudinally adjacent 
vehicles. Two basic vehicle-following rules are the 
platooning rule and the free-agent rule. (Both have 
several variations.) The platooning rule was first 
proposed and studied by SHLADOVER (1979) and has 
received renewed interest in the last few years. Un
der this rule, longitudinally adjacent vehicles either 
travel very close to, or very far from, each other. As 
a result, vehicles are organized in a clustered forma
tion. Each cluster of vehicles is called a platoon. The 
large interplatoon spacing minimizes the probability 
of collisions between platoons and the short in
traplatoon spacing ensures that any initial collision 
within a platoon will have a small relative speed 
and, presumably, low severity. Under the free-agent 
rule, vehicles move without any clustered formation 
and the minimum longitudinal spacing is signifi 
cantly longer than typical intraplatoon spacings, but 
significantly shorter than typical interplatoon spac
ings. Relative to the platooning rule, the free-agent 
rule reduces the overall frequency of collisions, but 
potentially increases the frequency of severe ones. 
An AHS with the free-agent rule may be easier to 
operate. For an introduction to the platooning rule 
and its impact on AHS traffic control, refer to VA
RAIYA and SHLADOVER (1992) and VARATYA (1993). 
TSAO and HALL (1993) developed a probabilistic 
model to study the probability and severity of a 
collision between two longitudinally adjacent vehi
cles after the front vehicle decelerates abruptly. 
They also applied the model to compare the safety of 
these two vehicle-following rules. Using computer 
simulation, HITCHCOCK (1994) reported a paramet
ric study of the probability and severity of multiple 
collisions resulting from the abrupt deceleration by 
a vehicle in a platoon. 

An operating strategy consists of a collection of 
operating rules, such as access, vehicle following, 
lane selection, lane change, merging, and egress 
rules. All of these rules have an effect on AHS ca
pacity. Estimation of AHS capacity under platoon
ing has received some attention in the literature. 
SHLADOVER (1979, 1991) estimated AHS capacity by 
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scaling down the longitudinal capacity achievable 
without lane changes by 20%. Recognizing that ve
hicle's entry into and egress from a platoon are a 
primary cause of traffic stream disturbance, RA.o, 
VARAIYA, and ESKAFI (1993) investigated different 
entry/exit strategies. The focus of their effort is the 
achievable longitudinal flow. With minimal interac
tion between traffic entering the automated lane 
and the traffic exiting it, exiting success rates were 
also simulated for different combinations of highway 
configuratiOn and traffic demand. TSAO, HALL, and 
HONGOl..A (1993) simulated AHS traffic and investi
gated the effect of platooning and lane barriers on 
the exit success rate, sustainable flow, and traffic 
stability. RA.o and VARAIYA (1994) proposed a road
side controller design to optimize longitudinal flow 
along a stretch of automated highway. Each control
ler operates over a few-kilometer segment of auto
mated highway and requires only simple informa
tion about traffic conditions in its vicinity and a 
small amount of information from the next control
ler downstream. 

HALL (1995) used a workload model, where work
load and highway capacity are defined in terms of a 
time-space product, to show that, under certain sim
plifying conditions, an excessive amount of lane 
changes or an excessive amount of workload (time
space) requirement per lane change may render the 
inner lanes under-utilized or even unused. His 
model covers the two major AHS vehicle-following 
rules as special cases. TSAO, HALL, and HONGOLA 
0993) simulated AHS traffic under the free-agent 
vehicle-following rule. In a different direction, RAo 
and VARAIYA (1993) studied the achievable capacity 
and traffic stream stability when only a portion of 
vehicles on a highway use the Autonomous Intelli
gent Cruibe Control technology-a partial automa
tion technology. 

Purpose of the Article 

We develop probabilistic models for vehicle/gap 
distributions under two variations of the free-agent 
(vehicle-following) rule and for platoon-size and in
terplatoon-gap distributions under platooning. We 
also develop mathematical models to estimate the 
lane-change completion time. Numerical examples 
are given to illustrate the theory. These models can 
be used to estimate the lateral capacity of different 
operating scenarios. These analytical models, when 
coupled with models for lane assignment, can pro
vide analytical capacity estimates for many AHS 
operating scenarios. 

General Assumptions 

No /Mmimum Cooperation for Lane Change 

We focus on the traffic on a single lane into which 
a vehicle in a neighboring lane desires to change 
lanes. For the free-agent rule, we assume that vehi
cles do not alter their speeds to facilitate lane chang
ing by other vehicles. In other words, they do not 
cooperate for lane-changing. This is motivated by 
flow stability as well as technological simplicity. 
Therefore, the only way to complete a lane change is 
for the lane-change vehicle to encounter a suffi
ciently large gap. 

The concept of platooning inherently assumes a 
certain degree of cooperation among neighboring ve
hicles. For example, when a vehicle in the middle of 
a platoon needs to change lanes, the platoon needs to 
isolate the lane-change vehicle from the rest of the 
platoon by creating a space in front and in rear of the 
vehicle for a safe lateral maneuver, which requires a 
speed change by the other vehicles in the platoon. To 
minimize the disturbance to the traffic on the desti
nation lane, we require that a lane-changing vehicle 
join a platoon only at its front or rear end (so that 
the receiving platoon docs not have to split and 
hence cause slow-down by the trailing vehicles). 

Lane·Change Initiation Time lndrprndent of 
Traffic Condition 

For both free-agent and platooning rules, timing 
of lane change attempt is performed by the lane
change vehicle. Under both rules, an automated ve
hicle has limited ability to sem:c the traffic condition 
beyond its immediate vicinity on the del>tination 
lane. Therefore, timing of lane-change attempt is 
assumed to be independent of the traffic condition 
on the destination lane. (To simplify calculation of 
lane-change completion time for the examples to be 
given later, we will make minor assumptions about 
the exact position of the lanc·change vehicle, rela
tive to the adjacent vehicle or gap on the destination 
lane, at the initiation time of the lane-change at
tempt.) 

Non·Zero Speed Dzfferential 

To increase the likelihood of encountering a suffi
ciently large gap, we also assume that the speed 
differential, 8, between the two lanes is non-zero. To 
simplify discussion, we assume a constant speed 
differential in space and time. 

No Interference 

Finally, we focus on a particular lane change and 
assume, for mathematical tractability, that no other 
lane changes interfere with it before its completion. 



More precisely, the vehicle/gap distribution on the 
destination lane when the lane change was initiated 
remains the same until the completion of the lane 
change. 

Organization of the Article 

Section 1 considers two variations of the free
agent vehicle-following ru1e. After developing a ve
hicle/gap distribution model and a companion lane
change completion time model for each variation, it 
compares the performance of the two variations. 
Section 2 develops such models for the platooning 
vehicle-following rule and provides numerical re
su1ts. Section 3 compares the performance of the two 
rules. Concluding remarks are given in Section 4. 

1. GAP LENGTH DISTRIBUTION BETWEEN TWO 
FREE-AGENTS 

WE CONSIDER TWO VARIATIONS of the free-agent rule 
and develop one vehicle/gap distribution for each. In 
both variations, a vehicle occupies a slot of length b 
consisting of (i) the maneuvering space oflength h, 
including the space physically occupied by the vehi
cle and an additional space reserved to enable a 
lateral movement without affecting the traffic speed 
on either lane, and (ii) a supplemental spacing of 
length d half of which is "padded" onto each end of 
the maneuvering space for safety. 

The motivation for allocating maneuvering space 
is that a vehicle can enter or exit a slot without 
disturbing either of the two traffic streams. More 
precisely, in such a model only the vehicle that 
changes lanes needs to change speed. We first de
scribe the concept of maneuvering time 7', i.e., the 
time required for the lateral movement, and then 
use it to define the concept of maneuvering space. 

If, during the lateral movement, the longitudinal 
acceleration/deceleration is constant and the lateral 
velocity is also constant, the maneuvering time is 
simply 

(1) 

where o - speed differential, a = constant acceler
ation/deceleration rate during lateral movement, 
w = lane width, u = constant lateral velocity during 
lateral movement. Note that these parameters can 
be adjusted so that the two quantities ola and w/u 
are equal, thus improving ride quality during the 
lateral movement. We assume in what follows that 
they are indeed equal. Also note that if (i) the mag
nitude of the acceleration rate of a vehicle changing 
from a slower lane into a faster lane is the same as 
the magnitude of the deceleration rate of a vehicle 
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Start of a lane change maneuver: decelerate 

fast I-- lJf 4 -J 
slow--~=-~=4-=1---

End of a lane change maneuver: 

fast 1--!Jf. •I• h o!- .J/f -1 
slow---- --4 =i,----~~-=~---

Fig. 1. Lane-changing with vehicle slots. 

changing from a faster lane into a slower lane, and 
(ii) the lateral velocity is the same regardless of 
lane-changing direction, then the maneuvering time 
is independent of the direction of the lane change. 
We treat only the case where a vehicle on a faster 
lane tries to change into a neighboring slower lane. 
The opposite case is similar. 

Slots of neighboring lanes should have a common 
maneuvering space. However, the safety spacing 
may depend on lane speed. We use Figure 1 to ex
plain how vehicles make the lateral movement and 
what the maneuvering space means. One slot on 
each lane is shown and superscripts f and s indicate 
fast and slow lanes respectively. The maneuvering 
space is illustrated as the space between the two 
padded half safety spacings in a slot. When the 
lateral movement begins, the lane-changing vehicle 
shou1d be at the front of the maneuvering space of 
the origin slot touching the front safety half spacing 
but it should be adjacent to the rear of maneuvering 
space of the destination slot with the rear bumper 
aligned with the rear end of maneuvering space of 
the destination slot. As the lateral movement 
progresses, the lane-changing vehicle slows down 
and drops back toward the rear end of the maneu
vering space in the origin slot while catching up with 
the front end of the destination slot. When the lat
eral movement is completed, the lane-changing ve
hicle shou1d be adjacent to the rear end of the ma
neuvering space in the origin slot but at the front 
end of the destination slot. This way, the lane
changing vehicle is never within a (longitudinal) 
safety spacing with respect to any vehicle m either 
lane throughout the lateral movement. The length of 
the maneuvering space is simply the vehicle length 
plus the distance, relative to the traffic on either 
lane, traveled by the lane-changing vehicle during 
the lateral movement. By the constant deceleration 
rate, the maneuvering time is o/a. Since the average 
speed, with respect to the traffic on either lane, of 
the lane-changing vehicle is 0/2, the length of the 
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t f 
.. , ... , OC..,Wslol ......... tl 

................ 11 ......................... 
Fig. 2. Gaps in a slotted AHS. 

maneuvering space is simply the vehicle length plus 
fl 212a. 

The first variation of the free-agent rule is based 
on the idea that a lane is partitioned into a number 
of moving slots and each slot is either occupied by a 
vehicle or empty. Therefore, the gap length can only 
be a non-negative integer multiple of the slot length. 
The second variation relaxes this assumption, and 
hence the corresponding technological require
ments, and allows the gap length to be any non
negative real number. 

1.1. Gap Length Distribution: 
Under the Slot Assumption 

Consider a segment of an AHS lane that is parti
tioned into s slots of equal length b, where b is the 
sum of the supplemental spacing d for safety and 
the length h of the maneuvering space. A gap is 
defined to be the unoccupied space between two 
longitudinally adjacent occupied slots. Gap length is 
defined as the number of empty slots m the gap. 
There are v vehicles (occupied slots) in the lane, 
which are distributed in the s slots. In the absence of 
evidence favoring some distributions over others, we 
make the following assumption. 

ASSU~PTION 1. All (combinatorial) distnbutions of 
the v vehicles in the s slots are equally likely. 

This configuration is illustrated in Figure 2. 

Independent Geometric Gap Length Distribution 

Under th1s model, one can calculate the joint dis
tribution of the v 1 gap lengths as well as the 
marginal distributions. Furthermore, when the oc
cupancy ratio, i.e., vis, is kept constant while the 
length s of the segment is approaching infinity, it 
can be shown that (i) all the v - 1 gap lengths are 
independent and identically distributed, and (ii) the 
identical distribution is a Geometric Distribution 
with a success probability of vis. Let L denote the 
gap length. The gap length probability function is 
simply 

p(L u( u)' i) = 1 - -s s , i = 0, 1, 2 , .... (2) 

Lane-Change Completion Time 

The probability function of the number of occupied 
slots passed by the lane-change vehicle, denoted by 
M, before encountering an empty slot is simply 

p (M = i) = ( 1 _ ~ )( ~ r 
where i = 0, 1, 2,.... (3) 

When a vehicle initiates a lane change, its position 
relative to the neighboring slot in the destination 
lane may not allow a safe lane change even if the slot 
is empty. For simplicity, we assume that, at the time 
of initiating a lane-change attempt, the vehicle is 
properly positioned next to a slot in the de::;tination 
lane so that it can move into the slot safely as long as 
the slot is empty. 

The lane-change completion time T is the sum of 
the waiting time and T, i.e .. the maneuvering time. 
By the assumption of constant speed differential, 

T 
M X b 

/) + T, ( 4) 

and the probability function ofT is 

( i X b ) ( u)(u)' p T = - 8- +T = 1 - s s, 

i=O,l,2, .... (5) 

Recall that the length of a maneuvering space is an 
increasing and quadratic function of the speed dif
ferential between the two lanes. An increa!'e in 
speed differential implies a decrease in the number 
of slots. However, given the same vehicle/gap distri
bution, a higher speed differential implies a shorter 
time to encounter an empty slot fot· lane-changing. 
This trade-off will be illustrated in the following 
examples. 

Examples 

Consider an AHS with two automated lanes oper
ating under the slot assumptions. We study, for 
many different combinations of parameter values, 
the vehicle/gap distribution on the slower lane and 
the lane-change completion time from the faster 
lane to the slower lane. A uniform vehicle length l is 
assumed and is set at 5m. We set the safety spacing 
d between two longitudinally adjacent vehicles in 
the slower lane at 1Om. Let the speed of the slower 
lane be fixed at u = 100 kmlhr (27.8 m/s). We 
consider 5 different os: 1, 2, 3, 4, 5 m/s. The lane 
width and the lateral velocity during the lateral 
movement are fixed at 4m and 2mls respectively. 
The deceleration rate a of the lane-changing vehicle 
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Fig. 3. Mean oflanc-ehange completion distance for slotting. 

is initially set to a flxed value of 0.3g. (1g - 9.8 
m!s2 .) Four different traffic flows-3000, 3500, 
4000, and 4500 vehicles/(lane X hour)- on the 
slower lane are considered. 

At all the chosen parameter values, the time 
needed for the lateral movement wlu exceeds the 
time 8/a. To achieve a smoother ride, we assume a 
constant deceleration during the entire lateral 
movement. Therefore, the lateral movement and the 
speed change are completed at the same time. Note 
that the resulting constant deceleration rate is 
smaller than a. The slot length is therefore simply 
l ~ d + (c5/2) x T. The four flows, together with the 
speed and the slot length, determine four different 
vehicle/gap distributions. Based on the vehicle/gap 
distribution and the speed differential, we calculate 
the probability distribution of the distance traveled 
until a successful lane change. Note that in this and 
the examples given in the rest of this article, we 
convert the lane-change completion time to the cor
responding distance for easier interpretation. . 

The results are shown in Figures 3 and 4, which 
contrast the mean and the standard deviation 
among the four different flows respectively. At 
higher flow levels, the lane-change completion dis
tance grows fast with respect to flow. At flow levels 
of 3500-4500 and in the interval [2, 4], both the 
mean and the standard deviation of the distance 
increase by approximately 50% at every increment 
of 500 in flow. Note that the ratio of standard devi
ation over mean is close to 1, which indicates a large 
amount of variability 

These two figures also illustrate the trade-off be
tween the decrease in the number of slots and the 
decrease in distance needed to encounter an empty 
slot, both resulting from an increase of 8. At the high 
flow level of 4500, the trade-off is clear and the 
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Fig. 4. Standard deviation of lane-change completion dist.'lnCe 
for slotting. 

"best" 8s, in terms of both the mean and the stan
dard deviation, are between 2 and 4 m/s. For the 
three lower flow levels, the lane-change completion 
distance appears insensitive to the change m o be
tween 2 and 5 m/s. For all four flow levels, a speed 
differential of 1 m/s leads to a much higher lane
change completion distance than the best speed dif
ferential. In general, the optimal speed differential 
declines as flow increases. This is because higher 
flows result from smaller slots, which necessitate 
smaller speed differentials. 

1.2. Gap Length Distribution: 
Continuous Length 

We consider a different variation of the free-agent 
rule in this subsection. Consider a segment of an 
AHS lane oflength S with v vehicles each occupying 
a slot of length b = d -r h, where d is the supple
mental safety spacing and h is the length of the 
maneuvering space. However, in this model the 
whole highway segment as well as the unoccupied 
space between any two occupied slots arc no longer 
partitioned into a sequence of adjacent slots. Conse
quently, the gap length is defined to be the actual 
distance between two longitudinally adjacent occu
pied slots. This variation relaxes the rigid moving
slot partitioning of the whole segment of the previ
ous variation, whose implementation requires more 
sophisticated technologies on vehicles and on high
ways. These v vehicles are randomly distributed on 
the segment. In the absence of evidence favoring any 
particular pattern of distribution, we make the fol
lowing assumption: 

AsSUMPTION 2. The v vehicles are at random posi
tions on the lane in the following sense. After con
tracting the space occupied by a vehicle in to a point, 
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Fig. 5. Continuous gap lengths (all gaps have non-zero 
lengths>. 

the segment length becomes S - vb and each vehicle 
is represented as a point on the contracted segment. 
Vehzcle positzons are a random sample of size v of a 
umform random variable on the interval of[O, S 
vb ]. 

The definition of a gap and some of the assumptions 
are illustrated in Figures 5 and 6. 

Independent Exponential Gap Length Distribution 

Based on Assumption 2, we can obtain the joint 
distribution of the v - 1 gap lengths. When v ap
proaches infinity while c viS is kept constant, it 
can be shown that all the gap lengths are indepen
dent and identically distributed with an exponential 
distribution with a rate of c0 = v/(S vb ). To 
illustrate the idea, calculate the gap length distri
bution between the ith and the (i + 1)th vehicles, 
from either end of the segment, as follows. 

Denote the positions of the ith and the (i + 1)th 
vehicles as Y, and Y, +1 respectively. Also, denote 
S - vb by S 0 . Then, the joint probability density 
function (p.d.f.) of theY, and Y, +1 can be found to be 

..,.--:-u! --,.- (Y·)' 1

( = (i - 1)! (u - i - 1)! S 0 
1 

y, I)V I I( 1 )2, 
So So 

for O<y,<y, ... t<So. ( 6) 

To find the distribution of the gap length X Y;. 1 

- Y, first obtain the joint p.d.f . .fx.z(x , z), of X x 
and Z Y, = z, an auxiliary random variable for 
denvation convenience. (Note that the superscript of 

...... . .. rHote4 ...... tleogt••S -• (h+dl 

-"' of •oloklos (polots) • • 

Fig. 6. Continuous gap lengths, after removal of space occupied 
by vehicles. 

fx .z is included to indicate its dependence on u.) By 
change of variable, 

f 'X.z<x,z) 

u! (z)' 1( x+z)v 11( 1)2 
= (i - 1)! (u - i - 1)! S 0 

1 - So So ' 

for 0 < z < x + z < S 0 • ( 7) 

Now, replacing S 0 by vlc0 gives 

fx.z<x,z) 

= ~(n1 V- k) I( Cu(X + z))t' 
1 I 

(i - 1)! u z' 1 + v ' 
A 0 

for 0 < z < x + z < S 0 • ( 8) 

Denote the marginal distribution of X by f'x<x>. 
Then, 

I 
Cvlco) .r 

f 'x(x) = fx.z(x. z) dz. 
0 

(9) 

Although both the integrand and the range of the 
integral depend on u , it can be shown that 

lim f);(x) = J "[lim f xz(x, z) ] dz. (10) 
t......a; 0 ~ 

But, 

cl•t 
1. f'' (x z)- 0 z' 1e ('Q(x+a) liD X.Z , - (i _ } ) ! -

for z > 0 and x > 0. (11) 

Therefore, the probability density function {{x) of 
the distribution of gap length X. as u - oo, is 

f(x) = lim f'X(x) 
( ..... 

- o ' le• co(x+a) dz I
" c• ~I 

- o{i- l)! z 

c~+ 1 I e roa 0 z' le r,., dz =(i- 1)! 

= Cr:f! coa. (12) 

This demonstrates that the point. process defined in 
Assumption 2 is a Poisson Process when the seg
ment length tends to infinity and traffic density is 
kept constant. This can be viewed as the converse 



of the well-known fact that, given that n events 
(n ~ 1) of a Poisson process have occurred in time 
interval [0, tl, the set ofn arrival times has the same 
joint distribution as a set of n random variables that 
are independent and uniformly distributed on the 
interval. 

Lane-Change Completion Time 

To calculate the lane-change completion time, we 
assume that if at the initiation time of a lane-change 
attempt the vehicle is actually next to a sufficiently 
large gap in the destination lane, then it is properly 
positioned next to the gap so that it can move into 
the gap safely. In order for a lane change not to 
affect the speed of traffic on both lanes, the gap has 
to be no shorter than the slot length b. Note that the 
maneuvering space is needed as part of the space 
used by a vehicle while moving along a lane (i.e., not 
just during lane changing) to ensure that a lane 
change will not affect the speed of the origin lane 
during a lane change. Therefore, the probability that 
a gap is too short for a lane change is simply 

v 
and c 0 = S _ vb. 1 - e -~ob (13) q 

The probability function of the number of gaps (too 
small for a safe lane change) passed by the lane
change vehicles, denoted by G, before the success is 
a geometric distribution, due to the memoryless 
property of the exponential distribution and the as
sumption that gap lengths are i.i.d.: 

p(G i) = (1 - q)q'. (14) 

If a gap is too short, the lane-change vehicle has to 
pass that gap in search of a sufficiently large gap. 
The extra waiting time incurred depends on the 
actual length of the short gap. Given that the gap is 
shorter than b, the conditional probability density 
function of the gap length is simply 

f(xlx b) 
if 0 ~X~ b, 
otherwise. 

(15) 

The lane-change completion time is 

T 
Gb + 2:~ I v, 

5 - + 1', ( 16) 

where V., i = 1, 2, ... , "'• are independent and 
identically distributed with a probability density 
function of f(xlx "'" b). Note that the range of the 
sum in (16) is a random variable. One can calculate 
the distribution of T by first conditioning on the 
outcome of G and then weighing the conditional 
distributions by that of G. 
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Fig. 7. Mean oflane-change completion distance for continuous 
gnp lengths. 

Examples 

As in the examples given in Section 1.1, we study, 
for many different combinations of parameter val
ues, the vehicle/gap distribution on the slower lane 
and the lane-change completion time from the faster 
lane to the slower lane. For fair compansons to the 
slot scenario, we use the same set of parameter 
values for vehicle length, safety spacing, maneuver
ing space, speed of the slower lane, lane width, lat
eral velocity during lane changing, deceleration rate 
during lane changing, and four different traffic 
flows. We again consider 5 different Ss: 1, 2, 3, 4, 5 
m/s. The required gap length is again simply l + d + 
(5/2) X T. 

The four flows on the slower lane, together with 
the speed, vehicle length and safety spacing, deter
mine the four different vehicle/gap distributions. 
Based on the vehicle/gap distribution and the speed 
differential we calculate the probability distribution 
of the distance traveled until a successful lane 
change. 

The results are shown in Figures 7 nnd 8, which 
contrast the mean and the standard deviation 
among the four different flows respectively. These 
means and standard deviations are much higher 
than their slotting counterparts. In fact, they are at 
least approximately twice as high and are even 10 
times higher in some cases. Note the difference in 
distance scale between the two sets of figures, e.g., 
Figure 3 and Figure 7. At the flow level of 4500, the 
lane-change completion distance is clearly excessive, 
especially at high 5s. The rate of incrense, in both 
mean and standard deviation, in lane-change com
pletion distance is also higher than its slotting coun
terpart. Particularly, the rates of increase from 3500 
to 4000 and from 4000 to 4500 are much higher than 
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Fig. 8. Standard deviation of lane-change completion distance 
for continuous gap lengths. 

doubling. Recall that the corresponding rates for the 
slotting scenario are approximately 50%. The ratio 
of standard deviation over mean is near 1. This 
indicates high variability, as in the case of slotting. 

We close this subsection with the following re
marks. To maximize the probability of successful 
exit and lane change, the vehicle-following rules do 
play an important role. For example, in a free-agent 
scenario, the gap between two vehicles should better 
be a multiple of the length of a slot, a space which a 
lane-changing vehicle in a neighboring lane can 
safely move into without affecting the traffic speed 
in either lane. Any gap shorter than the slot length 
will be a waste of space. Also, ifthe vehicles needing 
to change lane are randomly distributed in the AHS, 
then randomly distributed empty slots may shorten 
the time or distance requirement for a successful 
lane change. 

2. MODELS FOR PLATOONING 

IN STUDYING THE CAPACITY associated with any op
erating scenario with the platooning vehicle-follow
ing rule, the platoon size distribution is needed for a 
variety of reasons. For example, a possible lane
change strategy may be to allow a vehicle to join a 
platoon only at the front of the platoon and, in this 
case, the platoon length distribution is needed to 
estimate the time for a lane-change completiOn. 
More importantly, if a maximum size is imposed on 
platoons and the platoon next to the lane-changing 
vehicle is already full, then the waiting time de
pends on the probability that the platoon is already 
full. 

A lane can be thought of as alternating cycles of 
platoon and gap. Assuming probabilistic indepen-

_....,..tty.,..,_ 

---~--!A 
l 

, .. , !A 
l 

... 

Fig. 9. Platoons and gaps. 
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dence among all cycle lengths and between the gap 
and platoon size distributions within a cycle, all one 
needs to know about the traffic in the target neigh
boring lane are the gap length distribution and the 
platoon size distribution. 

2.1. Gap Length Distribution 

Unlike the free-agent scenat·ios, vehicles in a pla
tooning scenario cluster while moving down the lane 
and there are two types of spacings-intraplatoon 
spacing and interplatoon spacing. The former is be
tween two adjacent vehicles in a platoon while the 
latter is between two longitudinally adjacent pla
toons. This key difference makes the approach de
scribed in the previous section unsuitable for the 
platooning scenarios and leads to a different ap
proach to modeling the vehicle/gap distribution. 
Since the intraplatoon spacing is likely set to a small 
value based on safety considet·ations regardless of 
traffic density, it should have littlt' impact on AHS 
capacity. Therefore, we concentrate on the length of 
interplatoon spacing. 

A gap between two platoons is defined as follows 
and depicted in Figure 9. Each vehicle requires a 
length of l + s 1 within a platoon, including the 
vehicle length l and the safety spacing s 1 between 
two vehicles. In other words, each of the vehicles in 
a platoon occupies a slot of length I + s 1 • For eal'e of 
discussion, assume that s /2 is allocated in the front 
and the other s 1/2 is allocated in the rear of the 
vehicle, regardless of whether there is an adjacent 
vehicle in its lane. Note that this intraplatoon slot is 
much shorter than the vehicle slot in either of the 
two free-agent scenarios discussed eal"lier. Particu
larly, s 1 is much shorter than d and no maneuvering 
space is included in the intraplatoon ::;lot. In fact, the 
PATH Program oflnstitute of Transportation Stud
ies at UC Berkeley is currently demonstrating a 
4-car platoon with a 4m intraplatoon spacing and a 
lm intraplatoon spacing has been targeted. 

There is a minimum safety spacing s2 required for 
any pair of adjacent platoons. Note that. as in the 
free-agent cases, this minimum safety spacing can
not be invaded by any vehicles during any lane
changing process. Assume that s 2/2 is allocated in 
the front and the other s:af2 is allocated in the rear of 



the platoon, regardless of whether there is an adja
cent platoon in its lane. Therefore, a platoon of size 
n occupies a length of s 2 + n X (l + s 1). 

Given a fixed number of platoons per lane per unit 
distance of AHS, one can use the argument em
ployed in Section 1.2 to justify the use of an expo
nential distribution for the gap length. However, 
given the number of vehicles per lane per unit dis
tance of AHS, the number of platoons is uncertain. 
Therefore, given a traffic density of a lane, the use of 
an exponential distribution as the gap length distri
bution is theoretically unjustified. However, the gap 
length distribution can be modeled as a mixture of 
exponential distributions. When the average num
ber of platoons per segment length is known and the 
variation of the number of platoons across different 
segments is small, the use of an exponential distri
bution may be an acceptable approximation. 

2.2. Platoon Size Distribution 
The dynamic nature of highway traffic adds the 

dimension of time to the definition of the platoon 
size distribution. The probability of a particular size 
may be interpreted as the long-term proportion of 
time any platoon has a particular size. 

What Changes the Platoon Size 

Before developing a model for the distribution, we 
first identify the important factors that affect the 
platoon size. We provide further detail of the pla
tooning scenario as follows. Vehicles change lanes as 
individuals, not in platoons. When a vehicle is en
tering or departing from a platoon, no other vehicles 
in the same platoon may do so. In an AHS with 
multiple automated lanes, a vehicle, to reach a tar
get lane, may have to pass through a number of 
intermediate lanes and in the process join and leave 
some platoons. We assume that such temporary 
stays with a platoon do not have a significant effect 
on the distribution of platoon size. 

For safety reasons, two longitudinally adjacent 
platoons are not allowed to merge to become one. 
Also, one platoon is not allowed to split into two, 
unless for accommodating a lane-change maneuver. 
Therefore, the important factors affecting the size of 
a particular platoon are: (i) a vehicle, upon entering 
the AHS, joins the platoon and stays until its time 
for exiting the AHS, (ii) a vehicle, after an extended 
stay, leaves the platoon for exiting, (iii) a vehicle, for 
the purpose of balancing traffic flow in different 
lanes, joins the platoon, and (iv) a vehicle, for flow 
balancing, leaves the platoon. In short, only a lane 
change may result in a platoon size change and the 
size of a platoon can change only by 1. 

We assume a known entry rate and consequently 
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an identical departure rate, resulting from lane 
changes, to ensure a constant flow. As in Section 1, 
we consider only lane changes from the faster lane to 
the slower lane. A lane-changing vehicle can either 
enter a sufficiently large gap between two platoons 
or join a platoon in the destination lane, but only at 
the platoon's front end. Upon entering a sufficiently 
large gap between two platoons, the lane-changing 
vehicle effectively creates a single-vehicle platoon. A 
lane-change vehicle will join a platoon if the vehi
cle's longitudinal position, at the initiation of the 
lane-change, is within the space occupied by the 
platoon. 

Maximum Platoon Size 

The size of a platoon may be constrained for n 
variety of reasons, e.g., the need to be able to com
plete a cycle of message relay from the platoon 
leader to all its followers in the platoon and back. 
Such constraints may also be required for safety and 
capacity reasons. We will assume an upper limit on 
the platoon size. 

A Special Feature of Size Evolution 

The size of a platoon changes if and only if a new 
member vehicle arrives or an existing member vehi
cle departs. The arrival rate and the departure rate 
are the two principal determinants of the platoon 
size distribution. Suppose a vehicle will join a pla
toon if and only if it is adjacent to the space occupied 
by a platoon at the lane-change initiation time. Then 
the larger the platoon size, the more space it occu
pies and the higher the arrival rate. Also suppose 
each vehicle in a common lane has an identical prob
ability of departing from the lane. Then the depar
ture rate also increases with the platoon size. In our 
opinion, any credible model should definitely ac
count for the dependence of size-change rates on the 
platoon size. It must also explicitly model the con
straint of maximum platoon size. 

Approach 

Assuming that platoon sizes are identically dis
tributed, we provide a dynamic treatment for calcu
lating the platoon size distribution. In other words, 
instead of conducting a static combinatorial analysis 
for the vehicle distribution on a segment, as in de
riving the gap distribution between two free-agents 
in Section 1, we concentrate on the size evolution of 
a platoon through time. We will model the evolution 
as a Continuous Time Markov Chain (ROSS, 1980). 

By an argument similar to the one used in deriv
ing the exponential gap-length distribution for the 
free-agent scenario in Section 1.2, we can justify the 
use of an exponential distribution to model the in-
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tcrarrival time and interdeparture time. Given the 
platoon size, the arrival and departure processes can 
be safely assumed to be independent. Therefore, we 
can use the Birth and Death Process, a special Con
tinuous Time Markov Chain, to model platoon size 
evolution. 

We first study the Markov Chain embedded in the 
Birth and Death Process. Let the size of the platoon 
be the state. The embedded Markov Chain clearly 
has only nmux• the maximum allowable size, states. 
However, smce a platoon disappears from a lane 
after a vehicle (as a single-vehicle platoon) changes 
lanes, we augment the state space of the embedded 
Markov Chain to include 0. Note that a complete 
specification of this augmented Markov Chain re
quires the knowledge of the unknown birth rate at 
state zero. However, it turns out that, to obtain the 
platoon size distribution, this birth rate is not re
quired. This is because the platoon size distribution 
is the conditional distribution of states 1 through 
nmax• given that the state is not 0. 

The approach is, intuitively and simply put, that 
when a platoon has been created, we observe the size 
evolution. When a platoon has just vamshed from 
the lane, we look elsewhere in the lane for a newly
formed single-vehicle platoon to continue the obser
vation. We summarize the model in the following 
assumption. 

ASSUMPTION 3. The platoon size N behaves accord
ing to a B1rth and Death Process in which (i) the 
arrival rate zs proportional to the length of space 
occupied by the platoon (except size 0 and the maxi
mum size) and (ii) the departure rate is proportional 
to the size of the platoon. The per-unit-distance-unit
time rate (number/(time X length)) of vehicles enter
ing a lane is r e· The per-vehicle-unit-time rate (num
berl(time >< vehicle}) of vehicles leaving the lane is r1• 

(Note that r ,jr1 is traffic density, i.e., number of ve
hicles per untt length.) 

Solution 

Let A.,. i 0, 1, 2, ... , nmruo denote the birth 
rate, i.e. , the exponential rate at which a new vehicle 
joins the platoon, when the platoon consists of i 
vehicles. Similarly, let IJ.i, i = 1, 2, ... , nmox• 

denote the death rate when the platoon has i vehi
cles. In terms of the rates defined in Assumption 3, 

and 

A., = re X (i X (l-+ s 1) +s2), 

for i = 1, 2, ... , nmax - 1, (17) 

A.,. .... = 0. 

p., = r1 X i, for i = 1, 2, ... , nmax• 

(18) 

(19) 

and 

IJ.o = 0. (20) 

Note that .\.0 is unknown. The limiting probability p, 
that the platoon is of size i is simply (sec p. 211 of 
Ross, 1980): 

TI •- 1 \ 
k • O 1\~ 

p, =~ Po. 
llir- 1 IJ.k 

i = 1 , 2 , . . • , 1l max • (21) 

Since we are only interested in the conditional 
probabilities, denoted by p;, i = 1, 2, ... , n"'""' of 
positive platoon length given the existence of the 
platoon, regardless of the value of A0 , we obtain the 
probability distribution of platoon size as follows: 

TI •- 1 A. 
I k • J ,A> 1 (22) P 1 = 1 P I t i = 2 t • • • t f2 llllll t •·2 ILk 

and 

Examples 

For fair comparison, we continue to usc the com
mon set of parameters shared by the two earlier sets 
of examples. The key parameters to the platoon size 
distribution is the traffic density and speed. We fix 
the speed at 100 kmlhr (27.8 m/s or approximately 
60 mph). We consider four different densities. The 
four densities and the corresponding approximate 
traffic flows are: 

(i) 30 vehicles/kilometer (3000 vehicles per hour) 
(ii) 35 vehicles/kilometer (3500 vehicles per hour) 

(iii) 40 vehicles/kilometer (4000 vehicles per hour) 
(iv) 45 vehicles/kilometer (4500 vehicles per hour) 

Other Parameters 

Consider a hypothetical scenario with 

(a) a maximum platoon size of 10, 
(b) a highway segment of length 1 000 meters, 
(c) four vehicles entering and leaving the segment 

per 60 seconds, 
(d) an interplatoon safety spacing of 50 meters (in-

cluding the maneuvering space), 
(e) a common vehicle length of 5 meters, and 
(f) an intraplatoon spacing of 1 meter. 

Based on these parameters and the corresponding 
units, r e and r1 can be derived. Given any traffic 
density of k vehicles/kilometer, re = 4/(1000 X 60) 
whereas r 1 = 4/(k X 60). 
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Fig. 10. Platoon size probability distribution. 

Numerical Solution 

Based on the common parameter values stated in 
la) through (f) and the four different traffic densi
ties, the four platoon size distributions are calcu
lated and plotted in Figure 10. Note that, at all four 
different flows, the probability that a platoon is full 
is very small. The expected value and the standard 
deviation of platoon size distributions are plotted 
against the four different flow conditions in Figure 
11. 

The platoon size distribution can be used to esti
mate lane-change completion time. This distribution 
is useful not only for analytical estimation of AHS 
capacity but also for AHS traffic simulation. For 
example, it can be used in initializing the existing 
traffic on an AHS. 

Before closing this section, we remark that the 
Birth and Death model cannot be used to find the 
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Fig. 11. Mean and standard deviation of platoon size distribu
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distribution of the cluster size, i.e., the number of 
vehicles between two consecutive gaps, associated 
with the slot scenario described in Section 1.1. The 
main reason is that the platoon size can change only 
by 1 whereas a cluster of occupied slots may be 
broken into two clusters of various sizes. 

2.3. Lane-Change Completion Time 

The gap and platoon size distributions can be used 
to estimate the time/distance until the completion of 
a lane change. The usage depends on the lane 
change rule. In those rules in which vehicles can join 
a platoon anywhere in the platoon with little prep
aration, e.g., a minor platoon splitting and the sub
sequent merging, the waiting time, and hence the 
time until lane-change completion, should be rela
tively short, if the platoon is not full. In this case, the 
pnmary use for the platoon size dil:>tnbution is the 
probability that the platoon is full. Note that the 
preparation not only takes time but also increases 
the probability of interference between separate 
lane-change attempts. If preparation requires the 
platoon to perform a full split into two separate 
platoons and then subsequently join back into one, 
not only the lateral flow but also the stability of 
longitudinal flow suffer. The feasibility, in terms of 
safety and control technology, of a minor splitting 
followed by a subsequent minor merging for a lane 
change should be investigated. 

Operatmg Rules 

We consider a more realistic but restrictive rule 
where a lane-changing vehicle (from a faster lane to 
a slower lane) can join a platoon only at its front for 
safety and flow stability (so that the receiving pla
toon does not have to split and hence cause slow
down by the trailing vehicles). Under this rule, the 
lane-change completion time hinges upon the pla
toon size distribution. 

The traffic on the destination lane consists of re
current cycles of platoon and gap and any platoon/ 
gap cycle is partitioned into 3 sections: (i) safety 
section: a section of length s 2, the minimum inter
platoon safety spacing, (ii) platoon section: a section 
consisting of a sequence of vehicles each of which 
occupies a space of length l .L s 1 , and (iii) gap 
section: a section of empty space between the front of 
the platoon and the beginning of the next cycle, as 
depicted in Figure 12. If the lane-change attempt is 
initiated when the vehicle is adjacent to section 1 
(safety section) or 2 (platoon section) in the destma
tion lane, it will have to wait until it catches up w1th 
the front of the platoon. (If the lane-change attempt 
is initiated when the vehicle is in the safety section, 
allowing the vehicle to slow down to enter a gap or 
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join the platoon in the previous cycle may slow down 
the traffic in the origin lane.) Upon catching up, if 
the platoon is not full yet, the vehicle makes a lat
eral move and joins the platoon at its front end. 
Otherwise, it must continue traveling in search for a 
sufficiently large gap or a non-full platoon. If the 
attempt is initiated when the vehicle is adjacent to 
section 3 (gap section) and the gap is sufficiently 
large, then it makes the lane change with no waiting 
at all. But, if the gap is not large enough, it must 
wait further for the next cycle. 

Modeling Approach 

As discussed earlier, we make the following as
sumption. 

ASSUMPTION 4. The length of section 3, i.e., the gap 
length, has an exponential distribution. 

For simplicity, the position of the lane-change vehi
cle is represented as a point. We first find the prob
ability that the vehicle, at the time of lane-change 
initiation, is adjacent to each of the 3 sections. Given 
the position, we calculate the conditional distribu
tion of the total elapsed time. The unconditional 
elapsed time distribution is then obtained by 
weighting the three conditional distributions by the 
three position probabilities. 

Denote the length of section i, i = 1, 2, 3, by L;. 
Since this "cyclic" process can be modeled as an 
"extended" alternating process, the three probabili
ties are simply: 

E(L.) 
q, = E(L 1) + E(L2) + E(L3). (24) 

where 

L 1- s2 with probability 1 and E(L1) = s2; (25) 

E(L 2) = (l + s 1)E(N) and E(N) = 2: ip;. (26) 
I 1 

Note that E(N) is the expected platoon size. To ap
proximate E(L3 ), we need to approximate the num
ber of platoons per unit length. Given a traffic den
sity c, i.e., the ratio of the number of vehicles over 

the segment length, we can approximate the number 
of platoons per unit length by c/E{N). Therefore, 

The probability distribution of the total elapsed time 
will be calculated for the following examples. 

Examples 

We continue the examples given in Section 2.2. 
Particularly, we consider again four different flows: 
3000, 3500, 4000, and 4500 vehicles/Oane X hour). 
We first discuss lane changes under these flow con
ditions. Under the four flow conditions, the proba
bility that a platoon is of maximum size is minute. 
(See Figure 10.) This minute probability enables us 
to approximate the first two conditional lane-change 
completion times by the time the vehicle needs to 
catch up with the front of the platoon. If the lane
change attempt is initiated when the vehicle hap
pens to be next to a gap and the gap is larger than 
the maneuvering space h, then the vehicle moves 
into the gap without delay and joins the platoon 
behind it. Under the four flow conditions, the prob
ability that the gap is shorter than h is also small. 
Therefore, we approximate the conditional elapsed 
time by the maneuvering time T. Note that when the 
gap is very large, the vehicle may be able to form a 
single-vehicle platoon. Otherwise, it can join the 
platoon if the platoon is not full yet. In either case, 
there is no waiting. 

Note that in order not to slow down the traffic in 
the destination lane as well as the ongin lane, a 
maneuvering space h is needed. However, by the 
nature of the platooning scenario, the maneuvering 
space is needed only during a lane change and hence 
has little effect on the vehicle/gap distribution, par
ticularly when compared to the two free-agent sce
narios. At the speed differential of 15 krnlhr, the 
maneuvering space is approximately only 9 m, in
cluding the 5 m vehicle length. 

By denoting, as before, the time required for the 
lateral movement itself by T, we now calculate the 
three conditional probability distributions for the 
total time until lane-change completion. Denote the 
corresponding random variables by T; , i 1, 2, 3. 
Given that at the initiation time of a lane-change 
attempt the lane-change vehicle is next to a platoon, 
the probability pi that the platoon is of size i de
pends not only on p; but also on the length of the 
platoon section. This is because bigger platoons have 
higher probabilities of being next to the lane-change 
vehicle and the relative likelihood of a platoon of size 
i being next to the lane-change vehicle is propor-
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tional to the product of i and pj. More precisely, 

p~ 

Therefore, 

ip; 

2:;· i Jp;' 
i = 1, 2, . . . , n max • (28) 

( T 
U[O.oX!I+•tll ) 

p 2- -8-- + T = p';, i = 1 , 2 1 • • • , n mox 

(29) 

and 

u T - T' [o.~ 
I 2 t 8 ' (30) 

where U10 sal is the uniform random variable over 
the interval [0, s2 ), which is independent ofTi, and 

( 
i(l+sl) ) 

p T; 8 + T p;, i=1,2, ... ,nmax· 

(31) 

Note that, unlike the distribution of T 2 , the distri
bution of Ti involves p ~. instead of p j. Finally, 

T 3 - T. (32) 

Note that T 1 has a mixed probability distribution, 
i.e., a mixture of discrete probability distributions 
and absolutely continuous distributions. Further 
weighting the distributions of Ti according to q,, i = 
1, 2, 3, gives the unconditional distribution of total 
time until a successful lane change. This mixed dis
tribution can be obtained numerically. The expected 
value and the standard deviation of lane-change 
completion distance at speed differentials of 1 m/s 
and 3 m/s are plotted against four different traffic 
flows in Figures 13 and 14 respectively. 
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Fig. 14. Standard deviation of lane-change completion distunce 
for platooning. 

Both the mean and the standard deviation of the 
lane change completion distance are quite linear 
with respect to the change in flow levels below 4500. 
In fact, they increase quite slowly with respect to the 
flow at these levels. Since, at these flow levels, a lane 
change can be most likely accomplished in one pla
toon-gap cycle, the increase in completion distance 
as flow level increases is attributable to the corre
sponding increase in platoon size. At the speed dif
ferential of 3 m/s, the lane-change completion dis
tance is short. Since the intraplatoon spacing is 
independent of the speed differential, difference in 
speed differential has only a linear effect on the 
lane-change completion distance at the four differ
ent flow levels. 

3. COMPARISON BETWEEN FREE-AGENT AND 
PLATOONING RULES 

AT THE SPEED DIFFERENTIAL of 3 m/s (10.8 km/hr), 
we compare, for each of the four flows, the mean and 
standard deviation of the lane-change completion 
time associated with each of the three scenarios 
studied in this paper. Note that the speed differen
tial of 3 m/s provides approximately the best lane
change completion time, in terms of mean and stan
dard deviation, for the slot scenario at all four flow 
levels. The differences are contrasted in Table I. 

From Table I it is clear that the continuous-gap
length free-agent scenario requires a much longer 
lane-change completion time than the slotting sce
nario at all four flow levels, whereas the slotting 
scenario requires longer, though not as much, such 
time than the platooning scenario for the three 
larger flow levels. The performance of the slotting 
scenario at a flow level of 4000 is better than that of 
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TABLE I 
Compari.~on among three scenarios with a speed differential of 

.1 m Is. (Unit:meter) 

Scenan o 

Contmuoua 
How' Moments Slot gap length Platoonmg 

3000 Mean 275 620 346 
s.d. 295 717 234 

3500 Mean 373 1179 370 
s.d. 396 1265 239 

4000 Mean 534 2968 392 
S.d. 560 3040 245 

4500 Mean 846 413 
s.d, 875 252 

'Vchicles/Oane X hour). 

its continuous-gap-length counterpart at the flow 
level of 3000. Note again the insensitivity of the 
lane-change completion time associated with the 
platooning scenario with respect to the four flow 
levels. 

Although it is clear that, in terms oflateral capac
ity at the four different flow levels, both platooning 
and slotting are better than the continuous-gap
length free-agent scenario, the performance superi
ority comes at a price. Both slotting and platooning 
reqmre additional technology support. The former 
likely requires infrastructure support while the lat
ter requires more sophisticated vehicle technology 
and perhaps also some form of infrastructure sup
port. This comparison oflateral capacity provides an 
important component of the overall performance 
evaluation of the vehicle-following rules. 

The lane-change completion time distributiOn for 
platooning and even the platoon size distribution for 
flow levels higher than 4500 deserve further model
ing attention, as do models incorporating possible 
clustering of vehicles under the two free-agent sce
narios. All three scenarios provide for speed con
stancy by prohibiting disruption of speed by lane 
changes. Corresponding scenarios where local and 
temporary disruption of lane speeds due to lane 
changing is allowed, also deserve further research 
attent10n. Interaction among multiple lane-change 
maneuvers and the effect of cooperation among 
neighboring veh1cles for lane-changing may be more 
easily studied through simulation. 

4. CONCLUSION 

In this article, we developed analytical models to 
study the vehicle/platoon and gap distributions on a 
lane for three AHS operating scenarios. Among the 
analytical models developed is the model for predict
ing the platoon size distribution. Although the con
cept of platooning has been fundamental to much of 

AHS operation, this is, to our knowledge, the first 
probabilistic model for the platoon size in the pub
lished literature. Numerical results arc provided to 
illustrate the vehicle/gap distributions for all three 
scenarios at different longitudinal flow levels. 

Maximum lane capacity alone is not sufficient for 
calculating the capacity of a multi-lane highway. On 
such a highway, lateral flow is needed to allow for 
vehicles to reach the inner lanes and for vehicles on 
inner lanes to exit and it tends to reduce and disturb 
the longitudinal flow. We considered a class oflane
changing rules under which a vehtcle has micro
scopic vehicle movement information only about ve
hicles in its immediate neighborhood and lane
changing should not affect the speed of the other 
vehicles on either lane. Based on the probabilistic 
vehicle/gap models, this paper developed models for 
and compared the impact of longitudinal flow on the 
efficiency of such lane-changing under the vehicle
following rules mentioned above. Our numerical re
sults show that the vehicle-following rule has a sub
stantial effect on the efficiency of such lane
changing. The findings of this research can also be 
used to study the impact of longitudinal flow on 
traffic merging. 

Most of the fundamental AHS concepts (e.g., pla
tooning) are designed primarily to increase longitu
dinal flow. However, high longitudinal flow may ac
tually hinder lateral flow. It may even decrease the 
lateral capacity to such a degree that the lateral 
capacity becomes the bottleneck of highway traffic 
flow. Since exiting vehicles at the desired off-ramps 
without sufficient lateral capacity will lead to traffic 
slowdown, the longitudinal flow suffers as a result. 
Therefore, the issue of how to optimize the longitu
dinal flow subject to the requirement of lateral flow 
is an important issue to be resolved. The findings of 
this research can be used further to study the inter
action between the longitudinal capacity and the 
lateral capacity of an automated highway system. 
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