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ABSTRACT

Spartan Web Application Firewall

by Brian C. Lee

Computer security is an ongoing issue and attacks are growing more sophisit-

cated. One category of attack utilizes cross-site scripting (XSS) to extract confiden-

tial data such as a user’s login credential’s without the knowledge of either the user

nor the web server by utilizing vulnerabilities on web pages and internet browsers.

Many people develop their own web applications without learning about or having

good coding practices or security in mind. Web application firewalls are able to help

but can be enhanced to be more effective than they currently are at detecting re-

flected XSS attacks by analyzing the request and response data sent between the web

application by a user’s browser to more quickly determine if a reflected XSS attack is

being attempted. Spartan Web Application Firewall is designed to do this efficiently

without being limited to requiring users to be using a specific web browser or web

browser plug-in.
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CHAPTER 1

Introduction

Because of the wide availability of web development tools, the ease of setting up

a web site, the increasing usage of the internet, the convenience of accessing data,

and the hetergeneous nature of websites, web security is an increasingly necessary

field. Web security is constantly evolving and many methods were made to prevent

unauthorized access to sensitive information such as personal, financial, and account

data.

An increasing number of attacks on big profile targets such as corporations

demonstrate the inadequacy of defenses that were put in place for protecting valuable

data. Each major data breach causes not only the leak of sensitive customer data,

a decrease in consumer confidence, and a hit to the victim corporation’s reputation,

but also intellectual property that corporations rely on to sustain or grow their rev-

enue. In some cases, it only takes one vulnerability to be discovered and exploited by

attackers to compromise an entire network.

These unauthorized accesses can and often do occur from poor programming

techniques that are exploited by malformed input data. There are many layers that

require security, starting from the browser and going all the way to the server, includ-

ing any intermediate layers such as firewalls. Many web applications are not designed

with security in mind and many programmers lack knowledge of common web se-

curity practices. Web application firewalls are built to address this issue and offer

security to a wider audience than security built into web browsers. They do this by

adding another layer of defense between a potential attacker and a web application to

1



prevent malformed input data from affecting a web application or being passed back

from the web application to the browser by sanitizing or rejecting requests containing

suspicious input data.

2



CHAPTER 2

Background

2.1 Attacks

There are multiple categories of attacks, each one with potentially devastating

effects. Defending against these different attacks require security to be tailored to

a specific type of attack. However, some attacks such as stored cross-site scripting

attacks and SQL injection attacks, described below may be similar enough to defend

against both at the same time.

2.1.1 SQL Injection Attacks

Structured Query Language, also known as SQL, is a language that is used to in-

terface with databases. Many web applications rely on databases to store a multitude

of data, ranging from user credentials, content, and statistics. For example, banks

typically store all of the account information about members in various databases.

Banking websites will need to use SQL query for both user credentials as well as

the account information. Because SQL is a common language interface for many

databases, it is a big target to use as an attack vector for malicious attackers.

SQL injection attacks target databases in order to steal or corrupt data. The

way that this attack is typically carried out is by exploiting known vulnerabilities,

such as unsanitized user input, that is put into part of a query and directly affects

the operation. For example, a basic login page will take credentials like user ID

and password and build a SQL query to verify them. If either field is unsanitized,

meaning that no checking for potentially harmful input is done, the vulnerable web

application can allow unauthorized operations to be run. An attacker can then get
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access to read entries, or in the worst case write, delete, alter, or change the structure

of the database.

Consider the following PHP code snippet which builds a SQL query

to pass to the database: SELECT * FROM USERS WHERE userID=$userid AND

Password=$password;

In the above SQL statement, the userid can be replaced with ‘ OR ‘1’=‘1’;,

which would result in every field in the table USERS to evaluate to true. What

this attack essentially does is trick the web application into authorizing a potential

attacker regardless of whether the userid or password is correct. The statement could

even be followed up with potentially destructive SQL statements with the rest of the

original statement commented out. If the database were designed with a potential

attack such as this in mind, the web application designer could take precautionary

actions such as sanitizing the input to prevent SQL injection attacks from having ill

effects.

2.1.2 XSS attacks

There are two categories of cross-site scripting (XSS) attacks: reflected and

stored. Reflected XSS attacks use known vulnerabilities of legitimite web applica-

tion in order to execute unauthorized scripts and are generally targeted at individual

users, while stored XSS attacks are able to make changes to websites themselves and

can affect any user visiting the compromised web site.

2.1.2.1 Reflected XSS Attacks

Reflected XSS attacks are not only the most common form of cross-site scripting

attack, but are also the most common security exploit according to OWASP [1].
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Vulnerabilities in web applications are typically caused by design flaws in which some

input was not validated nor sanitized. These vulnerabilities are typically found by

attackers trying various forms of input to attempt to run a short script. Vulnerable

web servers may even be listed in a repository used by malicious users and available

to attackers to exploit.

This form of attack typically relies on social engineering to trick victims; users

may receive emails seemingly from friends, family, or a company they do business

with containing injection scripts on vulnerable pages or click on links found from a

web site. Some victims may even receive emails that appear to have been sent from

a government agency, usually requiring some sensitive personal information, which

creates a sense of great urgency in order to get victims panicked, preventing them

from thinking more clearly. These attacks are usually carried out with the intent to

steal information such as account credentials or perform unauthorized requests on

behalf of a compromised user account.

As an example of a reflected cross-site scripting attack, consider the following

(fabricated) phishing URL that is sent to a victim through an email prompting them

to log into their account for an urgent reason:

http://www.vulnerablesite.com/welcome&username=<script>alert(‘‘There

is a problem with your account. Please visit

http://www.vulnerablesite.badsite.com and log in again.’’);</script>

and assume that the vulnerable webpage contains the PHP code snippet:

echo “Welcome $username!”

The result is that although the victim is first taken to the vulnerable webpage, they

are immediately prompted to visit the attacker’s website and attempt to log in there.

The attacker can then obtain access to the victim’s login credentials.
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Even news websites are vulnerable to attacks. Tom’s Guide identifies articles

on the New York Times website dated before 2013 have a known vulnerability to

reflected XSS attacks [2]. No reports seem to have been made regarding any attacks

exploiting this vulnerability but they are still potential targets for future attacks.

2.1.2.2 Stored XSS Attacks

Stored XSS attacks require a compromised web server in which malicious scripts

are stored in the web server itself and included in web sites that it is serving. This is

a more severe form of attack because it affects all users to a website, not just those

targeted using social engineering. It can be harder to detect because third party

websites are not necessarily involved; the script can reside entirely on the web server.

One common vector for stored XSS attacks is sites which have user-generated

content, such as social networking sites and forums. Vulnerable web sites might not

sanitize the user-submitted content, leading to third party scripts to execute on users

just viewing the site. This can be difficult to detect since this type of website can be

expected to have third-party content, and differentiating good or bad content may be

challenging.

Another potential source for a stored XSS attack is through advertisements. In-

ternet advertisements are often included using <script> tags since isolating them in

separate iframes makes advertisement targeting impossible [3]. Malicious advertise-

ments can access data in the web application and exfiltrate it to an attacker’s server,

or utilize it to try different vulnerabilities until one is found, allowing additional mal-

ware to be installed. This form of attack has even affected Google’s DoubleClick

advertising services [4], which is used on roughly 80% of websites that offer advertis-

ing [5].
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2.1.2.3 mXSS Attacks

Hederich introduced a new type of XSS attack entitled mutation-based XSS, or

mXSS [6]. This type of attack utilizes innerHTML, which is an HTML DOM property

which can be used to set or retrieve the HTML content of an element, and other prop-

erties. Hederich reports that the top three browsers, Firefox, Chrome, and Internet

Explorer, are all vulnerable to mXSS attacks. mXSS attacks take advantage of the

browser layout engine to bypass XSS filters and becomes an active XSS attack vector.

One example of a type of site that would use innerHTML and thus be vulnerable are

mail clients such as Yahoo! Mail.

2.1.3 Denial of Service Attacks

The intent of denial of service (DoS) attacks are to essentially bring a web server

offline by exhausting the resources on that web server. This is accomplished by

opening many connections to the web server from one or a few sources until most or

all connections are used. Future connections are held up waiting and time out.

Another flavor of this attack is a distributed denial of service (DDoS) attack

in which the connections being opened come from many different sources, making

it harder to defend against. In addition to this, the source IP addresses can be

"spoofed", meaning fake, which prevents defending against this type of attack by

blocking specific IP addresses. This sort of attack is typically carried out through

botnets by infecting a large number of machines having them connect to a server

where commands can be given [7].
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2.1.4 Clickjacking

Clickjacking is a way to fool a user into clicking on something other than what

the user intended to click on by using hidden elements by utilizing IFRAMEs to

load a victim website and Cascading Style Sheets (CSS) [8]. One goal of clickjack-

ing can be to generate advertisement revenue by tricking victims into viewing them

advertisements hosted on malicious web sites [9].

2.2 Defenses

The main purpose of this project is to defend against reflected XSS attacks. Dif-

ferent types of defenses against reflected XSS attacks are already available. The most

prevalent ones are built into the browsers themselves, and others are available through

browser add-ons and web application firewalls. Common strategies for these defenses

are checking for specific regular expressions, checking the request and response data,

sanitizing data, and checking for third party scripts.

2.2.1 Browser Add-on defenses

Since there are multiple browsers in use today, different browsers have different

add-ons but many of the popular ones (including ones for security) are available in

some form on each of the popular browsers.

2.2.1.1 NoScript

NoScript for the FireFox browser is one of the most popular security-oriented

browser add-ons. By default, it blocks all Javascript, Flash, and Java with the ex-

ception of websites that are whitelisted [10]. However, NoScript is very customizable

and allows for different actions to be taken, such as temporarily (or permanently)
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allowing scripts to run on blocked websites. This gives the user a lot of control over

what can be executed on a given website. NoScript is designed to detect Javascript

injection of whitelisted sites and flag them as a possible reflected XSS attack. By

default, even requests from one whitelisted website to another will be checked by

NoScript’s InjectionChecker engine which “sanitizes only requests which contain con-

spicuous fragments of HTML or syntactically valid JavaScript” [10].

NoScript’s approach is very effective, but introduces many false positives by san-

itizing request data instead of response data and does not confirm that the sanitized

data appears in the response [11]. Many internet users are not familiar with the con-

cept of whitelisting specific scripts and as a result, may just disable or globally allow

scripts to get their websites to work which defeats the purpose of this add-on.

2.2.2 Browser Built-in Defenses

Several web browsers have started to include built-in defenses to protect users

against reflected cross-site scripting attacks. Having built-in defenses at the browser

level allows for actions to be taken after parsing the HTML, which can be beneficial in

eliminating false positives and catching attacks that can rely on encoding. In addition

to this, due to the fact that they can access data after it is parsed, the data being

checked is what will be displayed, increasing the accuracy while also decreasing the

overhead of having to do parsing twice like some other defenses.

2.2.2.1 Internet Explorer 8

Microsoft had introduced protection against reflected XSS attacks in Internet

Explorer by parsing the request and response information and searching for patterns,

such as <script> tags, and sanitizing the page accordingly.
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However, the way that the detection itself worked caused problems and even

created additional vulnerabilities. One of the problems was with false positives: if a

user were executing a search passing in <script> tags, the browser will assume that

a reflected XSS attack is being executed and sanitize the page accordingly. Further-

more, this security feature introduced new vulnerabilities - namely by inducing a false

positive to mangle security-oriented code. Bates provided the following example of a

url that would prevent a security script from being loaded [12]:

http://victim.com/?<script src="secure.js"></script>

Because the script is contained in both the request and response, the browser will

incorrectly identify it as a reflected cross-site scripting vector and will mangle the

script.

One real-world example shown on stackoverflow is a search query on Microsoft’s

Bing search engine that generates script errors and can break security-oriented

code [13]:

http://www.bing.com/search?q=%3Cscript+type%3D%22text%2Fjavascript%22

%3E

Another of these new vulnerabilities is that Internet Explorer 8 “does not cor-

rectly approximate the byte-to-character decoding process” [12]. This allows for web

pages that do not specify a character set to be vulnerable against an attack that

uses UTF-7 encoding. According to a blog post from ZDNet, Microsoft had posted

a response to reports of vulnerabilities in IE8’s reflected XSS security and released a

security patch MS10-002 [14]. Unfortunately, it seems that the security patch did not

address all of the vulnerabilities because of the perceived tradeoff between security

and compatibility [15] and can still expose certain web sites to these vulnerabilities.
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2.2.2.2 Chrome

Google’s Chrome browser utilizes an implementation of the XSSAuditor archi-

tecture, which resides between the browser’s HTML parser and Javascript engine,

allowing better performance with a higher degree of accuracy compared to the tra-

ditional method of checking the request and response data prior to parsing [12]. In

order to have a high degree of accuracy in terms of reducing false negatives as well

as false positives, checks for attacks should consider how data, such as text written

in unicode, is represented in the browser. However, to do so prior to the actual pars-

ing would incur a higher performance cost due to the fact that it has to effectively

parse the data twice. By placing the security module inbetween the parser and the

Javascript engine, it is able to selectively view only scripts that are going to be run,

saving the performance cost of both an initial parsing as well as suspicious but benign

patterns that are not actually scripts.

2.2.3 Content Delivery Networks

Content Delivery Networks (CDNs) such as as CloudFlare [16] and Akamai [17]

provide several services, including security-oriented security features, to web applica-

tion developers. One of the main purposes of CDNs is providing multiple servers to

cache data to improve performance for users, reduces bandwidth to the web appli-

cation server, and greatly reduces the risk of the web application server from going

down (by somewhat eliminating the single point of failure aspect). Caching data

and having servers localized in different areas allows for users to have reduced re-

sponse times in terms of loading pages for web applications due to the relatively close

proximity of the CDN servers. Since data is cached on the CDN servers, it allows

for reduced bandwidth to the web application server itself. Finally, it helps defend
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against DoS/DDoS attacks by masking the true address of the web application server

and using the different servers for redundancy.

In addition to this, CDNs can take additional steps to detect and defend against

DoS/DDoS attacks. There are multiple operating modes in which requests are fil-

tered, ranging from normal (allowing everything) to paranoid (only allowing trusted

connections) mode.

2.2.4 Web Application Firewalls

A web application firewall (WAF) is a layer of security which applies a set of

pre-defined rules against requests coming in and responses going back from a web

application. WAFs are typically used as a defense against common attacks such as

XSS attacks and SQL Injection attacks [1].

However, web application firewalls do have weaknesses. Schmitt and Schinzel

describe two different types of side channels, which are described as “unintentional

and hidden communication channels that appear if the publicly observable behavior of

a process correlates with sensitive information” [18]. These two types of side channels

are categorized as timing side channels, and storage side channels. Their focus was on

timing side channels in which they measure the response time for different requests to

try to ascertain information about not only what gets flagged by the web application

firewall, but also which web application firewall is in use based on fingerprinting. They

describe three different web application firewall network topologies: a stand-alone web

application firewall, a web application firewall that is included as a plug-in such as

ModSecurity, and a web application firewall that is included as a programming library

in the web application itself. Using ModSecurity as an example, they can determine

and choose which rules are in effect and what actions are taken for each one, i.e.

12



whether a request is passed on to the web application or blocked. Their assumption

was that the response time for a request that was blocked by a web aplication firewall

would take a noticeably shorter amount of time than one that was passed on to the

web application. Their experiment was successful and they found that response times

are not typically normalized when it comes to web application firewalls, and that this

sort of attack cannot be easily defended against if the attack is distributed across

many users.

2.2.4.1 ModSecurity and OWASP

ModSecurity is an open-source Web Application Firewall that works on several

platforms, such as Apache Server. It offers a variety of features, such as different

levels of HTTP logging, three different security models, and a flexible rule engine [19].

HTTP logging at different levels allow for HTTP requests and response to be logged

as the user desires, up to full logging of every transaction along with the timestamp.

The three security models are:

∙ Negative Security Model

∙ Rule-based Security Model

∙ Positive Security Model

In the negative security model, ModSecurity will give an anomaly score for each

request, IP address, application sessions, and user accounts, which can be logged

or rejected if the anomaly score is high enough. In the rule-based security model,

ModSecurity utilizes different sets of rules, namely the OWASP ModSecurity Core

Rule Set which defends against common web application attacks and is maintained

by an active userbase. Users can write and upload their own rules to be included
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along with a description of what the rules defend against, allowing the core rule set

to protect against recent attacks. The positive security model can be seen as a very

restrictive approach, only allowing whitelisted requests and rejecting all others.

Because ModSecurity is open-source, web application developers have a great

deal of customization such as the logging of metadata and level of security desired.

Likewise, the rules listed on the Open Web Application Security Project (OWASP)

are very customizable, allowing users to select only a subset of rules to use, mod-

ify the security level of a rules, modify the action taken by a rule, or modify the

rule itself. Below is an example of a rule included in the OWASP core rule set

modsecurity_crs_41_xss_attacks.conf [1] which searches for script tags and logs

any matches as a critical anomaly:

SecRule ARGS "(?i)(<script[^>]*>[\s\S]*?<\/script[^>]*>|<script[^>]*>[\s\S

]*?<\/script[[\s\S]]*[\s\S]|<script[^>]*>[\s\S]*?<\/script[\s]*[\s]|<

script[^>]*>[\s\S]*?<\/script|<script[^>]*>[\s\S]*?)" "id:’973336’,phase

:2,rev:’1’,ver:’OWASP_CRS/2.2.8’,maturity:’1’,accuracy:’8’,t:none,t:

urlDecodeUni,t:htmlEntityDecode,t:jsDecode,t:cssDecode,log,capture,msg:’

XSS Filter - Category 1: Script Tag Vector’,tag:’OWASP_CRS/WEB_ATTACK/XSS

’,tag:’WASCTC/WASC-8’,tag:’WASCTC/WASC-22’,tag:’OWASP_TOP_10/A2’,tag:’

OWASP_AppSensor/IE1’,tag:’PCI/6.5.1’,logdata:’Matched Data: %{TX.0} found

within %{MATCHED_VAR_NAME}: %{MATCHED_VAR}’,severity:’2’,setvar:’tx.msg

=%{rule.msg}’,setvar:tx.xss_score=+%{tx.critical_anomaly_score},setvar:tx

.anomaly_score=+%{tx.critical_anomaly_score},setvar:tx.%{rule.id}-

OWASP_CRS/WEB_ATTACK/XSS-%{matched_var_name}=%{tx.0}"}

The above rule has a rule id of 973336, and phase:2 specifies that ModSecurity

will run the rule against the request body. In fact, all of the XSS injection rules
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run on the request body. The five phases for Apache requests from the ModSecurity

wiki [20] are:

∙ Request headers

∙ Request body

∙ Response headers

∙ Response body

∙ Logging

The fact that these rules run only on the request body can create false positives, but

are effective in defending against stored cross-site scripting attacks on web applica-

tions that do not otherwise have sufficient checking of input. Accuracy varies from

1 to 9 where 1 generates many false positives and 9 is very accurate. Maturity indi-

cates the level of testing that the rule has undergone along with the length of time it

has been available. Various other options assigns tags, specifies options for logging,

actions taken, and sets the severity of any matches. In general, this rule searches

for various combinations of <script> tags along with other characters indicating a

reflected cross-site scripting attack.

A study was done by Canali, Balzarotti, and Francillon [21] regarding the ef-

fectiveness of not only the ModSecurity module, but also the OWASP core rule set.

They had different attacks and saw varying levels of success from ModSecurity:

∙ SQL injection attacks

∙ remote file upload with code injection using web shell
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∙ remote file upload of a phishing kit

∙ IRC bot activity

∙ uploading of known malware.

ModSecurity with the OWASP core rule set was found to be completely to somewhat

successful at blocking SQL injection attacks and code injection attacks using web

shell, and successful at logging SQL injection attacks, code injection attacks using

web shell, and remote upload of phishing kits. However, it had no success at all in

detecting suspicious IRC bot activity and uploading of known malware.

2.2.4.2 TokDoc

Kreuger proposed another type of web application firewall that utilized anomaly

detection to decrease the number of false negatives from other web application fire-

walls such as ModSecurity [22]. TokDoc goes through all of the relevant data for the

path, GET and POST, and header fields. Based on the usage, Krueger identified four

different types based on the properties of the fields:

∙ constants which never change

∙ enumerations which has a small set of values

∙ machine input which contains metadata

∙ human input that is widely variable.

By categorizing the data fields by these four types, some general assumptions can be

made for any given data field. After running anomaly detection on the data fields,

subsequent healing actions can be taken [22]:
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∙ dropping the token, meaning do not pass it along to the web application

∙ preventative encoding which translates special characters for HTML and SQL

∙ replacement with the most frequent normal value

∙ replacement with the nearest value

The results were promising for detecting false negatives, however it is not clear how

effective the replacement healing actions are. Although for many cases such as typos

it may be desireable, there may be some legitimate anomalies where a healing action

would be undesirable.
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CHAPTER 3

Spartan WAF

An implementation of a web application firewall named “Spartan WAF” was

created to bring browser-style reflected XSS defenses to web applications. This web

application firewall is different than existing solutions (such as ModSecurity) in that

it compares both the request and response data in order to reduce the number of false

positives. Here’s an overview of how it works: First, the web application includes the

web application firewall in the form of a PHP script. The input to the web application

(such as form data) is then passed through the web application firewall, which runs

one or more rule files against the input. The input rule files are compatible with

the existing Open Web Application Security Project (OWASP) rules; however, they

mainly utilize the regular expressions provided but do not take the same actions.

Instead, for any input matching a regular expression in the rule files, it will create

a temporary file and save it, recording not only the input, but the rule id that it

was matched to. Once the web application firewall processes the input, the web

application then sends the input along to the web server. After the web server passes

the response back to the web application, the web application firewall will do another

scan with any response data that is displayed on the page. It will again run the

response data against the sets of rules in the same rule files and compare any matches

with those recorded in the temporary file. If there are matches in both the request

and response data, the data is then flagged, recorded, then sanitized to prevent any

ill effects.

An example of a false positive that would trigger ModSecurity running with the

OWASP XSS rules is a website, such as a tech blog, that has a search function. A
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user wishes to search for examples of <script> tags and types it into the search bar.

Even if the web application sanitized the input prior to referencing it, ModSecurity

would detect the <script> tag and take action. However, with Spartan WAF, the

<script> tag would be passed along to the web application. The web application

would sanitize it, run the search, then print out any results along with the sanitized

search string. Spartan WAF then sees the sanitized search string and will not take

action. Even if the web application did not sanitize the search string and returned

the original search string back, Spartan WAF would then sanitize it accordingly.

One of the drawbacks of this approach is that echo, which basically generates

HTML that can be interpreted by the web browser, is a PHP language construct

and not a function so it cannot be overridden. However, Spartan WAF includes a

preprocessor portion that converts a web application to use a separate function to

replace calls to echo with a similar function respEcho which compares HTML gener-

ated by the web application to input data that was previously flagged as suspicious.

In other words, this function ensures that any information passed along from the web

application to the browser will go through the web application firewall.

The advantages of this implementation lie in the layer in which the web appli-

cation firewall resides. Since it is part of the web application firewall itself, it does

not depend on the web browser that is accessing the data, nor the platform. Also,

because it compares both the request and response data, it can reduce the number of

false positives that are typically flagged. Due to the simplicity of the usage, it can be

applied to web applications with some minimal effort to detect and prevent attacks

with readily available proven rule files.

In regards to the timing side channel in which one can infer actions taken by the

web application firewall based on the response time, as far as reflected XSS attacks
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are concerned, this attack is not effective. The reason for this lies in the design of

Spartan WAF. Because any request data that matches any rules configured is saved

then compared to the response data, the action taken is done after the web application

has returned the data. The differences in measureable response times should be only

noticeable depending on the rule matching algorithm and the comparison between

the request and response data. Thus, an attacker will not be able to easily determine

what action was taken.

Because the web application firewall uses the same rules as OWASP, the detection

rate should be identical. The main goal of the test is to prove its usefulness in

detecting false positives and measure the overall performance of the web application

firewall, in particular which rules have a higher performance cost and their overall

effectiveness.

To use Spartan Web Application Firewall, first the script must be included and

the rule files with extension .conf must be in the same directory as waf.php:

include "waf.php";

then a call must be made to check the input against the rule files:

checkInput($_GET);

The function checkInput expects an array of length 1 or greater. It goes through

each of the input array elements and calls another function runRules with the key

of the input element along with current input element, which contains the main

functionality of Spartan Web Application Firewall. For example, if the $_GET array

is passed in, the keys for fields it contains can include $username and $password.

function checkInput($input) {

// make sure there is input data
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if (!empty($input)) {

// loop through all input data

while ($value = current($input)) {

// run rules on each

runRules(key($input),$value);

next($input);

} // end while

} // end if

} // end function checkInput

The function runRules takes in one key value and one input value.

function runRules($key, $input)

The main reason for the key value to be passed is to allow log files to show

which input field contained the detected reflected cross-site scripting attack vector.

The start of the code will first open both perfdata.txt for output for recording

performance data and input_matches.txt. For each, it will create the files if they

do not exist, or append to the end if they do exist.

// create or open perfdata.txt which contains performance data

$perfhandle = @fopen("./" . "perfdata.txt", "a") or die ("couldn’t open the

file");

// create or open input_matches.txt

$inputhandle = @fopen("./" . "input_matches.txt", "a") or die ("couldn’t

open the file");

Once the input_matches.txt temporary file is opened, it first checks to see if

the input value had already been checked and matched. To do this, it utilizes the
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Unix/Linux grep function to see if the input data exists in the input_matches.txt

file.

// if the input was already matched, do not check again

if( exec(’grep ’.escapeshellarg($input).’ ./input_matches.txt’)) {

return;

} // end if

Afterwards, it starts searching the current working directory for any .conf files,

which are the rule files. For compatibility with the OWASP ModSecurity rules, all

rule files must have the .conf file extension. It will open any .conf files for input

only and start parsing each rule in each file.

// loop through all files in the current working directory

while (($entry = readdir($fd)) !== false) {

// only read .conf files

if ((substr($entry, -8) == ".conf")) {

// open the conf file

$handle = @fopen("./" . $entry, "r") or die ("couldn’t open the file");

If the open is successful, it read one line at a time and remove any whitespaces

from the beginning and end of each line. It then searches for the keyword SECRULE

which each rule is prefaced with. Once the keyword is found, it will split the line

using “ as the delimiter. The first element will be the keywords SECRULE ARGS and

the second element will contain the regular expression.

// read lines one by one from the conf file

while (($buffer = fgets($handle, 4096)) !== false) {

// trim extra white space from beginning/end of line
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$buffer = trim($buffer);

// search for rules only, keyword SECRULE

if (stripos($buffer, "SECRULE") !== FALSE) {

// split the line by double quotes

$pattern = "/\"/";

$matches = preg_split($pattern, $buffer);

// if not empty

if ($matches) {

// initialize, no hits

$hit = "NO";

// element 1 will contain the rule

if (isset($matches[1])) {

// copy element 1

$j = 1;

$result = $matches[j];

The rule identifier can either be on the same line or on the next line. PHP uses

the Perl Compatible Regular Expressions (PCRE) library, which requires regular

expressions to be enclosed with forward slashes /. The regular expressions in the

ModSecurity rules are not enclosed in forward slashes, so they need to be added:

// make sure the rule is enclosed with forward slashes
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if (substr($result,0,1) !== "/") {

$result = "/" . $result;

} // end if

if (substr($result,-1,1) !== "/") {

$result = $result . "/";

} // end if

PCRE also requires certain characters such as + must be escaped with a backslash \,

so Spartan Web Application Firewall will escape those characters:

$result = str_replace("+", "\+", $result);

$result = str_replace("-", "\-", $result);

$result = str_replace("’", "\’", $result);

After the regular expression is parsed and PCRE compatible, the timestamp is

recorded in microseconds in order to measure the performance of a given rule before

matching the regular expression to the input. If a match was found, the matching

input data value is written out to a temporary file. However, if the input was already

The ending elapsed time is recorded in microseconds and the results are written out

if there were no errors in the regular expression.

$elapsed = 0;

if (preg_match_all($result, $input, $out) !== FALSE) {

$endTime = microtime(true);

$elapsed = $endTime - $startTime;

if (count($out) !== 0) {

$hit = "YES";
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// write the matched input into the file

else {

fwrite($inputhandle, $input . PHP_EOL);

} // end else

} // end else if

} // end if

// write performanceresults out

if ($elapsed > 0) {

fwrite($perfhandle, "$ruleid,$elapsed,$hit" . PHP_EOL);

}

After all of the input values are checked against the rule files, all matched input

values are recorded in input_matches.txt. The web application then calls respEcho

to generate the HTML to be passed back to the user’s web browser. For each HTML

string, it will check to see if the it contains any of the matched input. To accomplish

this, it will open the input_matches.txt file, read each line, strip out the whitespaces

at the start and end of each line, then search the input for each of the strings. If any

matches are found, it will call str_replace to replaces all instances of that match

within the string with htmlspecialchars to sanitize that particular pattern only.

This way it will not affect any other unmatched code which may therefore mangle

too much of the HTML. Function respEcho

function respEcho($string) {

// open file containing matches found for input

$inputhandle = @fopen("./" . "input_matches.txt", "r") or die ("

couldn’t open the file");
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// read a line

while(($buffer = fgets($inputhandle, 4096)) !== false) {

// strip whitespace from beginning & end

$buffer = trim($buffer);

// search for a match

if (strpos($string, $buffer) !== false) {

//match found, sanitize any matches

$string = str_replace($buffer,htmlspecialchars($buffer)

,$string);

}

}

// do the echo

echo $string;

// close the file

fclose($inputhandle);

}

The overview of how Spartan Web Application Firewall is illustrated in Figure 3.
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CHAPTER 4

Testing Environment

The testing was done on a Linux-based machine running on an Ubuntu derivative

named Kubuntu [23] using Apache server version 2.4.7 [24] as the web server , MySQL

version 14.14 [25] as the backing database, PHP 5.5.9 [26] for the web applications and

web application firewall, phpMyAdmin 4.0.10deb1 [27] for a graphical user interface

to the MySQL database, and no-ip [28] to provide dynamic dns service for remote

access. The web browsers used for testing were Google Chrome 38.0.2125.111 (64-

bit) [29] and Mozilla Firefox 33.0 [30]. The initial test vector consisted of simple

scripts that displayed an alert.

The prototype testing platform was a simple login page which was coded in

HTML and PHP with user credentials stored in a MySQL database. The login

webpage included the web application firewall script and ran the rule checking against

the request and response data with no sanitization to see the results of any reflected

scripts. As expected, different results were seen between Chrome and Firefox. Chrome

appeared to have detected the reflected script, which can be seen when looking at the

page source in Figure 1 on page 29 and Figure 2 on page 29 below. The alert(“1”);

is highlighted in red and the tooltip says “Token contains a reflected XSS vector”.

In comparison, Firefox had no such detection, as can be seen in Figures 3 and 4 on

page 29 below, and the reflected XSS vector took effect. For ease of testing, Firefox

is used exclusively for further testing the effectiveness of the web application firewall.

The next testing platform is a forum which is a fairly common sight on the

internet. An open-source implementation called phpBB version 3 [31] was used to
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Figure 1. Login form on Chrome

Figure 2. XSS detection on Chrome

Figure 3. Login form on Firefox

Figure 4. Reflected XSS on Firefox

achieve this, which uses MySQL to store content as well as metadata. The default

configuration of phpBB did not allow for cross-site scripts to be propogated past the
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initial submission. It utilizes functions such as the PHP function htmlspecialchars,

which replaces HTML special characters such as <, ", and > with HTML entities &lt;,

&quot;, and &gt; respectively, to first sanitize the input before using it. This proved

an effective defense particularly against stored cross-site scripting attacks. The code

was modified to remove sanitization of input when creating new threads or posting

replies to illustrate how both reflected and stored cross-site scripting attacks can be

carried out and defended against. After the modification, the forum was populated

with several new user accounts along with some initial posts as seen in Figure 5 below.

Figure 5. Forum with initial posts

In Figure 6 below, the database is shown to have been populated with several

posts. Some earlier posts show the effect of the sanitization with special character

replacement as previously described. This allows the text to appear unchanged when

represented on the website but prevents the potential ill-effects associated from being

executed. The second post content was modified directly prior to the sanitization

code being taken out to discover the extent of the sanitization, and the last two posts

have unsanitized content as submitted by the user.

In Figures 7 and 8 below, the effects of the last two posts in Figure 6 can be seen.

First, the dialog box from the second to last post is displayed, followed by the dialog
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Figure 6. Forum posts in MySQL

box from the last post. Viewing the source as can be seen in Figure 9, the content for

both posts are the original scripts. These are prime examples of how stored cross-site

scripting attacks work and how they can affect a large number of users.

Figure 7. Second to last post in forum thread

Figure 8. Last post in forum thread

Unfortunately, phpBB was not an ideal testing platform for Spartan Web Appli-

cation Firewall. The reason for this is because it uses MySQL to save post content

31



even when previewing and it utilizes CSS to display content as opposed to the PHP

language construct echo. However, it is a good test for ModSecurity since the rule

checking is done on the request body only, and should prevent stored cross-site script-

ing attacks. As for detecting stored cross-site scripting attacks when the attack vectors

are already stored on the web server, neither Chrome nor ModSecurity is successful.

The reason for this is because it is difficult to tell valid scripts apart from malicious

scripts, and any checking would introduce many false positives.

The final testing platform is to test a variety of different input data consisting of

both “benign” and “harmful” inputs at a large scale in order to measure the perfor-

mance of different rules. To accomplish this, a testing tool was created using Python

version 3.4.2 [32] with the mechanize package [33] to send the data. The tool utilizes a

file containing all of the input data and invokes the login page millions of times, each

time sending a random combination of input. The rule id, elapsed time, and whether

or not the rule matched is recorded for each rule by the web application firewall in

an output file. The web application firewall runs every rule from all selected rule files

once for each of the elements in the request data, and again for each of the elements

in the response data. The performance data that was collected was then processed

by additional python tools written to parse, sort, and average the results.

Because every rule is run each time the checking is done despite finding a rule

match, the rules do not necessarily reflect the performance in a real-world environ-

ment. For this reason, a final testing platform stops comparing data to the rules once

a match is found. This should allow us to ascertain the performance during an actual

reflected cross-site scripting attack as well as which rules are matched the most often.
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CHAPTER 5

Results

Now that the test scenarios for reflected cross-site scripting attacks were estab-

lished, the next step was to test the effectiveness of the web application firewall.

Although no real-world traffic data could be used for testing purposes, tests were

done in which a mix of both “malicious” and “benign” input was passed in through

the web application firewall. Referring back to Figure 4, it is apparent that the script

was reflected and a dialog box with the word test is visible. Adding sanitization to

the input before displaying the content in question allows the script to be shown

without executing, as can be seen in Figure 9 below. Looking at the page source in

Figure 10, it is apparent that the sanitization was effective. Although once a single

match is found no more processing is required, the additional checking is done to get

performance measurements of the different rules.

Figure 9. Firefox Login Test with Spartan Web Application Firewall Active

Figure 10. Page Source for Firefox Logic Test with Sanitized Output

Preliminary test results did show a discrepancy in several of the rules in terms

of the average performance, which was measured in microseconds.
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After the testing was scaled up, several other rules showed an increase in pro-

cesing time. Rearranging the results by elapsed time as can be seen in Figure 10, it is

clear that the 6 rules that took the longest amount of time to process without getting

a match are substantially larger than the others. 0.00002 seconds was chosen as a

threshold for “acceptable” performance time. The 6 rules with the highest elapsed

Figure 11. Elapsed time in seconds for non-matched rules by id sorted by elapsed
time in seconds, scaled-up testing

time in order of highest to lowest are:

∙ rule 973313 which checks for the pattern “&{” to prevent “&{alert(‘xss’)}”

alerts on Netscape 4, which seems to be an unreasonably high performance cost

for an unsupported and dated browser. A cursory glance indicates that less

than one percent of web traffic is using Netscape [34].

∙ rule 958045 which checks for url Javascript injection, which is a valid security

risk.
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∙ rule 958025 which checks for reflected cross-site scripting attacks using the

HTML lowsrc tag with a script as a target.

∙ rule 958033 which checks for reflected cross-site scripting attacks using the

HTML src tag with a script as a target. This differs from the previous rule

958025 since both are looking for a “complete word” that is either lowsrc or

src, meaning that the lowsrc tag will not trigger the rule checking for the src

tag.

∙ rule 958004 which checks for mXSS attack vectors using the HTML DOM

property “.innerHTML” to allow for JavaScript code execution without explicit

<script> tags [6].

∙ rule 981136 which checks for a multitude of JavaScript keywords such as

“onmove” and “onkeydown”.

After analyzing all 6 rules, it is reasonable to leave out the rule with the largest

performance cost but the others are arguably valuable in preventing reflected cross-

site scripting attacks. Rule 958004 can be optional because the methods to inject

JavaScript without utilizing <script> tags requires other keywords that would be

detected by other rules, such as the “onerror” keyword being detected by rule 981136.

As can be seen in Figure 12, there are fewer results since not every rule was

matched. The results for the rules that matched are generally more even at around

.0025 to .0030 seconds each. The rule with the highest performance cost was 958045

which was previously identified as the second highest rule in performance cost when

there was no match. The second highest was 973338 which searches for "XSS vectors

making use of Javascripts URIs", which is also a good test to keep. The rest are

fairly close to each other in performance. However, the performance of rules when
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Figure 12. Elapsed time in seconds for matched rules by id sorted by elapsed time in
seconds, scaled-up testing

detecting an actual attack does not matter much other than for preventing timing

side channel attacks. The fact that the majority of the rules had similar performance,

together with the fact that requests are always compared twice, should help minimize

the effects of timing side channels.

There was one instance of performance data being evaluated on ModSecurity [35].

However, the results they observed did not contain enough information to compare

the performance of different rules on ModSecurity and Spartan WAF. Not only were

the elapsed times different, but also the ratio between rules such that one rule that

was lower-performing than another was observed to be the opposite.

Keeping in mind that the data for the instances where there was no match is what

is expected for benign data, the sum of all of the averages along with creating, writing

to, reading from, and deleting a temporary file can be reasonably expected as overhead

for the web application firewall for a given benign request. The average elapsed time
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without Spartan WAF is 20042 microseconds, which is about 0.02 seconds. The

average elapsed time with Spartan WAF active is 26445 microseconds, which is about

0.026 seconds. Although the increase in elapsed time is 32%, the overall increase

would not be noticeable for normal users.
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CHAPTER 6

Conclusion and Future Work

Spartan Web Application Firewall compares the request and response data and

searches for matches, which reduces the amount of false positives that ModSecurity

can have. The overall performance of the rules can be improved by removing high-

cost low-impact rules such as rule id 973313 which protects against cross-site scripting

attacks for users using the unsupported Netscape browser on vulnerable websites.

However, the performance impact of Spartan Web Application Firewall is relatively

low, adding less than a second of additional elapsed time, which is a fair tradeoff for

the protection it offers.

Some areas that can be enhanced on the Spartan Web Application Firewall are:

∙ tie it closer to Apache, like ModSecurity, so it does not have to be called ex-

plicitly to check request and response data

∙ use of main memory instead of storing the input data in a file first in order to

improve performance and avoid creating temporary files

∙ enhancing the handling of rules to allow additional customization of rules

In addition, although the web application firewall does have some natural defense

against timing side channel attacks, by design it is not effective against SQL injection

attacks nor stored XSS attacks. In order to further enhance the web application

firewall, any SQL injection or stored XSS attack detection must be done prior to

passing the data to the database. This can be accomplished by having bringing a

context-awareness to the web application firewall. For example, SQL calls in PHP
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can be overridden to first run the input against the rule set for SQL injection. Also,

for common vectors for stored XSS attacks such as a forum, the payload, which can

be a topic name or post body, can be enhanced by sanitizing the payload prior to

making the SQL call.
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