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ABSTRACT

HITTING TIME AND PAGERANK

by Shanthi Kannan

In this thesis, we study convergence of finite state, discrete, and time

homogeneous Markov chains to a stationary distribution. Expressing the probability

of transitioning between states as a matrix allows us to look at the conditions that

make the matrix primitive. Using the Perron-Frobenius theorem we find the

stationary distribution of a Markov chain to be the left Perron vector of the

probability transition matrix.

We study a special type of Markov chain — random walks on connected

graphs. Using the concept of fundamental matrix and the method of spectral

decomposition, we derive a formula that calculates expected hitting times for

random walks on finite, undirected, and connected graphs.

The mathematical theory behind Google’s vaunted search engine is its

PageRank algorithm. Google interprets the web as a strongly connected, directed

graph and browsing the web as a random walk on this graph. PageRank is the

stationary distribution of this random walk. We define a modified random walk

called the lazy random walk and define personalized PageRank to be its stationary

distribution. Finally, we derive a formula to relate hitting time and personalized

PageRank by considering the connected graph as an electrical network, hitting time

as voltage potential difference between nodes, and effective resistance as commute

time.
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CHAPTER 1

SUMMARY

A Markov chain on a finite or countable set of states is a stochastic process

with the special property of ”memorylessness.” The sequence of states that the

process transitions through is the Markov chain. Given any starting distribution

and the probability transition matrix, we easily find the distribution after any

number of transitions.

In Chapter 2, we study Markov chains with a single communication class and

the additional property of recurrence. Such Markov chains eventually reach a

stationary distribution. We relate irreducibility and recurrence of the Markov chain

to irreducibility and primitivity of the probability transition matrix. The stationary

distribution is then the left Perron vector of the probability transition matrix. Using

the fundamental matrix of the Markov chain, we derive a formula for the hitting

time between states.

In Chapter 3, we study a special kind of Markov chain, namely random walk

on an undirected, unweighted, and connected graph. The main result in this chapter

is a formula for the hitting time between vertices of the connected graph. We define

a symmetric form of the probability transition matrix and find its spectral

decomposition. Using this spectra, we compute the hitting time and commute time

between vertices of the graph.

If we look at the World Wide Web as a large but finite connected graph and a

user browsing the web as taking a random walk on this graph, then the concepts

developed in chapters 2 and 3 are easily applied to this web graph. Google’s
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PageRank is the left Perron vector of a modified probability transition matrix, the

Google matrix, designed to be primitive. In Chapter 4, we also mention a simple

iterative algorithm for computing PageRank and how it translates to the large web

graph.

The last two chapters draw an intriguing analogy between random walks on

connected weighted graphs and electrical networks. In Chapter 5, drawing on the

initial work of [AC96] and [PGD06], we relate the vertices of a graph to nodes in an

electrical network and the edges of the graph to connectors between electrical nodes.

In this context, the flow of electrons is similar to a random walk on the graph.

Using harmonic functions, we establish that the voltage potential between nodes

and hitting time between vertices are indeed the same function. Finally, in Chapter

6 we follow the work of [FC10] to modify the regular random walk and design a lazy

random walk. The personalized PageRank is the stationary distribution of this lazy

random walk. We study the normalized Laplacian of the lazy random walk and its

inverse, the Green’s function. By linking voltage potential in an electrical network

to the normalized Laplacian, we derive a direct formula for the hitting time in terms

of the personalized PageRank.
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CHAPTER 2

MARKOV CHAIN

A Markov chain, named after Andrey Markov (1856-1922), is a random

process that transitions from one state to another, among a finite or countable

number of possible states. It is a mathematical model for a random process evolving

with time, usually characterized as memoryless: the next state depends only on the

current state and not on the sequence of states that precede it. We say that the past

affects the future only through the present. This specific kind of “memorylessness”

is called the Markov property. The time can be discrete (integers), continuous (the

real numbers), or a totally ordered set like English words.

Markov chains model many interesting phenomena such as virus mutation, the

spread of epidemics, and more. The lack of memory property makes it possible to

build probabilistic models and predict how a Markov chain may behave. In our

study, we shall focus our attention exclusively on Markov chains with discrete time

and a finite set of states. We follow [Nor98] in this chapter.

Example 2.0.1. Consider a mouse in a cage with two cells: cell 1 with ripe cheese

and cell 2 with fresh cheese as shown in Figure 2.1. A scientist observes the mouse

and records its position every minute. If the mouse is in cell 1 at minute n, then at

minute n+ 1 it has either moved to cell 2 or stays in cell 1. Statistical observations

led the scientist to conclude that the mouse moved from cell 1 to cell 2 with

probability α = 0.95. Similarly, when in cell 2 it moved to cell 1 with probability

β = 0.01. As we see, at any time, the mouse decides where to move only based on

where it is now and not where it came from.
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Figure 2.1: Cheesy dilemma

We represent the transition from cell 1 to cell 2 using a probability transition

matrix P . In this scenario, P is a 2× 2 matrix with the rows and columns indexed

by 1 and 2 and each entry pij is the probability of the mouse moving from cell i to

cell j. Since the mouse moves from cell 1 to cell 2 with probability α = 0.95, it stays

in cell 1 with probability 1− α = 0.05. Similarly, it stays in cell 2 with probability

1− β = 0.99. The probability transition matrix is

P =

⎡
⎢⎣1− α α

β 1− β

⎤
⎥⎦ =

⎡
⎢⎣0.05 0.95

0.01 0.99

⎤
⎥⎦ .

2.1 Basic definitions and theorems

Definition 2.1.1. Stochastic process.

A stochastic process is a sequence of random variables (Xn)n≥0 having a common

range in the finite state space I for the process.

Definition 2.1.2. Stochastic matrix.

A stochastic matrix is a nonnegative matrix [xij] in which each row sum equals 1;∑
j

xij = 1 for every row i of the matrix.

Definition 2.1.3. Markov chain.

AMarkov chain is a stochastic process (Xn)n≥0 with an initial probability
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distribution μ and probability transition matrix P = [pij], if it satisfies the following

properties:

i. the initial state X0 has the initial distribution μ; that is

P(X0 = i) = μi for all i ∈ I.

ii. for n ≥ 0, conditioning on Xn = in, Xn+1 has distribution (pinin+1 : in+1 ∈ I)

and is independent of X0, X1, · · · , Xn−1. We write this as

P(Xn+1 = in+1|X0 = i0, · · · , Xn = in) = pinin+1 . (2.1)

We are interested in the special case of time-homogeneous Markov chains,

which means that the transition probabilities of pij(n, n+ 1) do not depend on n.

From here on we consider only time-homogeneous and finite state Markov chains.

Notation: Markov(μ, P ) represents a Markov chain with initial probability

distribution μ and probability transition matrix P .

Definition 2.1.4. n-step Transition probability.

The probability of transitioning from state i to state j in n time steps is given by

P(Xn = j|X0 = i) = p
(n)
ij .

p
(n)
ij is the n-step transition probability from i to j.

With these definitions, we are now ready to state our theorems on Markov

chains.

Theorem 2.1.5. (Markov property) A stochastic process (Xn)n≥0 is

Markov(μ, P ) if for all states ik ∈ I, 0 ≤ k ≤ N

P(Xn+1 = in+1|X0 = i0, X1 = i1, · · · , Xn = in) = P(Xn+1 = in+1|Xn = in). (2.2)
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Proof. Suppose (Xn)n≥0 is Markov, applying Definition 2.1.3, the claim holds by the

conditional independence of (Xn+1) and (X0, X1, · · · , Xn−1) given Xn.

�

Theorem 2.1.6. A stochastic process (Xn)n≥0 is Markov(μ, P ) if and only if for all

states i0, i1, · · · , iN ∈ I

P(X0 = i0, X1 = i1, · · · , Xn = in) = μi0pi0i1pi1i2 · · · pin−1in . (2.3)

Proof. Suppose (Xn)n≥0 is Markov(μ, P ), then

P(X0 = i0, X1 = i1, · · · , Xn = in)

= P(X0 = i0)P(X1 = i1|X0 = i0) · · ·P(Xn = in|Xn−1 = in−1 · · ·X0 = i0). (2.4)

By Markov property in Theorem 2.1.5, we have

P(Xk = ik|Xk−1 = ik−1 · · ·X0 = i0) = P(Xk = ik|Xk−1 = ik−1).

Applying this in (2.4), we get

P(X0 = i0)P(X1 = i1|X0 = i0) · · ·P(Xn = in|Xn−1 = in−1 · · ·X0 = i0)

= P(X0 = i0)P(X1 = i1|X0 = i0) · · ·P(Xn = in|Xn−1 = in−1).

The transition probability from state i to j is given by pij. So, we get

P(X0 = i0, X1 = i1, · · · , Xn = in) = μi0pi0i1pi1i2 · · · pin−1in .

For the reverse, suppose (2.3) holds for all i ∈ I. By induction, we establish that

P(X0 = i0, X1 = i1, · · · , Xn = in) = μi0pi0i1pi1i2 · · · pin−1in .
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From probability theory, we know that given two events A and B with P (A) > 0,

the conditional probability P(B|A) is given by

P(B|A) = P(A ∩B)

P(A)
.

Using this, we write

P(Xn+1 = in+1|X0 = i0, · · · , Xn = in) =
P(X0 = i0, · · · , Xn+1 = in+1)

P(X0 = i0, · · · , Xn = in)

=
μi0pi0i1pi1i2 · · · pin−1inpinin+1

μi0pi0i1pi1i2 · · · pin−1in

= pinin+1 .

So (Xn)n≥0 is Markov.

�

Theorem 2.1.7. Suppose (Xn)n≥0 is Markov(μ, P ). Then

i. P(Xn = j) = (μTP n)j.

ii. P(Xn+m = j|Xm = i) = p
(n)
ij where m,n are any two positive integers.

Note: Here p
(n)
ij refers to the (i, j)th entry of the matrix power P n.

Proof. i. The probability that Xn = j is the sum of the probability of all possible

paths starting at any state, based on the initial probability distribution μ, and

navigating to state j after n− 1 steps. We write this as

P(Xn = j) = P(X0 = i1)P(X1 = i2) · · ·P(Xn = j)+

· · ·+ P(X0 = in−1) · · ·P(Xn = j). (2.5)

Writing this using summations notation and applying Theorem 2.1.6, we get

P(Xn = j) =
∑
i1∈I

· · ·
∑

in−1∈I
μi1pi1i2pi2i3 · · · pin−1j = [μTP n]j.
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ii. The Markov property in Theorem 2.1.5 proves that the future states depend

only on the current state and not the states that precede it. Given that Xm = i,

the probability distribution after step m is μm = [0, 0, · · · , 1, 0, 0], where 1 is in

the ith position. Using (i) above, we get

P(Xn+m = j|Xm = i) = [(0, 0, · · · , 1, 0, 0) · P n]j = p
(n)
ij .

We call p
(n)
ij as the n-step transition probability from state i to j.

�

Lemma 2.1.8. Chapman-Kolmogorov equation.

p
(m+n)
ij =

∑
k∈I

p
(m)
ik p

(n)
kj .

Proof. Method 1. By Theorem 2.1.7 (ii),

p
(m+n)
ij = P(Xm+n = j|X0 = i)

=
∑
k∈I

P(Xm = k,Xm+n = j|X0 = i)

=
∑
k∈I

P(Xm = k|X0 = i)P(Xm+n = j|Xm = k,X0 = i)

=
∑
k∈I

p
(m)
ik P(Xm+n = j|Xm = k,X0 = i)

=
∑
k∈I

p
(m)
ik P(Xm+n = j|Xm = k), since (Xn)n≥0 is Markov

=
∑
k∈I

p
(m)
ik p

(n)
kj .

Method 2. By matrix multiplication, we have Pm+n = PmP n. Thus,

p
(m+n)
ij = [P (m+n)]ij =

∑
k∈I

[Pm]ik[P
n]kj =

∑
k∈I

p
(m)
ik p

(n)
kj .

�
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Corollary 2.1.9. Based on the above lemma we have these two results:

i. p
(m+n)
ij ≥ p

(m)
ik p

(n)
kj , for any k ∈ I.

ii. p
(a+b+c)
ij ≥ p

(a)
ik p

(b)
kl p

(c)
lj , for any k, l ∈ I.

Example 2.1.10. Consider a three state, I = {1, 2, 3}, Markov chain (μ, P ) as

shown in Figure 2.2 with

μ =

[
1

3
,
1

3
,
1

3

]
and P =

⎡
⎢⎢⎢⎢⎣
0 1

2
1
2

1
2

0 1
2

0 1
3

2
3

⎤
⎥⎥⎥⎥⎦ .

1

2 3

1/
2

1/21/
2

1/2

1/3
2/3

Figure 2.2: State transition diagram.

Using (2.5), we compute the probability that the chain is in state 1 at the

second step as

P(X2 = 1) = P(X0 = 1, X1 = 2, X2 = 1) + P(X0 = 3, X1 = 2, X2 = 1)

= P(X0 = 1)P(X1 = 2|X0 = 1)P(X2 = 1|X1 = 2)

+ P(X0 = 3)P(X1 = 1|X0 = 3)P(X2 = 1|X1 = 2)

= μ(1)p12p21 + μ(3)p32p21

=
1

3
· 1
2
· 1
2
+

1

3
· 1
3
· 1
2
=

5

36
=

[
μTP 2

]
1

.
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Using Theorem 2.1.7 (ii), we compute the conditional probability P(X5 = 3|X2 = 1)

as

p
(3)
13 =

[[
1 0 0

]
P 3

]
3

=
43

72
.

�

2.2 Stationary distribution

Let (Xn)n≥0 be Markov(μ0, P ) with state space I and let μk be the

distribution of (Xn)n≥0 at step k.

μk
i = P(Xk = i) for all i ∈ I.

By conditioning on the possible predecessors of the (k + 1)-th state, we see that

μk+1
j = P(Xk+1 = j) =

∑
i∈I

P(Xk = i)pij =
∑
i∈I

μk
i pij for all j ∈ I.

Rewriting this in vector form gives

[μk+1]T = [μk]TP for k ≥ 0.

Since P is stochastic and μ0 is a distribution, μk is a distribution for all k. Hence,

by Theorem 2.1.7

[μk]T = [μ0]TP k for k ≥ 0.

Does this sequence of distributions {μ0, μ1, · · · } have a limiting value? If such a

limiting distribution π exists, then

πTP n+1 = πTP nP.

Hence, by taking limit,

πT = πTP. (2.6)
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Eigenvector interpretation: The equation πT = πTP signifies that π is a left

eigenvector of the matrix P with eigenvalue 1. In addition, π must be a distribution:∑
i∈I

π(i) = 1.

The matrix P always has the eigenvalue 1 because P is stochastic, i.e.∑
j∈I

pij = 1.

In matrix notation we write this as P1 = 1, where 1 is a column vector whose

entries are all 1; hence, 1 is a (right) eigenvector of P corresponding to eigenvalue 1.

Definition 2.2.1. Stationary distribution.

A steady-state vector or stationary distribution for a finite state Markov chain with

transition matrix P , is a vector π that satisfies

πT = πTP, where
∑
i∈I

πi = 1 and πi ≥ 0, for all i ∈ I. (2.7)

Markov chain theory ensures that this sequence of distributions has a limiting

stationary distribution for certain types of random processes. From

Perron-Frobenius Theorem B.0.22, we know that an irreducible and primitive

matrix has such a limiting distribution. We now look at the conditions under which

the probability transition matrix of a Markov chain is irreducible and primitive.

2.3 Irreducible Markov chain

Consider a Markov chain with state space I and probability transition matrix

P . Suppose i, j are any two distinct states. We say that j is reachable from i if

there exists an integer n ≥ 0 such that p
(n)
ij > 0. Suppose i is also reachable from j,

i.e., p
(n′)
ji > 0, for some positive integer n′, then states i and j are said to

communicate with each other. We write this as i ↔ j. By convention, all states are

defined to communicate with themselves: i ↔ i.
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Theorem 2.3.1. Communication is an equivalence relation.

1. Reflexive: i ↔ i for all states i.

2. Symmetric: If i ↔ j, then j ↔ i.

3. Transitive: If i ↔ j and j ↔ k then i ↔ k.

Proof. Since P 0 is the identity matrix, p
(0)
ii = 1 for all states i. Hence, i ↔ i for all

states i.

If i ↔ j, then for some positive integers n, n′, p(n)ij > 0 and p
(n′)
ji > 0. And if

j ↔ k, then for some positive integers m,m′, p(m)
jk > 0 and p

(m′)
kj > 0. By

Chapman-Kolmogorov equation, we have

p
(n+m)
ik =

∑
l∈I

p
(n)
il p

(m)
lk ≥ p

(n)
ij p

(m)
jk > 0.

Similarly, it is easy to show that p
(n′+m′)
ki > 0 and so i ↔ k.

�

All states that communicate with each other belong to the same

communication class and communication classes do not overlap. Thus, the

communication classes partition the state space I.

Example 2.3.2. Consider a Markov chain on I = {1, 2, 3} with the following:

P =

⎛
⎜⎜⎜⎜⎝
1/2 1/2 0

1/2 1/4 1/4

0 1/3 2/3

⎞
⎟⎟⎟⎟⎠ . Then P 2 =

⎛
⎜⎜⎜⎜⎝
1/2 3/8 1/8

3/8 19/48 11/48

1/6 19/36 11/36

⎞
⎟⎟⎟⎟⎠ .

Since P 2 is a positive matrix, all states communicate and there is a single

communication class.
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Suppose we change the last row of the probability transition matrix as shown below:

P =

⎛
⎜⎜⎜⎜⎝
1/2 1/2 0

1/2 1/4 1/4

0 0 1

⎞
⎟⎟⎟⎟⎠ .

Then, P n is not a positive matrix for any positive integer n. P has two

communication classes containing the appropriate states, namely C1 = {1, 2} and

C2 = {3}.

Definition 2.3.3. Irreducible Markov chain.

A Markov chain for which there is only one communication class is called an

irreducible Markov chain; all states communicate.

Theorem 2.3.4. If Markov(μ, P ) is irreducible, then its probability transition

matrix P is also irreducible.

Proof. Suppose Markov(μ, P ) is irreducible. Then for every pair of states

(i, j), i �= j, there exists a positive integer k (depending on i, j) such that p
(k)
ij > 0.

Suppose matrix P is reducible. By Definition B.0.14,

UTPU =

⎡
⎢⎣B C

0 D

⎤
⎥⎦ ,

for some n× n permutation matrix U . Note that UUT = I. By matrix block

multiplication,

(UTP kU) = UTPU · UTPU · · ·︸ ︷︷ ︸
k times

= (UTPU)k =

⎡
⎢⎣Bk ∗

0 Dk

⎤
⎥⎦ .

Clearly, [UTP kU ]n1 = 0. Since the 1st column and nth row of U are the standard

vectors ej, ei

0 = [UTP kU ]n1 = [UT
row n]P

k[Ucol 1] = eTi P
kej = [P k]ij.
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By irreducibility of the Markov chain, [P k]ij = p
(k)
ij > 0, a contradiction. Hence, P is

irreducible.

�

2.4 Recurrent states

The probability that the chain reenters state i after n steps is given by

P(Xn = i|X0 = i) = p
(n)
ii .

Consider the random variable

Ln =

⎧⎪⎪⎨
⎪⎪⎩
1, if Xn = i.

0, if Xn �= i.

Then, the number of visits to state i is

∞∑
n=0

Ln.

The expected value of the number of visits to i is given by

E(number of visits to i|X0 = i)

= E

( ∞∑
n=0

Ln

)

=
∞∑
n=0

E(Ln|X0 = i)

=
∞∑
n=0

P(Ln = 1|X0 = i)

=
∞∑
n=0

P(Xn = i|X0 = i)

=
∞∑
n=0

p
(n)
ii .
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Definition 2.4.1. Recurrent state.

A state i is said to be recurrent if

∞∑
n=0

p
(n)
ii = ∞;

transient if
∞∑
n=0

p
(n)
ii < ∞.

Theorem 2.4.2. For any communication class C, if a state i ∈ C is recurrent, then

all states in C are recurrent. If not, all states are transient.

Proof. Suppose i ∈ C is recurrent. Let j ∈ C. By definition of communicating class,

i ↔ j. So, there exists positive integers a, b such that p
(a)
ij > 0 and p

(b)
ji > 0. Using

Chapmann-Kolmogrov, we compute

p
(n+a+b)
jj ≥ p

(b)
ji p

(n)
ii p

(a)
ij , for any n,

and so ∑
k≥0

p
(k)
jj ≥

∑
a,b,n≥0

p
(n+a+b)
jj ≥ p

(b)
ji p

(a)
ij

∑
n≥0

p
(n)
ii = ∞.

Hence, j is also recurrent. Since this is true for any j ∈ C, all states in C are

recurrent.

�

Definition 2.4.3. Recurrent Markov chain.

If all states in a Markov chain are recurrent, then the Markov chain is termed

recurrent; it is transient otherwise.

Theorem 2.4.4. A finite state Markov chain cannot have all transient states.
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Proof. Let I = {ik}, 1 ≤ k ≤ m, be the set of possible states of the Markov chain.

We start by generating a sequence of non-communicating states. If state i1 is

transient, then there exists state i2 such that i1 → i2 but i2 �→ i1. If i2 is also

transient, then for some state i3, i2 → i3 but i3 �→ i2 and i3 �= i1. Thus, successive

states, i1, i2, · · · , ik are distinct and transient. If for some state ik+1, ik → ik+1 but

ik+1 �→ ik, then ik+1 �= ij for 1 ≤ j ≤ k.

Suppose the Markov chain is in state ik+1 having visited all other states in I

but without revisiting any state. Then, in the next step, the chain must re-visit

some state ij, 1 ≤ j ≤ k. So, p(k+1)j > 0. The chain then revisits the sequence of

states {ij, ij+1, · · · , ik, ik+1}. So, there is a path from ij → ik+1, k > j and

pnj(k+1) > 0 for some positive integer n. So, j ↔ (k + 1) and states j and k + 1

communicate. By transitivity of ↔, this sequence of states {j, j + 1, · · · , k, k + 1}
form a communication class. It is now easy to see that

∞∑
n=0

p
(n)
(k+1)(k+1) = ∞,

and state k+1 is recurrent. By Theorem 2.4.2, all states in this communication class

are recurrent. Hence, a finite state Markov chain cannot have all transient states.

�

Corollary 2.4.5. An irreducible and finite state Markov chain has all recurrent

states.

Proof. From Theorem 2.4.4, the Markov chain must have at least one

communication class with recurrent states. But the chain is irreducible. By

Definition 2.3.3, it has only one communication class. Since all states communicate,

the chain revisits all states. So, all states are recurrent.
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2.5 Periodic and aperiodic Markov chains

Definition 2.5.1. Period of a Markov chain.

The period r(i) of a recurrent state i ∈ I is defined to be the greatest common

divisor of all steps n at which the Markov chain returns to i.

D(i) = {n ∈ Z
+|p(n)ii > 0}.

r(i) = gcd

(
D(i)

)
.

Theorem 2.5.2. If two states i, j ∈ I communicate, then r(i) = r(j).

Proof. Suppose two states, i, j ∈ I, communicate. Then, for some positive integers

x, y, p
(x)
ij > 0, p

(y)
ji > 0, and p

(x+y)
jj ≥ p

(y)
ji p

(x)
ij > 0. Hence, r(j) | (x+ y). If n ∈ D(i) is

such that p
(n)
ii > 0, then p

(x+y+n)
jj ≥ p

(y)
ji p

(n)
ii p

(x)
ij > 0. Hence, r(j) | (x+ y + n). A

number that divides any two numbers must divide their difference as well, so

r(j) | n for all n ∈ D(i). Since r(i) is the gcd of D(i), we must have r(j) ≤ r(i).

Similarly, it is straightforward to show that r(i) ≤ r(j). Hence, r(i) = r(j).

�

Corollary 2.5.3. Period is a class property.

Corollary 2.5.4. An irreducible and recurrent Markov chain has the same period

for all states i ∈ I.

Proof. An irreducible Markov chain has a single communication class. By Theorem

2.5.2, all states have the same period.

�
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Definition 2.5.5. Aperiodic Markov chain.

An irreducible, recurrent Markov chain with period one is aperiodic.

Theorem 2.5.6. If an irreducible Markov chain is aperiodic, its probability

transition matrix P is primitive.

Proof. A matrix P is primitive, if for some positive integer L, PL is a positive

matrix as defined in B.0.13.

Suppose (Xn)n≥0 Markov(μ, P ) is irreducible and aperiodic. By Lemma D.0.40, for

every state i, there exists mi ∈ Mi such that for any m ≥ mi, p
(m)
ii > 0. Set

M = maxi∈I(mi).

By irreducibility of the Markov chain, for every pair (i, j), i �= j, there exists

rij ∈ Z
+, such that p

(rij)
ij > 0. Set R = maxi,j∈I,i �=j(rij).

Let L = M +R. Then, for every state i, L ≥ mi. So, p
(L)
ii > 0. For every pair (i, j),

L ≥ rij +mi. Hence, p
(L)
ij ≥ p

(L−rij)
ii p

(rij)
ij ≥ p

(mi)
ii p

(rij)
ij > 0. Thus, P is primitive.

�

Theorem 2.5.7. Suppose M is a stochastic matrix. Then the spectrum of M is

contained in the unit disc.

Proof. Let v be an eigenvector of M and λ the corresponding eigenvalue. Then for

any matrix norm || · ||, by Theorem 5.6.8 in [RAH85], we have

|λ|||v|| = ||λv|| = ||Mv|| ≤ ||M ||||v||.

Since v is a nonzero vector,

|λ| ≤ ||M ||∞ = 1,

where || · ||∞ is the max row sum norm. Hence, the eigenvalues of the probability

transition matrix P lie in [−1, 1].
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�

Theorem 2.5.8. The fundamental stability theorem for Markov chains.

Suppose Markov(μ, P ) is irreducible and aperiodic. Then

i. Markov(μ, P ) has an unique stationary distribution π.

ii. The probability transition matrix P converges to a matrix with rows all equal to

πT .

lim
m→∞

Pm = 1πT where lim
m→∞

p
(m)
ij = π(j), i, j ∈ I.

iii. lim
m→∞

P(Xm = j) = π(j), for any initial distribution μ.

Proof. By Theorem 2.5.6, P is primitive. So, we apply the Perron-Frobenius

Theorem B.0.22 to P .

i. P has only one eigenvalue λ > 0 on its spectral radius. By Theorem 2.5.7,

λ = 1 is the spectral radius of P . Hence, λ = 1 is the largest, simple eigenvalue

of P . By Perron-Frobenius Theorem, P has unique left and right Perron vectors

corresponding to λ. Since P is stochastic, we see that 1 is the right eigenvector

with eigenvalue 1. Suppose we denote π to be the left eigenvector. By

Perron-Frobenius Theorem, we know that πT1 =
n∑

i=1

π(i) = 1. Thus, π is a

probability distribution. Since πTP = πT , by Definition 2.2.1, π is the unique

stationary distribution vector of P .

ii. πT and 1 are the left and right Perron vectors of P corresponding to eigenvalue
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1 and are strictly positive. By Perron-Frobenius Theorem iv, P has a limit

lim
m→∞

[P ]m = 1πT =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

π1 π2 · · · πn

π1 · · · · · · πn

...
...

π1 π2 · · · πn

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.

iii. By 2.1.7(ii), P(Xm = j) = p
(m)
ij . By 2.1.8, p

(m)
ij = [Pm]ij. Using (ii) above, we

have the desired result.

�

For Markov chains, the past and the future are independent of the present.

This property is symmetrical in time and suggests we look at the reverse of a

Markov chain, running backwards. But we have looked at Markov chains that

converge to a limiting invariant distribution. This suggests that if we start with the

invariant distribution, the Markov chain will be in equilibrium, i.e., a Markov chain

running forward and backward are symmetric in time. A Markov chain running

backwards is also a Markov chain, but with a different probability transition matrix.

Theorem 2.5.9. Let P be irreducible with π as its stationary distribution. Suppose

(Xn) is Markov. Set Yn = XN−n, for some fixed N . The reverse chain (Yn) is also

Markov(π, P̂ ), where P̂ = [p̂ij] is given by

πj p̂ji = πipij for all i, j ∈ I. (2.8)

Furthermore, P̂ is also irreducible with stationary distribution π.

Proof. First, we show that P̂ is stochastic. p̂ji =
πi

πj
pij. We write P̂ as

P̂ = D(π−1)P TD(π),



21

where D(π) is the diagonal matrix with πi on the diagonals and D(π−1) is the

diagonal matrix with 1/πi on the diagonals. Then

P̂1 = [D(π−1)P TD(π)]1 = D(π−1)P Tπ = D(π−1)π = 1.

Next, we show that (Yn) is Markov.

P(Y0 = i0, Y1 = i1, · · · , YN = iN)

= P(XN = iN , XN−1 = iN−1, · · · , X0 = i0)

= πiNpiN iN−1
piN−1iN−2

· · · pi1i0
= πi0 p̂i0i1 p̂i1i2 · · · p̂iN−1iN .

By Theorem 2.1.6, (Yn) is Markov(π, P̂ ).

To show that P̂ is also irreducible, consider any two distinct states i, j. There exists

a chain of states i0 → i1 → · · · → ik and pi0i1 · · · pik−1ik > 0. Then

p̂iN iN−1
· · · p̂iN−k−1iN−k

=
1

πiN

πi0pi0i1 · · · pik−1ik > 0.

So, there is only one communication class. Hence, P̂ is also irreducible.

Finally, we show that π is indeed the stationary distribution of P̂ .

πT P̂ = πT [D(π−1)P TD(π)] = 1TP TD(π) = 1TD(π) = πT . (2.9)

�

Definition 2.5.10. Time-reversed Markov chains.

The chain (Yn)n≥0 is called the time-reversal of (Xn)n≥0.

Definition 2.5.11. Detailed balance.

A stochastic matrix P and stationary distribution π are said to be in detailed
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balance if P̂ = P, i.e.

D(π)P = P TD(π)

P = D(π−1)P TD(π) = P̂ .

We write the condition in (2.8) as πjpji = πipij.

Example 2.5.12. Consider a Markov chain with state transition diagram as shown

in Figure 2.3.

πT =

[
1/3 1/3 1/3

]
and P =

⎡
⎢⎢⎢⎢⎣

0 2/3 1/3

1/3 0 2/3

2/3 1/3 0

⎤
⎥⎥⎥⎥⎦ .

P̂ = D(π−1)P TD(π) =

⎡
⎢⎢⎢⎢⎣

0 1/3 2/3

2/3 0 1/3

1/3 2/3 0

⎤
⎥⎥⎥⎥⎦ .

1
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Figure 2.3: Markov chain not in detailed balance P �= P̂ .

Example 2.5.13. Consider a Markov chain with state transition diagram as shown

below in Figure 2.4.
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Figure 2.4: Markov chain in detailed balance P = P̂ .

πT =

[
1/5 3/10 1/5 3/10

]
and P =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 1/2 0 1/2

1/3 0 1/3 1/3

0 1/2 0 1/2

1/3 1/3 1/3 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
= P̂ .

2.6 Hitting time of a connected graph

Definition 2.6.1. Hitting time.

Given an irreducible and aperiodic Markov chain (Xn)n≥0, and two distinct states

i, j ∈ I, the hitting time or mean first passage time is the expected number of steps

to reach state j starting from state i, for the first time.

H(i, j) =
∞∑
t=1

t · P(Xt = j|X0 = i, Xk �= j, k < t).

Definition 2.6.2. Return time.

Given an irreducible and aperiodic Markov chain (Xn)n≥0, and state i ∈ I, the

return time or mean recurrence time is the expected number of steps to return to i
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for the first time.

R(i) =
∞∑
t=1

t · P(Xt = i|X0 = i, Xk �= i, k < t).

Since there are numerous paths from i → j, the probabilistic computation of

hitting time and return time is laborious. So, we look at matrix based techniques

for simplifying such computations. Consider the first step to any state k from i with

pik > 0. Then from k we navigate to j. We write this as

H(i, j) = 1 +
∑
k �=j

pikH(k, j). (2.10)

Similarly, starting at i, the chain takes at least one step to some state j �= i

and returns to i. Considering all possible first steps, we get

R(i) =
∑
k

pik(H(k, i) + 1) = 1 +
∑
k

pikH(k, i). (2.11)

Define two matrices H, where Hij = H(i, j), Hii = 0 and R, a diagonal matrix

with Rii = R(i). We combine the above two equations in to a single matrix form as

H = PH+ J −R,where J is the all one matrix. (2.12)

Equivalently,

(I − P )H = J −R. (2.13)

Theorem 2.6.3. If Markov(μ, P ) is irreducible and aperiodic, then the return time

for any state i ∈ I is R(i) = 1/π(i), where π is the stationary distribution.

Proof. Multiplying both sides of (2.13) by πT gives

πT (I − P )H = πTJ − πTR.

Since πTP = πT and πTJ = 1T , we get

�0 = (1, 1, · · · , 1)− (π1R(1), π2R(2), · · · , πnR(n)),
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yielding R(i) = 1/π(i) for all states i.

�

2.6.1 Fundamental matrix

The matrix (I − P ) is not invertible, since it has row sum zero. So, we

consider a rank-one update Π = 1πT to (I − P ). The new matrix (I − P +Π) is

invertible. We define Q = (I − P +Π)−1 to be the fundamental matrix of the

Markov chain. We now look at some properties of the fundamental matrix Q.

Proposition 2.6.4. QJ = J.

Proof. Since PJ = J and ΠJ = J , (I − P +Π)J = J . Hence, QJ = Q(I − P +Π)J

gives us QJ = J .

�

Proposition 2.6.5. Q1 = 1.

Proof. Since (I − P +Π)1 = 1, 1 = Q1.

�

Proposition 2.6.6. Q(I − P ) = (I − P )Q = (I − Π).

Proof. Note that PΠ = P1πT = 1πT = Π. Similarly, ΠP = 1πTP = 1πT = Π.

Also, Π2 = 1(πT1)πT = 1πT = Π. So, we have,

(I − P +Π)(I − Π) = I − P +Π− Π+ PΠ− Π2 = (I − P ).
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And

(I − Π)(I − P +Π) = I − Π− P +Π+Π− Π = (I − P ).

Hence, Q(I − P ) = (I − P )Q = (I − Π).

�

Theorem 2.6.7. The hitting time in terms of the fundamental matrix Q is given by

Hij =
Qjj −Qij

πj

.

Proof. From (2.13), we have

(I − P )H = J −R.

Multiplying on the left by Q yields

Q(I − P )H = Q(J −R).

From propositions 2.6.4 and 2.6.6, we get (I − Π)H = J −QR. Hence

H = J −QR+ΠH. (2.14)

So,

0 = Hjj = 1−QjjR(j) + [πTH]j, (2.15)

and

Hij = 1−QijR(j) + [πTH]j. (2.16)

Subtracting (2.15) from (2.16) results in

Hij = (Qjj −Qjj)R(j).
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Substituting R(j) = 1/π(j), allows us to express the hitting time between any two

distinct states as

Hij =
Qjj −Qij

πj

. (2.17)

�
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CHAPTER 3

RANDOM WALK ON GRAPHS

A random walk is a mathematical formalization of a path that consists of a

succession of random steps. For example, the path traced by a molecule as it travels

in liquid or gas, the search path of a foraging animal, the price of a fluctuating

stock, or the financial status of a gambler can all be modeled as random walks,

although they may not be truly random in reality. The term random walk was first

introduced by Karl Pearson in 1905. Random walks have been used in many varied

fields: ecology, economics, psychology, computer science, physics, chemistry, biology,

finance, and more. Random walks explain the observed behaviors of processes in

these fields and thus serve as a fundamental model for the recorded stochastic

activity. Though many types of random walks exist, we are interested in random

walks that are time-homogeneous Markov chains. Random walks occur on graphs,

integer lines, planes, or even on topological structures of higher dimensions. Our

study focuses on time-homogenous random walks on finite, connected graphs.

Appendix C contains basic definitions and theorems on graphs.

In this chapter we follow [Lov93].

Example 3.0.8. Let us consider a simple random walk on the integer line as shown

in Figure 3.1.

Suppose our random walk starts on 0. The probability of getting to 1 and −1

are the same, equal to 1
2
. This is true for the transition from any integer n to n± 1.

This is an example of a simple random walk and is sometimes referred to as the

drunkard’s walk.
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-4 -3 -2 -1 0 1 2 3 4 5

1/2 1/2

Figure 3.1: Drunkard’s walk on an integer line.

3.1 Random walk on graphs

Given a finite, connected graph G(V,E), and a starting vertex v0, choose any

adjacent vertex v1 at random and move to this neighbor. Then select v2, a neighbor

of v1 at random and move to v2, and so on. The sequence of vertices, so chosen,

{v0, v1, · · · , vk}, constitute a random walk on G.
At each step k, we assign to the random variable Xk, a value from V . Hence, the

random sequence X0, X1, X2, · · ·Xk, · · · , is a discrete time stochastic process

defined on the state space V .

The choice of vertex vi, at any step k, depends only on reaching its neighbor

vj in step (k − 1) and not how vj is reached. In an unweighted graph, the

probability of taking an edge depends only on the degree of the current vertex and

is the same for all edges from a vertex. Suppose d(vi) denotes the degree of vertex vi

and pij denotes the probability of moving from vertex vi to vertex vj. Then

pij = P(Xk+1 = vj|Xk = vi) =

⎧⎪⎪⎨
⎪⎪⎩

1
d(vi)

, if (ij) ∈ E.

0, otherwise.

The transition probabilities pij are independent of time k. If at time k we are at

vertex vi, we choose vj uniformly from the neighbors of vi and move to it. The

process is thus “memoryless;” the future choice of vertex depends only on the

current vertex. We denote vi ∼ vj if vj is a neighbor of vi. In this chapter, we focus

on finite, connected, unweighted graphs.
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Definition 3.1.1. Adjacency matrix.

For a graph G with V = {v1, v2, · · · }, the adjacency matrix A is given by

[A]ij =

⎧⎪⎪⎨
⎪⎪⎩
1, if vi ∼ vj.

0, otherwise.

Definition 3.1.2. Degree matrix.

For a graph G, the degree matrix D is the diagonal |V | × |V | matrix given by

[D]ii = d(vi), where d(vi) =
∑
j

[A]ij.

Definition 3.1.3. Probability transition matrix.

For a graph G, the probability transition matrix P is the |V | × |V | matrix given by

P = D−1A.

Suppose μ0 is the initial probability distribution, the random sequence of

vertices visited by the walk X0, X1, · · · , Xk, · · · , is Markov(μ0, P ) with state space

V . The probability distribution μt at any time t is given by

[μt]T = [μ0]TP t.

Theorem 3.1.4. A random walk on a graph G with probability transition matrix P

is Markov and Theorem 2.1.5 holds; i.e.,

P(Xk+1 = vj|Xk = vi, Xk−1 = vk−1, · · · , X1 = v1, X0 = v0)

= P(Xk+1 = vj|Xk = vi) = pij. (3.1)

Proof. First, we show that the probability transition matrix P = [pij] of a random

walk is stochastic. For any row i of the matrix P ,

∑
j

pij =
∑
vj∼vi

1

d(vi)
= 1,
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since there are d(vi) entries in each row i. To see that the Markov property holds,

we use the definition of P(A|B) and compute

P(Xk+1 = vj|Xk = vi, Xk−1 = vik−1
, · · · , X0 = v0)

=
pijp(k−1)ip(k−2)(k−1) · · ·
p(k−1)ip(k−2)(k−1) · · ·

= pij.

�

Example 3.1.5. Let us consider an undirected, connected graph with five vertices

as shown in Figure 3.2. The probability of transition between any two vertices

depends on the degree of the current vertex.
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Figure 3.2: Undirected graph with state transition diagram.
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P =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1
4

1
4

1
4

1
4

1
2

0 1
2

0 0

1
4

1
4

0 1
4

1
4

1
3

0 1
3

0 1
3

1
3

0 1
3

1
3

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

�

We are interested in finding the stationary distribution of a random walk.

From Markov chain theory, we know that if a Markov chain is irreducible and

aperiodic, then the stationary distribution exists. The properties of the random

walk reflect the properties of the underlying graph. Here, we show that a random

walk on a connected, non-bipartite graph has a stationary distribution.

Theorem 3.1.6. A random walk on a connected graph G is irreducible.

Proof. Since the graph G is connected, for any two vertices vi, vj ∈ V , there exists a

path from vi to vj: vi → vi1 → · · · → vj such that pikik+1
> 0 for every vertex vik in

the path. The transition probability from vi → vj is

P(Xm = vj|X0 = vi) = P(Xm = vj|Xm−1 = vim−1 , Xm−2 = vim−2 , · · · , X0 = vi)

≥ pii1pi1i2 · · · pim−1j > 0.

The final step above is using Theorem 2.1.7. Similarly, there is a path from vj to vi.

So vi and vj communicate: vi ↔ vj. By Theorem 2.3.1, communication is an

equivalence relation. Since graph G is connected, we conclude that all vertices in G
communicate and hence belong to the same communication class. By Definition

2.3.3, the random walk is irreducible and by Theorem 2.3.4, the probability

transition matrix P is also irreducible. By Corollary 2.4.5, all states are recurrent.
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�

Since the graph is connected, by Theorem 2.5.2 and its Corollary 2.5.4, all

vertices in G have the same period. Our next theorem shows that a random walk on

a non-bipartite graph is aperiodic.

Theorem 3.1.7. A random walk on a finite, connected graph is aperiodic if and

only if the graph is non-bipartite.

Proof. From Appendix C.0.38, a graph is bipartite if and only if it has no odd cycles.

Suppose the walk is aperiodic, by definition of aperiodic, the graph has an odd

cycle, or else two divides its period. Hence the graph is not bipartite.

On the other hand, suppose the graph is non-bipartite, it has at least one odd cycle.

Any random walk on a connected, undirected graph has a walk with return time of

two, i.e., you leave a vertex in any direction and return back in the next step. So,

for each vertex, the walk also has a cycle of length two. Hence the gcd of the set of

cycles of G is one. By Definition 2.5.1, the graph is aperiodic.

�

Theorem 3.1.8. The stationary distribution vector π for a random walk on a finite

connected graph G(V,E) exists and is given by πi =
d(vi)

2m
, where m = |E|.

Proof. A random walk on a finite, connected graph is irreducible and aperiodic. By

the fundamental stability theorem of Markov chains, Theorem 2.5.8, such a random

walk has a stationary distribution and its probability transition matrix has a

limiting value. Furthermore, by Perron-Frobenius theorem, P has right and left

Perron vectors: 1 and π. Hence
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• πT = πTP and πT1 = 1,

• lim
m→∞

Pm = Π = 1πT .

Suppose πi =
d(vi)
2m

for all vi ∈ V , it is easily verified that πTP = πT .

πTP =
1

2m
[d(v1) · · · d(vk)]D−1A

=
1

2m
[1 · · · 1]A

=
1

2m
[d(v1) · · · d(vk)]

= πT .

�

Theorem 3.1.9. A random walk on a finite, connected graph G is time reversible.

Proof. From Definition 2.5.11, a Markov chain is time reversible if P̂ = P.

D(π−1)P TD(π) = 2mD−1(D−1A)TD
1

2m
= D−1ATD−1D = D−1A = P.

The random walk is in detailed balance. Hence is time reversible.

�

3.2 Access times on graphs

In a random walk, given any starting vertex, we choose any neighbor at

random and proceed. This random choice is distributed evenly among the neighbors

of the said vertex. For a finite, connected graph, there is a path between any two

arbitrary vertices. This allows us to turn our focus to less qualitative questions;

rather than asking whether or not a random walk will return to its starting vertex,
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it is interesting to ask what is the expected number of steps the random walk would

take to return to the starting vertex, reach a specific vertex, or to commute between

any two vertices.

Definition 3.2.1. Hitting time.

Given graph G, the hitting time H(i, j), i �= j, from vertex vi to vj, is the expected

number of steps it takes for a random walk that starts at vertex vi to reach vertex

vj for the first time.

H(i, j) =
∞∑
t=1

t · P(Xt = j|X0 = i;Xk �= j, k < t).

Definition 3.2.2. Commute time.

Given graph G, the commute time C(i, j), i �= j, between two vertices vi and vj is

the expected number of steps that a random walk starting at vi takes to reach vj

and return back to vi.

C(i, j) = H(i, j) +H(j, i).

Usually, H(i, j) �= H(j, i). But C(i, j) = C(j, i).

Definition 3.2.3. Return time.

Given graph G, the return time to a vertex R(i, i), is the number of steps that a

random walk starting at vi takes to return to vi. Indeed, by Theorems 2.6.3 and

3.1.8, R(i, i) = πi
−1 =

2m

d(vi)
.

Example 3.2.4. Let us look at a simple random walk on a path with n+ 1 nodes:

{0, 1, 2, · · ·n}. We are interested in finding the hitting time H(i, k), where i and k

are any two nodes on the path. For k ≥ 1, the hitting time H(k− 1, k), is equivalent

to the expected return time of a random walk on a path with k + 1 nodes, starting

at an end node minus one. If we begin our random walk on node k ≥ 1, then to
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return to node k, it takes one fewer steps than had we started on node k. The

return time for any node is given by
2m

d(vi)
. The degree of the last node is one. Here

we have k edges. Hence the return time is 2k. Hence H(k − 1, k) = 2k − 1.

Now, let us look at hitting time H(i, k), 0 ≤ i ≤ k ≤ n. To reach node k, we first

have to first reach k − 1. So we have the recurrence

H(i, k) = H(i, k − 1) + 2k − 1

= H(i, k − 2) + 2k − 3 + 2k − 1

= · · ·

= H(i, i+ 1) + (2i+ 3) + · · ·+ (2k − 1)

= (2i+ 1) + (2i+ 3) + · · ·+ (2k − 1)

= (k − i)(2i) + (1 + 3 + · · ·+ 2(k − i)− 1)

= 2ki− 2i2 + (k − i)2

= k2 − i2

In particular H(0, n) = n2.

�

Example 3.2.5. Let C be a cycle with n vertices. Then, the hitting time from any

vertex vi to a vertex that is l steps away is independent of vi and is given by

H(i, i+ l) = Hl = l(n− l).

Proof. From vertex vi, the first step is either to vertex vi−1 or vi+1, both with

probability 1
2
.

H(i, i+ l) =
1

2
(H(i− 1, i+ l) +H(i+ 1, i+ l)) + 1

=
1

2
(H(i− 1, i+ l) +

1

2
(H(i+ 1, i+ l)) + 1 (3.2)
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Since H(i, i+ l) does not depend on i, but only on the distance l, we denote this by

Hl and write

Hl =
1

2
Hl−1 +

1

2
Hl+1 + 1

−1 =
1

2
Hl−1 +

1

2
Hl+1 −Hl

We now setup a system of linear equations for l = 1, l = 2, etcetra.

1

2
H0 +

1

2
H2 −H1 = −1

1

2
H1 +

1

2
H3 −H2 = −1

1

2
H2 +

1

2
H4 −H3 = −1

...

1

2
Hn−2 +

1

2
Hn −Hn−1 = −1

The above set of equations are linearly independent. Suppose a linear combination

of the above n− 2 equation must result in 0. Since H0 appears only in the first

equation, that equation must have coefficient e1 equal to 0 so that e1H0 equals 0.

Then, H1 appears only in the second equation, hence this equation too must have

coefficient e2 equal 0 so that e2H1 is 0. Proceeding in a similar manner, the

coefficients of all the equation must be 0 to add up to 0. Hence this system must

have an unique solution. We now verify Hl = l(n− l) is indeed the right solution by

checking (3.2). The length of the path (i− 1, l + i) = l + 1 and the length of

(i+ 1, l + i) is l − 1.

H(i, i+ l) =
1

2
((l + 1)(n− (l + 1)) + 1) +

1

2
((l − 1)(n− (l − 1)) + 1

=
1

2
(nl + n− l2 − 2l − 2 + 1 + nl − n− l2 + 2l − 2 + 1) + 1

= nl − l2 = l(n− l).
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�

Example 3.2.6. Consider a complete graph on vertices (0, 1, · · · , n− 1). The

hitting time is given by H(i, j) = n− 1.

Proof. Since all vertices are connected to each other, it is sufficient to find H(0, 1).

The probability that we choose vertex v1 from any other vertex is
1

n− 1
. Then for

every step that we do not choose v1, we choose any other vertex with probability

n− 2

n− 1
. Putting these together, the probability that we start at vertex v0 and reach

vertex v1 in t steps is given by

P(Xt = v1|X0 = v0, Xk �= v1 for k < t) =
1

n− 1

[
n− 2

n− 1

]t−1

.

The hitting time H(0, 1) is

H(0, 1) =
∞∑
t=1

t · 1

n− 1

[
n− 2

n− 1

]t−1

= n− 1.

We take advantage of geometric series to prove this. Let S = H(0, 1).

S =
∞∑
t=1

t · 1

n− 1

[
n− 2

n− 1

]t−1

=
1

n− 1
+

2

n− 1

n− 2

n− 1
+

3

n− 1

[
n− 2

n− 1

]2
+ · · ·

n− 2

n− 1
S =

1

n− 1

n− 2

n− 1
+

2

n− 1

[
n− 2

n− 1

]2
+

3

n− 1

[
n− 2

n− 1

]3
+ · · ·

S − n− 2

n− 1
S =

1

n− 1
+

n− 2

n− 1

1

n− 1
+

[
n− 2

n− 1

]2
1

n− 1
+

[
n− 2

n− 1

]3
1

n− 1
+ · · ·

1

n− 1
S =

1

n− 1
+

n− 2

n− 1

1

n− 1

(
1 +

n− 2

n− 1
+

[
n− 2

n− 1

]2
+ · · ·

)

For 0 < r < 1, the geometric sum (1 + r + r2 + · · · ) is given by
1

1− r
. If we set

r = n−2
n−1

, then the sum

1

n− 1
S =

1

n− 1

(
1 +

n− 2

n− 1
+

[
n− 2

n− 1

]2
+ · · ·

)
=

1

n− 1

[
1

1− n−2
n−1

]
= 1.
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And so,

S = n− 1.

�

3.2.1 Eigenvalue connection

In general, the probability transition matrix P for a random walk on graph G
is not symmetric. Suppose we define

N = D1/2PD−1/2 = D1/2D−1AD−1/2 = D−1/2AD−1/2

. Then N is symmetric and has a spectral decomposition of orthonormal

eigenvectors.

N = D1/2PD−1/2 =
n∑

k=1

λkνkν
T
k , (3.3)

where λk are the eigenvalues of N and νk are the corresponding eigenvectors. And

P = D−1/2ND1/2 = D−1/2

n∑
k=1

λkνkν
T
k D

1/2. (3.4)

Since P and N are similar, both P and N have the same eigenvalues, but different

eigenvectors. Suppose v is an eigenvector of P with eigenvalue λ, we have Pv = λv.

For ν = D1/2v,

Nν = D1/2PD−1/2ν = D1/2Pv = D1/2λv = λν.

So, ν is an eigenvector of N with eigenvalue λ.

By Theorem 3.1.8, we know that P has right and left Perron vectors 1 and π

respectively, where π(i) = d(vi)/2m is the the stationary distribution. Let
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ω = [ωi] = [
√

d(vi)], where d(vi) is the degree of vertex vi. ω is an eigenvector of N

corresponding to eigenvalue 1.

Nω = D1/2PD−1/2ω = D1/2P1 = ω.

From Theorem 2.5.7, the spectral radius of P is one and one is a simple eigenvalue

of P and hence of N . Let λ1 = 1. Then, we order the eigenvaules of N as

1 = λ1 > λ2 ≥ · · · ≥ λn > −1. The corresponding eigenvector, ν1 is a unit vector:

ν1 =
ω

‖ω‖ =

[√
d(vi)

2m

]
=

√
π = [

√
π(i)], since

‖ω‖ =

√√
(d1)

2
+
√

(d2)
2
+ · · ·+

√
(dn)

2
=

√
2m.

In Theorem 2.5.8, we used Perron-Frobenius theorem to show that P has a

limiting value. We show the same using the symmetric matrix N .

N t = D1/2PD−1/2 D1/2PD−1/2 · · ·︸ ︷︷ ︸
t times

= D1/2P tD−1/2.

We rewrite this as

P t = D−1/2N tD1/2 =
n∑

k=1

λt
kD

−1/2νkν
T
k D

1/2.

For k = 1, we have

D−1/2λ1ν1ν
T
1 D

1/2 = D−1/2

⎡
⎢⎢⎢⎢⎣

...√
d(vi)
2m

...

⎤
⎥⎥⎥⎥⎦
[
· · ·

√
d(vi)
2m

· · ·
]
D1/2.

So,

[P ]tij = πj +

[ n∑
k=2

λt
kD

−1/2νkν
T
k D

1/2

]
ij

.

Since |λk| < 1, for k > 1, lim
t→∞

λt
k = 0. Hence

[P ]tij → πj, (t → ∞).
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3.2.2 Spectra and hitting time

The hitting time H(i, j) between any two vertices vi, vj ∈ V is the expected

number of steps that a random walk starting at vertex vi takes to reach vertex vj.

While this is a probability based definition, following Lovasz’s survey [Lov93], we

derive a spectral formula for H(i, j), based on the properties of the probability

transition matrix P .

Using (2.17), we express the hitting time in terms of the fundamental matrix Q as

Hij =
Qjj −Qij

πj

, (3.5)

where Q = (I − P +Π)−1. Since P = D−1/2ND1/2 and Π = D−1/2ν1ν
T
1 D

1/2,

(I − P +Π) = D−1/2

(
I −

n∑
k=1

λkνkν
T
k + ν1ν

T
1

)
D1/2,

Q = (I − P +Π)−1 = D−1/2

(
I −

n∑
k=1

λkνkν
T
k + [π]

)−1

D1/2

, where νi are the orthonormal eigenvectors of N . Since λ1 = 1 and ν1ν
T
1 = [π], we

simplify and write

Q = D−1/2

(
I −

n∑
k=2

λkνkν
T
k

)−1

D1/2.

Since matrix inverses are unique, if we find the inverse of the middle term in the

above equation, we have Q. Suppose we set X =

(
I −

n∑
k=2

λkνkν
T
k

)
, we are

interested in finding Y ∈ Mn such that XY = Y X = I. Thus(
I −

n∑
k=2

λkνkν
T
k

)
·
(
I +

n∑
k=2

λkνkν
T
k

1− λk

)

= I −
n∑

k=2

λkνkν
T
k +

n∑
k=2

λk

1− λk

νkν
T
k −

n∑
k=2

λ2
k

1− λk

νkν
T
k

= I −
n∑

k=2

λkνkν
T
k +

n∑
k=2

λk

1− λk

νkν
T
k (1− λk)

= I,



42

allows us to write

Q = D−1/2

(
I +

n∑
k=2

λkνkν
T
k

1− λk

)
D1/2 = I +D−1/2

n∑
k=2

λkνkν
T
k

1− λk

D1/2.

And

Qjj = 1 +
n∑

k=2

λk

1− λk

ν2
kj. (3.6)

Qij =
n∑

k=2

λk

1− λk

νkiνkj

√
d(vj)

d(vi)
. (3.7)

Since νi are orthonormal, 〈νi, νi〉 = 1 for any i. So,

n∑
k=2

ν2
kj = 1− ν2

1j = 1− [D1/2v1]
2
j = 1− d(vj)

2m
.

This allows us to write
n∑

k=2

1− λk

1− λk

ν2
kj = 1− d(vj)

2m
,

yielding

1 +
n∑

k=2

λk

1− λk

ν2
kj =

n∑
k=2

1

1− λk

ν2
kj +

d(vj)

2m
. (3.8)

Similarly, 〈νi, νj〉 = 0 for any i, j, i �= j. So,

n∑
k=2

νkiνkj = −ν1iν1j = −
√

d(vi)

2m

√
d(vj)

2m
.

Hence
n∑

k=2

1− λk

1− λk

νkiνkj = −
√

d(vi)

2m

√
d(vj)

2m
.

And
n∑

k=2

λk

1− λk

νkiνkj

√
d(vj)

d(vi)
=

n∑
k=2

1

1− λk

νkiνkj

√
d(vj)

d(vi)
+

d(vj)

2m
. (3.9)

Subtracting (3.8) from (3.9) gives

Qjj −Qij =
n∑

k=2

1

1− λk

ν2
kj +

d(vj)

2m
−

n∑
k=2

1

1− λk

νkiνkj

√
d(vj)

d(vi)
− d(vj)

2m

=
n∑

k=2

1

1− λk

ν2
kj −

n∑
k=2

1

1− λk

νkiνkj

√
d(vj)

d(vi)
. (3.10)
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We now derive formula for hitting time H(i, j) by substituting (3.10) back

into (3.5).

H(i, j) =
2m

d(vj)
· (Qjj −Qij)

=
2m

d(vj)

( n∑
k=2

1

1− λk

ν2
kj −

n∑
k=2

1

1− λk

νkiνkj

√
d(vj)

d(vi)

)

= 2m
n∑

k=2

1

1− λk

(
ν2
kj

d(vj)
− νkiνkj√

d(vi)d(vj)

)
. (3.11)

The spectral formula for commute time is computed to be

C(i, j) = H(i, j) +H(j, i)

= 2m
n∑

k=2

1

1− λk

(
ν2
kj

d(vj)
− νkiνkj√

d(vi)d(vj)

)
+ 2m

n∑
k=2

1

1− λk

(
ν2
ki

d(vi)
− νkiνkj√

d(vi)d(vj)

)

= 2m
n∑

k=2

1

1− λk

(
ν2
kj

d(vj)
− νkiνkj√

d(vi)d(vj)

)
+

(
ν2
ki

d(vi)
− νkiνkj√

d(vi)d(vj)

)

= 2m
n∑

k=2

1

1− λk

(
νkj√
d(vj)

− νki√
d(vi)

)2

. (3.12)
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Example 3.2.7. Consider the graph in Example 3.1.5 with probability transition

matrix:

P =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1
4

1
4

1
4

1
4

1
2

0 1
2

0 0

1
4

1
4

0 1
4

1
4

1
3

0 1
3

0 1
3

1
3

0 1
3

1
3

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The symmetric matrix N = D−1/2PD1/2 is

N =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0.3536 0.2500 0.2887 0.2887

0.3536 0 0.3536 0 0

0.2500 0.3536 0 0.2887 0.2887

0.2887 0 0.2887 0 0.3333

0.2887 0 0.2887 0.3333 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Using the eigen decomposition of N we compute Q to be

Q =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.8219 0.0859 0.0219 0.0352 0.0352

0.1719 0.9609 0.1719 −0.1523 −0.1523

0.0219 0.0859 0.8219 0.0352 0.0352

0.0469 −0.1016 0.0469 0.8789 0.1289

0.0469 −0.1016 0.0469 0.1289 0.8789

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

And the hitting time matrix H is

H =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 7.0000 3.2000 4.5000 4.5000

2.6000 0 2.6000 5.5000 5.5000

3.2000 7.0000 0 4.5000 4.5000

3.1000 8.5000 3.1000 0 4.0000

3.1000 8.5000 3.1000 4.0000 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.



45

The commute time C(i, j) = H(i, j) +H(j, i) is

C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 9.6000 6.4000 7.6000 7.6000

9.6000 0 9.6000 14.0000 14.0000

6.4000 9.6000 0 7.6000 7.6000

7.6000 14.0000 7.6000 0 8.0000

7.6000 14.0000 7.6000 8.0000 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Clearly, H(i, j) �= H(j, i) for every pair (i, j) ∈ E but C(i, j) = C(j, i) for every pair.
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CHAPTER 4

GOOGLE PAGERANK

Sergey Brin and Larry Page introduced Google in 1998, a time when the pace

at which the web was growing began to outstrip the ability of current search engines

to yield useable results. One factor that set Google’s search engine apart from

others was that its search listings always listed the “good stuff” on the top. Within

the first page of search results, most user’s query was answered. Search engines like

Inktomi, Alta Vista, etc. focused only on a page’s content, meta tags, and density of

keywords. But Google’s additional focus on the hyperlink structure of the web

allowed it to rank the popularity of every indexed page on the web, and thereby

present the most popular pages at the top of the results. The number of active

pages on the web as of October 2013 is 1.93 billion pages [cita] and it continues to

grow. As new pages are added, an efficient search engine has the daunting task of

indexing these pages so they are returned in a user’s search query. As of October

2013, Google has the maximum number of indexed pages and 73% [citb] of the

market share of all searches. The huge market share is due to the combination of

Google’s technology and the computational algorithms that support the search

process. In particular, Google’s success is due to its method for computing the

popularity of a webpage, i.e., the PageRank of every page on the web. The

importance of PageRank is emphasized in one of Google’s web pages:

The heart of our software is PageRankTM, a system for ranking web

pages developed by our founders Larry Page and Sergey Brin at Stanford
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University. And while we have dozens of engineers working to improve

every aspect of Google on a daily basis, PageRank continues to provide

the basis for all of our web search tools. [citc]

Google’s search engine has three main components: web crawler, indexer, and

query processor. Google’s web crawlers are bots that navigate through domain

servers everyday and fetch URLs of newly created and modified webpages. The

indexer then parses each page for searchable words and stores the resulting index of

words in its database. Anytime a user submits a query, the query processor uses

this large database to compile a list of pages, in order of relevancy, to present to the

user. The order of relevancy is decided by the PageRank of each of the webpage in

the search result. In this chapter, we look at the core ideas behind how Google

calculates the PageRank.

We follow [AL06] in this chapter.

4.1 PageRank

The roots of PageRank actually derive from bibliometrics research, the

analysis of the citation structure among academic papers. Let inN(i) be the set of

pages linking into page Pi and outN(i) be the set of pages that Pi links to. The

PageRank of a page Pi, denoted r(Pi), is the sum of the PageRank of all the pages

linking into Pi.

r(Pi) =
∑

Pj∈inN(i)

r(Pj)

|outN(j)| . (4.1)

But r(Pi) depends on the PageRank of other pages and is computed iteratively. The

PageRank algorithm starts by assigning a rank of 1
n
to every page, where n is the

total number of pages on the web; r0(Pi) = 1/n for every page i. The PageRank at
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the k + 1 iteration is given by the equation

rk+1(Pi) =
∑

Pj∈inN(i)

rk(Pj)

|outN(j)| . (4.2)

Example 4.1.1. Let us consider a simple web as shown in Figure 4.1

1 2

3

56

4

Figure 4.1: Web with six pages.

We compute the rank of each of these six pages using (4.2) as shown in Table

4.1.

Table 4.1: Ranking of pages after two iterations

Page Iteration 0 Iteration 1 Iteration 2 Rank
1 1/6 1/12 1/24 4
2 1/6 1/12 1/24 4
3 1/6 1/12 1/24 4
4 1/6 1/4 1/4 1
5 1/6 1/6 1/6 3
6 1/6 1/6 1/5 2



49

The iterative method, while simple and straightforward for a small set of

pages, is inefficient considering the size of the web. Suppose we visualize the web as

a large graph, each page on the web as a vertex, the hyperlinks between pages as

directed edges between two vertices, and a user surfing the web by making arbitrary

clicks on the hyperlinks as taking a random walk on this web graph. In this context,

we are able to apply the theory of random walk to model a user browsing the web.

Let r be the PageRank vector. The iterative equation to compute the rank of page i

at the kth iteration is

rk(i) =
∑
j∼i

rk−1(j)

d(vj)
.

We write this using the matrix notation as

rTk+1 = rTk ·K, where K is a probability transition matrix. (4.3)

If the sequence r1, r2, · · · rk · · · converges uniquely, then we have a stable PageRank

vector. But there is no guarantee that this sequence of rankings converges uniquely.

In Chapter 3, we saw that if the probability transition matrix of a Markov chain on

a graph is stochastic, irreducible, and primitive, then it has a unique stationary

distribution. Furthermore, the powers of the probability transition matrix also

converges to a matrix with rows as the stationary distribution.

Since the importance of a page or its PageRank is measured by its popularity

(how many incoming links it has), we view the importance of page i as the

probability that a random surfer on the Internet opens a browser to any page and

follows the hyperlinks, visits page i. We interpret the weights we assigned to the

edges of the graph in a probabilistic way and model the process as a random walk

on graphs. Each page has equal probability (1/n, where n is the number of indexed

pages) to be chosen as a starting point. So, the initial probability distribution is

given by the column vector: r0 = [1/n 1/n · · · 1/n]T . The probability that page i is
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visited after one step is equal to rT0 K and so on. The probability that page i is

visited after k steps is equal to rT0 K
k. The sequence rT0 K, rT0 K

2, · · · , rT0 Kk, · · ·
converges in this case to a unique probabilistic vector π. Moreover, the ith entry in

the vector π is simply the probability that at each moment a random surfer visits

page i. Hence, is the relative importance or rank of that page. In this context, π is

the stationary distribution and is our PageRank vector.

4.2 Matrices of the webgraph

We define the following matrices for a webgraph.

Definition 4.2.1. Degree matrix.

Let D be the diagonal out-degree matrix with Dii = |outN(i)|, the number of pages

having an hyperlink on page i. We define the generalized inverse Dg as

Dg =

⎧⎪⎪⎨
⎪⎪⎩
1/Dii, if Dii �= 0.

0, otherwise .

Definition 4.2.2. Adjacency matrix.

A is the adjacency matrix of the web graph with

Aij =

⎧⎪⎪⎨
⎪⎪⎩
1, if j ∈ outN(i).

0, otherwise.

Definition 4.2.3. Hyperlink matrix.

The n× n hyperlink matrix K = DgA is the weighted probability transition matrix

of the web graph with

Kij =

⎧⎪⎪⎨
⎪⎪⎩
1/Dii, if j ∈ outN(i).

0, otherwise.
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Most pages on the web are not linked to each other, leaving more zeros in every

row. Furthermore, there are pages with no outlinks like image files, document files,

etcetra. These pages called dangling nodes, create zero rows in the matrix leaving

K sparsely populated. The random surfer model makes K the probability transition

matrix of a random walk, but the zero rows make the hyperlink matrix K

sub-stochastic.

4.3 Problems with the hyperlink matrix

The web graph is not connected and the hyperlink matrix K is sub stochastic

and possibly reducible and periodic. Consider a small web graph with three nodes

as shown in Figure 4.2. Suppose we start with the initial uniform distribution

1

2

3

Figure 4.2: Dangling nodes.

r0(i) = 1/3, for all nodes i. We see that in two iterations we arrive at the zero

vector.

rT1 =

[
1/3 1/3 1/3

]
⎡
⎢⎢⎢⎢⎣
0 1/2 1/2

0 0 0

0 0 0

⎤
⎥⎥⎥⎥⎦ =

[
0 1/6 1/6

]
;

rT2 =

[
0 1/6 1/6

]
⎡
⎢⎢⎢⎢⎣
0 1/2 1/2

0 0 0

0 0 0

⎤
⎥⎥⎥⎥⎦ =

[
0 0 0

]
.
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The web graph may have parts that are not reachable after some time. In our

previous example from Figure 4.1, we easily see that once we reach node 5, we are

not able to get back to nodes 1, 2 or 3. Consequently, by the twelfth iteration, we

get r12 =

[
0 0 0 0.2962 0.1481 0.2222

]
. Nodes 5 and 6 are rank sinks and

start accumulating rank as the iterations continue.

It is also possible for the web graph to have cycles as shown in Figure 4.3.

1 2

Figure 4.3: Cycles.

In such a case, the initial distribution is r0 = [1 0]T , r1 = [0 1]T , r2 = [1 0]T .

The iterates do not converge for any k, toggling between [1 0]T when k is even and

[0 1]T when k is odd.

4.4 Adjustments to the model

The web graph is disconnected with more than one connected component and

reducible. Parts of the graph are cycles, making the return times periodic. The

dangling nodes have no outlinks and are isolated. The hyperlink matrix of the web

graph is sub-stochastic, reducible, and periodic. So, the hyperlink matrix K does

not have a unique stationary distribution, and the powers of the matrix may not

converge. These problems caused Brin and Page to make adjustments to the basic

model.

4.4.1 Stochastic adjustment

From a dangling node, a random surfer accesses any page with equal

probability by typing in the page URL. In terms of the web graph, this implies that
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there is a directed edge from every dangling node to every other page on the web.

The first adjustment, the stochastic adjustment, replaces every row that has all zero

entries, corresponding to a dangling node, with a row that has all 1/n entries.

Let a be a column vector defined as

ai =

⎧⎪⎪⎨
⎪⎪⎩
1, if i is a dangling node.

0, otherwise.

Define a new matrix S as

S = K + (1/n)a1T .

This modified hyperlink matrix is stochastic. Hence, it is the probability transition

matrix of a Markov chain. The stochastic adjustment is just a rank-one update to

the original hyperlink matrix.

4.4.2 Primitivity adjustment

A random surfer on the web follows the hyperlink structure usually. But, at

times, ”the user teleports” to a randomly chosen page by typing in the URL of the

new destination and follows the hyperlink structure until the next teleportation. In

terms of the hyperlink matrix, this implies that there is a connectivity between any

two pages on the web, however small the probability. Brin and Page modeled this

mathematically using a teleportation factor α and designed a new matrix G, the

Google matrix.

G = αS + (1− α)1/nJ, (4.4)

where α takes values between 0 and 1 and J = 1 · 1T is the all one matrix. α

indicates the time that a person spends following the hyperlink structure before

teleporting. Suppose α = 0.6, then the surfer follows the hyperlink structure 60% of
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the time. Since the teleportation matrix E = 1/nJ is positive and uniform, the

surfer is equally likely to ”teleport” to any page on the web.

The new Google matrix G has the following properties:

Proposition 4.4.1. G is stochastic.

Proof. G is the convex combination of two stochastic matrices S and 1/nJ.

�

Proposition 4.4.2. G is irreducible.

Proof. Since J is positive and S is non-negative, G is positive. This implies that

every page is directly connected to every other page. The entire web is one large

connected component. So irreducibility is enforced by design.

�

Proposition 4.4.3. G is aperiodic.

Proof. Every page has a self-loop. So, for every page, there is a return time of one

step; one leaves the page and returns in the next step. The set of return times for

every page has 1 as the first entry. Hence the gcd of this set is 1 and consequently

every page has period one.

�

Proposition 4.4.4. G is primitive.

Proof. GL > 0 for some positive integer L. In fact, this is true for L = 1.
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�

Proposition 4.4.5. G has a stationary distribution vector.

Proof. Since G is primitive, by Markov chain theory G has a stationary distribution

vector π. So,

πTG = πT , (4.5)

and

lim
m→∞

Gm → πT1.

Using (4.4) the PageRank equation (4.5) be rewritten as

πT = πTαS + (1− α)πT 1

n
11T

= πTαS +
(1− α)

n
1T , since πT1 = 1.

(4.6)

�

Proposition 4.4.6. G is completely dense, but be written as a sum of the sparse

hyperlink matrix K and a rank-one matrix.

Proof.

G = αS + (1− α)
1

n
J

= α(K + a
1

n
1T ) + (1− α)

1

n
J, a is the dangling node vector

= αK +

(
α

n
a+

(1− α)

n
1

)
1T .

(4.7)

�
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Proposition 4.4.7. If the spectrum of the stochastic matrix S is {1, λ2, λ3, · · · , λn},
then the spectrum of the Google matrix G is {1, αλ1, αλ2, · · · , αλn}.

Proof. Since S is stochastic, (1,1) is an eigenpair of S. Set M =

[
1 X

]
, where X

is a non-singular matrix. Let M−1 =

⎡
⎢⎣ yT
YT

⎤
⎥⎦.

M−1M =

⎡
⎢⎣ yT1 yTX

YT1 YTX

⎤
⎥⎦ =

⎡
⎢⎣1 0

0 I

⎤
⎥⎦

. This gives us two identities yT1 = 1 and YT1 = 0. We look at the similarity

transformation

M−1SM =

⎡
⎢⎣ yT1 yTSX

YT1 YTSX

⎤
⎥⎦ =

⎡
⎢⎣1 yTSX

0 YTSX

⎤
⎥⎦ .

This triangulation of S reveals that YTSX contains the remaining eigenvalues

λ2, · · · , λn of S. Applying the same similarity transformation to

G = αS + (1−α)
n

11T , we get

M−1

(
αS +

(1− α)

n
J

)
M = M−1

(
αS

)
M+ (1− α)

(
M−1(1)(

1

n
1)TM

)

= α

⎡
⎢⎣1 yTSX

0 YTSX

⎤
⎥⎦+ (1− α)

⎡
⎢⎣ yT1
YT1

⎤
⎥⎦[ 1

n
1T1 1

n
1TX

]

= α

⎡
⎢⎣1 yTSX

0 YTSX

⎤
⎥⎦+ (1− α)

⎡
⎢⎣1 1

n
1TX

0 0

⎤
⎥⎦

=

⎡
⎢⎣1 yT (αS+ (1−α)

n
1T )X

0 αYTSX

⎤
⎥⎦

Therefore, the eigenvalues of G are {1, αλ2, · · · , αλn}.
�
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4.5 Computation of PageRank

The Google matrix G is irreducible and primitive. By the Markov chain

theory, a unique stationary distribution vector exists. From Chapter 3, we know

that the stationary distribution vector is the left eigenvector of G corresponding to

the largest eigenvalue 1. In theory, the PageRank vector be computed in two ways:

1. Solve the eigenvector problem for πT .

πT = πTG,

πT1 = 1.

2. Solve the linear homogeneous system for πT .

πT (I −G) = 0T .

πT1 = 1.

The first system requires us to find the dominant eigenpair of G, while the second

method requires us to solve n homogeneous linear equations. The Google matrix is

large and dense. Hence the eigen decomposition of G is computationally intensive.

Other more advanced and computationally efficient numerical methods exist to

solve the same equation [W.S94].

The power method is one of the oldest and simplest iterative methods for

finding the dominant eigenpair of a matrix. But this is also the slowest as the

matrix may not converge fast. Appendix E contains the computational mechanics of

the power method. There are three main reasons why Brin and Page chose to

implement the power method for computing the PageRank.
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1. We saw in (4.7) that the Google matrix G be expressed in terms of the sparse K.

Hence

πT
k+1 = πT

k G

= απT
k K +

1

n
(απT

k a+ 1− α)1T .

To implement the power method, the matrix multiplication is performed on the

sparse hyperlink matrix K, making it computationally cheaper.

2. The power method is also storage friendly. The sparse hyperlink matrix K,

dangling node vector a and the current iterate πk are the only elements that are

stored. The PageRank vector is completely dense. Given the size of the web,

storage requirements are a major factor.

3. The Google matrix G converges in 50 iterations. By Theorem 4.4.7, the

eigenvalues of G are {1, αλ2, · · · , αλn} where λi are the eigenvalues of S. From

Appendix E, we see that the convergence rate of Gk depends on the ratio

α|λ2|
|λ1| = αλ2. Both α and λ2 are less than one. If we consider |λ2| ≈ 1, then we are

interested in finding out when αk → 0. α the teleportation constant is an

artificial manipulator that Google controls and has been set to 0.85.

0.8550 ≈ 0.00029576, which is as close to zero as Google wants. Since the

operations are performed on the sparse hyperlink matrix, each iteration of

matrix-vector multiplication is of order less than O(n2).

Example 4.5.1. We now compute the PageRank for the small web graph in

Example 4.1.1.
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The hyperlink matrix K = DgA is

K =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0.5 0.5 0 0 0

0 0 0 0 0 0

0.5 0 0 0 0.5 0

0 0 0 0 0.5 0.5

0 0 0 0.5 0 0.5

0 0 0 1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Only node 2 is dangling. So, the dangling node vector is aT =

[
0 1 0 0 0 0

]
.

The stochastic matrix S = K + 1
6
a1T is

S =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0.5 0.5 0 0 0

1/6 1/6 1/6 1/6 1/6 1/6

0.5 0 0 0 0.5 0

0 0 0 0 0.5 0.5

0 0 0 0.5 0 0.5

0 0 0 1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

For α = 0.85, the Google matrix G = 0.85S + 0.151
6
J is

G =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.0250 0.4500 0.4500 0.0250 0.0250 0.0250

0.1667 0.1667 0.1667 0.1667 0.1667 0.1667

0.4500 0.0250 0.0250 0.0250 0.4500 0.0250

0.0250 0.0250 0.0250 0.0250 0.4500 0.4500

0.0250 0.0250 0.0250 0.4500 0.0250 0.4500

0.0250 0.0250 0.0250 0.8750 0.0250 0.0250

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Clearly, G is positive. Hence primitive. We now compute the PageRank vector

as the stationary distribution of G using the power method to be

π =

[
0.0577 0.0577 0.0577 0.3504 0.2066 0.2699

]
,



60

in 15 iterations. Pages 3, 2 and 1 all have the same rank. So, one possible ranking

of the pages of this small web is (4, 6, 5, 3, 1, 2).
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CHAPTER 5

ELECTRICAL NETWORKS ON GRAPHS

An electrical network is an interconnection of electrical elements such as

resistors, inductors, capacitors, voltage sources, current sources, and switches. An

electrical circuit is a network consisting of a closed loop, giving a return path for the

current. Electric current is the flow of electric charge or the flow of electrons in the

direction opposite to the flow of current. Electrical networks and random walks on

graphs are both governed by graphs which have values attached to vertices and

edges. We view the flow of electrons through a circuit to approximate a random

walk through the nodes of the network. This analogy allows us to express hitting

time and commute time between vertices in terms of resistance, voltage and current.

Doyle and Snell [PGD06] showed that the hitting times of a random walk on an

undirected graph G(V,E) are related to voltages in an electrical network. Current in

an electrical circuit has both strength and direction. So we now look at weighted

graphs and choose an orientation of the graph in the direction of electron flow.

5.1 Matrices of a weighted graph

Let G(V,E,W ) be a finite, connected, weighted graph, where V = {vi} is the

set of vertices, E = {(vi, vj)}, the set of edges, and W = {wij}, the set of weights of

edges.

Definition 5.1.1. Weighted adjacency matrix.
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For graph G, the weighted adjacency matrix A is given by

[A]ij =

⎧⎪⎪⎨
⎪⎪⎩
wij, if vi ∼ vj.

0, otherwise.

(5.1)

Since G is undirected, A is symmetric.

Definition 5.1.2. Degree matrix.

For graph G, the degree matrix D is the diagonal matrix given by

[D]ii = d(vi) =
∑
vj∼vi

wij =
∑
j

Aij.

Definition 5.1.3. Probability transition matrix.

For graph G, the probability transition matrix P = D−1A is the matrix given by

[P ]ij =
wij

d(vi)
.

Definition 5.1.4. Edge-Vertex incidence matrix.

Consider an arbitrary but fixed orientation of G. Then B is the signed edge-vertex

incidence matrix given by

B(e, v) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1, if v is the tail of e.

−1, if v is the head of e.

0, otherwise.

(5.2)

Definition 5.1.5. Combinatorial Laplacian.

For graph G, the combinatorial Laplacian L is the matrix given by

[L]ij =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

d(vi), if vi = vj.

−wij, if vj ∼ vi.

0, otherwise.

(5.3)
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The Laplacian matrix is clearly symmetric. An equivalent definition for the

Laplacian is L = D − A.

Let W be the diagonal edge matrix, where W (e, e) = we is the weight of an

edge e ∈ E. We see directly from Definition 5.1.5, that for an edge e = (vi, vj) ∈ E,

[L]ij =
∑
e∈E

B(e, vi)W (e, e)B(e, vj).

We express this in matrix form as

L = BTWB. (5.4)

Definition 5.1.6. Normalized Laplacian.

The normalized Laplacian L is defined to be

L = D−1/2LD−1/2. (5.5)

Using the definition L = D − A, we write the above as

L = D−1/2(D − A)D−1/2 = I −D−1/2AD−1/2.

And

[L]ij =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1, if vi = vj.

− wij√
d(vi)d(vj)

vj ∼ vi.

0, otherwise.

(5.6)

The normalized Laplacian is closely related to the probability transition matrix

P = D−1A.

D−1/2LD1/2 = D−1/2(I −D−1/2AD−1/2)D1/2 = I −D−1A = I − P.

So, L and I − P are similar matrices. Since D−1/2AD−1/2 = N , the symmetric form

of P , we express L using N as L = I −N .
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5.1.1 Properties of the Laplacian.

Lemma 5.1.7. Combinatorial Laplacian L is real and symmetric.

Proof. Since D and A are real and symmetric, L = D − A is real. Then

LT = (D − A)T = DT − AT = D − A = L,

and L is also symmetric.

�

By the spectral theory of real, symmetric matrices, the Laplacian L has real

eigenvalues and an orthonormal basis of eigenvectors.

Lemma 5.1.8. Combinatorial Laplacian L is positive semi-definite.

Proof. From matrix theory, a matrix M ∈ R
n is positive semi-definite if for any

non-zero vector, x ∈ R
n, xTMx ≥ 0. Let x be any real, non-zero vector. From (5.4)

xTLx = xTBTWBx = (Bx)TW (Bx) =
∑

e=(vi,vj)

we(xi − xj)
2 ≥ 0, (5.7)

since we > 0 for every edge.

�

Lemma 5.1.9. The normalized Laplacian L is also real, symmetric and positive

semi-definite.

Proof. The first part follows directly from the properties of L. For the second part,

let x be any real, non-zero vector. Then

xTLx = xTD−1/2LD−1/2x.
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Since y = D−1/2x > 0, we have

(D−1/2x)TL(D−1/2x) = yTLy ≥ 0.

�

5.1.2 Spectrum of the Laplacian

In general, the properties of the the spectra of the two Laplacians are

different, though they share some similarities.

Lemma 5.1.10. Every eigenvalue of the combinatorial and normalized Laplacian is

non-negative.

Proof. Let μ be an eigenvalue of L associated with eigenvector y. Since L is positive

semi-definite,

0 ≤ yTLy = yTμy = μyTy.

μ = yTLy/yTy ≥ 0, since it is a ratio of non-negative real numbers. Similarly, the

normalized Laplacian L also has non-negative eigenvalues.

�

Lemma 5.1.11. If graph G is connected, the null-space of L has dimension one,

and is spanned by the vector 1.

Proof. If x ∈ null(L), then Lx = 0. From (5.7) we have

xTLx =
∑
vi∼vj

wij(xi − xj)
2 = 0.
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Since wij > 0, we must have (xi − xj) = 0 and xi = xj for every (vi, vj) ∈ E. Since G
is connected, we infer that all xi’s are equal and x is a scalar multiple of 1. So the

dimension of null(L) = 1.

Similarly, the dimension of null-space of L is also 1 and is spanned by the

vector D1/21.

�

Lemma 5.1.12. Eigenvalues of L are 0 = μ1 < μ2 ≤ · · · ≤ μn.

Proof. The Laplacian L has row sum zero for every row. So, 0 is an eigenvalue of L.

L1 = �0.

Furthermore, since graph G is connected, from Lemma 5.1.11, we conclude that the

eigenvalue 0 is simple. Since all the eigenvalues of L are non-negative, the result

follows.

�

Lemma 5.1.13. Eigenvalues of the normalized Laplacian L are

0 = η1 < η2 ≤ · · · ≤ ηn ≤ 2

Proof. D1/21 is an eigenvector of normalized Laplacian L corresponding to

eigenvalue 0.

L(D1/21) = D−1/2LD−1/2(D1/21) = D−1/2L1 = �0.

Furthermore, by Lemma 5.1.11, the dimension of null space of L is one. Suppose y

is an eigenvector of L corresponding to eigenvalue 0, we have

0 = yTLy = yTD−1/2LD−1/2y.
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Setting z = D−1/2y, we get

0 = zTLz.

Then z is in the null space of L. Therefore, by Lemma 5.1.11, we have 0 = η1 is

simple.

Since L is real and symmetric, we apply the Rayleigh-Ritz theorem in pages

176-180 of [RAH85] to find the value of ηn.

ηn = sup
x �=0

〈x,Lx〉
〈x, x〉 = sup

x �=0

〈
x,D−1/2LD−1/2x

〉
〈x, x〉 = sup

x �=0

〈
D−1/2x, LD−1/2x

〉
〈x, x〉 .

For y = D−1/2x,

〈y, Ly〉
〈D1/2y,D1/2y〉 =

∑
i∼j

wij(yi − yj)
2

∑
j

y2jd(vj)
.

We know that for any a, b ∈ R, (a− b)2 ≤ 2(a2 + b2). So, (yi − yj)
2 ≤ 2(y2i + y2j ). For

an undirected, connected graph∑
i∼j

wij(y
2
i + y2j ) =

∑
i∼j

wijy
2
i +
∑
j∼i

wjiy
2
j =
∑
j

y2jd(vj).

Hence

ηn = sup
y �=0

∑
i∼j

wij(yi − yj)
2

∑
j

y2jd(vj)
≤ 2.

�

5.1.3 Eigenvalues of a graph

Let G be a connected graph. Suppose αi are the eigenvalues of the adjacency

matrix A, μi the eigenvalues of combinatorial Laplacian L, and ηi, the eigenvalues of

normalized Laplacian L, then

α1 > α2 ≥ · · · ≥ αn.
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We order the eigenvalues of L and L the reverse:

0 = μ1 < μ2 ≤ · · · ≤ μn

and

0 = η1 < η2 · · · ≤ ηn ≤ 2.

Suppose λi are the eigenvalues of N . Since L = I −N , λi = 1− ηi, and

1 = λ1 > λ2 ≥ · · · ≥ λn ≥ −1.

Suppose u is an eigenvector of L with eigenvalue η, we write

[Lu]j = 1√
d(vj)

[
d(vj)uj −

∑
vi∼vj

ujwij

]
1√
d(vj)

= uj −
∑
vi∼vj

ujwij√
d(vi)d(vj)

The normalized Laplacian is real symmetric. Hence we write it in terms of its

spectral decomposition. Since η1 = 0, we have

L =
n∑

i=1

ηiφiφ
T
i =

n∑
i=2

ηiφiφ
T
i ,

where {ηi} is the set of eigenvalues and {φi} is an orthonormal basis of eigenvectors

of L.

[Chu94] has more details on the spectral properties of the normalized

Laplacian L.

5.2 Inverse of the Laplacian

The normalized Laplacian is more useful in the study of electrical network and

effective resistance. So, we focus our attention here on the normalized Laplacian. In

particular, we are interested in finding the inverse of L.
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5.2.1 Green’s function

Green’s function was first introduced in a celebrated essay by George Green in

March 1828 [Gre]. Since then the concept of Green’s function has been used in a

wide range of areas, especially in the study of partial differential equations and

quantum field theory.

Definition 5.2.1. The Green’s function R [Chu00] denotes the symmetric matrix

satisfying

yTLR = yTRL = yT ,

for all vectors y which are orthogonal to the normalized eigenvector φ1 of L, where
φ1 =

D1/21√
vol(G) . We have seen earlier in Chapter 2 that φ1 is the stationary

distribution of a random walk on a connected graph. Equivalently, the normalized

Green’s function satisfies

RL = LR = I − φ1φ
T
1 , (5.8)

and has the following form:

R =
n∑

i=2

1

λi

φiφ
T
i .

Lemma 5.2.2. The normalized matrix Q̄ = D1/2QD−1/2 is the symmetric matrix

satisfying the definition of Green’s function, where Q is the fundamental matrix of

the connected graph.
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Proof. From subsection 2.6.1 of Chapter 2, we know that Q = [I −P +Π]−1. Hence,

Q̄ = D1/2QD−1/2

= D1/2[I − P +Π]−1D−1/2

= [D1/2(I − P +Π)D−1/2]−1

= [D1/2(I −D−1A+Π)D−1/2]−1

= [I −N +D1/2ΠD−1/2]−1

= [L+D1/2ΠD−1/2]−1.

Since I,N and D1/2ΠD−1/2 are symmetric, the matrix [I −N +D1/2ΠD−1/2]

is symmetric. By Theorem B.0.17, Q̄ is also symmetric.

To show that Q̄ satisfies the definition of Green’s function, we refer to the

properties of the fundamental matrix in Subsection 2.6.1 of Chapter 1. Since

Q(I − P ) = (I − P )Q = I − Π,

Q̄L = D1/2QD−1/2D1/2(I − P )D−1/2

= I −D1/2ΠD−1/2

= I − φ1φ
T
1 .

We see that

D1/2ΠD−1/2 = D1/21πTD−1/2 =
D1/21√
vol(G)

[
· · · d(vi) · · ·

]
D−1/2√
vol(G) = φ1φ

T
1 .

Similarly,

LQ̄ = D1/2(I − P )D−1/2D1/2QD−1/2

= I −D1/2ΠD−1/2

= I − φ1φ
T
1 .

(5.9)

Hence Q̄ is the Green’s function R.

�
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5.2.2 Inverse of normalized Laplacian

The normalized Laplacian L is singular and is not invertible. So, we consider

the β-normalized Laplacian, denoted as Lβ = βI + kL, for some scalars

β > 0, k > 0. The spectrum of the β-normalized Laplacian is computed to be

β < β + kη2 ≤ β + kη3 ≤ · · · ≤ β + kηn ≤ β + 2k.

Since φi are orthonormal eigenvectors of L,

Lβ =
n∑

i=1

βφiφ
T
i + k

n∑
i=1

ηiφiφ
T
i =

n∑
i=1

(β + kηi)φiφ
T
i . (5.10)

Lβ has the same eigenvectors as L but with eigenvalues β + kηi. Since the

eigenvalues of Lβ are non-zero, it is invertible. We define Rβ to be the symmetric

matrix satisfying

LβRβ = I.

Since( n∑
i=1

(β + kηi)φiφ
T
i

)( n∑
i=1

1

(β + kηi)
φiφ

T
i

)
=

n∑
i=1

(β + kηi)
1

(β + kηi)
φiφ

T
i φiφ

T
i = I,

Rβ =
n∑

i=1

1

(β + kηi)
φiφ

T
i . (5.11)

Rβ is referred to as the β normalized Green’s function.

Example 5.2.3. Consider a weighted, undirected, connected graph as shown in

Figure 5.1.
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Figure 5.1: Weighted graph.

The matrices for this graph are

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 3 0 0 9 0 1

3 0 6 15 9 0 0

0 6 0 8 0 0 0

0 15 8 0 7 5 0

9 9 0 7 0 4 0

0 0 0 5 4 0 0

1 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, D =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

13 0 0 0 0 0 0

0 33 0 0 0 0 0

0 0 14 0 0 0 0

0 0 0 35 0 0 0

0 0 0 0 29 0 0

0 0 0 0 0 9 0

0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

P = D−1A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0.2308 0 0 0.6923 0 0.0769

0.0909 0 0.1818 0.4545 0.2727 0 0

0 0.4286 0 0.5714 0 0 0

0 0.4286 0.2286 0 0.2000 0.1429 0

0.3103 0.3103 0 0.2414 0 0.1379 0

0 0 0 0.5556 0.4444 0 0

1.0000 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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L = D − A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

13 −3 0 0 −9 0 −1

−3 33 −6 −15 −9 0 0

0 −6 14 −8 0 0 0

0 −15 −8 35 −7 −5 0

−9 −9 0 −7 29 −4 0

0 0 0 −5 −4 9 0

−1 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

L = D−1/2LD−1/2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −0.14 0 0 −0.46 0 −0.27

−0.14 1 −0.27 −0.44 −0.29 0 0

0 −0.27 1 −0.36 0 0 0

0 −0.44 −0.36 1 −0.21 −0.28 0

−0.46 −0.29 0 −0.2 1 −0.2476 0

0 0 0 −0.28 −0.24 1 0

−0.27 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The spectra of the matrices are

spectra(A) =

[
26.34 6.34 .91 −0.1 −5.04 −12.16 −16.29

]
,

spectra(L) =

[
0 1.08 9.55 10.56 24.04 39.15 49.61

]
,

spectra(L) =
[
0 0.58 0.88 1.05 1.33 1.56 1.6

]
,

spectra(P ) =

[
1 0.42 0.12 −0.05 −0.33 −0.56 −0.60

]
.

�
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5.3 Laws of electricity

Electrical circuits are governed by the physical laws of electricity. Here we

look at two basic laws.

5.3.1 Ohm’s law

The electric current I through a conductor is directly proportional to the

voltage V applied to it. The ratio of voltage to current is the resistance R. We

express this relationship as

V = IR. (5.12)

5.3.2 Kirchoff’s current law

The physical laws of conservation of charge tells us that electrical charge is

neither created nor destroyed. By this principle of conservation, at any node in an

electric circuit, the amount of charge entering the node equals the amount of charge

leaving the node. Recalling that current is a signed quantity (positive or negative),

as the current flows into or out of a node, we state this principle as

k∑
i=1

Ii = 0, (5.13)

where k is the total number of branches connecting into or out of a node.

5.4 Voltage potential

Consider a random walk along the line of positive integers, N = 1, 2, · · · , n,
starting at any vertex x. Let us look at the hitting probability function k(x) of a
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random walk starting at integer x and reaching n before reaching 1.

k(x) = P(Xi = n|X1 = x,Xl �= 1 for l < i).

The integer line ends at 1 and n. We have the following

(a) k(1) = 0,

(b) k(n) = 1,

(c) k(x) = 1
2
k(x− 1) + 1

2
k(x+ 1) for x = 2, 3, · · ·n− 1.

Results (a) and (b) are based on our definition of k(x). Result (c) is a direct

application of probability theory.

Suppose we connect a series of resistors at each integer node x and suppose we

maintain a unit potential at the ends by connecting a battery of potential 1 volt

between the end nodes. Now, we view the integer line as an electrical circuit. By

the laws of electricity, voltage v(x) is established across each node x with v(1) = 0

and v(n) = 1. This satisfies conditions (a) and (b). We now show that v(x) satisfies

condition (c) as well.

By Kirchoff’s law, the net current through the circuit is 0 and the current

flowing into each node equals the current flowing out. By Ohm’s law, if nodes x and

y are connected by a resistor of rxy ohms, then the voltage difference across the

nodes is given by

vx − vy = ixy · rxy

Thus, if there are n resistors, all of equal magnitude r ohms, the voltage potential

across any two nodes x, x+ 1 is

v(x− 1)− v(x+ 1) = [v(x− 1)− v(x)]− [v(x)− v(x+ 1)].
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The net current at each node is 0. Using Ohm’s law we write the net current at

node x as

0 =
v(x− 1)− v(x)

r
+

v(x+ 1)− v(x)

r

Multiplying through by r and collecting v(x), we get,

v(x) =
1

2
v(x− 1) +

1

2
v(x+ 1)

Thus v(x) also satisfies property (c).

This simple example helps us see that the probability function k(x) in a

random walk behaves similar to the voltage potential v(x) in an electrical network.

To show that they are indeed the same, we refer to harmonic functions.

5.4.1 Harmonic functions on a graph

Let G = (V,E,W ) be a connected, weighted graph. We split the vertices of

the graph into two sets, U the set of internal vertices and W the set of external

vertices, such that the two sets partition V i.e., U ∪W = V and U ∩W = ∅. The
set of external vertices W are considered the boundary points of the set V . Two

vertices u and v that share an edge are neighbors, denoted by u ∼ v.

Definition 5.4.1. Harmonic function.

A function h : V → R is harmonic on U if

h(u) =
1

d(u)

∑
v∼u

wuvh(v), (5.14)

for any u ∈ U , where d(u) =
∑
v∼u

wuv.

Lemma 5.4.2. Suppose G is a connected, weighted graph, {U,W} is a partition of

vertices of G as described above, and h(w) is given for all w ∈ W . Then, there exists

a unique harmonic function on U.
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Proof. Our proof takes advantage of basic graph theory and matrix theory

theorems. As before, D is the degree matrix, A is the weighted adjacency matrix,

and wuv is the weight of the edge (u, v) ∈ E. From (5.14), the value of the harmonic

function h at each vertex u ∈ U is

h(u) =
1

d(u)

∑
v∼u

wuvh(v). (5.15)

Equivalently,

d(u)h(u)−
∑
v∼u

wuvh(v) = 0. (5.16)

We partition the sum for the external vertices and express this equation as

∑
(v∼u)∩W

wuvh(v) = d(u)h(u)−
∑

(v∼u)∩U
wuvh(v). (5.17)

The sum on the left hand side of the above equation (5.17) is based on the given

fixed values for the external vertices w ∈ W. Since there are k = |U | linear equations
for k unknowns, we represent this system using matrix notation as follows:

[D − A]k×kH = W̄ , (5.18)

where [D − A]k×k represents the k × k submatrix of the Laplacian of G indexed by

vertices u ∈ U , H = [h(u)], u ∈ U and W̄ =

[ ∑
(v∼u)∩W

wuvh(v)

]
. The left hand side of

(5.18) is derived from the Laplacian L of G. If we consider the subgraph GU of G by

restricting G to the set of vertices in U , we define the Laplacian of GU as

LU = DGU
− AU .

Let D̄ = [D]U −DGU
. We rewrite the matrix notation in (5.18) using the restricted

Laplacian as

[LU + D̄]H = W̄ . (5.19)
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We have seen before that the Laplacian of a graph is positive semi-definite. So LU is

positive semi-definite. Since D̄ is diagonal with non-negative entries, it is also

positive semi-definite. Thus [LU + D̄] is positive semi-definite.

Claim 5.4.3. [LU + D̄] is invertible.

Proof. Suppose [LU + D̄] is not invertible. Then there exists a non-zero vector

x ∈ R
k such that [LU + D̄]x = 0. And xT [LU + D̄]x = 0. Since LU and D̄ are

positive semi-definite, we must have 0 = xTLUx = xT D̄x. So xT D̄x =
∑
i

d̄ix
2
i = 0,

and d̄ix
2
i = 0 for every i. Suppose xi �= 0, then d̄i = 0. This means that vertex vi

does not have a neighbor in W . But G is connected. So some vertex vj has a

neighbor in W and has dj �= 0. Hence xj = 0. By Lemma 5.1.11, xi = xj. But xi �= 0

for every i and x is the zero vector, a contradiction. Hence [LU + D̄] is invertible.

�

Matrices have unique inverses. Hence we conclude that there exists a solution

to our matrix equation (5.19).

Corollary 5.4.4. Harmonic functions with same boundary values are unique.

Example 5.4.5. Consider the weighted graph as shown in Figure 5.1. The vertices

of G are partitioned as W = {w1, w2, w3}, the set of external vertices and

U = {u1, u2, u3, u4}, the set of internal vertices. Suppose h(W ) =

[
4 7 5

]T
. We

compute the value of h at each internal vertex ui using (5.15).

h(u1) = f(h(w1), h(w3), h(u2)) =
1
13
(36 + 5 + 3h(u2)). We set up similar
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equations for each vertex ui and express this in matrix form as⎡
⎢⎢⎢⎢⎢⎢⎢⎣

13 −3 0 0

−3 11 −2 −5

0 −3 7 −4

0 −15 −8 35

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

h(u1)

h(u2)

h(u3)

h(u4)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

41

12

0

63

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

yields

H =

[
4.1927 4.5015 4.6702 4.7967

]T
.

We compute the same using the Laplacian in (5.19).

[LU + D̄] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

3 −3 0 0

−3 24 −6 −15

0 −6 14 −8

0 −15 −8 23

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

10 0 0 0

0 9 0 0

0 0 0 0

0 0 0 12

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

13 −3 0 0

−3 33 −6 −15

0 −3 7 −4

0 −15 −8 35

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

And

W̄ =

[ ∑
u∼v∩W

wuvh(v)

]
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

41

36

0

63

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Hence, we get the same result for H = [h(ui)] = [LU + D̄]−1W̄ .

�

5.5 Random walks and electrical networks

For any graph G(V,E,W ), we view G as an electrical network by considering

each edge as a resistor. For any edge (x, y), let rxy be the resistance of that edge, ixy

the current, vxy the voltage difference across the vertices, and cxy =
1

rxy
the
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conductance of that edge. For any vertex x, the conductance at that vertex cx, is

the sum of conductance of all the edges at x.

cx =
∑
y∼x

cxy.

First, we establish the voltage potential as a hitting probability by showing

that both are harmonic functions on the same set with the same boundary

conditions. Fix any two specific nodes a and b, connect a battery between them to

establish a potential of 1 volt. So va = 1 and vb = 0. The probability pxy of taking

the edge (x, y) from vertex x is pxy =
cxy
cx

. By Ohm’s law the current through any

edge (x, y) is

ixy = (vx − vy)cxy.

By Kirchoff’s current law, the total current through any vertex x other than a or b

is 0. So, for any edge x with nodes not in {a, b}

0 =
∑
x∼y

ixy =
∑
y∼x

(vx − vy)cxy.

Alternatively, ∑
y∼x

vxcxy =
∑
y∼x

vycxy

or

vxcx =
∑
y∼x

vycxy,

yielding

vx =
∑
y∼x

vy
cxy
cx

=
∑
y∼x

vypxy.

Since
∑
y

pxy = 1, we have stated vx as a weighted sum using the probability

of traversing each edge. From our setup, va = 1 and vb = 0. These three essential

factors allow us to conclude that v(x) is a harmonic function at all points x other

than a and b.
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Now, let us take a random walk on this same weighted graph. We stipulate

that the weight of each edge is the same as the conductance of the edge, i.e.,

wxy = cxy. Consider the hitting probability k(x) that a random walk starting at x

reaches a before b. Obviously k(a) = 1 and k(b) = 0. So, these hitting probabilities

satisfy the same boundary conditions as the harmonic voltage function v(x). Also,

k(x) =
∑
y∼x

pxyk(y). As we have seen in Chapter 2, if we start a random walk at

node x, our next step is towards any of its neighbors y, with the probability pxy.

Then k(x) is also a weighted sum of the probability of taking an edge. So k(x) is

also a harmonic function defined on all vertices except a and b.

By Corollary 5.4.4, v(x) and k(x) are the same function. To sum up, we have

the following interpretation of voltage. When a unit voltage is applied between

nodes a and b, making va = 1 and vb = 0, the voltage vx at any point x represents

the hitting probability that a walker starting from x returns to a before reaching b.

Although we have chosen a unit voltage as the potential across a and b, it can be

any arbitrary voltage v that the electrical circuit can support.

Theorem 5.5.1. Hitting time between two vertices is the same as voltage potential

across the vertices.

Proof. Suppose G is an electrical network with |V | nodes and |E| edges with
conductance wuv on edge (u, v) ∈ E. Let vu be the voltage at node u. Then

vuv = vu − vv denotes the voltage potential across two vertices u and v. Suppose

d(u) units current is introduced at each vertex u ∈ V − {v} and all the vol(G) units
of current are extracted at vertex v as shown in Figure 5.5.1. By Kirchoff’s current

law, the net current at node u is 0.

0 = i1 − i2 + d(u) + i3 − i4,
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u

i1

i 2

i 3

i4

d(u)

Figure 5.2: Current at node u

Rewriting for d(u) yields

d(u) = i2 + i4 − i1 − i3.

For every node u ∈ V − {v},
d(u) =

∑
w∼u

iuw.

Using Ohm’s law and
∑
w∼u

wwu = d(u), we have

∑
w∼u

iuw =
∑
w∼u

(wuwvuv − wwvvwv) = d(u)vuv −
∑
w∼u

wuwvwv.

We rewrite the above equation as

vuv = 1 +
1

d(u)

∑
w∼u

wuwvwv. (5.20)

Suppose we consider the electrical network as a graph G(V,E,W ), with each

node of the circuit as a vertex on the graph, the connections between each node as

an edge and the conductance of the edge as its weight. We now apply (2.10) to

express hitting time between any two vertices u, v ∈ V as

Huv =
∑
w∼u

(1 +H(w, v))puw =
∑
w∼u

(1 +H(w, v))
wuw

d(u)

= 1 +
1

d(u)

∑
w∼u

wuwHwv. (5.21)
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The above two equations are identical. Hence both hitting time and voltage

potential are solutions to both the equations. From (5.15), we see that the

summand on both the equations represent an harmonic function on the same graph.

By uniqueness of harmonic functions in Corollary 5.4.4, these equations have the

same solutions and we conclude Huv = vuv.

�

Example 5.5.2. The hitting time for the graph shown in Figure 5.1 is

H =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0.5571 1.7046 0.6913 0.3339 2.3007 19.8507

1.7563 0 1.3119 0.4218 0.6391 2.2867 21.6070

1.9866 0.3946 0 0.3300 0.8146 2.3137 21.8373

1.8981 0.4294 1.2549 0 0.6850 2.0727 21.7488

1.4046 0.5106 1.6034 0.5489 0 2.0732 21.2553

1.8280 0.6147 1.5590 0.3932 0.5298 0 21.6787

0.1492 0.7063 1.8539 0.8405 0.4832 2.4500 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�
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CHAPTER 6

PERSONALIZED PAGERANK AND HITTING TIME

In Chapter 3, we saw the exposition of PageRank and its use by Google to

rank the importance of billions of webpages. Although the concept of PageRank was

originally derived for webgraph, it can be applied to any connected graph. In this

chapter, following Chung’s paper [FC10], we modify the original PageRank equation

to define a personalized PageRank. This allows us to define a generalized version of

hitting time and commute time and express hitting time in terms of personalized

PageRank.

We consider a connected, weighted graph G(V,E,W ), where V is the set of

vertices, E the set of edges, and W the weights of the edges of G. We refer to the

weight of an edge (vi, vj) ∈ E by wij. The weights are positive for every edge. We

choose an arbitrary, but fixed orientation of G. As before, we use the notation ∼ to

denote neighboring vertices; that is vi ∼ vj means vj is a neighbor of vi.

6.1 Personalized PageRank

In Proposition 4.4.5, we saw the definition of Google’s PageRank π as the left

eigenvector of the Google matrix G with eigenvalue 1.

πT = πTG,

which we defined in (4.6) to be

πT = πTαS +
(1− α)

n
1T , (6.1)
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where S is the stochastic probability transition matrix, α is the jumping constant

and n is the number of vertices in the graph.

6.1.1 Lazy random walk

For a random walk on a connected graph, we saw that the sequence of

distributions eventually converges to the stationary distribution π, where

πj =
d(vj)

2m
. For a weighted graph G(V,E,W ), we replace 2m by vol(G) where

vol(G) =
∑
vi∈V

d(vi) and d(vi) =
∑
vj∼vi

wij.

However, it is not necessary that if we start with any arbitrary distribution,

the distribution converges to π. Indeed, by taking the graph to be a single edge, and

starting at one of the vertices, the distribution is [1 0] and [0 1] alternately. The

unique stationary distribution [1
2

1
2
] is never reached.

The key problem here is that the walk is periodic; at even steps it is at one

vertex and at odd steps at the other. The primitivity adjustment we saw in Chapter

3 was Google’s fix to this periodicity issue. Here we look at an alternate method, a

modified version of the original walk: the lazy random walk.

In a lazy random walk, we make a move only every other turn. We toss a fair

coin. If the coin lands on head, we stay at the same vertex(hence lazy). If the coin

lands on tail, we move at random to any neighbor. At any time

• we take a step of the original random walk with probability 1
2
, or

• we stay at the current vertex with probability 1
2
.

Definition 6.1.1. Probability transition matrix of a lazy random walk.

The probability of transition at every step of a lazy random walk is 1
2
+ 1

2
p, where p

is the transition probability of the same step in the standard random walk. Hence

the probability transition matrix Z of a lazy random walk equals I+P
2

.
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Theorem 6.1.2. Let Z be the probability transition matrix of a lazy random walk.

Then Z is stochastic and its eigenvalues lie between 0 and 1.

Proof. Let P be the probability transition matrix of a standard random walk on

G(V,E,W ). Then

Z =
I + P

2
.

Since I and P are both stochastic, Z is also stochastic.

From Theorem 2.5.7, we know that the eigenvalues λi of P lie between [−1, 1].

Furthermore, the eigenvalue 1 is simple. So, 1 = λ1 > λ2 ≥ · · · ≥ λn ≥ −1. Using

this, we compute the eigenvalues of Z. Let ωi be the eigenvector of P with

eigenvalue λi. Then

Zωi =
(I + P )

2
ωi =

1

2
(ωi + λiωi) =

1

2
(1 + λi)ωi.

So 1
2
(1 + λi) are the eigenvalues of Z. Since −1 ≤ λi ≤ 1, we have

0 ≤ 1 + λi

2
≤ 1.

The set, {(1
2
(1 + λi), ωi)}, is the eigenpairs of Z. Since the eigenvalue 1 of P is

simple, 1 is also a simple eigenvalue of Z.

�

6.1.2 Personalized PageRank

Definition 6.1.3. Personalized PageRank.

The personalized PageRank vector prα(s) is defined to be the unique solution to the

equation

prα(s)
T = αprα(s)

TZ + (1− α)sT , (6.2)
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where Z is the probability transition matrix of a lazy random walk, 0 < α < 1 is the

teleportation constant and s is the seed vector with
∑
i

si = 1.

Proposition 6.1.4. Equation (6.2) has a unique solution.

Proof. We write (6.2) as

(1− α)sT = prα(s)
T [I − αZ]. (6.3)

Since the eigenvalues of Z lie between 0 and 1 and 0 < α < 1, the matrix [I − αZ]

does not have a zero eigenvalue. Hence [I − αZ] has a unique inverse.

�

Theorem 6.1.5. prα(s) is the stationary distribution of the stochastic matrix

M = αZ + (1− α)1sT .

Proof. First note that M is the convex combination of two stochastic matrices: Z

and 1sT ; hence M is stochastic. Since P is irreducible, Z = (I + P )/2 is primitive

[RAH85] pages 100-120. Consequently, by Theorem B.0.21, M is primitive. Hence

by the fundamental stability theorem of Markov chains, Theorem 2.5.8, M has a

stationary distribution, and the result follows.

�

Proposition 6.1.6. Suppose π is the PageRank of the standard random walk and

pr is the PageRank of the lazy random walk, then

π

(
α

2− α
, s

)
= prα(s),

where 0 < α < 1 and
∑
i

si = 1.
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Proof. For a connected graph G, the probability transition matrix P is already

stochastic. Using the definition of Google’s PageRank in (6.1), we write

π

(
α

2− α
, s

)
as

πT =
α

2− α
πTP +

(
1− α

2− α

)
sT

=
α

2− α
πTP +

2(1− α)

2− α
sT .

Multiplying by (2− α) and collecting terms yields

πT (2− α) = απTP + 2(1− α)sT

πT = απT I + P

2
+ (1− α)sT

= απTZ + (1− α)sT .

By Proposition 6.1.4, we know that the personalized PageRank equation has a

unique solution. And we get the desired result.

�

Proposition 6.1.7. The Green’s function Rβ is a symmetric form of the

personalized PageRank.

prα(s)
T

β
= sTD−1/2RβD

1/2,

where β =
2(1− α)

2− α
.

Proof. From (6.2) we have

prα(s)
T = αprα(s)

TZ + (1− α)sT ,

where 0 < α < 1, s is the seed vector and Z = (I + P )/2.
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Let β =
2− 2α

2− α
. Since 0 < α < 1, 0 < β < 1. Expressing α in terms of β, we

get α =
2(1− β)

2− β
. We now rewrite prα(s) as

prα(s)
T =

2(1− β)

2− β
prα(s)

TZ +
β

2− β
sT .

Applying the definition of Z, we get

prα(s)
T =

1− β

2− β
prα(s)

T (I + P ) +
β

2− β
sT .

Collecting prα(s)
T and using D−1/2LD1/2 = I − P , gives

prα(s)
T

β
D−1/2[(1− β)L+ βI]D1/2 = sT .

Using the inverse function of Lβ, the beta normalized Green’s function from

(5.11) yields

prα(s)
T

β
= sTD−1/2RβD

1/2. (6.4)

�

Example 6.1.8. For a connected graph as shown in Figure 6.1 below, we compute

Google’s PageRank and personalized PageRank.

Set α = 0.85 and the seed vector

s =

[
1
12

1
12

1
6

1
3

1
4

1
12

]
.

Method 1. Google’s power method: Since the graph is connected, the probability
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1 2

3

56

4

Figure 6.1: Connected graph with six pages.

transition matrix P is stochastic and the Google matrix G is primitive.

P =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1/2 1/2 0 0 0

1 0 0 0 0 0

1/2 0 0 0 1/2 0

0 0 0 0 1/2 1/2

0 0 1/3 1/3 0 1/3

0 0 0 1/2 1/2 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

G =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.0217 0.3913 0.4565 0.0435 0.0652 0.0217

0.7609 0.0217 0.0870 0.0435 0.0652 0.0217

0.3913 0.0217 0.0870 0.0435 0.4348 0.0217

0.0217 0.0217 0.0870 0.0435 0.4348 0.3913

0.0217 0.0217 0.3333 0.2899 0.0652 0.2681

0.0217 0.0217 0.0870 0.4130 0.4348 0.0217

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Google’s PageRank, the stationary distribution vector computed using the power
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method is

πT =

[
0.1576 0.0800 0.2076 0.1587 0.2534 0.1428

]
.

Method 2. Symmetric Green’s function method: The adjacency matrix is

symmetric. Hence the Laplacian L = D − A is also symmetric.

L =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 −1 −1 0 0 0

−1 1 0 0 0 0

−1 0 2 0 −1 0

0 0 0 2 −1 −1

0 0 −1 −1 3 −1

0 0 0 −1 −1 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The β−Laplacian Lβ and its inverse the Green’s function Rβ are

Lβ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −0.5226 −0.3696 0 0 0

−0.5226 1 0 0 0 0

−0.3696 0 1 0 −0.3017 0

0 0 0 1− 0.3017 −0.3696

0 0 −0.3017 −0.3017 1− 0.3017

0 0 0 −0.3696 −0.3017 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

Rβ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.7537 0.9166 0.7433 0.1510 0.3154 0.1510

0.9166 1.4790 0.3885 0.0789 0.1648 0.0789

0.7433 0.3885 1.4619 0.2969 0.6203 0.2969

0.1510 0.0789 0.2969 1.5406 0.7990 0.8105

0.3154 0.1648 0.6203 0.7990 1.6694 0.7990

0.1510 0.0789 0.2969 0.8105 0.7990 1.5406

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.
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The personalized PageRank using the symmetric form of the β−Green’s

function in (6.4) is

prα(s)
T =

[
0.1576 0.0800 0.2076 0.1587 0.2534 0.1428

]
.

Since the graph is connected, πT = prα(s)
T .

6.2 Personalized PageRank and hitting time

Let N (G) be the electrical network of a graph G(V,E,W ) having a node for

every vertex v ∈ V and conductance of wuv on every edge (u, v) ∈ E. Here, we use

the theory of electrical networks on graphs from Chapter 4.

Definition 6.2.1. Effective resistance.

In any electrical circuit, the effective resistance between any two nodes u and v is

defined as the voltage that develops between them when a unit current is

maintained through them (i.e., enters one and leaves the other). In the quantitative

sense, the resistance between two points is defined to be the voltage difference that

is required to take a unit current across the defined two nodes.

Formally, effective resistance Ruv between nodes u and v is the voltage potential

difference induced between them when a current of one ampere is introduced at u

and extracted at v. Suppose f : V → R is a voltage potential function. Then

Ruv = fu − fv.

Theorem 6.2.2. For graph G(V,E,W ) with vertices u, v ∈ V

Cuv = vol(G)Ruv,

where Cuv is the commute time, Ruv is the effective resistance between the vertices

u, v, and vol(G) =
∑
v∈V

d(v).
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Proof. We follow the proof in Chandra et al in [AC96]. Suppose N (G) has we ohm

resistance at each edge e ∈ E. Let d(x) units current be introduced at each vertex

x ∈ V and all the vol(G) units of current be extracted at vertex v.

In Theorem 5.5.1, we established that the voltage potential f between two

vertices is the same as the hitting time between the same two vertices:

fu − fv = Huv.

In an electrical network, current flows in the direction of voltage gradient. So,

if we reverse the flow of current and induce vol(G) unit of current at u and remove

d(x) at every vertex x ∈ V − {u}, we get the voltage at u with respect to v to be

Hvu.

If we superimpose both these circuits, the current at each vertex V − {u, v}
cancels and we are left with the voltage difference between u and v when vol(G)
units of current are introduced at u and removed at v. By Ohm’s law,

fu − fv = vol(G)Ruv. By Theorem 5.5.1,

Huv +Hvu = vol(G)Ruv. (6.5)

Since Cuv = Huv +Hvu, from (6.5), we have

Ruv =
Huv +Hvu

vol(G) =
Cuv

vol(G) . (6.6)

�

For graph G, BTW gives the conductance between any two nodes u, v ∈ V,

where B is the signed edge-vertex incidence matrix and W is the diagonal edge

weight matrix. Using Kirchoff’s law, we write the injected current function

iV : V → R as

iTV = iTEB, (6.7)
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where iV (v) is the sum of all induced current on edges entering at vertex v. By

Ohm’s law, the induced current flow through any edge (u, v) ∈ E with conductance

wuv is given by

iuv = wuv(fu − fv).

We write this in matrix form as

iTE = fTBTW. (6.8)

Using the above two equations, we get

iTV = (fTBTW )B = fT (BTWB).

Applying the definition of the Laplacian from (5.4) gives us

iTV = fTL = fTD1/2LD1/2.

Suppose we only consider potential functions such that
∑
v∈V

f = 0; then 1Tf = 0.

Notice that for φ1, the eigenvector corresponding to eigenvalue 0 of the normalized

Laplacian L, φ1f = D1/21Tf = 0. Hence by definition of Green’s function

fT = iTVD
−1/2RD−1/2. (6.9)

Consider a unit current injected at vertex u and extracted at vertex v. Suppose we

represent the current vector by χ, where χu has 1 in the uth entry and 0 elsewhere.

Then iV = χu − χv. By Ohm’s law, the effective resistance between vertices u and v

is

R(u, v) = fT (χv − χu)

= (χv − χu)
TD−1/2RD−1/2(χv − χu). (6.10)
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Lemma 6.2.3. For all vertices u, v ∈ V , the hitting time H(u, v) is expressed in

terms of the Greens’s function R as follows:

H(u, v)

vol(G) = (χv − χu)
TD−1/2RD−1/2χv. (6.11)

Proof. Using the fundamental matrix Q in (2.17), we expressed hitting time as

H(u, v) =
Qvv −Quv

πv

,

where Q = [I − P +Π]−1 and π(v) =
d(v)

vol(G) . Hence

H(u, v)

vol(G) =
Qvv

d(v)
− Quv

d(v)

=

[
QD−1

]
vv

−
[
QD−1

]
uv

.

Using the unit function χ we rewrite the above equation as[
QD−1

]
vv

−
[
QD−1

]
uv

= χT
vQD−1χv − χT

uQD−1χv

= (χv − χu)
TQD−1χv.

(6.12)

Using Lemma 5.2.2, we find

Q = D−1/2

[
D1/2QD−1/2

]
D1/2 = D−1/2RD1/2.

Applying the above result back into (6.12), we get the desired result.

�

Definition 6.2.4. Generalized hitting time.

The generalized hitting time hα(u, v) between any two vertices u, v ∈ V with an

additional parameter 0 < α < 1 is given by

hα(u, v)
def
= β

H(u, v)

vol(G) = β(χv − χu)
TD−1/2RβD

−1/2χv, (6.13)

where β =
2(1− α)

2− α
.
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Lemma 6.2.5. The generalized hitting time in terms of the personalized PageRank

prα(χv), where 0 < α < 1 and
∑
i

[χv]i = 1 is given by

hα(u, v) =
[prα(χv)

T ](v)

d(v)
− [prα(χv)

T ](u)

d(u)
. (6.14)

Proof. Using (6.4), we have

prα(χv)
T = βχT

vD
−1/2RβD

1/2.

So, the right hand side of the above equation becomes

β
χT
vD

−1/2RβD
1/2

d(v)
[v]− β

χT
vD

−1/2RβD
1/2

d(u)
[u] (6.15)

Note that 1
d(u)

= (D−1χu)[u] gives the uth coordinate. Hence, we rewrite the above

equation as

βχT
vD

−1/2RβD
1/2(D−1χv)− βχT

vD
−1/2RβD

1/2(D−1χu).

D−1/2RβD
−1/2 is symmetric. And χx is a vector with 1 in the xth coordinate. So

χT
v [D

−1/2RβD
−1/2]χu = [D−1/2RβD

−1/2]uv = χT
u [D

−1/2RβD
−1/2]χv. So the right

hand side of (6.14) becomes

βχT
vD

−1/2RβD
−1/2χv − βχT

uD
−1/2RβD

−1/2χv

= β(χv − χu)
TD−1/2RβD

−1/2χv

= hα(u, v).

�

Corollary 6.2.6. The generalized effective resistance Rα(u, v) in terms of the

Green’s function Rβ is given by

Rα(u, v) = hα(u, v) + hα(v, u).



97

Proof. Using (6.10), we define the generalized effective resistance Rα(u, v) to be

Rα(u, v) = β(χv − χu)
TD−1/2RβD

−1/2(χv − χu)

= β(χv − χu)
TD−1/2RβD

−1/2χv − β(χv − χu)
TD−1/2RβD

−1/2χu

= β(χv − χu)
TD−1/2RβD

−1/2χv + β(χu − χv)
TD−1/2RβD

−1/2χu

= hα(u, v) + hα(v, u).

�
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APPENDIX A

PROBABILITY THEORY

In probability theory, a probability space or a probability triple is a

mathematical construct that models a real-world process (or ”experiment”)

consisting of outcomes that occur randomly. A probability space is constructed with

a specific kind of situation or experiment in mind. Each time a situation of the

specific kind arises, the set of possible outcomes is the same and the probabilities

are also the same.

A probability space consists of three parts:

• A sample space Ω, which is the set of all possible outcomes.

• A set of events F , where each event is a set containing zero or more

outcomes.

• A probability function P : F → R, which assigns probabilities to the events.

Definition A.0.7. State-space.

Let I be a countable set. Each i ∈ I is called a state and I the state-space.

Definition A.0.8. Random variable.

A random variable is a real-valued function defined on a set of possible outcomes:

the sample space Ω. A random variable X with values in I is defined to be

X : Ω → I.

Definition A.0.9. Distribution.

μ = (μi : i ∈ I) is a measure on I if 0 ≤ μi ≤ ∞ for all i ∈ I. In addition, if
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i∈I

μi = 1, then we call μ a distribution. Suppose we set

μi = P(X = i) = P({ω : X(ω) = i}).

Then μ defines a distribution, the distribution of X.

Example A.0.10. Let us consider a simple example in which we toss two fair

coins. The four possible outcomes {HH,HT, TH, TT} are the entries in the sample

space Ω.

E1 = {HH} is the event that both the coins are heads.

E2 = {TT} is the event that both the coins are tails.

E3 = {HH,HT, TH} is the event that at least one coin is head.

E4 = {HT, TH, TT} is the event that at least one coin is tail.

Suppose we define a random variable X as the number of heads in a toss. Then, X

takes values 0, 1, 2. The distributions μi of X are given by the probabilities

μ1 = P(X = 0) = P({X(TT )}) = 1/4,

μ2 = P(X = 1) = P({X(HT ), X(TH)}) = 1/2,

μ3 = P(X = 2) = P({X(HH)}) = 1/4.

Definition A.0.11. Independent and conditionally dependent events.

Two events A and B are said to be independent if the outcome of one does not

affect the outcome of the other and vice versa. We then say P (A|B) = P (A) and

P (B|A) = P (B). If the events are not independent, then they are considered

dependent. For example, let us consider tossing two fair dices, red and blue. The

outcome of the toss of one dice has no impact on the outcome of the toss of the

other. So, the two events, namely ”A, tossing red dice” and ”B, tossing blue dice”

are independent. If two events are independent then P(A ∩B) = P(A)P(B).
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Two events A and B are independent conditionally on C if once we know that

given C has occurred, A and B are independent. Then, we say that

P(A|B ∩ C) = P(A|C) and P(B|A ∩ C) = P(B|C). Suppose we look at the same

example, tossing two fair dices, as above. But introduce a condition C, namely the

number rolled on both the dices is even. Condition C affects the outcomes of both

the red and blue dice. But not the outcomes of each other. Knowing that the the

blue dice rolled number four does not impact the results of the number rolled by the

red dice. In such a case, P(A|B,C) = P(A|C).
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APPENDIX B

MATRIX THEORY

Definition B.0.12. Non-negative matrix.

A matrix A = [aij] is non-negative if its entries are such that aij ≥ 0, for all i, j.

Definition B.0.13. Positive matrix.

A matrix A = [aij] is positive if its entries are positive, i.e., aij > 0, for all i, j.

Definition B.0.14. Reducible and irreducible matrix. A n× n matrix A is

reducible if

i. n = 1 and A = [0]; or

ii. n ≥ 2, there is a permutation matrix U and some integer r with 1 ≤ r ≤ n− 1

such that

UTAU =

⎡
⎢⎣B C

0 D

⎤
⎥⎦

where matrix B has size r × r and matrix D has size (n− r)× (n− r).

If A is not reducible, then it is termed irreducible.

Definition B.0.15. Symmetric matrix.

A matrix A is symmetric if A = AT .

Definition B.0.16. Primitive matrix.

A non-negative matrix A is primitive if for some positive integer L, AL is a positive

matrix.
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Theorem B.0.17. Let A be a symmetric matrix. Then its inverse matrix B is also

symmetric.

Proof. Suppose matrix A is symmetric and invertible. Then A = AT . Let matrix B

be the inverse of A.

AB = BA = I → BTAT = (AB)T = (BA)T = ATBT = I.

Hence the inverse matrix B is also symmetric.

Theorem B.0.18. A n× n matrix A is irreducible if and only if (I + A)n−1 is

positive.

Theorem B.0.19. A non-negative matrix A is primitive if it is irreducible and has

only one eigenvalue of maximum modulus.

Theorem B.0.20. An irreducible matrix A is primitive if A has at least one

positive diagonal element.

Corollary B.0.21. If matrix A is primitive and matrix B is non-negative, then

matrix A+B is primitive.

Proof. Since A is primitive, Ak > 0 for some positive integer k. By Binomial

theorem

(A+B)k = Ak +

(
k − 1

1

)
Ak−1B + · · ·+Bk.

Since Bn ≥ 0 for all n, (A+B)k > 0.

Theorem B.0.22. Perron-Frobenius[P-F] Theorem

Suppose A is non-negative, irreducible, and primitive. Then

i. ρ(A) > 0.

ii. ρ(A) is an algebraically simple eigenvalue of A.
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iii. A has left and right Perron vectors, x, y, such that x, y > 0 and xTA = ρ(A)xT ,

Ay = ρ(A)y, and xTy = 1.

iv. There exists a positive matrix L such that

lim
m→∞

[ρ(A)−1A]m = L = yxT .

Theorem B.0.23. A real symmetric matrix A has a spectral decomposition given by

A =
n∑

k=1

λkνkν
T
k ,

where λi are the eigenvalues of A and νi are the orthonormal eigenvectors of A.

Theorem B.0.24. If A is an invertible matrix with an eigenvalue λ and

corresponding eigenvector v, then 1
λ
is an eigenvalue of A−1 corresponding to the

eigenvector v.

Proof. Suppose A is an invertible square matrix with eigenpair (λ, v), we write

Av = λv.

Multiplying by A−1 on both sides, we get

v = λA−1v,

yielding

A−1v =
1

λ
v.

�

Theorem B.0.25. Rayleigh-Ritz Theorem

Let A be a n× n Hermitian matrix and let the eigenvalues of A be ordered such that

λ1 ≤ λ2 ≤ · · · ≤ λn. Then

λ1x
∗x ≤ x∗Ax ≤ λnx

∗x for all x ∈ C
n.
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If A is real, then we choose x ∈ R
n and x∗ = xT . Moreover

λ1 = inf
x�=0

xTAx

xTx
〈x, x〉

and

λn = sup
x �=0

xTAx

xTx
〈x, x〉.
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APPENDIX C

GRAPH THEORY

Definition C.0.26. Graph.

A graph G is a triple consisting of a vertex set V (G), |V | = n, an edge set

E(G), |E| = m, and a relation that associates with each edge two vertices (not

necessarily distinct) called its endpoints.

Definition C.0.27. Loop.

A loop is an edge whose endpoints are equal (same vertex). Multiple edges are edges

having the same endpoints. A simple graph is a graph having no loops or multiple

edges. Any two distinct vertices u, v ∈ V are adjacent or neighbors if they share an

edge. We write this as u ∼ v.

Definition C.0.28. Path.

A path is a simple graph whose vertices are ordered so that two vertices are adjacent

if and only if they are consecutive in a list.

Definition C.0.29. Cycle.

A cycle is a simple graph with an equal number of vertices and edges, whose

vertices are placed around in a circle so that two vertices are adjacent if and only if

they are consecutive in a circle.

Definition C.0.30. Walk.

A walk is a list v0, e1, v1, e2, · · · , ek, vk of vertices and edges such that, for 1 ≤ i ≤ k,

the edge ei has endpoints vi−1 and vi.
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Definition C.0.31. Subgraph.

A subgraph of a graph G is a graph H such that V (H) ⊂ V (G), E(H) ⊂ E(G), and
the assignment of endpoints in H is the same as in G. We then write H ⊂ G.

Definition C.0.32. Bipartite graph.

A graph is bipartite if the set of vertices V (G) is the union of two disjoint sets called

partite sets of G such that every edge connects a vertex in one set to a vertex in the

other set. Simple example is a graph with two vertices connected by an edge.

Definition C.0.33. Complete graph.

A graph G is complete if there is an edge connecting each pair of vertices.

Definition C.0.34. Weighted graph.

Weight of an edge in a graph G is a measure assigned to the edge. A graph is

weighted if there are two edges of the graph with different weights. If all the edges

of G have the same weight, the graph is unweighted.

Definition C.0.35. Degree.

The degree of a vertex in a graph, written as d(v), v ∈ V is the number of edges

connected to it. A loop is counted as two edges. A graph is regular if all the vertices

have the same degree. The order of a graph is the number of vertices and its size is

the number of edges.

Theorem C.0.36. Degree-Vertex formula.

∑
v∈V (G)

d(v) = 2e(G), e is the size of the graph.

Definition C.0.37. Directed graph.

A directed graph or digraph is a triple G(V,E, f), where f is a function assigning

each edge an ordered pair of vertices. The first vertex is the tail and the second is

the head of the edge.
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Theorem C.0.38. A graph is bipartite if and only if it has no odd cycles.

Proof. Let G be a graph. We assume that G is connected.

Suppose G is bipartite, we separate its vertices into two disjoint sets A,B,

such that A ∪ B = V and A ∩B = ∅. Every edge ei ∈ E connects a vertex in A to a

vertex in B or vice versa. Suppose we consider any cycle C in G. The set of vertices

ai1 → bi2 → ai3 → · · · ai1 in C are written in cycle form as (ai1bi2 · · · bik). (ai1bi2) is a
cycle of length two and any extension of the same form (aij · · · bik) is of even length.

Hence the bipartite graph has no odd cycles.

We shall prove the reverse by contradiction. Suppose we select any vertex

v ∈ V at random and place it in set A. We divide the rest of the vertices based on

their distance from v. If a vertex is odd steps from v, we add it to set A; if not we

add it to set B. We have now divided the vertices such that A ∪B = V and

A ∩B = ∅. To prove our theorem, suppose we claim that two vertices x1, x2 in A (or

B) are adjacent. Then the cycle v → · · · x1 → x2, · · ·w is of length

(v → x1) + (x2 → w) + 1 is odd and G is not bipartite, since A(or B) has an

adjacent pair of nodes.

�
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APPENDIX D

NUMBER THEORY

Lemma D.0.39. The gcd of any two positive integers a, b can be written as a linear

combination of a and b.

Proof. Consider the set L of all possible positive linear combinations of integers a

and b, where L = {sa+ tb}, for some integers s and t. By the well-ordering

principle, L has a least element g. Clearly g > 0 and g = ma+ nb for some integers

m,n. Using the division algorithm, we write the quotient of g and a as

a = qg + r, 0 ≤ r < g. If r = 0, then g divides a. Suppose r > 0. Then r = a− qg.

Since g = ma+ nb, we have r = a− (ma+ nb)q = (1−mq)a+ (−nq)b, a linear

combination of a and b and r ∈ L. Since g is the least element of L, g < r; a

contradiction. So, r = 0. Similarly, g divides b. Then, g is a common divisor of both

a and b.

We now have to show that g is the greatest common divisor. Suppose some

positive integer D ≥ g divides a and b. Then D divides ma+ nb = g. And g ≥ D.

Hence D = g.

�

Theorem D.0.40. Let F = {f1, f2, · · · , fn} ⊂ Z
+ be a finite ordered set with

gcd(F ) = gF . Then, there exists a positive integer mF such that for any integer

m ≥ mF , we write mgF as a linear combination of elements of F using non-negative
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integers.

mgF = c1f1 + c2f2 + · · ·+ cnfn,

where ci are non-negative integers.

Proof. First, note that gcd(F ) divides every element of F and hence every linear

combination of elements of F . Second, there exists a subset S ⊆ F such that

gcd(S) = gcd(F ). We use an inductive approach on subsets of F .

Step 1. We start with the smallest subset S1 of F , the first two distinct elements.

S1 = {f1, f2}.

Step 2. Set gS1 = gcd(S1).

Step 3. Set mS1 =
f1f2−f1+f2

gS1
+ 1.

Step 4. Clearly, mS1 is greater than all the elements of S1. By Lemma, D.0.39, gS1

is written as a linear combination of f1, f2. Hence,

mS1gS1 = f1f2 − f1 + f2 + gS1 = cf1 + bf2,

for some integers c, b.

Claim D.0.41. c and b are positive integers.

We write f1f2 − f1 + f2 = f1(f2 − 1) + f2. Now 0 < f1 < f2. Suppose we

require 0 < c < f2. Since mS1gS1 > f1f2 − f1 + f2, we must have

cf1 + bf2 > f1f2 − f1 + f2. Hence

b >
f1(f2 − c− 1)

f2
+ 1 > 0.
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Step 5. For the inductive step, let Si = {x} ∪ Si−1, where x ∈ F is such that

gcd(Si) = gcd(F ). Since F is ordered, gSi
< x. Let X = {gSi−1

, x}. We now

apply Step 3 to X. Hence

mF = mSi
=

xgSi−1
− gSi−1

+ x

gF
+ 1.

By Step 4,

mFgF = c1gSi−1
+ c2x =

∑
bifi,

where bi are positive integers. This is possible since gSi−1
is expressed as a

linear combination of elements of Si−1 and x ∈ F .

Step 6. Finally, suppose m > mF is a positive integer. Let m−mF = a. Then

mgF = (mF + a)gF =

(
xgSi−1

− gSi−1
+ x

gF
+ 1 + a

)
gF =

∑
cifi,

where ci are positive integers.

�

Corollary D.0.42. Suppose S ⊂ Z
+ is non-empty, closed under addition and

gcd(S) = 1.

i. There exists a finite subset F ⊂ S such that gcd(F ) = 1.

ii. There exists mS ∈ Z
+ such that for any positive integer m > ms, m ∈ S.

iii. In particular {m,m+ 1,m+ 2, · · · } ⊂ S.

Proof. S is ordered. Since S is closed under addition, it is infinite.
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i. First note that the gcd of finite subsets of S decreases only finite number of

times. Consider finite subsets of S such that

F1 ⊂ F2 ⊂ F3 · · · ⊂ S.

Clearly, gcd(F1) ≥ gcd(F2) ≥ · · · . Furthermore,

gcd(F2) | gcd(F1), gcd(F3) | gcd(F2) and so forth. Thus gcd(Fi), i > 1 is a factor

of gcd(F1). Since the factors are finite, for some k ∈ Z
+,

gcd(Fk) = gcd(Fk+1) = gcd(Fk+2) = · · · Consequently, gcd(Fk) = 1. Hence

F = Fk.

ii. This is a direct consequence of Lemma D.0.40.

iii. Since S is closed under addition, {m,m+ 1,m+ 2, · · · } ⊆ S.

�

Example D.0.43. S = {3, 6, 7, 11, · · · } gcd(S) = 1.

1. F1 = {3, 6}; g1 = gcd(3, 6) = 3

2. m1g1 = 24 = 3 · 2 + 6 · 3

3. F2 = {3, 6, 7}; g2 = gcd(3, 7) = 1.

4. m2 = 26 + 24 = 50 = 3 · 4 + 6 · 4 + 7 · 2.

Since gcd(F2) = gcd(S), we stop here. For any m ≥ 50, we express m · g as a linear
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combination of elements of S using non-negative integers.

51 = 3 · 2 + 6 · 4 + 7 · 3

52 = 6 · 5 + 11 · 2

60 = 3 · 4 + 6 · 2 + 7 · 2 + 11 · 2

1005 = 3 · 335

1006 = 3 · 333 + 7

...
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APPENDIX E

POWER METHOD

In computational mathematics, a matrix-free method is an algorithm for

solving a linear system of equations or an eigenvalue problem that does not store

the coefficient matrix explicitly, but accesses the matrix by evaluating matrix-vector

products. One such method is the power method. The algorithm for the power

method is as follows:

Algorithm for power method

Let V be a vector space over Rn, A ∈ V be a diagonalizable matrix, and q ∈ R
n be

any random vector. The computational mechanics is as follows:

for k = 1, 2, · · ·

z(k) = Aq(k−1) while
∥∥q(k) − q(k−1)

∥∥ < ε

q(k) = z(k)/|z(k)|

λ(k) = [q(k)]TAq(k)

end

Since A is diagonalizable, its eigenvectors{x1, x2, · · · , xn} form a basis of Rn.

So we write q(0) as a linear combination of these eigenvectors. For scalars

a1, a2, · · · , an ∈ R , we write q(0) as

q = q(0) = a1x1 + a2x2 + · · · anxn. (E.1)
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We now multiply both sides of the above equation by Ak to get

Akq(0) = Ak(a1x1 + a2x2 + · · ·+ anxn)

= a1λ
k
1x1 + a2λ

k
2x2 + · · ·+ anλ

k
nxn

= a1λ
k
1

(
x1 +

n∑
j=2

aj
a1

(
λj

λ1

)k

xj

)

Now, if |λ1| > |λ2| ≥ |λ3| ≥ · · · ≥ |λn|, then we say that λ1 is a dominant

eigenvalue of A. In such a case

(
λj

λ1

)k

→ 0 as k → ∞. Therefore, if a1 �= 0,

Akq(0) → a1λ
k
1x1. Since the power method normalizes each iteration, this converges

to x1.

z(1) = Aq(0) = a1λ1

(
x1 +

n∑
j=2

aj
a1

(
λj

λ1

)
xj

)

q(1) =

a1λ1

(
x1 +

n∑
j=2

aj
a1

(
λj

λ1

)
xj

)
∥∥∥∥∥a1λ1

(
x1 +

n∑
j=2

aj
a1

(
λj

λ1

)
xj

)∥∥∥∥∥

=

(
x1 +

n∑
j=2

aj
a1

(
λj

λ1

)
xj

)
∥∥∥∥∥
(
x1 +

n∑
j=2

aj
a1

(
λj

λ1

)
xj

)∥∥∥∥∥
Extending this, we get

q(k) = Akq(0) =

(
x1 +

n∑
j=2

aj
a1

(
λj

λ1

)k

xj

)
∥∥∥∥∥
(
x1 +

n∑
j=2

aj
a1

(
λj

λ1

)k

xj

)∥∥∥∥∥
= x1

We get the last step by noting that

(
λj

λ1

)k

→ 0 and ‖x1‖ = 1.
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The power method converges if λ1 is dominant and if q(0) has a component in

the direction of the corresponding eigenvector x1, i.e., a1 �= 0. Since q(0) is random,

the probability of a1 being zero is zero. In reality, the convergence rate depends on

the ratio |λ2|
|λ1| .

If the power method has converged to the dominant eigenvector x1 after k

iterations, then [q(k)]TAq(k) ≈ [q(k)]Tλq(k) = λ, since q(k) is normalized after each

iteration.
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