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Abstract 

“Code Smell” or “Bad Smell”, at the very least, is an indicator of badly written code and 

is often indicative of deeper problems in software design.  In layman terms, it signals flaws in the 

core foundation or architecture of the software that can cause any number of more serious 

problems – from usability and runtime performance to supportability and enhancement.  These 

problems can mostly be prevented by the systematic refactoring of the code.  Refactoring is the 

process (and according to some, an ‘art’) of making incremental changes to existing source code 

to improve its nonfunctional attributes, without modifying its external functional behavior.  Code 

smells are symptoms of deep-rooted problems in design, which, in most common cases, inhibit 

the understandability of the system for present and future programmers, hence rendering the 

program un-maintainable.  The later these problems are identified, the costlier they are to correct 

as it is much harder to refactor a system in production and regression.  Issues caused by 

refactoring can spiral out of control in advanced stages of the software development life cycle.  

So far, identification of these code smells has been thought of as an intuitive art rather than an 

exact science, as there are very few empirical measures or methodologies for doing so. 

In this project, I will examine each of the 22 code smells identified in prior research.  I 

will implement Java Smell Detector (JSD), which will follow a scientific approach to detect five 

of these 22 code smells.  JSD will give suggestions to refactor the code for all five of these 

smells.  Further, the tool will provide an interactive process to refactor two of these cases; while 

for the rest, it will suggest an ideal refactoring technique that would need to be applied manually.  

I will be using Java code written by students of San Jose State University (SJSU) as test data for 

JSD and will compare its output against the code smells identified by the graduate students.   
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1 Introduction 

Software undergoes various transformations throughout its Software Design Life Cycle 

(SDLC).  These transformations lead to the deterioration of its quality by the introduction of 

undesired design flaws in the code.  Developers generally do not pay much attention to the 

overall architecture and system design in the beginning of the SDLC.  During later stages of 

quality analysis (QA) and maintenance, most developers look for quick and easy fixes for defects 

rather than an overall system design.  This can be attributed to inexperience, pressure of 

deadlines, and management perception of budgets.  Effort spent in improving system design can 

be perceived as an upfront cost with little short-term return when compared to a quick bug fix, 

even though its long-term payback in terms of reduced maintenance costs can be worthwhile.  

These problems lead to the introduction of various design flaws which are called code smells.  

According to Beck, Brant, Fowler, Opdyke, & Roberts (2000), there are 22 code smells in 

object-oriented source codes.  These code smells can be categorized in seven groups (Lassenius, 

Mantyla, & Vanhanen, 2003). 

The term “Code Smell” appears to have been coined by Kent, Beck on WardsWiki in the 

late 1990s (Roperia, 2009).  Let us consider an example to understand the meaning of code 

smell.  An unusual long method in an object-oriented programming language like Java might 

indicate a “Long Method” smell.  It indicates lack of understanding of or disregard for a proper 

object design and the use of simple procedural programming in an object-oriented language.  

This is a very common sign of code smell in object-oriented language.  In rare cases this could 

be normal, but most likely such long-winded methods perform too much functionality thus 

making it difficult to understand and maintain.  To solve this problem, such methods should first 

be split into smaller methods or functions to promote reusability.  As a second step, if an object-

oriented language is being used, the object model should be reviewed as well.  However, that 
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does not mean that a long method is always a code smell problem – it is most likely an indicator 

of a design issue in the software than of a problem. 

Refactoring is a solution to the problem which code smell indicates.  It is the 

implementation technique used to apply a better design to an existing, fully or partially 

functional, software program.  It does present a larger upfront cost compared to quick fixes and 

patchwork; however, its long-term payoff can be significant.  When contrasted with a complete 

software rewrite, refactoring is a cost effective option.  Large software usually goes through a 

long cycle of development and testing.  A complete rewrite means another long cycle of 

development and testing.  Refactoring existing code offers a way of improving the software 

design and removing code smells without actually rewriting the entire code from scratch.  

If a method is long, splitting it into smaller methods is actually a refactoring technique 

that improves the design of the source code, making it easier to understand, enhance, and 

maintain.  To better understand and emphasize the importance of refactoring, we can take 

“Duplicate Code” smell as an example.  Duplicate code is not just a design issue; it also leads to 

incorrect calculations and redundant code and data.  Therefore, to ensure the software works as 

per specification, it is necessary to refactor duplicate lines of code into smaller, more manageable 

methods and invoke these methods from the client code.  Thus, the refactoring technique 

improves the structure of the code dramatically while retaining its functionality.  

Correct detection of code smells is the main prerequisite to create a refactoring plan.  The 

correct implementation of the plan will improve the quality of code.  The refactoring process 

depends on the smells found in the system, and it directly affects software maintenance cost.  

There are in all 72 possible refactoring techniques which are classified into seven sections 

(Lassenius, Mantyla, & Vanhanen, 2003).  Depending on the code smell, one or more of these 
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refactoring technique(s) can be applied.  For example, if a class has been identified containing 

the “Data Class” smell, we can first apply the “Extract Method” technique and then the “Move 

Method” from the client class to data class if the client class method has multiple functionalities 

going on; or we can apply just “Move Method” if the client class has an independent method to 

move.  

Human intuition is believed to be the best way for detection of a code smell and there is 

no exact science behind it (Brant, Beck, Fowler, Opdyke, & Roberts, 2000).  Various scientists 

have tried and come up with a metrics-based approach to measure and detect code smells with 

varying degrees of success.1 The advantage of using the metric approach is that it is easily 

verifiable with human eyes.  Currently there are tools which detect code smells, depending on 

the metrics, and help the programmers to identify the design problems, but there are no statistical 

analyses and reasons for how and why they came up with these metrics.  Moreover, none of the 

tools have been developed with students as the target audience and the refactoring approach is 

non-interactive.  The tool (Java Smell Detector) proposed as part of this research helps visualize 

the problem and derive a solution – i.e. proposed refactoring technique(s) – specifically for the 

type of design defect detected in the system. 

  

                                                           
1
  N. Tsantalis, A. Chatzigeorgiou, N. Roperia, M. Lungu, G. Ersze, R. Marinescu, P. F. Mihancea and Gendarme 

Google Group are few of the scientists who gave some statistical details for the detection. 
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2 Related Research Work 

Existing literature provides a number of resources and support in the field of refactoring.  

This section describes research done in the field of code smells and few of the currently existing 

software are which helps to detect code smells in object-oriented systems.   

2.1 Current Literature 

As mentioned earlier, Fowler introduces 22 code smells in his book “Refactoring: 

Improving the design of existing code” (Fowler et al., 2000).  These smells were later 

classified into seven sub-categories depending upon their similarities in their characteristics 

by Mantyla, Vanhanen, and Lassenius (2003).  Additionally, Munro focuses primarily on the 

characteristics of code smells (Munro, 2005).  In his article, Munro (2005) describes “the 

agile software development of eXtreme Programming (XP) devised by Beck as an 

incremental approach to software design.”  At each build, the new requirements are fulfilled 

by integrating the solutions with the existing system, and refactoring is implemented in XP to 

incorporate the new functionality.  In another article, Cusumano and Shelby (1995) portray 

how Microsoft uses 20% of their development resources to re-develop the code base of old 

products.  They also compare Netscape and Microsoft to show how Netscape’s inability to 

refactor hindered the growth of their software, while Microsoft’s redesign efforts paid off 

with Internet Explorer 3.0. 

Software Development Life Cycle (SDLC) consists of different stages, one of which 

is a design stage.  Marinescu (2005) defines the detection strategies that relate to the flaws in 

the design stage.  He describes that the detection strategy has the following four stages:  
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1. Analysis of the problem: An identified problem taken from literature is analyzed 

to quantify the informal description. 

2. Selection of metrics: Selection of metrics that best matches the problem’s 

characteristics is made using the quantitative description from the previous step. 

3. Detection of the candidates: The detection strategy is chosen using the identified 

metrics. 

4. Examination of candidates: The detection strategy is identified, and results 

indicate whether refinements are required (Marinescu, 2005). 

These four stages of detection can be applied to any stage of SDLC with minor 

changes.  

In the press article “Microsoft Secrets”, Cusumano and Shelby (1995) followed the 

software metrics approach and detected code smells such as “Lazy Class” and “Temporary 

Field.”  He used software metrics including LOC (Lines of Code), NOM (Number of 

Methods), CBO (Coupling Between Objects), and WMC (Weighted Methods per Class) to 

detect code smells. 

As described by Lassenius, Mantyla, and Vanhanen (2003), “Code smell detection 

process is based on software quality.”  Study on the use of these indicators has suggested that 

code smells are subjectively perceived on the basis of code quality.  Further improvement is 

being performed on their work to enhance detections of code smells at the method level.  

This research was primarily aimed at evaluating, validating, and improving the understanding 

of the subjective indicator. 
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2.2 Tool Support  

There are various tools and IDEs available for the code smells detection and 

refactoring process.  Some of them are jDeodorant for Java (Chatzigeorgiou, Fokaefs, & 

Tsantalis,  2007;  Chaikalis, Chatzigeorgiou , & Tsantalis, 2008), JSmell (Roperia, 2009) for 

C#, csharprefactory for C# and Eclipse (Crespo, Lopez, & Marticorena, 2005) for Java.  

Some of the commonly used tools and the approach they adopt in order to detect code smell 

will be discussed in this section. 

“Feature Envy” and “Type Checking” are two kinds of code smells identified by 

JDeodorant (Fokaefs, Tsantalis, & Chatzigeorgiou, 2007).  JDeodorant uses the ASTParser 

API of Eclipse to detect the code smell from the source code.  “Feature Envy” smell is 

detected based on the notion of the distance between entities (methods) and system classes.  

This code smell is identified if the distance of a method from a system class is less than the 

distance of this method from the class that it belongs to (Chatzigeorgiou, Fokaefs, & 

Tsantalis,  2007;  Chaikalis, Chatzigeorgiou , & Tsantalis, 2008).  The distance violates the 

principle of high cohesion, which requires a method to be less cohesive to any other class 

except the class to which it belongs.  In “Type Checking” the underlying aim is to implement 

polymorphism by using refactoring.  Identification of code smell involves two cases 

(Chaikalis, Chatzigeorgiou, & Tsantalis, 2008): 

• First case - There could be a field which represents state (if-else-if loop or 

switch case).  Depending on its value, the corresponding conditional branch is 

executed.   

• Second case - There is a conditional statement that employs Run Time Type 

Identification (RTTI) in order to cast a reference from base type to the actual 
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derived type and invoke methods of the specific subclass (Chaikalis, 

Chatzigeorgiou, & Tsantalis, 2008). 

Metrics (Crespo, Lopez, & Marticorena, 2005), an Eclipse plug-in, detects “Parallel 

Inheritance Hierarchy” code smell.  Some of the metrics included in this approach are DIT 

(Depth Inheritance Hierarchy) and NOC (Number of Children).  The results are evaluated 

based on data mining techniques.   

Prodeos (Ersze, Lungu, Marinescu, & Mihancea, 2008) detects design flaws in C++ 

and Java programs.  The basic strategy used by this tool for analyzing the code is based on 

software metric detection.  The metrics of the software is analyzed through the statistical data 

captured while parsing through the program.  Applying a detection strategy creates a report 

containing all the design entities suspected to be affected by the quantified flaws  

JSmell (Roperia, 2009) is a smell detector developed in C# language for Java.  It 

detects seven of the code smells: “Data Class,” “Message Chain,” “Primitive Obsession,” 

“Speculative Generality,” “Parallel Inheritance Hierarchy,” “Duplicate Code,” and 

“Comments.” It uses the ANTLR (ANother Tool for Language Recognition) parser to parse 

the code file and gathers the statistical results to classify the Smells.  JSmell has two phases 

to identify a smell.  During the first phase, it parses all the Java source code files and gathers 

required data like method declaration, variable declaration, and class names.  In the second 

phase, it uses this statistical data and parses all the code again to identify the smells present in 

each of them. 

Code smells that are constrained to the domain specific language are detected using 

DÉCOR (Moha, 2007) which uses a design-defect detection algorithm.  The smell detection 
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rules are specified using the structural and lexical properties and their relationship.  Detection 

of the code smell is a three-step process.   

• First step - Parse the source code using JFlex and JavaCup.   

• Second step – Reification, which is basically a specification of defects based on 

the meta-model of the target system.  This process is followed in order to 

capture the high level defects, and a repository is maintained.   

• Third step - The detection algorithm is generated and implemented as visitors 

on the meta-model.  “The algorithm generation process uses the services of 

Software Architectural Defects (SAD) framework and is based on the templates 

which are excerpts of Java source with well-defined tags to be replaced by 

concrete code.” (Moha, 2007) 

All the above mentioned tools have a scientific approach to detect code smells.  They 

provide the foundation for using statistical analysis approach.  However, the smells detected 

by all of the above mentioned tools are more susceptible in industrial systems and not in the 

systems of students who are learning object-oriented language.  Moreover, JSmell is the only 

one which provides suggestions for the refactoring technique and none of them provide an 

interactive tool for the user to refactor the code.  JDeodorant as built in Eclipse can use the 

inbuilt refactoring techniques, but it does not provide any refactoring suggestions.  
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3 Code Smells Overview 

The detection of code smells in code assists the software architects and developers in 

identifying the need of software redesign.  Software redesign can be implemented by refactoring 

– as rewriting large software program is almost never cost effective or viable.  

3.1 Taxonomy of Code Smells 

In Java and related objected-oriented languages code smells can be classified in two 

ways: 

3.1.1 Depending upon the Class: 

One way of categorizing code smells is based on whether they are found within 

the class or outside the class.  The smells which are recognized within the class are “Long 

method,” “Long Parameter List,” “Comments,” and “Duplicate Code.”  The ones which 

are recognized outside the class are “Data Class,” “Data Clumps,” and “Primitive 

Obsession.” 

3.1.2 Sub-Categorizing depending upon similarity:  

Another way of categorizing the code smells is based upon similarity amongst 

themselves.  The 22 code smells can be sub-categorized into seven different categories 

based on the listing provided in (Lassenius, Mantyla, & Vanhanen, 2003).  These smells 

are closely related to each other based on the relationship among them.  If a smell does 

not fit in any of the categories, it is put into “Others” category. 
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Category Code Smells 

Bloaters • Long Method 
• Large Class 
• Long Parameter List 
• Primitive Obsession 
• Data Clumps 

Object-Oriented Abusers • Switch Statements 
• Temporary Field 
• Refused Bequest 
• Alternate Class with Different Interface 
• Parallel Inheritance Hierarchies 

Change Preventers • Divergent Changes 
• Shotgun Surgery 

Dispensable • Lazy Class 
• Data Class 
• Duplicate Code  
• Speculative Generality 

Encapsulators • Message Chain 
• Middle Man 

Couplers • Feature Envy 
• Inappropriate Intimacy 

Others • Incomplete Class Library 
• Comments 

 

Table 1: Categorization of Code Smells depending on similarity 

3.2 Code Smells 

It is easier to understand and identify individual code smells if divided into seven sub-

categories rather than as a list.  In this chapter, we will look into each of the code smells in 

individual sub-categories to have a better understanding of them.  

3.2.1 Bloaters 

“Bloaters” represent the set of code which has grown so large that it cannot be 

handled effectively.  This group includes the following code smells: 

•••• Long Method: A method which contains large number of lines and 

performs more than one action is considered as “Long Method.”  It is 

comparatively difficult to understand a large method in comparison to a 
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number of small methods.  As a general rule, any method which has more 

than 20 lines of code (LOC) is considered bad and any code which has less 

than 10 line of code is considered good (Whitehead, 2009).  After running 

some sample test codes we found out that most of the methods which have 

less than 15 lines of codes are good.  

•••• Large Class: A large class is a class which tries to do too much, i.e. when 

a class has too many responsibilities and has a large number of instances, 

variables and methods in the system.  These classes are classified as the 

“Large Class” smell. 

•••• Long Parameter List: When the number of parameters passed to a method 

is more than what is actually required for the functionality of the method, 

it indicates the presence of “Long Parameter List” smell.  Most likely a 

method which has more than three parameters as the passed argument list, 

it is considered as a “Long Parameter List” smells (Rutheford, 2010). 

•••• Primitive Obsession: The “Primitive Obsession” itself is not exactly a 

code smell but it is more of an indication of a code smell.  It is not 

advisable to use a lot of primitive data type variables just as a substitute 

for a class in software.  If you find that your data structure is sufficiently 

complex, a class should be written to represent it rather than manipulating 

the data with the help of many primitive data types. 

•••• Data Clumps: “Data Clumps” is the existence of similar data types in a 

number of places.  In simpler terms, if you always see the same data 
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appearing together at multiple places, it probably belongs together and 

should be combined together to form a class. 

3.2.2 Object-Oriented Abusers 

Smells of the “Object-Oriented Abuser” kind involve cases when the system does 

not take advantage of the full capabilities of object-oriented design.  A common origin of 

this problem is programmers having prior experience in procedural programming and 

lack of training or understanding of object-oriented programming.  In the worst case, it 

introduces classic documented anti-patterns in the software design.  

•••• Switch Statements: This occurs when a system uses a lot of switch 

statements which are scattered throughout the code.  It may cause 

duplication in the system too.  If any switch statement has more than two 

switch cases it is considered to be a “Switch Statements” smell (Baddoo, 

Hall, Wernick, & Zhang, 2008). 

•••• Temporary Field: A “Temporary Field” smell is said to exist when a 

variable is in the class scope instead of being in the method scope.  It is 

considered as a code smell as it violates the principle of information 

hiding.  

•••• Refused Bequest: When a sub-class inherits unnecessary data and 

methods from their parent classes, it falls under the category of “Refused 

Bequest” smell. 

•••• Alternate Class with Different Interface: If an instance of a method 

appears in the system with a different signature, it is said to exhibit the 

“Alternate Class with Different Interface” smell. 
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•••• Parallel Inheritance Hierarchies: “Parallel inheritance Hierarchies” smell 

occurs when creation of a subclass forces us to create a subclass for 

another class.  

3.2.3 Change Preventers 

As the name suggests, this group of code smells consists of smells which makes 

the process of software modification difficult. 

•••• Divergent Changes: In a scenario in which a single class is modified for a 

number of changes made in the system i.e. for most of the functionality a 

single class is changed and change of one of the method within this class  

inhibits the change of another method in the class indicates the presence of 

“Divergent Changes” smell.  

•••• Shotgun Surgery: This smell is similar to the “Divergent Changes” smell.  

The only difference is that if a change is made to one of the operations in 

class, many other classes are changed to bring this change into effect.  

This indicates the presence of “Shotgun Surgery” smell. 

3.2.4 Dispensable 

This category includes code smells which contain unnecessary code, such as 

duplicity. 

•••• Lazy Class: A class which resides in the system for future use but with no 

responsibility at present represents a “Lazy Class” smell.  

•••• Data Class: A class which contains variables and their getter and setter 

methods is called a data class.  These methods are used by other classes to 

exhibit any of their own behavior.  We should avoid classes that passively 
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store data and methods to operate on that data.  Hence it is also 

categorized as a “Data Class” smell. 

•••• Duplicate Code: “Duplicate Code” smell occurs when the same code 

structure is seen at more than one place.  It occurs if you see the same 

expression in two different methods of the same class, or in two sibling 

subclasses.  If “Duplicate Code” smell occurs it is much better to find a 

way to unify them.  

•••• Speculative Generality: “Speculative Generality” is suggested by Brian 

Foote (Brant, Beck, Fowler, Opdyke, & Roberts, 2000).  It occurs if the 

code is developed to handle all sorts of hooks and special cases.  This 

leads to harder understandability and maintenance.  This can be identified; 

if methods or a class are used only by test cases it can be identified as 

“Speculative Generality” smell.  

3.2.5 Encapsulators 

This group contains the code smells which deal with the data communication 

mechanism or encapsulation.  

•••• Message Chain: “Message Chain” smell occurs when an object makes 

call to method of another class, which in turn makes call to method of 

some third class and so on.  It is not advisable to have intermediaries as 

they create undesired dependencies.  To consider it statistically if you have 

a chain of more than two methods which are user-defined, that expression 

is classified as “Message Chain” smell (Baddoo, Hall, Wernick, & Zhang, 

2008).  
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•••• Middle Man: “Middle Man” smell is the method (delegate method) which 

puts forward the request to the client from another method.  

3.2.6 Couplers 

Code smells which occur because of coupling issues in the code are included in 

this category. 

•••• Feature Envy: The indication of one method of a class seeming more 

interested in other class rather than the one which contains it is called 

“Feature Envy” smell. 

•••• Inappropriate Intimacy: When two classes are tightly coupled with each 

other and are extensively accessing the private variables of the each other, 

it exhibits “Inappropriate Intimacy” smell. 

3.2.7 Others  

Smells which do not fit in any of the above six sub-categories are included into 

this category. 

•••• Incomplete Class Library: When a library class exhibits a larger or lesser 

amount of functionality than what is required it is said to exhibit 

“Incomplete Class Library” smell. 

•••• Comments: Comments are considered as good.  If they are excessively 

used in the code they are classified into “Comments” smell.  

To improve the design of an existing system, we need to apply refactoring methods to 

the detected smells.  For that we need to know where and when to apply which refactoring 

technique.  To determine where refactoring technique is needed, we need to identify code 
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smells.  The refactoring should be applied when a new function is added, a fix to a bug is 

made in the code or when there is a code review (Fowler et al., 2000). 
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4 Refactoring Techniques  

“Refactoring is changing the structure of a program without changing its functionality” 

(Gallardo, 2003).  As mentioned earlier, there are, in all, 72 refactoring techniques which are 

categorized into seven sub-categories. 

Category Refactoring Technique 

Composing Methods • Extract Method 
• Replace Method with method Object 
• Inline Method 
• Replace Temp with Query 
• Inline Temp 
• Split Temporary Variables 
• Introduce Explaining Variables 
• Substitute Algorithms 
• Remove Assignments to Parameters 

Moving Features between 

Objects 
• Extract Class 
• Introduce Local Extension 
• Hide Delegate 
• Move Field 
• Inline class 
• Move Method 
• Introduce Foreign Method 
• Remove Middle Man 

Organizing Data • Change Bidirectional Association to 
Unidirectional 

• Replace Data Value with Object 
• Change Reference to Value 
• Duplicate Observed Data 
• Encapsulate Collection 
• Encapsulate Field 
• Replace Array with Object 
• Replace Data Value with Object 
• Replace Magic Number with Symbolic 

Constants 
• Replace Record with Data Class 
• Replace Subclass with Fields 
• Replace Type Code with Class 
• Replace Type Code with State/Strategy 
• Replace Type Code with Subclasses 
• Self Encapsulate Field 

Simplifying Conditional 

Expressions 
• Consolidate Conditional Expression 
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• Consolidate Duplicate Conditional Fragments 
• Decompose Conditional 
• Introduce Assertion 
• Introduce Null Object 
• Remove Control Flag 
• Replace Conditional with Polymorphism 
• Replace Nested Conditional with Guard Clauses 

Making Method Calls 

Simpler 
• Add Parameter 
• Rename Method 
• Encapsulate Downcast 
• Replace Constructor with Factory Method 
• Hide Method 
• Replace Error Code with Exception 
• Introduce Parameter Object 
• Replace Exception with Test 
• Parameterize Method 
• Replace Parameter with Explicit Methods 
• Preserve Whole Object 
• Replace Parameter with Method 
• Remove Parameter 
• Separate Query from Modifier 
• Remove String Method 

Dealing with 

Generalization 
• Collapse Hierarchy  
• Pull Up Field 
• Extract Interface 
• Pull up Method 
• Extract Subclass 
• Push Down Field 
• Extract Superclass 
• Push Down Method 
• Form Template Method 
• Replace Delegation with Inheritance 
• Pull Up Constructor Body 
• Replace Inheritance with Delegation 

Big Refactoring • Convert Procedural Design to Object 
• Tease Apart Inheritance 
• Extract Hierarchy 
• The Nature of the Game 
• Separate Domain from Presentation 

 

Table 2: Refactoring Techniques and Sub-categories 
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This chapter will describe 18 of these 72 refactoring techniques in detail, which can be 

applied to five of the code smells that Java Smell Detector (JSD) detects depending upon 

scenario. 

4.1 Extract Method 

Introduction 

“Extract Method is one of the most common refactoring (Fowler et al., 2000).” It can 

be implemented when the logic of a method is complex and not easy to understand, and if the 

method body is too long or needs a lot of comments to understand its purpose.  In these 

scenarios these fragments can be turned into individual methods. 

During creation of these new individual methods, method names should be chosen 

properly, as they work well only when they are named properly.  Small methods increase the 

chances of being reused by other methods if they are finely grained, thus reducing code 

duplication.  It also provides the functionality of reading the method names as the comments, 

thus providing better understanding of the code.  

Mechanics 

•••• Create a new method and name it as per its functionality (and not by how does it 

achieve it) 

•••• Take the intended lines of code from the source method and copy them to the 

target method. 

•••• Go through the extracted code to capture the references to variables that are local 

in scope of the source method.  Treat these as local variables and parameters to 

the method. 
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•••• Look for any temporary variables that are used only within the extracted code.  If 

any, retain them as temporary variables in the target method. 

•••• Check if any modifications have been made to the local-scope variables that need 

to be returned.  If the number of such variables is limited to one, return it.  If it 

two or more, split the method again or make them final.   

•••• Make a call to the target method in place of the extracted code. 

•••• Compile and test. (Fowler et al., 2000) 
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Example  

Bad Method Code 

 

Figure 1: Extract Method Bad Code 
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Refactored Code 

 

Figure 2: Extract Method Refactored Code 

  
In the above example, the code is extracted in three separate methods.  Before 

refactoring, the method printOwing performed functionalities like printing header, 

calculating the outstanding amount and printing the details.  The method has more than 

15 lines of code; as well as multiple functionalities that could be easily identified from 

the comments.  As seen above the method printOwing is divided into printHeader, 
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getOutstanding and printDetails methods.  The “Enumerator e” is declared in the 

getOutstanding method and the return variable outstanding is named as result of the 

better understanding of the code.  The variable outstanding is inline with the method 

calling in the main method printOwing.  Also the other variable, name, address, id are 

moved to printDetails method and are inline with the print statements.  

4.2 Inline Method 

Introduction 

Too much indirection between the methods in a code is a sign to apply “Inline 

Method” refactoring technique.  “Inline Method” is mostly applied on the methods whose 

body is as clear as the name itself as it shows the presence of needless indirection.  It can also 

be applied when a group of methods seems to be badly refactored.  During this scenario the 

inline methods can extract into one big method and then re-extracted using the “Extract 

Method” refactoring technique.   

Mechanics 

•••• Check that the method is not overridden in the child classes.  

•••• Find and replace each call to the method with the definition of the method.  

•••• Compile and test. 

•••• Delete the method definition (Fowler et al., 2000). 
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Example 

Bad Method Code 

 

Figure 3: Inline Method Bad Code 
 

Refactored Code 

 

Figure 4: Inline Method Refactored Code 
 

In the above example, the getRating method is calling the method 

moreThanFiveLateDeliveries which checks whether the number of late deliveries is 

greater than five or not.  This method body can be easily substituted in the getRating 

method which will make it easier to understand and remove the needles indirection.  

4.3 Replace Method with Method Object 

Introduction 

In certain scenarios of long method, “Extract Method” refactoring technique cannot 

be applied due to large presence of local variables.  This problem even cannot be solved 

using “Replace temp with Query” (discussed in chapter 4.4) refactoring technique.  In this 

scenario “Replace Method with Method Object” should be applied.  First step is to create a 

new class which has the same name as the method name.  Create a new method named 
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compute in the new object class.  The compute method has the same functionality as the 

source object method.  The new object class should also create a final field of the source 

object and a field for each temporary variable and the parameters in the method.  These all 

fields will be set during the call of the constructor.  

Mechanics 

•••• Create a new class with the name of the method. 

•••• Create a final field in the new class of the source object. Also, create a field for 

each temporary variable and parameter in the method. 

•••• Create a constructor of the new class that takes the source object and 

each parameter. 

•••• Create a method named compute in the new class. 

•••• Copy the body of the original method into compute.  Use the source object field 

for any invocations of methods on the original object. 

•••• Compile. 

•••• Replace the old method call with the new one and call compute (Fowler et al., 

2000) 
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Example 

Bad Code 

 

Figure 5: Replace Method with Method Object Bad Code 
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Refactored Code 

 

Figure 6: Replace Method with Method Object Refactored Code 
 

In the above example, the gamma method of Account class in the bad code section 

had too many local and passed variables; thus making it not possible to apply the “Extract 
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Method.”  In the refactored code section, a separate class named Gamma containing the 

compute method is created which is later divided using the “Extract Method.”  The 

constructor of the Gamma class initializes the local variables of the class also passing the 

object of the source object.  The old method of the Account class is changed with one which 

creates the instance of the new class and calls the compute method. 

4.4 Replace Temp with Query  

Introduction 

The main cause of the long methods is usually the temporary variable declaration 

which assigns value only once.  These temporary variables are usually not of much use as 

their scope is only inside the method.  Thus the right hand side of these variables can be 

extracted into individual methods and the variable can be declared as final making it easier to 

apply “Extract Method.”  This refactoring technique is called as “Replace Temp with 

Query.” 

Mechanics 

•••• Look for an already assigned temporary variable. 

•••• Declare temp as final. 

•••• Create a new method and use the right-hand side of the assignment as body of 

method. 

•••• Compile and test (Fowler et al., 2000). 
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Example 

Bad code 

 

Figure 7: Replace Temp with Query Bad Code 

Refactored Code 

 

Figure 8: Replace Temp with Query Refactored Code 

In the above example the basePrice and the discountedFactor both are the temporary 

variables in getPrice method.  These variable declarations and assignments are replaced by 

creating individual methods which are used as and when required in the method.      

4.5 Hide Delegate 

Introduction 

One of the important features of the object-oriented programming is Encapsulation - 

meaning information hiding.  It is described as the protective barrier to protect the variables 
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in a class to be directly accessed by the other objects.  This functionality makes it easier to 

modify the code and reduce the number of objects to be informed about the change.  This 

type of delegation is mainly observed in case of message chain.  To remove this dependency 

the delegate method can be created thus reducing the number of objects to be informed. 

To understand it much better, consider a scenario of client and server.  If a client calls 

a method defined on one of the fields of the server object, the client needs to know about this 

delegate object.  If the delegate objects changes, the client may have to change as well.  This 

dependency can be removed by placing a delegating method on the server to hide the 

delegation.  This leads to limit the changes to the server and does not propagate to the client.  

Mechanics  

•••• Create a simple delegating method for each method on the delegate on the server. 

•••• Change the client to call the server.  Verify that it is working after each change. 

•••• If there are no clients that access the delegate, remove the server’s accessor for 

the delegate. 

•••• Compile and test (Fowler et al., 2000). 
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Example  

Bad Code 

 

Figure 9: Hide Delegate Bad Code 
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Refactored Code 

 

Figure 10: Hide Delegate Refactored Code 

In the above example, the client class has a method getSupervisor which gets the 

supervisor of an employee.  To retrieve the supervisor, it first gets the department of the 

employee using Person class and then gets the manager of that department using the 

Department class.  Thus the Client class needs to know about both the Department, as well as 
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the Person class showing the delegation.  This delegation can be removed by creating 

another method in the Person class getManager hiding the delegation from the client.  Later 

the getDepartment method can be also removed from the person class if it’s not being used 

anywhere else.  

4.6 Move Method 

Introduction 

“Move Method” can be applied if the class has too much behavior or if the classes are 

highly coupled.  The best way to identify when to use move method is to look into each 

method and find if it refers another object more than the object it lives in.  This helps to 

identify the method to be moved and also the destination class of that method.  

Mechanics 

•••• Examine all features used by any method defined in the source class.  Consider if 

their removal is required. 

•••• Declare a method in the target class and copy the source to the target method. 

•••• Ensure that the new method works. 

•••• Determine how to refer the correct target object from the source. 

•••• Change the source method into a delegating method. 

•••• Compile and test. 

•••• Take a decision if removal of the source method is required. 

•••• In case source method is removed, replace all the references with the target 

method references. 

•••• Compile and test (Fowler et al., 2000) 
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Example 

Bad Code 

 

Figure 11: Move Method Bad Code 
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Refactored Code 

 

Figure 12: Move Method Refactored Code 

In the above example, Account class (Bad code) has two methods bankCharges and 

overdraftCharge.  The overdraftCharge method was using the object of AccountType class 

more than its own class showing that it belongs to AccountType class more than Account 

Class.  Also the overdraftCharge method has no functionality in the Account Class, so the 

delegate method of the Account class can be removed and a direct call to overdraftCharge 

method of AccountType class should be called. 

4.7 Remove Middle Man 

Introduction 

The cost of applying “Hide Delegate” refactoring technique is the formation of the 

“Middle Man” smell.  As discussed earlier “Hide Delegate” helps to maintain Encapsulation.  
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If the delegate method is added a lot to the server, it becomes a delegate class.  Thus it is 

important to maintain a balance between “Hide Delegate” and the “Remove Middle Man.”  

Mechanics 

•••• Create an object for the delegate. 

•••• Instead of calling the delegate method, call the method directly from the client. 

•••• Compile and test (Fowler et al., 2000). 

Example 

Bad Code 

 

Figure 13: Remove Middle Man Bad Code 
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Refactored Code 

 

Figure 14: Remove Middle Man Refactored Code 

In the above example, getManager method in Person class (Bad Code) is a ‘Middle 

Man method’ as it invokes the getManager method of the Department class.  This middle 

man is removed by creating a getDeaprtment in a Person class which return the department 

type for that person and making necessary changes in the Client class.  In this case the 

getManager method of the Person class is removed, but it can be retained if Encapsulation is 

required for some of the objects.  

4.8 Encapsulate Collection 

Introduction 

Collection is a group of data which is manipulated as a single object.  Java has many 

collections like Arrays, Iterator, Set, List which consists of their corresponding getter and 

setter methods.  However, the getters should not return the collection object itself, as the 
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server class will not come to know about the operations on each element of collection.  Also 

it lets the client know what type of Data structure is being used at the server side.  For the 

setter methods the client should be just allowed to remove or add elements to the collection 

rather than having functionality to clear the whole collection.  This in turn reduces the 

coupling between the client and the server. 

Mechanics 

•••• Create add and remove methods for the collection. 

•••• Initialize the collection with null. 

•••• Find the existing setters and modify them to use add and remove methods 

(depending on the operation performed) or have the clients call add and remove 

methods. 

•••• Find the users of the getter that modify the collection.  Change them to use the 

add and remove methods. 

•••• Compile and test (Fowler et al., 2000). 

Example 

Most of the programmers use arrays which are lot susceptible to modifications 

and they provide the getters and setters method for the whole array instead of providing 

for individual elements.  So, here we will talk specifically about the array and we will 

also convert it to the higher collection List.  
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Bad Code 

 

Figure 15: Encapsulate Collection Bad Code 

Refactored Code 

 

Figure 16: Encapsulate Collection Refactored Code 

In the above example, Skill class (Bad Code) has the get and set method which let its 

objects manipulate the whole array at any point of time instead and not the individual 

elements.  Thus in the refactored code, the get and the set methods are changed to access and 

set a specific element at specific index.  If an object wants to set a bunch of elements at the 

same time, it can use the setSkills method.  The setSkills method helps to hide the data 

structure at the Skill class from its caller class.  
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4.9 Encapsulate Field 

Introduction 

Every declared variable in an object-oriented language should have a corresponding 

getter and setter method.  If a class does not have a getter and setter method, its object can 

interact and change the field value directly.  This leads to let the other objects change and 

access data without the owning object being notified.  

Mechanics 

•••• Create getters and setters for the field. 

•••• Find the clients that refer the field outside the class and replace the calls with calls 

to getters and setters created in first step. 

•••• Change the declaration of the field to private. 

•••• Compile and test (Fowler et al., 2000). 

Example  

Bad Code 

 

Figure 17: Encapsulate Field Bad Code 
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Refactored Code 

 

Figure 18: Encapsulate Field Refactored Code 

In the above example, the variable_name is public and is not having getter and setter 

method in the Info class of Bad code.  As it is public the calling object can directly change or 

access the variable_name without letting the Info class know about it.  In the Refactored code 

its corresponding getter and setter methods are created thus encapsulate the variable_name.  

4.10 Replace Type Code with Subclasses 

Introduction 

“Type Code” is the code implemented in if-then-else block or switch cases as it 

depends on which condition being satisfied.  These if-then-else block or switch cases need to 

be refactored using “Replace Conditional with Polymorphism.”  Before applying this 

refactoring each “Type Code” needs to be with inheritance structure using “Replace Type 

code with Subclasses.”  Another reason to apply “Replace Type code with Subclasses” 

refactoring technique is when certain features are only present in specific type of condition. 

The major advantage of “Replace Type code with Subclasses” is seen when a new 

variant to the “Type Code” needs to be added.  If polymorphism is used only a new subclass 

needs to be added for the variant whereas in case of “Type Code” all the occurrence of them 

needs to be searched to add a condition individually.  
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Mechanics 

•••• Encapsulate the “Type Code”. 

•••• Create a subclass for each value of the “Type Code”.  Override the getter method 

of the “Type Code” in the subclass to return the relevant value. 

•••• Verify the functionality. 

•••• Remove the “Type Code” field from the superclass.  The accessors for the “Type 

Code” are declared abstract. 

•••• Compile and test (Fowler et al., 2000). 

4.11 Decompose Conditional 

Introduction 

Conditional logic can in itself become complicated in condition checking as well as 

implementation for each condition.  In practical, the code both in the condition check and the 

actions can be individually extracted into separate methods as these method names will make 

it easier to understand the logical flow of this block of code.  

Mechanics 

•••• Create a new method whose body constitutes of the condition. 

•••• Create new methods for the extracted “then” part and the “else” part (Fowler et 

al., 2000). 
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Example 

Bad Code 

 

Figure 19: Decompose Conditional Bad Code 

Refactored Code 

 

Figure 20: Decompose Conditional Refactored Code 

In the above example, condition check as well as then and the else condition is 

extracted in individual methods.  This makes the conditional check easier to understand and 

modify if needed.  
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4.12 Replace Conditional with Polymorphism  

Introduction 

 “Polymorphism is a mechanism that is often summarized as one interface multiple 

implementations” (O'Neil, 1999).  “Replace conditional with Polymorphism” technique is 

applied when you wish to avoid an explicit conditional for each “Type Code” when the 

behavior varies.  As a result, the “Type Codes” (switch statements, if-then-else statements) 

are avoided in object-oriented program.  In this scenario if polymorphism is used, only a 

separate subclass needs to be created whereas in conditional type scenario each conditional 

block needs to be searched and modified separately.  

Note: The “Replace conditional with Polymorphism” technique can only be applied if 

there is an inheritance structure.  If there is no inheritance structure it can be created using 

“Replace Type code with Subclasses.” refactoring technique. 

Mechanics 

•••• If there is a conditional statement in the larger method, take it apart using “Extract 

Method.” 

•••• If required, use “Move Method” to place the conditional at the top of the 

inheritance structure. 

•••• In each of the subclasses create a subclass method which overrides the conditional 

statement method.  Copy the body of the corresponding conditional statement into 

the subclass method and adjust it to fit. 

•••• Remove the copied part of the conditional statement. 

•••• Compile and test. 

•••• Repeat the same steps for each leg of the conditional statement. 
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•••• Change the superclass method definition to abstract (Fowler et al., 2000). 

4.13 Hide Method 

Introduction 

With the expansion of the system, the classes might be updated performing more 

functionality.  It might also happen that the getter and setter method are replaced and no 

longer accessible to the client.  Thus the visibility of these methods should be hidden from 

the client by making them private.  Also if these methods are no longer needed then the 

methods should be permanently removed from the code. 

Mechanics 

•••• Check for opportunities to make a method more private. 

•••• Make each method as private as you can. 

•••• Compile and test (Fowler et al., 2000). 

4.14 Introduce Parameter Object 

Introduction 

Often a group of parameter list passed together in different methods of same class or 

different class.  This parameter list usually produces the “Long Parameter List” smell.  These 

parameters go along each other and can be extracted into a separate class making the code 

more consistent and easier to understand.  Later the behavior for these parameters can also be 

moved to this class and helps in reducing the duplicate code. 
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Mechanics 

•••• “Create an immutable class to represent the group of parameters you are 

replacing.   

•••• Use “Add Parameter” for the new data clump and use a null for this parameter in 

all the callers.  

•••• For each parameter in the data clump, remove the parameter from the signature.  

Modify the callers and method body to use the parameter object for that value.   

•••• Compile and Test. 

•••• When you have removed the parameters, look for behavior that you can move into 

the parameter object with “Move Method” (Fowler et al., 2000).” 

4.15 Preserve Whole Object 

Introduction 

When a method passes to many parameters from a single object “Preserve Whole 

Object” can be applied.  The problem with this arises when a new data value is added to the 

called object.  In such a situation all the calls to this method need to be find out and changed.  

This can be avoided by passing the whole object letting the caller object to decide what to 

use.  This reduces the “Long Parameter List” smell as well as makes the parameter list more 

robust.   

Mechanics 

•••• Create a new parameter of the data object.  

•••• Determine the parameters that need to be obtained from the object.  
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•••• Within the method body, take one parameter and replace its references by 

invoking an appropriate method on the object parameter.  

•••• Delete the parameter.  

•••• Compile and test.  

•••• Repeat for each parameter of the object.  

•••• Remove the code in the calling method that obtains the deleted parameters.  

•••• Compile and test (Fowler et al., 2000). 

Example 

Bad Smell 

 
Figure 21: Preserve Whole Object Bad Code 

Refactored Code 

 

Figure 22: Preserve Whole Object Refactored Code 

In the above example, for the Bad code section, the withingRange method is passed 

two parameters which are retrieved from the same object daysTempRange.  This increases 

the size of withinPlan method and also increases the size of parameter list of withingRange 
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method.  Also if we add any parameter to the daysTempRange which needs to be passes to 

the withinRange method it needs to be explicitly taken care of at all the calling occurrence of 

withinRange method.  In case of the Refactored Code section, the only change which needs 

to be made is inside the withinRange method as the whole method object of daysTempRange 

is passed and not the explicit values. 

4.16 Replace Parameter with Explicit Methods 

Introduction 

“Replace Parameter with Explicit Methods” is applied for a particular case of set 

methods.  If the parameter passed to the caller method decides which value to set using 

“Type Code”, it is better to extract each condition into a separate method.  This makes the 

code much clearer, helps to avoid conditional behavior and also helps in compile time 

checking.  

Mechanics 

•••• For each value of the parameter, create an explicit method.  

•••• For each part of the conditional, call the appropriate new method.  

•••• Compile and test.  

•••• Get rid of the conditional method once all callers have been changed (Fowler et 

al., 2000). 
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Example 

Bad Code 

 

Figure 23: Replace Parameter with Explicit Methods Bad Code 

 

Refactored Code 

 

Figure 24: Replace Parameter with Explicit Methods Refactored Code 

For the above example every conditional case of the setValue method is extracted into 

an explicit method as the parameter name decides which condition to call.  This makes the 

code more robust and easy to understand.  

4.17 Replace Parameter with Method 

Introduction 

“Replace Parameter with Method” can be applied if the passed parameter to a method 

can be retrieved in some other way like by calling a method.  This helps to reduce the 

parameter list and make the code more readable. 
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Mechanics 

•••• In the body of the method, replace references to the parameter with references to 

the method.  

•••• Compile and test after each replacement.  

•••• Remove the parameter (Fowler et al., 2000). 

Example 

Bad Code 

 

Figure 25: Replace Parameter with Method Bad Code 

Refactored Code 

 

Figure 26: Replace Parameter with Method Refactored Code 

 

In Bad Code section, the method discountedPrice is passed on a parameter 

discountLevel which is retrieved by calling the method getDiscountLevel method.  Instead of 

passing the discountLevel as a parameter to discountedPrice, it can be retrieved in the body 

by explicitly calling the getDiscountLevel method. 
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4.18 Replace Delegation with Inheritance 

Introduction 

“Replace Delegation with Inheritance” is applied when the methods of a class is 

delegating their work to methods of some other class.  This shows that the delegating class 

can be a subclass.  This can be only implemented if the delegating class is using all the 

methods of the superclass. 

Mechanics 

•••• “Make the delegating object a subclass of the delegate.  

•••• Set the delegate field to be the object itself.  

•••• Remove the simple delegation methods.  

•••• Compile and test.  

•••• Replace all other delegations with calls to the object itself.  

•••• Remove the delegate field (Fowler et al., 2000).” 
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Example 

Bad Code 

 

Figure 27: Replace Delegation with Inheritance Bad Code 
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Refactored Code 

 

Figure 28: Replace Delegation with Inheritance Refactored Code 

In the above example, the class Employee is delegating all its work to the class 

Person.  This shows that the class Employee can be subclass of the class Person in turn 

remove all the delegating methods.  Also the reference of calling the getLastName method is 

changed to toString method. 
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5 Java Smell Detector  

5.1 Introduction 

Code smell detection is a very complex procedure.  Careful design analysis of the 

software system is required for detecting the code smell.  It is believed that human intuition 

is the best way to detect code smell (Roperia, 2009); however, detection becomes more 

difficult as system size increases.  This creates the need for automated detection, especially 

for larger systems.  The automatic detection of code smell can be done using statistical data 

analysis.  However, the detection of all of the 22 smells using statistical data is not possible 

(Bhalla, 2009).   

Our tool - Java Smell Detector (JSD), analyzes Java source code to detect code smell 

automatically.  JSD’s functionality is limited to the detection of five code smells: “Switch 

Cases,” “Data Class,” “Middle Man,” “Long Parameter List,” and “Long Method”.  These 

code smells will be discussed in detail later in this section.  In cases where “Data Class” and 

“Long Method” smells are detected, JSD provides an option to refactor the code.  

Refactoring techniques are suggested for “Switch Cases,” “Middle Man,” and “Long 

Parameter List” smells.  

5.2 Proposed Tool - Java Smell Detector 

5.2.1 Implementation Platform 

JSD is implemented in Java and uses the Abstract Syntax Tree (AST) parser.  

Abstract syntax tree is the tree structure representation of the source code in any 

programming language.  Each node of the syntax tree represents a part of the abstract 

syntactic structure of the source code.  The IDE used for the development is Eclipse SDK 
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3.4.0.  For refactoring, JSD uses the built in refactoring API of Eclipse, which is a part of 

Language Toolkit (LTK).  The input of the JSD is a Java project folder.  

 

5.2.2 Architecture and Control Flow  

A high level system architecture of JSD is shown in Figure 29: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 29: High Level System Architecture. 
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The classes of the input Java project are parsed through the AST Parser.  The 

detection process is done in two phases:  During the initial phase, JSD parses each class 

to gather statistical data by visiting each AST node and creates an array list of the method 

and variable names for each class.  JSD also creates a list of all the class names used 

during the detection for “Data Class” smell.  During the second phase, the JSD uses the 

gathered statistical data and the AST to identify the code smells requested by the user.  

The detected code smells are then presented to the user.  JSD also provides the option of 

applying refactoring technique(s) step by step.  The user can choose to accept or discard 

the refactoring suggestions.  

The main interface of the JSD is shown below (Figure 30). 

 

Figure 30: JSD Main GUI 

5.2.3 Smell Detected by JSD 

Being a relatively small tool, JSD detects five smells as listed below: 

• Switch Cases 

• Data Class 
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• Middle Man 

• Long Parameter List 

• Long Method 

Now we will discuss each one of these code smells in detail.  We will also review 

the algorithms used by JSD to detect and suggest refactoring for each code smell. 

5.2.3.1 Switch Cases 

Problem 

When a system uses a significant amount of switch statements 

scattered throughout the code.  This allegedly creates problems of duplicate 

code.  

Description 

A switch statement is considered a “Type Code.”  “Type Code” is a set 

of programming statements that do not execute all at once; rather only a 

subset is executed depending upon the control flow.  The if-then-else case is 

also considered a “Type Code.”  The main problem with “Type Code” is 

duplication.  During the maintenance phase of coding, the same “Type Code” 

may be scattered at different places in the code.  So to add a new clause in the 

“Type Code” all the occurrences of the “Type Code” need to be searched and 

changed individually.  Polymorphism helps to avoid this problem.  Zhang, 

Baddoo, Wernick, & Hall (2008) suggested that if any “Type Code” consists 

of more than two cases, it is considered as code smell.  For example, in the 

below code snapshot, the switch case, movie.getTypeCode, consists of more 
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than three cases.  Here we can use polymorphism to create an interface and a 

subclass for each case to refactor the code. 

 

Figure 31: Switch Case Smell Example 

(Anonymous, n.d.) 

Intent 

Detect the presence of “Switch Case” smell and suggest the 

corresponding refactoring technique to remove it.  

Detection Technique & Algorithm 

Switch Case 

1. In AST, visit the “Switch Statement” node for each one of the switch 

statement blocks. 
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2. For each “Switch Statement” node, visit “Simple Name” node to 

retrieve the name of the switch statement and store it in a string.  

(“Simple Name” node is the node used to express the actual name of 

any expression of the code in the AST.) 

3. Visit all, “Switch Case” nodes and increment the counter to count 

the number of switch cases.  

4. Return the count and the name of the switch statement. 

5. If the count is more than three, it is considered to have code smell. 

If-then-else 

1. Visit, “If Statement” node to visit if-then-else block. 

2. Check if, “Else Statement” is there or not using getElseStatement 

method. 

a. If, “Else Statement” exists, visit “If Statement” node and 

increase the counter.  Go back to 2. 

b. If “Else Statement” doesn’t exist, return the counter. 

3. Check if the count is more than three, if so it is considered as code 

smell. 

Refactoring Suggestion 

To remove the “Switch Case” smell, polymorphism should be used.  

Polymorphism can be achieved by creating an inheritance structure.  Use the 

“Extract Method” to extract each switch case into individual methods and 

then, “Move Method” to move each one of the methods into respective 

classes.  Apply “Replace Type Code with Subclasses” to acquire inheritance.  
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After acquiring the inheritance structure, apply “Replace Conditional with 

Polymorphism.” 

JSD Switch Smell Result Interface 

Figure 32 below shows the resulting interface of the “Switch Case” 

smell for JSD.  The “Result” section details the different “Switch  

Case” smells present in the test data.  To assist the user, JSD provides the 

switch case name with the number of cases and the class name containing it.  

As each if-then-else statement does not have a unique name, JSD only 

provides the class name for each if-then-else block of size three or more.  The 

“Refactoring” section provides the steps which a user can follow to refactor 

the code.   
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Figure 32: JSD Switch Case Result Interface 

5.2.3.2 Data Class 

Problem 

A class containing only getter and setter methods is considered as the 

“Data Class” smell. 

Description 

Getter and setter methods are also known as accessors and mutators, 

respectively (Roperia, 2009).  An accessor is a method that assigns a value to 

an object and returns it back to the caller object.  It does not modify or 

perform any action on the retrieved object.  Mutator is a method that performs 
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computation on the value and alters the object value.  If the mutators of the 

class do not perform any pre-computation on the values and the class does not 

contain any other method apart from mutators and accessors, it is categorized 

as “Data Class” smell.  For example, the Brick class below is categorized as 

“Data Class” smell. 

 

Figure 33: Data Class Smell Example 
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Intent 

Detect whether a class is “Data Class” smell and provide a refactoring 

solution.  

Detection Technique & Algorithm 

1. Visit each “Method Declaration” node of the AST.  (Each method 

definition in AST is represented by a “Method Declaration” node.)  

2. The body of the method is represented by “Block” node in the AST.  

Visit a “Block” node to access the method body.  Count the number of 

statements and store the count in a variable: numOfStatements. 

3. From the “Block” node, visit the “Return Statement” node (if present) 

to check for return statements.  If the “Return Statement” node exists, 

subtract one from numOfStatements. 

4. Visit the “Variable Declaration” node(s) to count the number of local 

variables declared in the method.  Subtract the count from 

numOfStatements.  

5. Visit the “Assignment” node through the “Expression” node.  

(Assignment statements are represented by the “Assignment” node in 

the AST.)  Subtract the total count of visited “Assignment” nodes from 

numOfStatements. 

6. Create a hash map with the method name as the key and the counter, 

numOfStatements, as the value. 
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7.  Check the hash map to see if numOfStatements is greater than zero.  If 

so exists, remove the corresponding class name from the list of classes 

created in the initial phase of JSD. 

8. The remaining lists of classes have been identified to have “Data 

Class” smell. 

Refactoring Suggestion 

In order to remove the “Data Class” smell, look for the functions using 

these getters and setters.  Use “Move Method” to move the identified 

functions to the data class making sure not to keep it delegated.  If the 

complete function can’t be moved to its specified destination, use “Extract 

Method” to extract part of the function into a separate function and then use 

“Move Method.”   

JSD Data Class Result Interface 

Figure 34 represents the resulting interface of the JSD for the detection 

of “Data Class” smell.  The “Results” section provides the name of the classes 

identified to have “Data Class” smell in the test data.  The “Refactoring” 

section provides an interactive approach for the user to refactor for “Data 

Class” smell.  JSD provides a “Move Method” button to move the identified 

method using these getters and setters.  If the user needs to apply “Extract 

Method” prior to “Move Method,” JSD provides an “Extract Method” button 

as well.  
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Figure 34: JSD Data Class Result Interface 

5.2.3.3 Middle Man 

Problem 

A method that passes on its work to some other class is considered as 

“Middle Man” smell.  

Description 

Encapsulation is one of the vital features of object-oriented language.  

Encapsulation is when internal execution details are hidden from other 

objects. Most of the time, encapsulation is achieved at the cost of delegation.  

For example, if someone wanted to book a room at a hotel, they would call the 

receptionist at the hotel and enquire about a vacancy.  The receptionist would 
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ask the reservation agent and reply back with availability.  The individual 

requesting the vacancy would not know the means by which the receptionist 

finds out the availability of rooms.  In this process, the message was delegated 

to the reservation agent by the receptionist.  The individual wouldn’t know 

about the reservation agent, hence it satisfies the encapsulation property 

making the receptionist a middle man.  In the example shown in Figure 35, the 

Person class shown below consists of a “Middle Man” smell in the 

getManager() method as it is delegating its work to the Department class.  

 

Figure 35: Middle Man Smell Example 

(Brant, Beck, Fowler, Opdyke, & Roberts, 2000) 

Intent 

Detect if a method is acting as “Middle Man” or not and suggest 

corresponding refactoring technique to eliminate it.   

Detection Technique & Algorithm 

1. Visit each “Method Declaration” node of the AST that represents each 

of the method definitions in the AST.  
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2. From the “Method Declaration” node, visit the “Block” node to access 

the method body and store the number of statements in the method in a 

counter, numOfStatements.  Check if numOfStatements equals to one:  

If yes, continue to 3 below. 

If no, do nothing.     

3. Check if the statement is a return statement by searching the “Return 

Statement” node.  

4. If it is a “Return Statement” node check for the existence of the 

“Method Invocation” node. 

5. If the node exists, retrieve the “Method Invocation” node name and 

check its existence in the method name list generated during the first 

pass.   

6. In case the name matches, categorize the method as middle man.  

Refactoring Suggestion 

To remove the “Middle Man” smell, apply the “Remove Middle Man” 

refactoring technique and interact with the object that directly performs the 

functionality.  Use “Replace Delegation with Inheritance” if a “Type Code” 

like switch case or if-then-else statement exists and convert the middle man 

into the respective subclass of the real object.  

JSD Switch Smell Result Interface 

Figure 36 represents the resulting interface of JSD.  In the “Results” 

section, JSD provides the names of the classes and the method names that are 
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classified as “Middle Man” smell.  JSD also provides the suggestions for 

removing the smell. 

 

Figure 36: JSD Middle Man Result Interface 

5.2.3.4 Long Parameter List 

Problem 

A method that consists of a long parameter list is categorized as “Long 

Parameter List” smell.  

Description 

In procedural programming languages we pass all the required 

variables as parameters.  The other way of accessing the variables in 
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procedural programming language is to make them global, which is less 

efficient than passing the variables in a parameter list.  In object-oriented 

languages, instead of passing individual variables, we pass an object and the 

required variables are retrieved through the object.  This makes the code 

robust, easy to understand, and less susceptible to parameter list changes.  If a 

parameter list contains more than three parameters, it is classified as “Long 

Parameter List” smell (Rutheford, 2010).  The example shown in Figure 37 is 

an instance of “Long Parameter List” smell.  

 

Figure 37: Long Parameter Smell Example 

(Ronquillo, 2009) 

Intent 

Categorize a method as a “Long Parameter List” smell and suggest 

refactoring technique to eliminate it.  

Detection Technique & Algorithm 

1. Visit each “Method Declaration” node of the AST that represents 

method definitions in the AST.  

2. From the “Method Declaration” node, visit the “Single Variable 

Declaration” node.  (The “Single Variable Declaration” node 
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represents the individual member of the parameter list.)  Increment the 

parameter counter while visiting each node, and add the parameter 

name into an array list.   

3. If the number of parameters is greater than three, the method has 

“Long Parameter List” smell.   

Refactoring Suggestion 

The “Long Parameter List” smell can be removed in the following two 

ways: 

• If the parameters can be replaced by making a call to an 

existing object, use “Replace Parameter with Method.”  

• If the parameter list has no common logical object, apply 

“Introduce Parameter Object.” 

JSD Switch Smell Result Interface 

Figure 38 represents the resulting interface of JSD for detection of the 

“Long Parameter List” smell.  The results section provides the class name, 

function name and the parameter list of the method.  It is important for the 

parameter list to be presented as Java supports message overloading, which 

makes the identification of the method easier in the code.  The refactoring 

section of JSD provides steps to refactor the “Long Parameter List” smell that 

falls into the second criteria, i.e. parameter list that has no common logical 

object.  
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Figure 38: JSD Long Parameter List Result Interface 

5.2.3.5 Long Method 

Problem 

A method that is too long and has a lot of responsibility is considered a 

“Long Method” smell.  

Description 

With an increase in the body size of the method, the complexity of the 

code increases.  Such methods tend to perform multiple logics at the same 

time, making it more complex and increasing the chances of duplicate code.  

In the long run, a long method becomes more difficult to maintain, as it is 

hard to understand.  There is no precise statistical science to detect and 
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classify the “Long Method” smell.  So, in order to detect a “Long Method” 

smell, code cannot be judged by its size; rather, it is important to understand 

the logic of the code.  Fowler & Beck (2001) mentioned that the successful 

way to detect “Long Method” smell is to see if the method needs a significant 

number of comments to explain its logic.  However, Whitehead (2009) 

mentioned that any method consisting of more than 20 lines of code (LOC) is 

definitely considered as bad, and any code less than 10 lines of code is 

considered good.  After running some sample test codes and analyzing them, 

we figured if a method has more than 15 lines of codes it can most likely be 

considered as “Long Method” smell. 

For instance the method shown in Figure 39 consists of “Long 

Method” smell. 



73 

 

 

Figure 39: Long Method Smell Example 

(Anonymous, n.d.) 

Intent 

Detect if a method is introducing “Long Method” smell and suggest a 

refactoring technique to eliminate it.  
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Detection Technique & Algorithm 

1. Visit each “Method Declaration” node of the AST. 

2. Visit the “Block” node to access the method body and count the 

number of statements in the method.  

3. Recursively call step 2 above to visit the “Block” node of any “Type 

Code” or while statements body and return the count.  

4. If the count is more than 15, classify the method to have “Long 

Method” smell. 

Refactoring Suggestion 

To remove “Long Method” smell, apply the “Extract Method” 

refactoring technique.  If the new method has a long parameter list after 

applying the “Extract Method” preprocessing is needed.  The long parameter 

list occurs due to the presence of temporary variables.  To eliminate these 

temporary variables the “Replace Temp with Query” refactoring technique 

can be applied.  The long list of parameters can be reduced by applying 

“Introduce Parameter Object” or “Replace Method with Method Object.”   

JSD Switch Smell Result Interface 

A screenshot of the JSD results for “Long Method” smell is shown in 

Figure 40.  In the results section, JSD provides the class name, method name 

and Lines of Codes (LOC) for that method.  The refactor section provides an 

interface to apply the “Extract Method” technique.  
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Figure 40: JSD Long Method Result Interface 
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6 Results 

JSD was tested against 28 projects taken from the graduate students of San Jose State 

University.  These selected students have experience of two to five years as Java developers, so 

the complexity of their code is considerable.  Each project has an average of 13 classes.  These 

test codes are their class assignments, hence have a good level of complexity.  During the design 

phase, JSD interface was provided to different users from the technical as well as non-technical 

background to access the user-friendliness of GUI.  The feedbacks were used to improvise the 

GUI.  To test the usability, performance and the code optimization feature of JSD, three different 

tests were conducted.  

1. Identify smells present in each project. 

2. Time taken to understand code logic before and after refactoring.  

3. Time taken to add functionality in the code before and after refactoring. 

6.1 Identify Smells Present in Each Project 

During this test, the JSD was run across each of the project and the output was 

recorded (whether the project contains the specific smell or not).  Later they were cross-

checked by the graduate students to verify correctness of the smell identified by the tool. 

Even other classes of the projects were skimmed through to identify other cases which the 

tool might have missed.  The smells identified by JSD in individual projects are represented 

in the tabular format in Table 3.  The table cell marked “Yes” represents the detected code 

smell in the project enlisted in column 1. 

Project # 
Switch Case 

Smell 

Data Class 

Smell 

Middle Man 

Smell 

Long 

Parameter 

List Smell 

Long 

Method 

Smell 

1 Yes    Yes 
2    Yes Yes 
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3 Yes  Yes  Yes 

4  Yes    

5  Yes    

6 Yes Yes Yes  Yes 

7 Yes    Yes 

8 Yes    Yes 

9 Yes    Yes 

10 Yes    Yes 

11     Yes 

12  Yes   Yes 

13 Yes  Yes Yes Yes 

14  Yes   Yes 

15 Yes Yes   Yes 

16 Yes Yes   Yes 

17     Yes 

18 Yes Yes Yes Yes Yes 

19 Yes Yes  Yes Yes 

20 Yes Yes  Yes Yes 

21  Yes Yes Yes Yes 

22 Yes Yes  Yes Yes 

23 Yes  Yes  Yes 

24 Yes  Yes  Yes 

25 Yes    Yes 

26 Yes  Yes  Yes 

27 Yes Yes   Yes 

28 Yes Yes   Yes 

Total 21 14 8 7 26 

Percentage 71.43 % 50.00 % 28.57 % 25.00 % 92.86 % 

Table 3: Results - Identified Smells in Each Project 

As the above table shows, “Long Method” smell was found in most of the test cases 

(92.86 %) for which JSD provides an interactive interface to refactor.  “Switch Case” smell 

(71.43%) and “Data Class” smell (50%) were the second and third most detected smell by 

JSD.  JSD also provides an interactive interface to refactor the “Data Class” smell and 
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provides suggestions to refactor the “Switch Case” smell.  JSD detected 28.6% and 25% of 

“Middle Man” smell and the “Long Parameter List” smell respectively.  

6.2 Time Taken to Understand Code Logic Before and After Refactoring.  

For this test, four Java developers were chosen ranging from two to seven years of 

experience.  The experience of the users ensured that they had sufficient background 

knowledge of Java to understand the logic.  Three projects (named Project 1, Project 2, and 

Project 3) from the 28 of the above projects were selected having different difficulty level.  

The details of each of the three projects are shown in Table 4.   

Project # Complexity Level Description of Project 

Project 1 1 Half Adder Circuit (Observer Observable Pattern) 

Project 2 2 
A console application determine if entered number is 
Prime or Square or Sum of square or Biggest Prime 

number (Master Slave Pattern) 

Project 3 3 A GUI application, represents a rectangular shape 
which changes its size on user input  

Table 4: Test Projects 
 

Each of the projects was run across JSD and individual smells were detected.  The 

detected “Data Class” smell and “Long Method” smell were refactored by the tool and given 

to the developers in random order.  For Example, if the Project 1 original (non-refactored) 

code was given first; next time any of the refactored projects or original projects was given.  

The users were asked to understand the logic of the code for which they were timed.  The 

time taken by each of the users was noted and is enlisted in Table 5.   
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User 

Time taken in seconds 

Project 1 Project 2 Project 3 

Original  Refactored Original  Refactored Original Refactored 

User 1 380 292 508 417 730 562 

User 2 300 260 392 345 598 474 

User 3 402 305 482 414 602 546 

User 4 350 288 434 368 690 500 

Table 5: Time taken - Original and Refactoring 

The graphical representation of time taken to understand the logic of original and the 

refactored code by each user is shown below.  Each graph represents the time taken for 

individual projects.   

 

Graph 1: Time taken to understand Project 1 
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Graph 2: Time taken to understand Project 2 
 

 

Graph 3: Time taken to understand Project 3 

The statistics above supports the fact that after refactoring; the logic of the code 

becomes easy to understand.  However the user test results cannot be statistically used to 

validate the significance of results due to small number of users.   
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6.3 Time Taken to Add Functionality in the Code Before and After Refactoring. 

This test was performed on two separate users, one of them the original writer 

(originator) of the code and the other an experienced Java developer.  For this test, the users 

were asked to add functionality to the half-adder circuit project.  The users were first given 

the original code and than refactored code one after another.  The original code had “Long 

Method” smell which made it harder for the user to understand the code.  In the refactored 

code, “Long Method” smell was removed by the tool.  After each step, the users were asked 

to understand the code and add the functionality of full-adder circuit.  The time taken by each 

of them was recorded, enlisted in Table 6. 

User 

Time taken in seconds 

Half-adder to Full-adder 

Original  Refactored 

Originator 242 113 

Developer 345 140 

Table 6: Time taken to add functionality 

The graphical representation of time difference to add the functionality to the code in 

original and the refactored code taken by each user is shown in Graph 4.   
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Graph 4: Time taken to add functionality 

The statistics from this test supports that time taken to add functionality in the half-

adder project is approximately half for the refactored code than the time taken for the original 

code.  This even holds true for the originator of the code (who wrote the code) as well as for 

other developer.  This shows that the refactored code is easy to maintain and modify than the 

code with smells and has nothing to do with who developed the code.  However, the 

significance of the results cannot be trusted as the number of users is less.  The research 

needs to be performed on a bigger set of users to trust the results.    
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7 Conclusion & Future Work 

7.1 Conclusion 

In this paper, we presented automated code smell detection processes for five of the 

smells of any object-oriented Java software system.  We suggested refactoring techniques for 

all five of them and provided an interactive approach to refactor two of the five detected 

smells.  These code smells are detected using statistical data gathered while parsing the files.  

In chapter two, we provided a previous research done on code smells.  In chapter three and 

four, we elaborated about 22 code smells and refactoring techniques respectively.  The 

statistical approach taken to develop JSD and results generated while running the test cases 

are presented in later chapters.  

As it can be seen JSD successfully detected the code smells using the statistical 

analysis like Lines of Code, Method Invocation, Method Names and others.  It is also seen 

that JSD was able to refactor the smells detected for “Data Class” smell and “Long Method” 

smell.  The results presented in section 6.2 shows that after applying refactoring techniques 

the code becomes easier to understand and the results in section 6.3 shows that the code 

becomes easier to maintain and modify.     
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7.2 Future Work 

Currently JSD detects code smells in Java systems only.  Similar technique can also 

be deployed to detect the code smells in other object-oriented languages like C++, Ruby, 

Python, and C#.  Additionally, JSD currently detects only five of the code smells, more 

research can be done to detect other code smells.  Among these five smells the “Long 

Method” smell can be improved by having a better logical understanding of the method.  

Moreover, if JSD provides an interactive refactor approach for other code smells, it will 

become a powerful tool.  
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APPENDIX: Source Code 

Package: - GUI 

Class: - MainGUI.java 

package GUI; 

 

import java.awt.BorderLayout; 

import java.awt.FlowLayout; 

import java.awt.GridLayout; 

import java.awt.event.ActionEvent; 

import java.awt.event.ActionListener; 

import java.awt.event.ItemEvent; 

import java.awt.event.ItemListener; 

import java.io.File; 

import java.util.ArrayList; 

 

import javax.swing.BorderFactory; 

import javax.swing.BoxLayout; 

import javax.swing.JButton; 

import javax.swing.JCheckBox; 

import javax.swing.JFileChooser; 

import javax.swing.JFrame; 

import javax.swing.JLabel; 

import javax.swing.JOptionPane; 

import javax.swing.JPanel; 

 

public class MainGUI { 

 

 private JFrame frame; 

 private JCheckBox switchCase; 

 private JCheckBox dataClass; 

 private JCheckBox middleMan; 

 private JCheckBox longParaList; 

 private JCheckBox longMethod; 

 

 private String path; 

 private int counter = 0; 

 private ArrayList<String> files = new ArrayList<String>(); 

 

 private CheckBoxListener myListener = null; 

 

 private JButton fileChooser = null; 

 private JButton refactorButton = null; 

 

 private boolean switchCaseFlag = false; 

 private boolean dataClassFlag = false; 

 private boolean longMethodFlag = false; 

 private boolean longParaListFlag = false; 

 private boolean middleManFlag = false; 

 

 public MainGUI() { 

  frame = new JFrame("Java Smell Detector"); 

  configureFrame(); 

  createTopPanel(); 
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  JPanel center = new JPanel(); 

  center.setLayout(new FlowLayout(FlowLayout.LEFT)); 

  createSmellCheckBoxPanel(center); 

  frame.add(center, BorderLayout.CENTER); 

  JPanel refactorPanel = new JPanel(); 

  createRefactorPanel(refactorPanel); 

  frame.add(refactorPanel, BorderLayout.EAST); 

  frame.setVisible(true); 

 } 

 

 private void configureFrame() { 

  frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); 

  frame.setSize(430, 260); 

  frame.setResizable(false); 

  frame.setLocationRelativeTo(null); 

  frame.setLayout(new BorderLayout()); 

 } 

 

 private void createRefactorPanel(JPanel refactorPanel) { 

  refactorButtonListener refactorListener = new 

refactorButtonListener(); 

  refactorPanel.setLayout(new BoxLayout(refactorPanel, 

BoxLayout.X_AXIS)); 

  refactorPanel.setBorder(BorderFactory.createEmptyBorder(0, 0, 0, 

60)); 

  refactorButton = new JButton("Refactor"); 

  refactorButton.addActionListener(refactorListener); 

  refactorButton.setEnabled(false); 

  refactorPanel.add(refactorButton); 

 } 

 

 private void createSmellCheckBoxPanel(JPanel center) { 

  JPanel smellCheckBox = new JPanel(); 

  createCheckBox(); 

  smellCheckBox.setLayout(new GridLayout(0, 1)); 

  addCheckBox(smellCheckBox); 

  myListener = new CheckBoxListener(); 

  addCheckBoxListener(); 

  center.add(smellCheckBox); 

 } 

 

 private void createCheckBox() { 

  switchCase = new JCheckBox("Switch Case Smell"); 

  dataClass = new JCheckBox("Data Class Smell"); 

  middleMan = new JCheckBox("Middle Man Smell"); 

  longParaList = new JCheckBox("Long Parameter List Smell"); 

  longMethod = new JCheckBox("Long Method Smell"); 

  addToolTipToCheckBox(); 

 } 

 

 private void addToolTipToCheckBox() { 

  switchCase 

    .setToolTipText("occurs when a user uses lot of 

switch statements. If any Switch Statement has more than 2 Switch Cases it 

isconsidered to be a Switch Statements Smell."); 

  dataClass 
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    .setToolTipText("When a class contains only variables 

and their getter and setter methods is called a Data Class Smell."); 

  middleMan 

    .setToolTipText("Middle Man Smell occurs when a 

method (delegate method) which puts forward the request to the client from 

another method."); 

  longParaList 

    .setToolTipText("When the number of parameters passed 

to a method is more than what is actually required for the functionality of 

the method."); 

  longMethod 

    .setToolTipText("A method which contains large number 

of lines and performs more than one action is considered as Long Method 

Smell."); 

 } 

 

 private void addCheckBox(JPanel smellCheckBox) { 

  smellCheckBox.add(switchCase); 

  smellCheckBox.add(dataClass); 

  smellCheckBox.add(middleMan); 

  smellCheckBox.add(longParaList); 

  smellCheckBox.add(longMethod); 

 } 

 

 private void addCheckBoxListener() { 

  switchCase.addItemListener(myListener); 

  dataClass.addItemListener(myListener); 

  middleMan.addItemListener(myListener); 

  longParaList.addItemListener(myListener); 

  longMethod.addItemListener(myListener); 

 } 

 

 private void createTopPanel() { 

  JPanel top = new JPanel(); 

  fileChooser = new JButton("Select Project"); 

  top.setBorder(BorderFactory.createTitledBorder("Input")); 

  top.setLayout(new FlowLayout(FlowLayout.LEFT)); 

  fileChooser.addActionListener((new ActionListener() { 

   public void actionPerformed(ActionEvent e) { 

    JFileChooser chooser = new JFileChooser("."); 

    chooser.setDialogTitle("Select Project"); 

   

 chooser.setFileSelectionMode(JFileChooser.DIRECTORIES_ONLY); 

    chooser.setAcceptAllFileFilterUsed(false); 

    if (chooser.showOpenDialog(fileChooser) == 

JFileChooser.APPROVE_OPTION) { 

     ifFileChooserSelectedOk(chooser); 

    } else { 

     JOptionPane.showMessageDialog(frame, 

       "Haven't selected anything yet!!!", 

       "Selected Project", 

JOptionPane.PLAIN_MESSAGE); 

    } 

    refactorButtonConditionCheck(); 

   } 
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   private void ifFileChooserSelectedOk(JFileChooser chooser) 

{ 

    path = chooser.getSelectedFile().toString(); 

    path = path.replace("\\", "/"); 

    File file = new File(path); 

    fileFilter(file); 

    if (files.size() != 0) { 

     JOptionPane.showMessageDialog(frame, 

       "The selected path is: " + path, 

       "Selected Project", 

JOptionPane.PLAIN_MESSAGE); 

    } else { 

     JOptionPane.showMessageDialog(frame, 

       "The selected path doesn't contain 

any Java Files", 

       "Selected Project", 

JOptionPane.PLAIN_MESSAGE); 

     path = null; 

    } 

   } 

  })); 

  top.add(new JLabel( 

    "Select the Java Source Folder to detect smell:       

")); 

  top.add(fileChooser); 

  frame.add(top, BorderLayout.PAGE_START); 

 } 

 

 private void fileFilter(File dir) { 

  File directory = dir; 

  File[] filePath = directory.listFiles(); 

  for (File f : filePath) { 

   if (f.isDirectory()) { 

    fileFilter(f); 

   } else if (f.toString().endsWith(".java")) { 

    String temp = f.toString().replace("\\", "\\\\"); 

    files.add(temp); 

   } 

  } 

 } 

 

 private void refactorButtonConditionCheck() { 

  if (counter > 0 & path != null) { 

   refactorButton.setEnabled(true); 

  } else { 

   refactorButton.setEnabled(false); 

  } 

 } 

 

 class CheckBoxListener implements ItemListener { 

  public void itemStateChanged(ItemEvent e) { 

   Object source = e.getSource(); 

   itemSelected(e, source); 

   itemDeselected(e, source); 

   refactorButtonConditionCheck(); 

  } 
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  private void itemDeselected(ItemEvent e, Object source) { 

   if (e.getStateChange() == ItemEvent.DESELECTED) { 

    if (source == switchCase) { 

     switchCaseFlag = false; 

    } else if (source == dataClass) { 

     dataClassFlag = false; 

    } else if (source == middleMan) { 

     middleManFlag = false; 

    } else if (source == longParaList) { 

     longParaListFlag = false; 

    } else if (source == longMethod) { 

     longMethodFlag = false; 

    } 

    counter--; 

   } 

  } 

 

  private void itemSelected(ItemEvent e, Object source) { 

   if (e.getStateChange() == ItemEvent.SELECTED) { 

    if (source == switchCase) { 

     switchCaseFlag = true; 

    } else if (source == dataClass) { 

     dataClassFlag = true; 

    } else if (source == middleMan) { 

     middleManFlag = true; 

    } else if (source == longParaList) { 

     longParaListFlag = true; 

    } else if (source == longMethod) { 

     longMethodFlag = true; 

    } 

    counter++; 

   } 

  } 

 } 

 

 class refactorButtonListener implements ActionListener { 

 

  public void actionPerformed(ActionEvent e) { 

   ArrayList<Boolean> flag = new ArrayList<Boolean>(); 

   flag.add(switchCaseFlag); 

   flag.add(dataClassFlag); 

   flag.add(middleManFlag); 

   flag.add(longParaListFlag); 

   flag.add(longMethodFlag); 

   MainTabbedPane mtp = new MainTabbedPane(flag, files); 

   frame.setVisible(false); 

  } 

 

 } 

 

 public static void main(String[] args) { 

  MainGUI main = new MainGUI(); 

 } 

} 
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Class: - MainTabbedPane.java 

package GUI; 

 

import java.awt.BorderLayout; 

import java.awt.Dimension; 

import java.awt.GridLayout; 

import java.awt.event.ActionEvent; 

import java.awt.event.ActionListener; 

import java.util.ArrayList; 

 

import javax.swing.BorderFactory; 

import javax.swing.BoxLayout; 

import javax.swing.ImageIcon; 

import javax.swing.JButton; 

import javax.swing.JFrame; 

import javax.swing.JLabel; 

import javax.swing.JPanel; 

import javax.swing.JScrollPane; 

import javax.swing.JTabbedPane; 

 

import Main.DesignAnalyzer; 

import Refactor.RefactorCode; 

 

public class MainTabbedPane extends JFrame { 

 

 private static JTabbedPane jtp; 

 private JPanel switchCase = new JPanel(); 

 private JPanel dataClass = new JPanel(); 

 private JPanel middleMan = new JPanel(); 

 private JPanel longParameterList = new JPanel(); 

 private JPanel longMethod = new JPanel(); 

 private JPanel centerPanel; 

 private JPanel rightPanel; 

 private ImageIcon icon; 

 private JButton moveButton; 

 private JButton extractButton; 

 private JButton inlineButton; 

 private static ArrayList<String> switchCaseSmell = new 

ArrayList<String>(); 

 private static ArrayList<String> dataClassSmell = new 

ArrayList<String>(); 

 private static ArrayList<String> longParaListSmell = new 

ArrayList<String>(); 

 private static ArrayList<String> longMethodSmell = new 

ArrayList<String>(); 

 private static ArrayList<String> middleManSmell = new 

ArrayList<String>(); 

 private RefactorListner listner = new RefactorListner(); 

 

 public MainTabbedPane(ArrayList<Boolean> flag, ArrayList<String> files) 

{ 

  DesignAnalyzer da = new DesignAnalyzer(); 

  da.main(files); 

  getSmellArrayList(da); 

  MainTabbedPane tp = new MainTabbedPane(); 



93 

 

  enableDisableTabs(flag); 

  tp.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); 

  tp.setVisible(true); 

 } 

 

 private void enableDisableTabs(ArrayList<Boolean> flag) { 

  for (int i = 4; i >= 0; i--) { 

   if (flag.get(i) == false) { 

    jtp.setEnabledAt(i, false); 

   } else { 

    jtp.setSelectedIndex(i); 

   } 

  } 

 } 

 

 private void getSmellArrayList(DesignAnalyzer da) { 

  switchCaseSmell.addAll(da.getSwitchCaseSmell()); 

  dataClassSmell.addAll(da.getDataClassSmell()); 

  longParaListSmell.addAll(da.getLongParaListSmell()); 

  longMethodSmell.addAll(da.getLongMethodSmell()); 

  middleManSmell.addAll(da.getMiddleManSmell()); 

 } 

 

 public MainTabbedPane() { 

  setSize(850, 600); 

  setResizable(false); 

  setLocationRelativeTo(null); 

  setTitle("Java Smell Detector"); 

  jtp = new JTabbedPane(); 

  getContentPane().add(jtp); 

  createTabs(jtp); 

 } 

 

 private void createTabs(JTabbedPane jtp) { 

  addTabs(jtp); 

  createEachTab(switchCase, switchCaseSmell); 

  createEachTab(dataClass, dataClassSmell); 

  createEachTab(middleMan, middleManSmell); 

  createEachTab(longParameterList, longParaListSmell); 

  createEachTab(longMethod, longMethodSmell); 

 } 

 

 private void addTabs(JTabbedPane jtp) { 

  jtp.add("Switch Case Smell", switchCase); 

  jtp.add("Data Class Smell", dataClass); 

  jtp.add("Middle Man Smell", middleMan); 

  jtp.add("Long Parameter List Smell", longParameterList); 

  jtp.add("Long Method Smell", longMethod); 

 } 

 

 private void createEachTab(JPanel tab, ArrayList<String> smellList) { 

  JPanel result = resultPanel(tab); 

  JPanel refactorDesc = refactorDescPanel(tab); 

  refactorDesc.setMaximumSize(new Dimension(850, 300)); 

  refactorDesc.setPreferredSize(new Dimension(850, 250)); 

  icon = new ImageIcon("src/GUI/bullet_label.gif"); 

  displayResult(smellList, result); 
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  ArrayList<JLabel> list = new ArrayList<JLabel>(); 

  if (tab == switchCase) { 

   list 

     .add(new JLabel( 

       "Extract each method to its 

individual method and extract them to individual classes.", 

       icon, JLabel.LEFT)); 

   list 

     .add(new JLabel( 

       "Change access modifier of each 

method to \"public\" and rename them with same method name.", 

       icon, JLabel.LEFT)); 

   list 

     .add(new JLabel( 

       "Extract interface from any one of 

the class and create method as member of interface.", 

       icon, JLabel.LEFT)); 

   list.add(new JLabel("Implement interface for rest of the 

classes.", 

     icon, JLabel.LEFT)); 

   list 

     .add(new JLabel( 

       "Declare generic Object of the 

interface and it's implement it appropriately in each switch case", 

       icon, JLabel.LEFT)); 

   list 

     .add(new JLabel( 

       "Have a generic return type outside 

the switch statement and breakout from individual cases.", 

       icon, JLabel.LEFT)); 

   list.add(new JLabel("Extract switch statement in a 

method.", icon, 

     JLabel.LEFT)); 

   list 

     .add(new JLabel( 

       "Create a HashMap consisting each 

switch case as key and type of object as value.", 

       icon, JLabel.LEFT)); 

   list 

     .add(new JLabel( 

       "Clean up the code by applying 

Inline refactoring technique and removing unnecessary objects.", 

       icon, JLabel.LEFT)); 

   for (JLabel label : list) { 

    refactorDesc.add(label); 

   } 

  } else if (tab == dataClass) { 

   refactorDesc.setLayout(new BorderLayout()); 

   createPannelSetLayout(); 

   createRefactorButtonAddListener(); 

   rightPanel.add(moveButton); 

   rightPanel.add(new JLabel(" ")); 

   rightPanel.add(extractButton); 

   centerPanel 

     .add(new JLabel( 

       "Move method from a class which 

uses these getters and setters methods of the Data Class.", 
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       icon, JLabel.LEFT)); 

   centerPanel 

     .add(new JLabel( 

       "        Make sure to check the 

checkbox to keep the method delgate.")); 

   centerPanel.add(new JLabel(" ")); 

   centerPanel 

     .add(new JLabel( 

       "If method is a main method or 

contains other behaviours Extract Method", 

       icon, JLabel.LEFT)); 

   refactorDesc.add(centerPanel, BorderLayout.CENTER); 

   refactorDesc.add(rightPanel, BorderLayout.EAST); 

  } else if (tab == middleMan) { 

   list.add(new JLabel( 

     "Make delegating object a sub class of the 

delegate.", 

     icon, JLabel.LEFT)); 

   list.add(new JLabel("If method signature conflicts rename 

them.", 

     icon, JLabel.LEFT)); 

   list.add(new JLabel( 

     "Set delegate field refer to the object 

itself.", icon, 

     JLabel.LEFT)); 

   list.add(new JLabel("Remove the simple delegation method.", 

icon, 

     JLabel.LEFT)); 

   list.add(new JLabel( 

     "Replace all other delgation with calls to the 

object.", 

     icon, JLabel.LEFT)); 

   for (JLabel label : list) { 

    refactorDesc.add(label); 

   } 

  } else if (tab == longParameterList) { 

   list 

     .add(new JLabel( 

       "Create a new parameter for the 

whole object from which the data comes.", 

       icon, JLabel.LEFT)); 

   list.add(new JLabel("Compile and test.", icon, 

JLabel.LEFT)); 

   list 

     .add(new JLabel( 

       "Determine which parameters should 

be obtained from the whole object.", 

       icon, JLabel.LEFT)); 

   list 

     .add(new JLabel( 

       "Take one parameter and replace 

references to it within the method body by invoking an appropriate method on 

the whole object parameter.", 

       icon, JLabel.LEFT)); 

   list.add(new JLabel("Delete the parameter.", icon, 

JLabel.LEFT)); 
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   list.add(new JLabel("Compile and test.", icon, 

JLabel.LEFT)); 

   list 

     .add(new JLabel( 

       "Repeat for each parameter that can 

be got from the whole object.", 

       icon, JLabel.LEFT)); 

   list 

     .add(new JLabel( 

       "Remove the code in the calling 

method that obtains the deleted parameters.", 

       icon, JLabel.LEFT)); 

   for (JLabel label : list) { 

    refactorDesc.add(label); 

   } 

  } else if (tab == longMethod) { 

   refactorDesc.setLayout(new BorderLayout()); 

   createPannelSetLayout(); 

   createRefactorButtonAddListener(); 

   refactorDesc.add(centerPanel, BorderLayout.CENTER); 

   refactorDesc.add(rightPanel, BorderLayout.EAST); 

   centerPanel.add(new JLabel( 

     "Divide the code depending upon the code 

dependency.", 

     icon, JLabel.LEFT)); 

   centerPanel.add(new JLabel(" ")); 

   centerPanel 

     .add(new JLabel( 

       "Select each division and extract 

each division into individual methods by clicking on the Extract Method 

Button.", 

       icon, JLabel.LEFT)); 

   rightPanel.add(new JLabel(" ")); 

   rightPanel.add(new JLabel(" ")); 

   rightPanel.add(extractButton); 

  } 

 

 } 

 

 private void createPannelSetLayout() { 

  centerPanel = new JPanel(); 

  rightPanel = new JPanel(); 

  centerPanel.setLayout(new BoxLayout(centerPanel, 

BoxLayout.Y_AXIS)); 

  rightPanel.setLayout(new BoxLayout(rightPanel, 

BoxLayout.Y_AXIS)); 

 } 

 

 private void createRefactorButtonAddListener() { 

  moveButton = new JButton(" Move Method "); 

  extractButton = new JButton("Extract Method"); 

  inlineButton = new JButton("  Inline Method  "); 

  moveButton.addActionListener(listner); 

  extractButton.addActionListener(listner); 

  inlineButton.addActionListener(listner); 

 } 
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 private void displayResult(ArrayList<String> smellList, JPanel result) 

{ 

  if (smellList != null) { 

   for (int i = 0; i < smellList.size(); i++) { 

    JLabel label = new JLabel(smellList.get(i), icon, 

JLabel.LEFT); 

    result.add(label); 

   } 

  } else { 

   JLabel label = new JLabel( 

     "No Bad Smell detected in any of the files.", 

icon, 

     JLabel.LEFT); 

   result.add(label); 

  } 

 } 

 

 private JPanel refactorDescPanel(JPanel tab) { 

  JPanel refactorDesc = new JPanel(); 

  tab.add(refactorDesc); 

 

 refactorDesc.setBorder(BorderFactory.createTitledBorder("Refactoring"))

; 

  refactorDesc.setLayout(new GridLayout(0, 1)); 

  return refactorDesc; 

 } 

 

 private JPanel resultPanel(JPanel tab) { 

  tab.setLayout(new BoxLayout(tab, BoxLayout.Y_AXIS)); 

  JPanel result = new JPanel(); 

  result.setLayout(new GridLayout(0, 1, 1, 5)); 

  JScrollPane resultScroller = new JScrollPane(); 

  resultScroller.setViewportView(result); 

  tab.add(resultScroller); 

  result.setBorder(BorderFactory.createTitledBorder("Results")); 

  return result; 

 } 

 

 class RefactorListner implements ActionListener { 

  public void actionPerformed(ActionEvent e) { 

   RefactorCode refactor = new RefactorCode(); 

   if (e.getActionCommand() == " Move Method ") { 

    refactor.swapScreen(); 

    refactor.callMoveMethod(); 

   } else if (e.getActionCommand() == "Extract Method") { 

    refactor.swapScreen(); 

    refactor.callExtractMethod(); 

   } 

  } 

 } 

} 

 

 

Package: - Main 
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Class: - DesignAnalyzer.java 

package Main; 

 

import java.io.File; 

import java.util.ArrayList; 

import java.util.HashMap; 

import java.util.Iterator; 

import java.util.Map; 

import java.util.Scanner; 

import java.util.Set; 

 

import org.eclipse.jdt.core.dom.AST; 

import org.eclipse.jdt.core.dom.ASTParser; 

import org.eclipse.jdt.core.dom.CompilationUnit; 

 

import CodeAnalyzer.CodeAnalyzerMethodDeclarationLister; 

import CodeAnalyzer.FieldDeclarationLister; 

import DataClassBadSmell.MethodDeclarationBlock; 

import DataClassBadSmell.TypeDeclarationStatementTest; 

import LongMethodBadSmell.LongMethodMethodDeclaration; 

import LongParameterListBadSmell.LongParameterListMethodDeclaration; 

import MiddleManBadSmell.MiddleManMethodDeclaration; 

import SwitchCaseBadSmell.CountIfStatement; 

import SwitchCaseBadSmell.CountSwitchStatement; 

 

public class DesignAnalyzer { 

 

 private ArrayList<String> globalVariableList = new ArrayList<String>(); 

 private ArrayList<String> globalMethodNameList = new 

ArrayList<String>(); 

 

 private static ArrayList<String> switchCaseSmell = new 

ArrayList<String>(); 

 private static ArrayList<String> dataClassSmell = new 

ArrayList<String>(); 

 private static ArrayList<String> longParaListSmell = new 

ArrayList<String>(); 

 private static ArrayList<String> longMethodSmell = new 

ArrayList<String>(); 

 private static ArrayList<String> middleManSmell = new 

ArrayList<String>(); 

 

 private String smell; 

 

 public ArrayList<String> getMiddleManSmell() { 

  return middleManSmell; 

 } 

 

 public ArrayList<String> getLongMethodSmell() { 

  return longMethodSmell; 

 } 

 

 public ArrayList<String> getSwitchCaseSmell() { 

  return switchCaseSmell; 

 } 
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 public ArrayList<String> getDataClassSmell() { 

  return dataClassSmell; 

 } 

 

 public ArrayList<String> getLongParaListSmell() { 

  return longParaListSmell; 

 } 

 

 private char[] getChars(String fileName) { 

  char[] result = null; 

  try { 

   File file = new File(fileName); 

   Scanner scanner = new Scanner(file); 

   String contents = ""; 

   while (scanner.hasNext()) { 

    String nextLine = scanner.nextLine(); 

    if (nextLine.contains("//")) { 

     int beginIndex = nextLine.indexOf("//", 0); 

     String comment = 

nextLine.substring(beginIndex); 

     nextLine = nextLine.replaceAll(comment, ""); 

     if (comment != null) 

      contents += nextLine; 

    } else { 

     contents += nextLine; 

    } 

   } 

   result = contents.toCharArray(); 

  } catch (Exception e) { 

   System.out.println(e); 

  } 

  return result; 

 } 

 

 private CompilationUnit parse(String fileName) { 

  ASTParser parser = ASTParser.newParser(AST.JLS3); 

  parser.setSource(getChars(fileName)); 

  CompilationUnit cu = (CompilationUnit) parser.createAST(null); 

  return cu; 

 } 

 

 private void countSwitchCase(CompilationUnit cu, String fileName) { 

  CountSwitchStatement visitor = new CountSwitchStatement(); 

  cu.accept(visitor); 

  smell = visitor.getMessage(); 

  fileName = fileName.substring(fileName.lastIndexOf("\\") + 1); 

  System.out.println("Test: " + fileName); 

  if (smell != null) { 

   switchCaseSmell.add("Class Name: " + fileName + "          

" 

     + smell); 

  } 

  CountIfStatement visitor1 = new CountIfStatement(); 

  cu.accept(visitor1); 

  ArrayList<Integer> ifCounter = visitor1.getCounter(); 

  if (ifCounter != null) { 
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   int i = 0; 

   while (i < ifCounter.size()) { 

    int temp = ifCounter.get(i); 

    if (ifCounter.get(i) > 2) { 

     switchCaseSmell 

       .add("Class Name: " 

         + fileName 

         + "          contains 

if else block of more than 3 cases."); 

    } 

    if (temp == 1) { 

     i = i + 1; 

    } else { 

     i = i + temp; 

    } 

   } 

  } 

 } 

 

 private void longParameterList(String fileName, CompilationUnit cu) { 

  ArrayList<String> smell = new ArrayList<String>(); 

  fileName = fileName.substring(fileName.lastIndexOf("\\") + 1); 

  LongParameterListMethodDeclaration visitor = new 

LongParameterListMethodDeclaration(); 

  cu.accept(visitor); 

  smell.addAll(visitor.getExpression()); 

  if (smell.size() != 0) { 

   for (String temp : smell) { 

    longParaListSmell.add("Class Name: " + fileName + "          

" 

      + temp); 

   } 

  } 

 } 

 

 @SuppressWarnings("unchecked") 

 private void dataClassBadSmell(String fileName, CompilationUnit cu) { 

  fileName = fileName.substring(fileName.lastIndexOf("\\") + 1); 

  HashMap<String, Integer> methodNameLength = new HashMap<String, 

Integer>(); 

 

  MethodDeclarationBlock visitor = new MethodDeclarationBlock(); 

  cu.accept(visitor); 

 

  methodNameLength = visitor.getMethodNameLength(); 

  Set set = methodNameLength.entrySet(); 

  Iterator i = set.iterator(); 

  while (i.hasNext()) { 

   Map.Entry me = (Map.Entry) i.next(); 

   if (Integer.parseInt(me.getValue().toString()) > 0) { 

    dataClassSmell.remove(fileName); 

   } 

  } 

 

  TypeDeclarationStatementTest visitor1 = new 

TypeDeclarationStatementTest(); 

  cu.accept(visitor1); 
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  if (visitor1.getInterfaceFlag()) 

   dataClassSmell.remove(fileName); 

 

  if (visitor1.getAbstractFlag()) 

   dataClassSmell.remove(fileName); 

 } 

 

 private void longMethodBadSmell(String fileName, CompilationUnit cu) { 

  LongMethodMethodDeclaration visitor = new 

LongMethodMethodDeclaration(); 

  cu.accept(visitor); 

  smell = visitor.getSmell(); 

  fileName = fileName.substring(fileName.lastIndexOf("\\") + 1); 

  if (smell != null) { 

   longMethodSmell.add("Class Name: " + fileName + "          

" 

     + smell); 

  } 

 } 

 

 private void middleMan(String fileName, CompilationUnit cu) { 

  MiddleManMethodDeclaration visitor = new 

MiddleManMethodDeclaration( 

    globalMethodNameList); 

  cu.accept(visitor); 

  smell = visitor.getSmell(); 

  fileName = fileName.substring(fileName.lastIndexOf("\\") + 1); 

  if (smell != null) { 

   middleManSmell 

     .add("Class Name: " + fileName + "          " + 

smell); 

  } 

 } 

 

 private void parseCode(CompilationUnit cu) { 

 

  FieldDeclarationLister visitor = new FieldDeclarationLister(); 

  cu.accept(visitor); 

  globalVariableList.addAll(visitor.getGlobalVariableList()); 

  CodeAnalyzerMethodDeclarationLister visitor1 = new 

CodeAnalyzerMethodDeclarationLister(); 

  cu.accept(visitor1); 

  globalMethodNameList.addAll(visitor1.getGlobalMethodNameList()); 

 } 

 

 public void main(ArrayList<String> files) { 

  DesignAnalyzer da = new DesignAnalyzer(); 

  CompilationUnit cu; 

  for (String fileName : files) { 

   cu = da.parse(fileName); 

   da.parseCode(cu); 

   fileName = fileName.substring(fileName.lastIndexOf("\\") + 

1); 

   dataClassSmell.add(fileName); 

  } 

  for (String fileName : files) { 
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   cu = da.parse(fileName); 

   da.countSwitchCase(cu, fileName); 

   da.dataClassBadSmell(fileName, cu); 

   da.longParameterList(fileName, cu); 

   da.longMethodBadSmell(fileName, cu); 

   da.middleMan(fileName, cu); 

  } 

 } 

} 

 

 

Package: - CodeAnalyzer 

Class: - CodeAnalyzerMethodDeclarationLister.java 

package CodeAnalyzer; 

 

import java.util.ArrayList; 

 

import org.eclipse.jdt.core.dom.ASTVisitor; 

import org.eclipse.jdt.core.dom.MethodDeclaration; 

 

public class CodeAnalyzerMethodDeclarationLister extends ASTVisitor { 

 

 public ArrayList<String> globalMethodNameList = new 

ArrayList<String>(); 

 

 public ArrayList<String> getGlobalMethodNameList() { 

  return globalMethodNameList; 

 } 

 

 public boolean visit(MethodDeclaration node) { 

  globalMethodNameList.add(node.getName().toString()); 

  return true; 

 } 

} 

 

Class: - FieldDeclarationLister.java 

package CodeAnalyzer; 

 

import java.util.ArrayList; 

 

import org.eclipse.jdt.core.dom.ASTVisitor; 

import org.eclipse.jdt.core.dom.FieldDeclaration; 

 

public class FieldDeclarationLister extends ASTVisitor { 

 

 private ArrayList<String> globalVariableList = new ArrayList<String>(); 

 

 public ArrayList<String> getGlobalVariableList() { 

  return globalVariableList; 

 } 
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 public boolean visit(FieldDeclaration node) { 

  VariableDeclarationFragmentLister visitor = new 

VariableDeclarationFragmentLister(); 

  node.accept(visitor); 

 

  globalVariableList.add(visitor.getGlobalVariable()); 

  return true; 

 } 

} 

 

Class: - VariableDeclarationFragmentLister.java 

package CodeAnalyzer; 

 

import org.eclipse.jdt.core.dom.ASTVisitor; 

import org.eclipse.jdt.core.dom.VariableDeclarationFragment; 

 

public class VariableDeclarationFragmentLister extends ASTVisitor { 

 

 String globalVariable; 

 

 public String getGlobalVariable() { 

  return globalVariable; 

 } 

 

 public boolean visit(VariableDeclarationFragment node) { 

  globalVariable = node.getName().toString(); 

  return true; 

 } 

 

} 

 

Package: - Refactor 

Class: - RefactorCode.java 

package Refactor; 

 

import java.awt.AWTException; 

import java.awt.Robot; 

import java.awt.event.KeyEvent; 

 

public class RefactorCode { 

 

 public void callExtractMethod() { 

  try { 

   Robot robot = new Robot(); 

   robot.delay(300); 

   robot.keyPress(KeyEvent.VK_ALT); 

   robot.keyPress(KeyEvent.VK_SHIFT); 

   robot.keyPress(KeyEvent.VK_M); 

   robot.keyRelease(KeyEvent.VK_ALT); 
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   robot.keyRelease(KeyEvent.VK_SHIFT); 

   robot.keyRelease(KeyEvent.VK_M); 

  } catch (AWTException e) { 

   e.printStackTrace(); 

  } 

 } 

 

 public void callMoveMethod() { 

  try { 

   Robot robot = new Robot(); 

   robot.delay(300); 

   robot.keyPress(KeyEvent.VK_ALT); 

   robot.keyPress(KeyEvent.VK_SHIFT); 

   robot.keyPress(KeyEvent.VK_V); 

   robot.keyRelease(KeyEvent.VK_ALT); 

   robot.keyRelease(KeyEvent.VK_SHIFT); 

   robot.keyRelease(KeyEvent.VK_V); 

  } catch (AWTException e) { 

   e.printStackTrace(); 

  } 

 } 

 

 public void swapScreen() { 

  Robot robot; 

  try { 

   robot = new Robot(); 

   robot.delay(300); 

   robot.keyPress(KeyEvent.VK_ALT); 

   robot.keyPress(KeyEvent.VK_TAB); 

   robot.delay(2000); 

   robot.keyRelease(KeyEvent.VK_ALT); 

   robot.keyRelease(KeyEvent.VK_TAB); 

  } catch (AWTException e) { 

   e.printStackTrace(); 

  } 

 

 } 

} 

 

Package: - DataClassBadSmell 

Class: - MethodDeclarationBlock.java 

package DataClassBadSmell; 

 

import java.util.HashMap; 

import org.eclipse.jdt.core.dom.ASTVisitor; 

import org.eclipse.jdt.core.dom.MethodDeclaration; 

 

public class MethodDeclarationBlock extends ASTVisitor { 

 private HashMap<String, Integer> methodNameLength = new HashMap<String, 

Integer>(); 

 private int counter = 1; 

 

 public HashMap<String, Integer> getMethodNameLength() { 

  return methodNameLength; 
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 } 

 

 public boolean visit(MethodDeclaration node) { 

  BlockLister visitor = new BlockLister(); 

  node.accept(visitor); 

  methodNameLength.put(counter + ":" + node.getName().toString(), 

visitor.getNumberOfStatements()); 

  counter++; 

  return true; 

 } 

 

} 

 

Class: - BlockLister.java 

package DataClassBadSmell; 

 

import org.eclipse.jdt.core.dom.ASTVisitor; 

import org.eclipse.jdt.core.dom.Block; 

 

public class BlockLister extends ASTVisitor{ 

 

 private int numberOfStatements; 

  

 public int getNumberOfStatements(){ 

  return numberOfStatements; 

 } 

  

 public boolean visit(Block node) { 

  numberOfStatements = node.statements().size(); 

   

  ReturnStatementLister visitor = new ReturnStatementLister(); 

  node.accept(visitor); 

  numberOfStatements = numberOfStatements - 

visitor.getReturnStatementCounter(); 

   

  VariableDeclerationStatementLister visitor1 = new 

VariableDeclerationStatementLister(); 

  node.accept(visitor1); 

  numberOfStatements = numberOfStatements - 

visitor1.getVariableDeclarationStatementCounter(); 

   

  ExpressionStatementLister visitor2 = new 

ExpressionStatementLister(); 

  node.accept(visitor2); 

  numberOfStatements = numberOfStatements - 

visitor2.getAssignmentListerCounter(); 

  

  return true; 

 } 

} 

 

Class: - ReturnStatementLister.java 
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package DataClassBadSmell; 

 

import org.eclipse.jdt.core.dom.ASTVisitor; 

import org.eclipse.jdt.core.dom.ReturnStatement; 

 

public class ReturnStatementLister extends ASTVisitor { 

 

 private int returnStatementCounter = 0; 

 

 public int getReturnStatementCounter() { 

  return returnStatementCounter; 

 } 

 

 public boolean visit(ReturnStatement node) { 

  returnStatementCounter = 1; 

  return true; 

 } 

} 

 

Class: - VariableDeclarationStatementLister.java 

package DataClassBadSmell; 

 

import org.eclipse.jdt.core.dom.ASTVisitor; 

import org.eclipse.jdt.core.dom.VariableDeclarationStatement; 

 

public class VariableDeclerationStatementLister extends ASTVisitor { 

 

 private int variableDeclarationStatementCounter = 0; 

 

 public int getVariableDeclarationStatementCounter() { 

  return variableDeclarationStatementCounter; 

 } 

 

 public boolean visit(VariableDeclarationStatement node) { 

  variableDeclarationStatementCounter++; 

  return true; 

 } 

 

} 

 

 

 

Class: - ExpressionStatementLister.java 

package DataClassBadSmell; 

 

import org.eclipse.jdt.core.dom.ASTVisitor; 

import org.eclipse.jdt.core.dom.ExpressionStatement; 
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public class ExpressionStatementLister extends ASTVisitor { 

 

 private int assignmentListerCounter = 0; 

 

 public int getAssignmentListerCounter() { 

  return assignmentListerCounter; 

 } 

 

 public boolean visit(ExpressionStatement node) { 

  AssignmentLister visitor = new AssignmentLister(); 

  node.accept(visitor); 

  assignmentListerCounter = visitor.getAssignmentListerCounter(); 

 

  return true; 

 } 

 

} 

 

Class: - AssignmentLister.java 

package DataClassBadSmell; 

 

import org.eclipse.jdt.core.dom.ASTVisitor; 

import org.eclipse.jdt.core.dom.Assignment; 

 

public class AssignmentLister extends ASTVisitor { 

 

 private int assignmentListerCounter = 0; 

 

 public int getAssignmentListerCounter() { 

  return assignmentListerCounter; 

 } 

 

 public boolean visit(Assignment node) { 

  assignmentListerCounter++; 

  return true; 

 } 

} 

 

Class: - TypeDeclarationStatement.java 

package DataClassBadSmell; 

 

import java.util.List; 

 

import org.eclipse.jdt.core.dom.ASTVisitor; 

import org.eclipse.jdt.core.dom.TypeDeclaration; 

 

public class TypeDeclarationStatement extends ASTVisitor { 

 

 private boolean interfaceFlag = false; 

 private boolean abstractFlag = false; 
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 public boolean getInterfaceFlag() { 

  return interfaceFlag; 

 } 

 

 public boolean getAbstractFlag() { 

  return abstractFlag; 

 } 

 

 public boolean visit(TypeDeclaration node) { 

  abstractFlag = false; 

  List temp = node.modifiers(); 

  for (int i = 0; i < temp.size(); i++) { 

   if (temp.get(i).toString().equalsIgnoreCase("abstract")) 

    abstractFlag = true; 

  } 

  if (node.isInterface()) 

   interfaceFlag = true; 

  return true; 

 } 

 

} 

 

Package: - LongMethodBadSmell 

Class: - LongMethodMethodDeclaration.java 

package LongMethodBadSmell; 

 

import org.eclipse.jdt.core.dom.ASTVisitor; 

import org.eclipse.jdt.core.dom.MethodDeclaration; 

 

public class LongMethodMethodDeclaration extends ASTVisitor { 

 

 private int numberOfStatements; 

 private String smell; 

 

 public String getSmell() { 

  return smell; 

 } 

 

 public boolean visit(MethodDeclaration node) { 

  String[] methodBody = null; 

 

  LongMethodBlock visitor = new LongMethodBlock(); 

  node.accept(visitor); 

  numberOfStatements = visitor.getNumberOfStatements(); 

  methodBody = node.toString().split("\n"); 

 

  numberOfStatements = methodBody.length - 2; 

 

  if (numberOfStatements > 15) { 

   smell = "Method Name: " + node.getName().toString() 

     + "          Number of Lines: " + 

numberOfStatements; 
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  } 

  return true; 

 } 

 

} 

 

Class: - LongMethodBlock.java 

package LongMethodBadSmell; 

 

import org.eclipse.jdt.core.dom.ASTVisitor; 

import org.eclipse.jdt.core.dom.Block; 

 

public class LongMethodBlock extends ASTVisitor { 

 

 private int numberOfStatements; 

 

 public int getNumberOfStatements() { 

  return numberOfStatements; 

 } 

 

 public boolean visit(Block node) { 

  LongMethodBlock visitor = new LongMethodBlock(); 

  int temp = visitor.getNumberOfStatements(); 

  numberOfStatements = node.statements().size() + temp; 

  return true; 

 } 

} 

 

Package: - LongParamterListBadSmell 

Class: - LongParameterListMethodDeclaration.java 

package LongParameterListBadSmell; 

 

import java.util.ArrayList; 

 

import org.eclipse.jdt.core.dom.ASTVisitor; 

import org.eclipse.jdt.core.dom.MethodDeclaration; 

 

public class LongParameterListMethodDeclaration extends ASTVisitor { 

 

 private ArrayList<String> longParaList = new ArrayList<String>(); 

 private int numberOfParameter = 0; 

 private String methodName = new String(); 

 private String methodBody; 

 private String expression; 

 

 public ArrayList<String> getExpression() { 

  return longParaList; 

 } 

 

 public boolean visit(MethodDeclaration node) { 
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  LongParameterListSingleVariable visitor = new 

LongParameterListSingleVariable(); 

  node.accept(visitor); 

  numberOfParameter = visitor.getcounter(); 

  methodName = node.getName().toString(); 

 

  longMethodParaCheck(node, visitor); 

 

  return true; 

 } 

 

 private void longMethodParaCheck(MethodDeclaration node, 

   LongParameterListSingleVariable visitor) { 

  if (numberOfParameter > 3) { 

   methodBody = node.toString(); 

   visitor.getParameters(); 

   String[] lines = methodBody.split("\n"); 

   for (String temp : lines) { 

    if (temp.contains(methodName) && 

!temp.startsWith("/") 

      && temp.contains("(") && 

temp.contains(")")) { 

     int startindex = temp.indexOf("(") + 1; 

     int endindex = temp.indexOf(")", startindex); 

     expression = temp.substring(startindex, 

endindex); 

     String[] te = expression.split(" "); 

     int a = te.length; 

     a = a / 2; 

     if (a > 2) { 

      expression = "Method Name: " + methodName 

        + "          Parameters: " + 

expression; 

      longParaList.add(expression); 

     } 

    } 

   } 

  } 

 } 

} 

 

Class: - LongParameterListSingleVariable.java 

package LongParameterListBadSmell; 

 

import java.util.ArrayList; 

 

import org.eclipse.jdt.core.dom.ASTVisitor; 

import org.eclipse.jdt.core.dom.SingleVariableDeclaration; 

 

public class LongParameterListSingleVariable extends ASTVisitor{ 

 

 private int counter = 0; 

 private ArrayList<String> parameters = new ArrayList<String>(); 
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 public boolean visit(SingleVariableDeclaration node) { 

  parameters.add(node.getName().toString()); 

  counter++;   

  return true; 

 } 

  

 public ArrayList<String> getParameters() { 

  return parameters; 

 } 

  

 public int getcounter() { 

  return counter; 

 } 

  

} 

 

Package: - MiddleManBadSmell 

Class: - MiddleManMethodDeclaration.java 

package MiddleManBadSmell; 

 

import java.util.ArrayList; 

 

import org.eclipse.jdt.core.dom.ASTVisitor; 

import org.eclipse.jdt.core.dom.MethodDeclaration; 

 

public class MiddleManMethodDeclaration extends ASTVisitor { 

 

 private ArrayList<String> _globalMethodNameList; 

 private boolean flag; 

 private String smell; 

 

 public MiddleManMethodDeclaration(ArrayList<String> 

globalMethodNameList) { 

  _globalMethodNameList = globalMethodNameList; 

 } 

 

 public String getSmell() { 

  return smell; 

 } 

 

 public boolean visit(MethodDeclaration node) { 

  MiddleManBlock visitor = new 

MiddleManBlock(_globalMethodNameList); 

  node.accept(visitor); 

  flag = visitor.getFlag(); 

  if (flag == true) { 

   smell = "Method Name: " + node.getName().toString(); 

   // System.out.println(node.getName().toString() + 

   // " method consistes of a Middle Chain Bad Smell"); 

  } 

  return true; 
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 } 

 

} 

 

Class: - MiddleManBlock.java 

package MiddleManBadSmell; 

 

import java.util.ArrayList; 

 

import org.eclipse.jdt.core.dom.ASTVisitor; 

import org.eclipse.jdt.core.dom.Block; 

 

public class MiddleManBlock extends ASTVisitor { 

 

 private ArrayList<String> _globalMethodNameList; 

 private boolean flag; 

 

 public MiddleManBlock(ArrayList<String> globalMethodNameList) { 

  _globalMethodNameList = globalMethodNameList; 

 } 

 

 public boolean getFlag() { 

  return flag; 

 } 

 

 public boolean visit(Block node) { 

  int numberOfStatements = node.statements().size(); 

 

  if (numberOfStatements == 1) { 

   MiddleManReturnStatement visitor = new 

MiddleManReturnStatement( 

     _globalMethodNameList); 

   node.accept(visitor); 

   flag = visitor.getFlag(); 

  } 

  return true; 

 } 

 

} 

 

 

Class: - MiddleManReturnStatement.java 

package MiddleManBadSmell; 

 

import java.util.ArrayList; 

 

import org.eclipse.jdt.core.dom.ASTVisitor; 

import org.eclipse.jdt.core.dom.ReturnStatement; 

 

public class MiddleManReturnStatement extends ASTVisitor { 
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 private boolean flag; 

 private ArrayList<String> _globalMethodNameList; 

 

 public MiddleManReturnStatement(ArrayList<String> globalMethodNameList) 

{ 

  _globalMethodNameList = globalMethodNameList; 

 } 

 

 public boolean getFlag() { 

  return flag; 

 } 

 

 public boolean visit(ReturnStatement node) { 

  MiddleManMethodInvocation visitor = new 

MiddleManMethodInvocation( 

    _globalMethodNameList); 

  node.accept(visitor); 

  flag = visitor.getFlag(); 

  return true; 

 } 

 

} 

 

Class: - MiddleManMethodInvocation.java 

package MiddleManBadSmell; 

 

import java.util.ArrayList; 

 

import org.eclipse.jdt.core.dom.ASTVisitor; 

import org.eclipse.jdt.core.dom.MethodInvocation; 

 

public class MiddleManMethodInvocation extends ASTVisitor { 

 

 private boolean flag = false; 

 private ArrayList<String> _globalMethodNameList; 

 

 public MiddleManMethodInvocation(ArrayList<String> 

globalMethodNameList) { 

  _globalMethodNameList = globalMethodNameList; 

 } 

 

 public boolean getFlag() { 

  return flag; 

 } 

 

 public boolean visit(MethodInvocation node) { 

  if (_globalMethodNameList.contains(node.getName().toString())) { 

   flag = true; 

  } 

  return true; 

 } 

 

} 
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Package: - SwitchCaseBadSmell 

Class: - CountSwitchStatement.java 

package SwitchCaseBadSmell; 

 

import org.eclipse.jdt.core.dom.ASTVisitor; 

import org.eclipse.jdt.core.dom.SwitchStatement; 

 

public class CountSwitchStatement extends ASTVisitor { 

 

 private String message = null; 

 

 public boolean visit(SwitchStatement node) { 

  SimpleNameLister visitor1 = new SimpleNameLister(); 

  node.accept(visitor1); 

  CountSwitchCases visitor = new CountSwitchCases(); 

  node.accept(visitor); 

  System.out.println("Test: " + visitor.getLoopCount()); 

  if (visitor.getLoopCount() > 3) { 

   message = "Swicth Case Name: " + visitor1.getSimpleName() 

     + "          " + "# of switch cases: " 

     + visitor.getLoopCount(); 

  } 

 

  return true; 

 } 

 

 public String getMessage() { 

  return message; 

 } 

 

} 

 

Class: - CountSwitchCases.java 

package SwitchCaseBadSmell; 

 

import org.eclipse.jdt.core.dom.ASTVisitor; 

import org.eclipse.jdt.core.dom.SwitchCase; 

 

public class CountSwitchCases extends ASTVisitor { 

 

 private int switchCases = 0; 

 

 public int getLoopCount() { 

  return switchCases; 

 } 

 

 public boolean visit(SwitchCase node) { 

  switchCases++; 

  return true; 
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 } 

 

} 

Class: - CountIfStatement.java 

package SwitchCaseBadSmell; 

 

import java.util.ArrayList; 

 

import org.eclipse.jdt.core.dom.ASTVisitor; 

import org.eclipse.jdt.core.dom.IfStatement; 

 

public class CountIfStatement extends ASTVisitor { 

 

 private ArrayList<Integer> counterArray = new ArrayList<Integer>(); 

 private int counter = 1; 

 

 public boolean visit(IfStatement node) { 

  if (node.getElseStatement() != null) { 

   CountElseStatement visitor = new CountElseStatement(); 

   visitor.setCounter(); 

   node.accept(visitor); 

   counter = visitor.getCounter(); 

  } 

  counterArray.add(counter); 

  counter = 1; 

  return true; 

 } 

 

 public ArrayList<Integer> getCounter() { 

  return counterArray; 

 } 

} 

 

Class: - CountElseStatement.java 

package SwitchCaseBadSmell; 

 

import org.eclipse.jdt.core.dom.ASTVisitor; 

import org.eclipse.jdt.core.dom.IfStatement; 

 

public class CountElseStatement extends ASTVisitor { 

 

 int counter; 

 

 public boolean visit(IfStatement node) { 

  counter++; 

  return true; 

 } 

 

 public int getCounter() { 

  return counter; 

 } 



116 

 

 

 public void setCounter() { 

  counter = 0; 

 } 

 

} 

 

Class: - SimpleNameLister.java 

package SwitchCaseBadSmell; 

 

import java.util.ArrayList; 

 

import org.eclipse.jdt.core.dom.ASTVisitor; 

import org.eclipse.jdt.core.dom.SimpleName; 

 

public class SimpleNameLister extends ASTVisitor { 

 

 ArrayList<String> name = new ArrayList<String>(); 

 

 public String getSimpleName() { 

  return name.get(0); 

 } 

 

 public boolean visit(SimpleName node) { 

  name.add(node.getIdentifier().toString()); 

  return true; 

 } 

} 
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