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ABSTRACT 

 

 

Backward Sequential Feature Elimination and Joining Algorithms 

In Machine Learning 

 

By Sanya Valsan 

 

 The Naïve Bayes Model is a special case of Bayesian networks with strong 

independence assumptions. It is typically used for classification problems. The Naïve 

Bayes model is trained using the given data to estimate the parameters necessary for 

classification. This model of classification is very popular since it is simple yet efficient 

and accurate. 

 

While the Naïve Bayes model is considered accurate on most of the problem instances, 

there is a set of problems for which the Naïve Bayes does not give accurate results 

when compared to other classifiers such as the decision tree algorithms. One reason for 

it could be the strong independence assumption of the Naïve Bayes model. This project 

aims at searching for dependencies between the features and studying the 

consequences of applying these dependencies in classifying instances. We propose 

two different algorithms, the Backward Sequential Joining and the Backward Sequential 

Elimination that can be applied in order to improve the accuracy of the Naïve Bayes 

model. We then compare the accuracies of the different algorithms and derive 

conclusion based on the results. 
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CHAPTER 1 

Introduction 

 

1.1 Motivation 

 In the real world, in order to perform tasks we need to reason by obtaining 

information and draw conclusions based on the information collected. Consider a doctor 

who takes information from a patient in order to diagnose a disease the patient may be 

suffering from. He may take information such as the patient’s symptoms, test results, 

personal characteristics such as the height, weight and so on. We can develop a 

computer program for this particular domain and train the system to make predictions 

based on the patient’s answers. However, by doing so, the flexibility of the system is 

reduced. If there is a case where we need to change the questions or the domain, then 

the answers will not be found in the system that we train. In other words, the system 

becomes too rigid. Hence, we will first have to bring about major changes in the system 

itself.  

 A different approach to solving the above problem is to use an approach called 

declarative representation. We can develop a model which understands how the system 

works. This model can then be applied to answer questions pertaining to various 

categories or domains. It makes the system more flexible. This model can be developed 

using various algorithms, declarative representation being one of them. As Daphne 

Koller, a professor at Stanford University claims, “The key property of a declarative 

representation is the separation of knowledge and reasoning. The representation has its 

own clear semantics, separate from the algorithms that one can apply to it. Thus, we 
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can develop a general set of algorithms that apply to any model within a broad class, 

whether in the domain of medical diagnosis or speech recognition. Conversely, we can 

improve our model for a specific application domain without having to modify our 

reasoning algorithms constantly.”[1] In this project, we focus on models which hold a 

certain degree of uncertainty. We study and implement the methods by which we can 

improve the accuracy of the probabilistic models.   

Uncertainty arises due to the limitations in one’s potential to understand and decipher 

the true state of any given system. These limitations could be due to the partial 

information that one has access to, noisy observations and so on. Thus, in order to 

draw substantial conclusions, one needs to reason not only the possibilities but also the 

probabilities.  

 

1.2 Probabilistic Models 

A model is a declarative representation of how we understand the real world. It 

deals with how different objects interact with each other. These models represent 

complex systems. The complex systems are characterized by the presence of different 

features, which may or may not be interrelated. These features are called random 

variables which have values depending on how the system has been described. For 

example, a person believed to have tuberculosis will have cough as one of his 

symptoms. Cough is thus a random variable with two values present or absent. In order 

to reason these using probabilistic principles, one needs to construct a joint distribution 

over a set of random variables. By doing so, one will be able to answer an extensive 

range of intriguing questions. 
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1.3 Probabilistic Graphical Models 

A probabilistic graphical model provides a mechanism for exploiting the structure in 

complex distributions to describe them in a compact way using a graph which 

represents the conditional dependence structure between random variables. It is a 

framework which deals with the uncertainty involved with modelling applications which 

have a large number of parameters or variables. Figure 1 shows a word cloud 

representing the most commonly used terms with respect to Probabilistic Graphical 

models.  

 

 

 

Figure 1: Word cloud representing Probabilistic Graphical Models [2] 

 

Thus, Probabilistic graphical models are a classic schema which integrates 

probabilities and independence constraints to depict complex, real world outcomes. 

They can help us predict systems and draw inferences based on the information 

provided. They can be described as a generalized form of many known models such as 

the Hidden Markov models. 
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1.4 Overview 

The schema of probabilistic graphical models is quite vast, and involves a variety 

of models. In this report, we study the classification algorithms based on Bayesian 

networks. 

In Chapter 2, we describe the important concepts related to probability theory. In 

Chapter 3, we present background information about the Bayesian network 

representation which is based on directed graphs. Chapter 4 illustrates the Naïve Bayes 

Model and its application in classification problems. In Chapter 5, we compute the 

accuracies for the Naïve Bayes classifier for different databases and propose algorithms 

which search for dependencies amongst the attributes in order to improve the Naïve 

Bayes accuracy. Chapter 6 covers the results for the three algorithms implemented in 

this project namely, Naïve Bayes classifier, Backward Sequential Elimination and 

Backward Sequential Joining and draws conclusions.   
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CHAPTER 2 

Foundations 

 

In this chapter, we will learn some important concepts pertaining to the probability 

theory. 

2.1 Probability 

Probability is a measure of the likelihood that an event occurs. It is defined as a 

ratio of number of favourable outcomes to the total number of possible outcomes in an 

experiment.  

Example 1.1: If you flip a coin, the probability of the result being a ‘head’ is 
 

 
, since the 

coin has two sides. If we roll a 6-side die, the probability of one occurring is 
 

 
.  

Each of the results in the above example can be described as an event. We measure 

the probability of the event occurring which is also known as Prior Probability.  

2.2 Probability Distributions 

A probability distribution is a mapping of all the possible values of a random 

variable to their corresponding probabilities for a given sample space. It can be written 

as  (   )     ( ). [3] 

2.3 Conditional Probability 

Conditional Probability is the probability that an event will occur given that 

another event has already occurred. In other words, consider that we have two events   

and  . Conditional Probability is the probability that the event   occurs given the 
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information that the event   has occurred. This can be written as  (   ) which denotes 

probability of   given  . This is also known as Posterior Probability.[4] 

When two events are not independent, the probability of both occurring is given by, 

 

Hence,  

 (   )  
 (       )

 ( )
 

 

Eq. 2.2 

However, when the two events are independent, the probability of   does not depend 

on event   occurring. In this case,  

  (   )   ( ) Eq. 2.3 

 

Example 2.1: Let us take an example of a card game, wherein a player has to draw out 

two cards belonging to the same type if he wants to win the game. A card stack has a 

total of 52 cards. There are 13 cards of the same type and there are four types of cards 

in all. Suppose the player first picks out a spade. Now, there are 12 spades remaining in 

the stack of 51 cards. The player would like the next card he picks to be a spade.  

We can write the conditional probability as: 

 (                                             )  
  

  
 

This can be interpreted as the probability that the second card drawn is a spade given 

that the first card drawn was a spade. 

 (       )   ( )  (   ) Eq. 2.1 
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2.3.1 Conditional Probability for Multiple Events  

Conditional Probability can also be expressed as a combination of multiple 

events. Let           be mutually exclusive and exhaustive events. Then, for any 

other event B,[5] 

 ( )   (    )   (  )   (    )   (  )        (    )      

  

 ∑  (    ) (  )   

 

 

Eq. 2.4 

Thus, 

 (    )   
 (    ) (  )

∑  (    ) (  ) 
  

 

 

Eq. 2.5 

2.4 Random Variables  

A random variable is a variable whose possible values are numerical outcomes of a 

random phenomenon.[6] 

Example 2.2 [7]: Consider a student who is intelligent and his intelligence is described 

by a variable ‘I’ which can have values high and low. The student is taking a class. The 

difficulty of the class can be represented by a variable ‘D’ which can be difficult or not 

difficult. The third variable is the grade ‘G’ which can have three values A, B and C. The 

student’s SAT scores is represented by ‘S’ and can have values as either low or high. 

Also, the letter of recommendation represented by L can have values good or not good. 

Thus, in the student example I,D,G,S,L are random variables (see Figure 2). 
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Figure 2: The Student Example [7] 

Random variables can be discrete or continuous. 

Discrete Random Variables 

A discrete random variable is a variable which takes only a finite number of 

distinct values[6].For example, in Figure 2, I (Intelligence) can take only two distinct 

values low and high. Similarly, G can take only three values A,B,C. Thus, these 

variables are discrete random variables.  

Continuous Random Variables  

A continuous random variable is a variable which takes an infinite number of 

possible values[6]. It is defined over an interval or range of values. For example, the 

weights of a group of people can be continuous values ranging from 60 to 100 pounds.  

2.5 Marginal and Joint distribution 

Marginal distribution is the distribution over all the events that can be described 

in terms of the random variable. For example, in Figure 2, P(I=high) and P(I=low) are 

specific events over which the marginal distribution can be computed for the variable 

intelligence.  
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One may also be interested in the values of several random variables. For example, 

one might be interested in the event “Intelligence = low” and “Grade=A”. In this case, we 

need to compute the joint distribution over these two random variables. Thus, the joint 

distribution over a set             is represented by  (       ) and is a distribution 

that assigns probabilities to events that can be described in terms of the random 

variables        . 

In the next chapter, we describe the Bayesian network representation (a probabilistic 

graphical model) which is based on directed acyclic graphs.   
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CHAPTER 3 

Background 

 

3.1 Representation 

Probabilistic Graphical Models can be represented in different ways. Two popular 

ways of representing them is by using Bayesian Networks and Markov Models. 

Bayesian networks are a graph-based representation of a set of random variables and 

their conditional dependencies. It is very useful in a variety of applications such as 

bioinformatics, gene expression, information retrieval, semantic search, image 

processing and many other applications. 

3.2 Bayesian Network Fundamentals 

A Bayesian network is represented by a directed acyclic graph (DAG). Acyclic 

means that it has no cycles, i.e. one cannot reverse the edges and get back to where 

one started. It is abbreviated as a DAG and denoted by the letter R in this report. This 

graph R can be viewed either as a data structure that represents the joint distributions 

or a representation for a set of conditional independence assumptions. The student 

example, in Figure 2, is a Bayesian network represented as a directed graph where the 

nodes represent the random variables and the edges represent direct influence 

between the variables.  

In the student example, in Figure 2, we have a student who’s taking a class for a grade. 

If the student is intelligent, then the grade of the student will be good. Therefore, the 

letter of recommendation will also be good. However, if the student is not intelligent then 

the student will not receive a good grade. Hence, the letter of recommendation will not 

be good. The grade of the student also depends on the difficulty of the class. If the class 
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was difficult the student will receive a low grade. However, if the class is easy the 

student will receive a good grade and hence a good letter of recommendation. 

 

Thus, the course difficulty (D) and the intelligence (I) of the student are independent 

variables and the student’s grade (G) depends on these two factors. The student’s SAT 

score(S) depends only on his intelligence and the letter of recommendation (L) depends 

on the student’s grade in the class. The student example represents a joint probability 

distribution via the chain rule for Bayesian networks.[8]  

The rule is written as:  

 

 (         )   ( )  ( )  (     )  (   )  (   ) Eq. 3.1 

   

In the Bayesian network for the student example in Figure 2, the nodes of the directed 

acyclic graph represents random variables from    to   . For each node in the graph, 

  , we have a Conditional Probability Distribution (CPD) that denotes the dependence of 

   on its parents in the graph R. This would be the probability of G given I and D written 

as P (G|I,D). Here,    would be G and its parents would be I and D.  

 

Definition of Bayes Chain Rule: 

Let R be a Bayesian Network graph over the variables    ,…,  ,.The distribution P over 

the same space factorizes according to R if P can be expressed as a product of the 

conditional probabilities.[8] 

 (      )   ∑ (     (  ))

 

   

 Eq. 3.2 
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The equation is called as chain rule for Bayesian networks. The individual factors 

 (     (  )) are called conditional probability distributions (CPDs). Here,   (  ) 

represents the parent(s) of the variable    in the network. 

For developing a Bayesian network, initially we construct a DAG and then the 

CPDs for each random variable are calculated given its parents in the DAG. If the 

product of these CPDs gives the joint distribution, then the graph is defined to be a 

Bayesian network.  

3.3 Reasoning Patterns 

Now that we have defined Bayesian networks, we study some of the reasoning 

patterns that allow models to perform. When we condition on certain variables, it affects 

the joint probability distributions. Some reasoning patterns are observed based on how 

it affects the probabilities. 

3.3.1 Causal Reasoning 

Consider the example shown in Figure 3(a). If intelligence is low, the probability 

of getting a good letter of recommendation goes low. But if intelligence is low and the 

class is also difficult, the grade and hence the probability of getting a good letter of 

recommendation increases. Cases such as these, where there is a top to bottom 

influence of various factors, illustrate causal reasoning. 
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Figure 3(a): Causal Reasoning Example [9] 

3.3.2 Evidential Reasoning 

Consider the example shown in Figure 3(b). If the student gets a low grade, the 

probability of the class being difficult increases. Also, the probability of the student being 

intelligent becomes low if he gets a low grade. Cases such as these, where there is a 

bottom up influence of various factors, illustrate evidential reasoning. 

 

 

Figure 3(b): Evidential Reasoning Example [9] 
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3.3.3 Intercausal Reasoning 

This reasoning depends on both the parent and child. As shown in Figure 3(c), 

given the condition that the grade is low, the probability of the student being intelligent 

decreases. However, given the condition that the grade is low and the class is difficult, 

the probability of the student being intelligent increases. 

  

 

Figure 3(c): Intercausal Reasoning [9] 

 

3.4 Independencies in Bayesian Networks 

Bayesian networks have independence assumptions which state that the variables are 

independent of each other. Also, there is a relationship between factorization of 

distribution as a product of factors and the independence assumption. If we have, 

 (   ) as the product of  ( ) and  ( ), then  ( ) and  ( ) are independent of each 

other.  

In the next chapter, we study the Naïve Bayes model in detail.  
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CHAPTER 4 

The Naïve Bayes Model 

 

4.1 Introduction 

The Naïve Bayes model is a special case of the Bayesian networks which holds 

strong independence assumption. Such naïve assumption not only reduces the 

complexity of the model but surprisingly gives accurate results. It is typically used for 

classification where there exists a set of features for a set of instances and we have to 

determine to which class a given instance belongs.  

Bayes’ theorem in probability statistics is a theorem on the probabilities of events   and 

 ,  ( ) and  ( ) and the conditional probabilities of  (   ) and  (   ).  

In Bayesian interpretation, probability measures the degree of belief. Therefore, for 

proposition A and evidence B, 

 (   )   
 (   ) ( )

 ( )
 

Eq. 4.1 

 

Where,  ( )   – the prior probability, 

   (   ) – the posterior probability, 

and the quotient 
 (   )

 ( )
 is the dependency of A on B. 
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4.2 Naïve Bayes Classifier 

The Naïve Bayes classifier is a probabilistic classifier based on applying Bayes 

theorem. It can predict class membership probabilities i.e. a Bayesian classifier predicts 

the probability that a given sample in the data belongs to a particular class. Given a 

sample  , the classifier will predict if   belongs to the class having highest posterior 

probability conditioned on  . In general, the working of the Naïve Bayes classifier is as 

follows: 

Let T be a training set of samples, each having the class labels             A sample   

is represented as a set of ‘n’ normally valued attributes {          } having values   , 

   …    resprectively. A sample   is predicted to belong to class   if and only if,[10] 

 (    )   (  | )               Eq. 4.2 

The class    for which  (    ) is maximized is called the maximum posterior 

hypothesis. 

Now we have, by Bayes theorem, as seen in Equation 4.1 [10]  

 (    )  
 (    )  (  )

 ( )
  

Eq. 4.3 

 

As  ( ) is the same for all classes, only  (    ) (  ) needs to be maximized.  

 (    ) can be computed from the data. 
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 (  ) the prior probability can be calculated by [10],  

 (  )  
    (    )

   
 

Eq. 4.4  

The computation time of  (    ) increases in cases where the given data set has a 

large number of attributes. So in order to reduce the computation time, the naïve 

assumption that the values of the attributes are conditionally independent of each other 

is made. Hence, the classifier gets the name Naïve Bayes classifier.  

With the conditional independence assumption,[10] 

 (    )   ∏ (      )

 

   

 Eq. 4.5 

 

 (          ),  (          ) …  (          ) can be estimated from the training set.  

4.3 Types of Attribute Data 

4.3.1 Categorical Attributes 

If the data in the sample is categorical, then  (     ) is the number of instances of class 

   in the training set having the value    for attribute    divided by number of times the 

class     appears in the training set.  

4.3.2 Continuous Attributes 

There are two ways to deal with continuous attributes: 

1) The data are divided into their categorical counterparts. This process is known as 

discretization or binning. Binning improves accuracy of the predictive models by 

reducing the noise or non-linearity. They are of two types [11]. 
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a) Unsupervised  

It converts continuous data into its categorical counterparts by either Equal Width 

or Equal Frequency. They do not depend on class information. 

Equal Width Binning 

The algorithm divides the data into k intervals of equal size. The width of the 

intervals is: 

 

 ( )  
                                              

 
 

 

Eq. 4.6 

 

The interval’s boundaries now become, 

      ( )     (     ( ))        ((   )     ( ))   

We put the continuous data value for each attribute according to the interval they belong 

to.  

Example 4.1: Consider we have data containing ages of different individuals. In order to 

discretize it using equal width binning, we compute the following.  

Data : 0,5,6,10,17,19,23,27,30,31,32,35,39 

To classify it into five different intervals, i.e. k=5 

Interval 1: [0, 7) 

Interval 2: [8, 15) 

Interval 3: [16, 23) 
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Interval 4: [24, 31) 

Interval 5: [32, 39) 

Equal Frequency Binning 

The algorithm divides the data into k groups which have approximately the same 

count of values. Then each value of the attribute is observed to see which group it 

belongs to and is placed accordingly. 

Example 4.2: Using the data in example 4.1, we perform computations using the equal 

frequency binning. 

Data: 0,5,6,10,17,19,23,27,30,31,32,35,39,39 

Group 1: [0, 10) 

Group 2: [11, 20) 

Group 3: [21, 30) 

Group 4: [31, 40) 

b) Supervised:  

Supervised Binning makes use of the class information when selecting 

discretization cut points. Entropy based binning is an example of supervised binning.  

2) The other method to calculate the probability distribution for continuous variables is to 

calculate the normal distributions for numerical variables. The probability density 

function for normal distribution is defined by two parameters namely, mean and 

standard deviation.[11] 
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Mean ( ) [11] 

  
 

 
 ∑   

 

   
 Eq. 4.7 

  

Standard Deviation ( ) [11] 

  [
 

   
 ∑ (    ) 

 

   
]
   

 Eq. 4.8 

  

Normal Distribution ( ( )) [11] 

 ( )   
 

√   
 
 

(    )
 

    Eq. 4.9 

  

Next, we consider an example to calculate the probability distributions using probability 

density functions.[11] 

Example 4.3: Suppose we have the weather data (humidity) which will help us to decide 

if a particular day, is a good day to play tennis. The data is shown in Table 1[11]. We 

calculate the probabilities for Play Tennis = Yes and Play Tennis = No. 
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Table 1: Example showing µ and   for given values of humidity [11] 

 

 

Play  

Tennis 

Class Humidity Data (%) Mean 
Standard 

Deviation 

Yes 86, 96, 80, 65, 70, 80, 90, 75 79.1 10.2 

No 85, 90, 70, 95, 91 86.2 9.7 

 

Using the mean and standard deviation, we can calculate the normal distribution for 

both values for playing tennis. 

P (humidity = 74 | play = yes) = 0.0344 

P (humidity = 74 | play = no) = 0.0187 

Thus, it can be concluded from the probabilities that it is indeed a good day to play 

tennis.  

4.4 Using the Naïve Bayes Classifier 

Next, we study an example to predict the class of a given instance with the Naïve Bayes 

approach.[4]  

Example 4.4: The iHealth Database 

There is a company called iHealth which sells two models of wearable exercise 

monitors. The two models are called i100 and i500. One has to build a recommendation 

system which will help them sell the right model to the customer. For this, the customer 

first fills out a questionnaire. It consists of questions which relate to the attributes of the 

model. An example of the questionnaire results is shown in Table 2[4]. Here, the model 
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type is a class (in this example i500 and i100 are the two classes) and Main Interest, 

Current Exercise, Motivation, Comfort level are the attributes for this training set. 

Table 2: Training data from the iHealth database [4] 

Main Interest 
Current 

Exercise Level 
How motivated 

Comfort with 

tech. devices 
Model # 

Both Sedentary Moderate Yes i100 

Both Sedentary Moderate No i100 

Health Sedentary Moderate Yes i500 

Appearance Active Moderate Yes i500 

Appearance Moderate Aggressive Yes i500 

Appearance Moderate Aggressive No i100 

Health Moderate Aggressive No i500 

Both Active Moderate Yes i100 

Both Moderate Aggressive Yes i500 

Appearance Active Aggressive Yes i500 

Both Active Aggressive No i500 

Health Active Moderate No i500 

Health Sedentary Aggressive Yes i500 

Appearance Active Moderate No i100 

Health Sedentary Moderate No i100 

 

Now consider a person’s answers has the following attributes 
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Instance 

Main Interest: health 

Current exercise level: moderate 

Motivation: moderate 

Comfortable with technological devices: yes 

Classification 

Using Naïve Bayes, one has to calculate the probabilities, 

P (i100| health, moderate, moderate, yes)  and  

P (i500|health, moderate, moderate, yes).  

The class which has a higher probability will be the most suitable model for the 

customer.  

For this, one has to compute the probabilities for each of the attribute values for a given 

class. 

Table 3: Probability of the attribute ‘Main Interest’ for the given class 

Main Interest i500 i100 

Both 1/6 1/3 

Health 2/6 2/3 

Appearance 3/6 0/3 
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Table 4: Probability of the attribute ‘Exercise Level’ for the given class 

Exercise Level i500 i100 

Sedentary 2/9 3/6 

Moderate 3/9 1/6 

Active 4/9 2/6 

 

Table 5: Probability of the attribute ‘Motivation’ for the given class 

Motivation i500 i100 

Moderate 3/9 5/6 

Aggressive 6/9 1/6 

 

Table 6: Probability of the attribute ‘Comfort Level’ for the given class 

Comfort Level i500 i100 

Yes 6/9 2/6 

No 3/9 4/6 

 

Now, the probabilities for each class for the given instance are calculated: 

P (i500|health, moderate, moderate, yes) 

 = (4/9 ˣ 3/9 ˣ 3/9 ˣ 6/9) ˣ 9/15 = 0.01975 

P (i100| health, moderate, moderate, yes)  

 = (1/6 ˣ 1/6 ˣ 5/6 ˣ 2/6) ˣ 6/15 = 0.00309 



25 
 

If the probabilities for the two classes are compared, it can be seen that i500 has a 

higher probability. Hence, the customer should be offered the model i500 since it will be 

best suited for him. 

4.5 Laplacian Correction 

When we calculate the probabilities, there can be cases where we get a zero 

probability. This happens when none of the samples of that class has a given attribute 

value. Consider there was a class   , and   had an attribute value   , which is not seen 

in any of the instances of class    for that attribute. Thus, using Equation 4.5, 

  (     )   , 

and when this is multiplied with the probabilities of all other attributes we still get zero 

probability. In such cases, the Laplacian correction is used. 

Assume that the training set is large enough that even if one is added to each count it 

would make a very negligible difference in the estimated probabilities, but at the same 

time it will help to overcome the zero probability value problems. If there is p counts to 

which one is added each, then p counts should be added to the corresponding 

denominator used in the probability calculation.  

Consider the following example. 

Example 4.5: In Example 4.4, consider that the dataset contained ten samples, and 

there are zero instances with interest equal to moderate, five instances with interest 

equal to appearance and five instances with interest equal to both. The probabilities of 

these events, without Laplacian correction, are 0, 0.5(5/10) and 0.5(5/10) respectively. 

Now, Laplacian correction is used where it is assumed that there is one more sample 
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for each interest-value pair. In this way, the following corrected probabilities are 

obtained: 

 1/11 = 0.091   6/11=0.545   6/11= 0.545    

The corrected probability estimates are close to their uncorrected counterparts, yet the 

zero probability value is avoided. 

4.6 Popularity 

The Naïve Bayes classifier is very popular because it involves very basic mathematical 

calculations. Classifying becomes easy and efficient. Bayes classifier has worked very 

well in many complex real-world situations. On many problems, the accuracy of Naïve 

Bayes is equal to or higher than many machine learning algorithms.  

In the next chapter, we discuss the methods of finding dependencies between the 

attributes of the Naïve Bayes classifier. 
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CHAPTER 5 

Searching for Dependencies 

 

The Naïve Bayes classifier has strong independence assumptions. It assumes that the 

presence or absence of a feature is completely independent of the presence or absence 

of any other feature. 

5.1 Conditional Independence 

Consider a general probability distribution  (     ) of two variables           [12] 

Using Bayes rule as seen in Equation 4.3, 

 (     )   (     )  (  ) Eq. 5.1 

 

Now, consider there is another class variable ‘c’, which can be written as,  

 (         )   (       )  (    ) Eq. 5.2 

 

If the information provided about c is sufficient to determine how    will be distributed, 

then there is no need to know the information about   .  

Thus Equation 5.2 can be re-written as, 

 (       )   (    ) Eq. 5.3 
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To give a generalized example of conditional independence, consider the following 

example,[12] 

Example 5.1: 

P(cloudy,windy|storm) = P(cloudy|windy,storm) P(windy|storm) 

Now, if we consider  

P(cloudy|windy,storm) = P(cloudy|storm) 

the distribution becomes, 

P(cloudy,windy|storm) = P(cloudy|storm)P(windy|storm) 

5.2 The Problem 

Michael Pazzani, a professor at University of California, Irvine conducted research on 

the accuracies given by different datasets using the Naïve Bayes classifier.[13] He 

tested the accuracy of the Naïve Bayes classifier for different datasets from the UCI 

repository. He observed that on many problems the accuracy of the Naïve Bayes 

classifier is equal to or greater than that of more sophisticated machine learning 

algorithms. He compared the results with another simple decision tree algorithm called 

ID3. On each problem, both algorithms were run 24 times on the same training set and 

tested on the same disjoint test sets. The accuracy was determined by calculating the 

proportion of agreements between predicted and actual classes. He found that on most 

of the problems, the Naïve Bayes classifier is more accurate than ID3. However, there 

is a set of problems for which the accuracy of Naïve Bayes classifier was significantly 

less accurate than the decision tree algorithm using the paired two-tailed 
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t-test. 

According to Pazzani, one possible explanation for the accuracies to be significantly 

less for certain datasets is that the independence assumption of the Naïve Bayes does 

not hold in these cases. Recall that the independence assumption states that the 

attributes of the sample are independent of each other within a class.  

The aim of this project is to search for dependencies among pairs of attributes and try to 

improve the accuracies of the databases in consideration. Datasets and databases will 

be used interchangeably in this report. In order to look for dependencies, feature 

selection algorithms can be applied to the classifier. A feature selection algorithm helps 

in determining new subsets of features along with evaluation measures which calculates 

the scores for the different feature subsets. The wrapper method is one category of the 

feature selection algorithm. Wrapper methods are predictive models which calculate 

and evaluate scores for different feature subsets. Each subset initially trains the model 

and then uses a test set to evaluate it. Determining the accuracy from the test set gives 

a score for that particular feature subset. These wrapper methods employ different 

operations which can be used to perform a feature selection[14]. Figure 4 shows the 

wrapper approach for the feature subset selection. In this figure, the induction algorithm 

is considered as a black box. The training set and test set are provided to the induction 

algorithm with different features removed from the dataset. The feature set with the 

highest evaluation is chosen to be run by the induction algorithm and the final accuracy 

is estimated. 
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 Figure 4: A wrapper approach to feature subset selection [15] 

Pazzani proposed two operations in order to carry out feature subset selections namely, 

Joining of Attributes and Elimination of Attributes, which will be discussed in detail in the 

next section. 

5.3 Joining of Attributes 

Joining is an operation that creates a new compound attribute which replaces the 

original two attributes that were used for joining. The values of the new attributes are 

the combinations of the values of the original attributes. This operation is also known as 

constructive induction. “Constructive induction is the process of changing the 

representation of examples by creating new attributes from existing attributes.”[16] 

In this project, the joining of the values of the attributes is done by taking the Cartesian 

product of the two values. For example, if there were two attributes height and age, the 

new attribute formed height_age will have values tall_old, tall_young, short_old and 

short_young. If the value of either attribute is unknown, then the value of the joined 

attribute also cannot be determined. Cartesian products will be explained in further 

detail later in this chapter. Joining is possible only on discrete values. When we deal 

with continuous valued attributes, we first need to convert the continuous data to 
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discrete data using one of the binning methods described in the Chapter 4. For the 

purpose of this project, we have used the equal width binning method. Attribute joining 

results in an evitable elimination step. When two attributes are joined, the original 

attributes are eliminated. The original attributes cannot be joined with other attributes 

again. Due to this, the dimensionality of the dataset is reduced by one for every joining 

that takes place. By repeated application of the joining operator, more than two 

attributes may be joined. Joining attributes corresponds to the creation of a “hidden” 

variable as shown in the Figure 5. 

 

 

Figure 5: Joining attributes introduces a hidden variable in the Bayesian network [16] 

Joining attributes has one potential limitation. When attributes are joined, there will be 

relatively less data to compute the joint probabilities from the data. This may sometimes 

results in inaccurate results. One way of dealing with this problem is to join only those 

attributes from which the accuracy estimates show improvement. This approach has 

been adopted during the implementation of this project. 

5.4 Elimination of Attributes 

Elimination is the process of attribute reduction where the attributes are deleted in turn 

and the accuracy of the classifier is determined from the remaining set of attributes. The 

elimination operation is used to see if certain attributes contribute more information 
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towards the probability estimations than other attributes. If the accuracy improves by 

deleting certain attributes, then a new classifier is returned containing all but the deleted 

attributes. This process is repeated till there is no further improvement in the 

accuracies.  

Cartesian product 

The Cartesian product is used for attributes is used for joining attributes. 

Pazzani(1998) proposed the Cartesian product operation for joining attributes. The 

Cartesian product joins two attributes    and    into a joined attribute      , taking x 

values in the Cartesian product[17]. 

{        |          (  )            (  )   Eq. 5.4 

where       (  ) is the value set of attribute A.  

There are advantages of using Cartesian product. In the Naïve Bayes classifier, 

attributes are treated individually and the product of individual probabilities calculated 

from the training data gives the joint probability. When the attributes are joined using 

Cartesian product, the joint probabilities can be calculated in an equivalent manner. 

5.5 Finding Dependencies between Attributes 

Pazzani(1998) suggested an algorithm known as Backward Sequential Elimination and 

Joining Algorithm to improve the accuracy of sample sets where the accuracy of the 

Naïve Bayes classifier was significantly less than the accuracy given by other decision 

tree algorithms. Pazzani, compared the results of this algorithm with the results of a 

simple decision tree algorithm using a paired two tailed t-test. He found that for a set of 

problems the Bayesian classifier is significantly less accurate than the decision tree at 
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the .05 level. In order to find ways to improve the accuracies on the given set of 

problems under consideration, he proposed the Backward Sequential Elimination and 

Joining Algorithm. This algorithm violates the independence assumption of the Naïve 

Bayes and searches for dependencies between the attributes.  

5.5.1 Backward Sequential and Elimination Algorithm (BSEJ)[13] 

The algorithm initializes a set of attributes which is used by the classifier. This set 

of attributes does not contain the joined attributes but the original attributes that were 

present in the sample set. Next, two operators are used to generate new classifiers: 

a) Consider joining each pair of attributes and replacing the original attributes that were 

used to join the attributes. 

b) Consider deleting each attribute used by the classifier 

For every step in the classifier, every joining of attributes is considered and evaluated. If 

there is no improvement in the accuracy, then the classifier is returned with no change 

in the representation. If there is an improvement due to the application of operations on 

the classifier then the change is retained and the new classifier is returned. The same 

procedure is performed till there is no improvement or all the attributes in the classifier 

are exhausted. Following successful joining, the Backward Sequential Elimination and 

Joining(BSEJ) algorithm carries out an explicit elimination step. It deletes every attribute 

in turn which includes the joined attributes looking for the classifier which returns the 

best accuracy. 
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According to Pazzani, this approach, brings about a significant difference in the 

accuracies of the datasets for which the Naïve Bayes model showed less accuracy. 

Thus, searching for dependencies among attributes causes an increase in the accuracy.  

5.6 A Wrapper Approach for Creating Cartesian Product Attributes and 

Elimination 

In this project, the accuracy obtained by the use of the constructive induction(joining) 

operation is contrasted with that obtained by the use of attribute elimination operation 

for each dataset. Thus, we determine the accuracies of the sample set considering only 

one operation at a time. Initially, the accuracies of the sample set are calculated using 

the joining operation. This algorithm is called as the Backward Sequential 

Joining(BSJ).[17] Next, we determine the accuracies of the sample set considering only 

the elimination operation. This algorithm is known as Backward Sequential 

Elimination(BSE)[17]. The average accuracy obtained by each of the algorithms is 

compared with the Naïve Bayes classifier. 

5.7 Wrapper Approach for Backward Sequential Joining (BSJ) 

5.7.1 Implementation Steps 

1) Calculate the accuracy for the dataset using Naïve Bayes classifier. 

2) Set the original accuracy to the accuracy computed in Step 1. 

3) For every ordered combination of two attributes, compute the accuracy of the 

classifier and set it as the new accuracy. 

4) Compare the new accuracy with the original accuracy.  
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5) If the new accuracy is higher than the original one, return the new classifier with the 

joined attributes, else return the classifier of Step 2. 

6) Continue this process till there is no further improvement in the accuracies or all of 

the attributes have been exhausted. 

The pseudo code in Figure 6 outlines the implementation of the BSJ algorithm. During 

each iteration, the algorithm calculates the resulting accuracy of the ordered 

combination. The combination that results in the maximum increase in accuracy is the 

final classifier. 
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A Wrapper Approach the for Backward Sequential Joining(BSJ) Algorithm 

Algorithm 1: BSJ(T) 

acc      Accuracy ( ) for the current classifier 

success   true 

while (success) do 

 success   false 

 for every ordered combination of two attributes    and    in   do 

  Produce    from   by joining    and   , putting them on the position 

            

  newAcc  accuracy (  ) for current classifier 

  if ( newAcc ≥ acc) 

  then 

   acc     newAcc 

    winner              

   success  true 

 if success == true 

 then 

       winner 

return    

 

Figure 6: Pseudo Code : Backward Sequential Joining [17]  
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5.8 Wrapper Approach for Backward Sequential Elimination 

5.8.1 Implementation Steps 

1) Calculate the accuracy for the dataset using Naïve Bayes classifier. 

2) Set the original accuracy to the accuracy computed in Step 1. 

3) Compute the accuracy of the classifier by removing each attribute one at a time and 

set it as the new accuracy. 

4) Compare the new accuracy with the original accuracy.  

5) If the new accuracy is higher than the original one, return the new classifier with the 

new subset of attributes, else return the classifier of Step 2. 

6) Continue this process till there is no further improvement in the accuracies or all of 

the attributes have been exhausted. 

The pseudo code in Figure 7 outlines the implementation of the BSE algorithm. During 

every iteration, it calculates the effect of eliminating each attribute in turn, considering 

only those attributes which result in an increase in accuracy. 
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A Wrapper Approach for the Backward Sequential Elimination(BSE) 

Algorithm 

Algorithm 2: BSE(T) 

acc      Accuracy ( ) for the current classifier 

success   true 

while (success) do 

 success   false 

 for every attribute   in   do 

   Produce    by removing   from every instance in    

  newAcc        accuracy (  ) for current classifier 

  if ( newAcc ≥ acc) 

  then 

   acc     newAcc 

   winner              

   success  true 

 if success == true 

 then 

       winner 

return     

 

Figure 7: Pseudo Code: Backward Sequential Elimination [17] 
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5.9 Experiments and Validation 

In order to determine if there is an improvement in the accuracies, experiments were 

conducted using different datasets for the two algorithms i.e. BSJ and BSE. The 

flowchart in Figure 8 depicts the workflow of the application. The application reads the 

input file and determines if the data are discrete or continuous valued. If the data are 

continuous, they are converted into its discrete counterparts using equal width binning. 

Next, the prior probabilities, conditional probabilities and posterior probabilities are 

calculated and the accuracy of the classifer is determined. This accuracy is then used 

as a threshold for the BSJ and BSE algorithms. Then, depending on the algorithm 

selected by the user, the BSJ or BSE classifier is executed. 

Ten-fold cross validations were performed on each dataset and the mean accuracy of 

the ten folds was computed. The highest accuracy obtained was taken as the final 

result. We chose this validation method because it is the fastest and most efficient way 

to determine the accuracy. Leave one out cross validation is not performed because it 

has high computation cost as our sample set is very large. 

When there is no increase in the accuracy, the classifier is not modified to adjust the 

joined or deleted attributes. In other words, we do not change the representation of the 

sample set when there is no improvement in the accuracy by applying the changes. For 

example, if joining the attributes height and weight as height_weight does not increase 

the accuracy as compared to the original classifier, where the two attributes were not 

joined, then the original classifier is retained. 

Whenever there is a good change in the representation of the sample set by joining or 

deletion of certain attributes, the change is retained. One aspect to be careful about is, 
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when new attributes are joined it replaces the attributes from which it was formed. This 

means that the attributes cannot be still retained in the new classifier in their original 

form. Also, it cannot be joined again to other attributes. For example, we cannot have 

height_weight and height_age as attributes in the same classifier. Once you have joined 

the attributes height_weight, the classifier will have height_weight and age as two 

different attributes. This is done since Bayesian classifiers assume independence of 

attributes within each class and the Cartesian product of two attributes is clearly 

dependent on the original attributes.   
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Figure 8: Flowchart for BSJ and BSE Algorithms  
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Figure 8: Flowchart for BSJ and BSE Algorithms(Continued) 
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Figure 8: Flowchart for BSJ and BSE Algorithms(Continued) 
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In order to investigate the effects of the three learning algorithms namely Naïve Bayes, 

Backward Sequential Joining and Backward Sequential Elimination, ten databases from 

the UCI Repository of machine learning databases were used. In each experiment, 

there were ten trials of randomly selected training and test examples.  

The next chapter illustrates the results (ten-fold cross validation) obtained by using the 

three algorithms on different datasets.  
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CHAPTER 6 

Datasets and Results 

 

6.1 Datasets 

 The datasets for this experiment were collected from the KEEL and UCI data 

repositories.  

KEEL 

KEEL is a data repository which contains a big collection of machine learning data 

which can be used for classification including standard, multi instance, regression and 

unsupervised learning.[19] 

UCI Repository 

The UCI Machine Repository is a collection of databases, domain theories and data 

generators that are used by researchers, students, educators and developers of the 

machine learning community. It was developed by two students from the University of 

California, Irvine. They currently maintain 284 machine learning datasets.[21] 

6.2 Training Set and Test Set 

All machine learning algorithms are trained for supervised learning, such as 

classification and prediction. We need to train them on particular inputs. Later, we can 

test them for inputs they have never seen before. They either classify the input or 

predict them based on their learning.  

The input data initially needs to be divided into a development set and a test set. The 

development set consists of training set. The test set consists of an evaluation set. The 
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model has to learn from the training set and classify inputs that are not present in the 

training set.  

The test set has data which are unknown and have never been seen before. However, 

the format of the test set should be similar to the training set. We must always ensure 

that the training set and test set are distinct otherwise the model would have already 

known the input and can give very high scores which could be misleading. If the test 

example is a subset of the training set, then we will always be close to 100% accurate 

which is overly optimistic. Usually, the training set will contain 80% of the original 

example. The rest can be used for the test set. 

Ten-fold cross validation  

Dividing the data set into two parts for training and testing respectively could lead to 

inaccurate classification. There can be a scenario where the training data set contains 

many examples having similar values for attributes and could get classified into the 

same class. Thus, the accuracy of the test set will be poor.  

The ten-fold cross validation provides a way to solve this problem of inaccuracy. In this 

method, we divide the data into ten parts as seen in Figure 9. Nine parts are used for 

training and the rest one tenth is used for testing. Accuracy is determined for this set 

using the classifier. The process is then repeated for each of the one tenth parts. The 

average of all the accuracies then determines the accuracy of the classifier using ten-

fold cross validation.  

Cross validation can be n-fold, i.e. we can have one-fold, two-fold cross-validation.  
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Table 7: A simple example of a three-fold cross validation 

Iteration 1 Train with parts 1 and 2 Test with part 3 

Iteration 2 Train with parts 1 and 3 Test with part 2 

Iteration 3 Train with parts 2 and 3 Test with part 1 

 

The measures we obtain using ten-fold cross-validation are more accurate than the 

ones obtained by two-fold or three-fold validation because each time we train the 

classifier we are using 90% of the data compared to only 50% for two-fold cross-

validation. 

Leave-one-out cross validation 

In this method of validation, we perform n-fold cross validation where n is the number of 

entries in the data set. For example, if there are 100 entries in a dataset , we train 99 

entries and test the remaining one entry. We repeat this process singling out each entry 

of the dataset. In this way, the largest possible part of the original dataset is used for 

training. This results in a higher accuracy of the classifier. The advantage is that the 

results are deterministic. However, the computational time will be large. 

6.3 Accuracy Test 

The accuracy test used to determine the accuracy of the classifier in this project is the 

number of examples for which the instance were correctly classified divided by the total 

number of instances to be classified.[13] 

6.4 Benchmark  

In order to validate the results of the Naïve Bayes classifier implemented in this project, 

the results of the Naïve Bayes classifier as computed by the WEKA Tool[18][20] were 

used as a benchmark. WEKA is a classification package available online. Another 
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benchmark used is the results from Pazzani’s paper on ‘Searching for 

dependencies’.[13] 

Datasets 

Table 8 represents the number of features, classes, number of training and test 

instances of each dataset used for the ten-fold cross validation experiments.  

Table 8: Information about the datasets used for the tenfold validations[19] 

Sr. 

no 
Dataset 

No. of 

Features 
Classes 

# of 

Instances 

Training 

Instances  

Test 

Instances  

1. Glass 9 7 217 191 26 

2. Wine 13 3 178 160 18 

3. Iris 4 3 150 134 16 

4. Pima 8 2 768 690 78 

5. Hepatitis 19 2 155 139 16 

6. Yeast 8 10 1484 1335 149 

7. Wisconsin 9 2 683 630 53 

8. Tic-tac-toe 9 2 958 863 95 

9. Wdbc 30 2 569 512 57 

10. Letter 16 26 20000 17997 2003 

11. Heart 13 2 270 250 20 

12. Vowel 13 11 990 909 81 

 

6.5 Comparative Analysis  

 

6.5.1 Naïve Bayes Classifier Results 

For the purpose of this project, the Naïve Bayes classifier was implemented and ten-fold 

cross validations were performed on different databases. As seen in Table 9, each row 
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in the table represents the results of one database. Each column represents the fold’s 

result for the particular database. The last column in the table represents the mean 

(average of ten-folds) for each database. The results of the Naïve Bayes classifier are 

compared with the benchmarks namely the results of the Weka tool for the same 

datasets and the results presented by Pazzani[13]. For the domains namely glass, 

yeast and tic-tac-toe, the mean value of the accuracies are relatively smaller as 

compared to the other domains. One possible reason for this could be the naïve 

assumption of the independencies among the attributes. 

6.5.2 Backward Sequential Joining and Backward Sequential Elimination 

Classifier Results 

Tenfold cross validations were performed for the Backward Sequential Joining 

Algorithm(BSJ) and Backward Sequential Elimination(BSE) Algorithm implementation 

by using the same databases that were used for Naïve Bayes classification experiment. 

As seen in Table 10 and Table 11, each row in the table represents the results of one 

database. Each column represents the fold’s result for the particular database. The last 

column in the table represents the mean (average of ten-folds) for each database. In 

both classifiers, the mean value of the accuracies for the domains, glass and tic-tac-toe 

improved considerably as compared to the Naïve Bayes classifier.  

6.5.3 Comparative Analysis of the Algorithms 

The results of the Naïve Bayes algorithm implementation are compared with the 

Backward Sequential Joining(BSJ) and Backward Sequential Elimination(BSE) 

algorithm implementation results.  
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 As seen in Table 12, each row represents one of the databases used for the 

experiments. The second column represents the results obtained using the Weka Tool 

for Naïve Bayes classification. The third column represents the results obtained by 

Pazzani for his implementation of the Naïve Bayes classifier. The ‘‒’ symbol in certain 

cells represent the results which were not available for comparison. The fourth column 

shows the average of the ten-fold cross validation implemented in this project for Naïve 

Bayes classifier. The fifth column shows the average of the ten-fold cross validation for 

the implementation of the BSJ algorithm and the sixth column shows the average of the 

ten-fold cross validation for the implementation of the BSE algorithm. 

Table 9: Ten-Fold Cross-Validation Results (Naïve Bayes Classifier) 

Datasets Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 6 Fold 7 Fold 8 Fold 9 Fold 10 Mean 

Glass 47.83 52.17 69.56 36.36 63.63 50.00 33.33 65.00 50.00 61.11 52.90 

Wine 88.88 94.44 100.0 100.0 94.12 100.0 100.0 100.0 100.0 88.88 96.63 

Iris 93.33 73.33 100.0 86.66 86.66 93.33 93.33 100.0 93.33 100.0 92.00 

Pima 70.13 73.07 81.58 68.83 77.92 72.37 77.92 81.58 76.62 71.43 75.15 

Hepatitis 81.81 83.33 100.0 85.71 71.43 100.0 100.0 83.33 37.5 90.91 83.40 

Yeast 55.03 51.67 48.99 55.03 56.08 48.65 45.94 50.67 48.65 47.29 50.80 

Wisconsin 92.54 89.85 83.95 82.09 83.33 82.35 85.71 82.35 84.06 82.86 85.21 

Tic-tac- 

Toe 
71.57 65.26 65.62 69.79 66.66 72.92 70.83 67.71 65.62 78.12 69.41 

Wdbc 89.47 80.70 89.47 87.71 82.45 68.42 80.70 85.96 75.43 71.42 81.17 

Letter 72.79 73.45 73.95 74.03 74.15 73.23 71.84 73.68 74.78 74.61 74.96 

Heart 77.78 92.59 77.78 85.19 85.19 92.59 88.89 81.48 66.67 85.19 83.33 

Vowel 51.52 59.60 68.69 59.60 58.59 67.68 63.64 62.63 68.69 64.65 62.53 
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Table 10:Ten-Fold Cross-Validation Results (Backward Sequential Joining Algorithm) 

Datasets Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 6 Fold 7 Fold 8 Fold 9 Fold 10 Mean 

Glass 60.89 60.86 69.56 59.09 72.72 72.72 71.42 80.00 60.00 72.22 67.95 

Wine 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 

Iris 93.33 93.33 100.0 86.66 93.33 93.33 93.33 100.0 100.0 100.0 95.33 

Pima 80.52 79.48 86.84 81.81 83.11 82.89 84.41 88.15 77.92 80.51 82.56 

Hepatitis 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 83.33 100.0 98.33 

Yeast 61.07 55.70 53.02 57.71 59.46 56.08 54.72 53.37 56.08 53.37 56.06 

Wisconsin 98.50 97.10 98.55 100.0 98.48 98.52 100.0 100.0 97.10 95.71 98.39 

Tic-tac- 

Toe 
84.21 82.10 86.45 86.45 85.41 86.45 90.62 83.33 83.33 88.54 85.69 

Wdbc 100.0 100.0 100.0 100.0 98.24 98.24 94.73 98.24 96.49 98.21 98.41 

Letter 100.0 100.0 100.0 100.0 96.49 94.73 91.22 96.49 96.49 96.49 97.18 

Heart 88.89 100.0 85.19 88.89 92.59 92.59 96.30 85.19 81.49 100.00 91.11 

Vowel 86.87 82.83 92.93 79.80 85.86 82.83 86.87 86.87 85.86 85.86 85.66 

 

Table 11: Ten-Fold Cross-Validation Results (Backward Sequential Elimination Algorithm) 

Datasets Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 6 Fold 7 Fold 8 Fold 9 Fold 10 Mean 

Glass 60.87 56.52 69.56 54.54 68.18 72.72 42.85 70.00 50.00 61.11  60.64 

Wine 100.0 100.0 100.0 100.00 100.0 100.0 100.0 100.0 100.0 100.0 100.0 

Iris 93.33 93.33 100.0 86.66 93.33 93.33 93.33 100.0 100.0 100.0 95.33 

Pima 79.62 76.92 85.52 76.62 81.81 80.26 83.11 85.52 77.92 74.02 79.83 

Hepatitis 100.0 100.0 100.0 100.00 85.71 100.0 100.0 83.33 87.5 100.0 95.65 

Yeast 55.70 52.34 51.00 55.70 58.11 52.70 53.37 50.67 50.67 49.32 52.96 

Wisconsin 97.01 97.10 98.55 100.00 100.0 97.05 100.0 100.0 97.10 94.28 98.11 

Tic-tac-toe 71.57 65.26 65.62 69.79 66.66 72.91 70.83 67.70 65.65 78.12 69.41 

Wdbc 100.0 100.0 100.0 100.00 96.49 94.73 91.22 96.49 96.49 96.49 97.18 

Letter 74.13 74.55 75.35 74.73 75.4 74.73 73.14 74.68 75.63 76.11 74.85 

Heart 85.19 96.30 92.59 88.89 92.59 92.59 96.30 85.19 77.78 100.00 90.74 

Vowel 57.58 65.66 73.74 63.64 61.62 69.70 71.72 67.68 70.71 65.66 66.77 
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Table 12: A Comparison Ten-Fold Cross-Validation Accuracy Results  

Dataset 
Weka’s Naïve 

Bayes 

Naïve Bayes 

(Mean) 

Backward Sequential 

Joining (Mean) 

Backward Sequential 

Elimination (Mean) 

Glass 69.99 52.90±15 67.95±8 60.64±12 

Wine ‒ 96.63±8 100.0±0 100.0±0 

Iris 94.00 92.00±6 95.33±9 95.33±9 

Pima 77.86 75.15±7 82.56±7 79.83±6 

Hepatitis 85.16 83.40±12 98.33±15 95.65±4 

Yeast ‒ 50.80±6 56.06±5 52.96±6 

Wisconsin 95.99 85.21±7 98.39±4 98.11±6 

Tic-tac-toe ‒ 69.41±4 85.69±5 69.41±9 

Wdbc ‒ 81.17±13 98.41±4 97.18±6 

Letter 74.96 74.96±2 97.18±6 74.85±3 

Heart 83.70 83.33±6 91.11±8 90.74±8 

Vowel 63.53 62.53±5 85.66±6 66.77±7 

 

As seen in Table 12, the mean values of the NB classifier and the mean values of the 

BSJ classifier for the ten databases were compared using the paired two-tailed T-test. 

Similarly, the mean values of the NB classifier and the mean values of the BSE were 

compared. Also, the mean values of the BSE and BSJ were compared using the same 

T-test. 

The p-value (P) calculated for the algorithms using the paired two-tailed test are: 

T-Test (NB and BSJ) - 0.0000645 

T-Test (NB and BSE) - 0.001736 

T-Test (BSJ and BSE) - 0.021902 

If P<0.001, then there is very strong evidence against the null hypothesis in favor of the 

alternative[22]. This means that there is a difference between the accuracy of the two 

classifiers and BSJ performs better than NB from the observed accuracies. 
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If 0.001<P<0.01, then there is strong evidence against the null hypothesis in favor of the 

alternative[22]. This means that there is a difference between the accuracy of the two 

classifiers and BSE performs better than NB from the observed accuracies. 

If 0.01<P<0.05, then there is moderate evidence against the null hypothesis in favor of 

the alternative[22]. This means that there is a difference between the accuracy of the 

two classifiers and BSJ performs better than BSE from the observed accuracies. 

 

 

Figure 9 : Bar Graph of Features vs. Average Accuracy 

Figure 9 represents a bar graph where the x-axis represents the number of features in 

increasing order and the y-axis represents the average accuracy corresponding to the 

dataset. There is no significant trend as the number of features of the datasets increase. 
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Figure 10 : Bar Graph of Features vs. CPU Time 

Figure 10 represents a bar graph where the x-axis represents the number of features 

and the y-axis represents the log of CPU time. Here we observe that as the number of 

features increase the CPU time also increases. The dataset having 16 features shows a 

significant increase in CPU time as compared to the dataset having 19 features. Once 

reason for this could be the number of classes in each of the datasets. Thus, the CPU 

time also depends on the number of classes.  

6.6 Conclusion 

The BSJ algorithm is significantly more accurate than the NB and the BSE algorithm as 

indicated by the paired t-test results. While BSE performs better than the NB, it does not 

outperform BSJ in any of the result sets. This leads us to believe that, attributes used in 

some common databases are not conditionally independent. The violation of the 
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conditional independence assumption influences the accuracy of the classifier mostly 

resulting in a linear increase. 

Though BSJ notably results in an increase in the accuracies, it is not very efficient when 

the number of features increase. The computation time for evaluating the BSJ algorithm 

increases for databases having large number of attributes. Joining mostly happens 

between more than two attributes, but multiple steps are required. Another drawback 

with BSJ is that only discretized data can be joined. Hence, continuous valued attributes 

need to be converted into discrete data which results in loss of information.  

We have evaluated the three algorithms namely, NB, BSJ and BSE, on the same 

datasets, and concluded that BSJ and BSE perform better in databases where NB 

performed poorly. This suggests that the attributes in those datasets are conditionally 

dependent among themselves.  
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