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ABSTRACT 

 

Machine learning is a branch of artificial intelligence in which the system is made to 

learn from data which can be used to make predictions, real world simulations, pattern 

recognitions and classifications of the input data. Among the various machine learning 

approaches in the sub-field of data classification, neural-network methods have been 

found to be an useful alternatives to the statistical techniques. An artificial neural 

network is a mathematical model, inspired by biological neural networks, are used for 

modeling complex relationships between inputs and outputs or to find patterns in data. 

The goal of the project is to construct a system capable of analyzing and predicting the 

output for the evaluation dataset provided by the "IBM Watson: The Great Mind 

Challenge" organized by IBM Research and "InnoCentive INSTINCT (Investigating 

Novel Statistical Techniques to Identify Neurophysiological Correlates of 

Trustworthiness) : The IARPA Trustworthiness Challenge" organized by the office of 

The Director Of National Intelligence. The objective of this paper  is to understand  the 

machine learning using neural networks. At the end of the paper, the comparison 

between different learning strategies have been shown which are used to increase the 

accuracy of the predictions. From the trained neural network up to a satisfactory level, 

we will be able to classify any generalized input, process often termed as generalization 

capability of the learning system. 
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1. Project Description: 

 

The goal of the project is to construct a system capable of analyzing and predicting 

output for the large scale applications by efficiently handling the data consisting of very 

high dimensionality. Experiments using different learning strategies and data 

preprocessing methods will be carried out to increase the accuracy of the predictions.  

The project will serve the part of the "IBM Watson, The Great Mind Challenge" technical 

intercollegiate competition and  InnoCentive INSTINCT: The IARPA (Investigating Novel 

Statistical Techniques to Identify Neurophysiological Correlates of Trustworthiness) 

Trustworthiness Challenge. The objective of the project is to server two purpose, one is 

to generate an neural network predicting  results as close as possible to the ones which 

would have been generated by the, one of the most intelligent supercomputer in the 

world, IBM Watson for the IBM challenge  and  second is to generate a neural network 

capable to most accurately predict whether to trust or do not trust a person based on its 

biological and physical behavior. Therefore, the generated system will be validated with 

the cutting edge technology in today's world of machine learning, IBM Watson dataset 

and with the nationwide open challenge competition with a prize money of $25000. 

From the trained system up to a satisfactory level, we will be able to classify any 

generalized input , process often termed as generalization capability of the learning 

system. 
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2. Artificial Neural Network  

 

2.1 Introduction 

Artificial neural networks natural metaphor representation is a “Brain” of an individual. 

The basic concept in machine learning using neural networks is based on the learning 

process of a living thing  i.e. how we are able to learn new things with the help of our 

experience since childhood. An artificial neural network can be defined as a computing 

system made up of number of simple highly interconnected processing elements which 

processes information by their dynamic state response to external inputs.  Information 

processing is carried out through connectionist approach to computation. An example of 

such a neural network appears in figure 2.1.  

 

 
Figure 1: An Artificial Neural Network 

 

Here, there can be any number of input, hidden and output layers connected in the 

network. In simplest terms, neural network, initially, makes random guesses and sees 

how far its answers are from the actual answers and makes an appropriate adjustment 

to its node-connection weights. 
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2.2 Back propagation Algorithm  

Back propagation algorithm is used to train the artificial neural network described in 

previous section. It helps achieve desired outputs from provided inputs under 

supervised learning 

2.3 Learning parameters  

Learning rate :  Learning rate is the rate at which we want neural network to learn 

training function. Keeping it too small, neural network convergence to desired results 

becomes extremely slow. Keeping it too large, neural network may not converge at all. 

Thus, it is very important to choose learning rate properly.  

 

Hidden layer neurons : According to the Kolmogorov equation, any given continuous 

function  can be implemented exactly by a 3-layer neural network with n neurons in the 

input layer, 2n+1 neurons in the hidden layer and m neurons in the output layer. 

 

Weight and biases : They  are used to reduce the difference between actual and 

desired output. This kind of learning is termed as supervised learning in which neural 

network is feed with inputs and corresponding desired outputs. 

 

Activation Function :The activation function of a node defines the output of that node 

given an input or set of inputs. In its simplest form, this function is binary—that is, either 

the neuron is firing or not.  
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Figure 2:  Activation Functions 

                                 

Transfer Function :It calculate a layer's output from its net input. The sigmoid function 

introduces non-linearity in the network. Without it, the net can only learn functions which 

are linear combinations of its inputs  

 

Figure 3: Transfer Function :sigmoid 

 

3. AWS Setup 

 

The project was implemented over the Amazon web services. following are the steps 

explaining the AWS setup procedure. 

Go to the link  : http://aws.amazon.com/console/. it will display the startup page of the 

AWS. To work on Amazon cloud we require to register to the website. Click on the sign 

in button as shown in the figure to proceed with the login. 
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Figure 4: Amazon web services sign up 

 

If you are signing for the first time for the Amazon cloud services, choose the first option 

which will take you to the registration page. after successful sign up, come back to this 

page and proceed with the second option to enter the AWS console. 

 

 

Figure 5: Amazon Web Services Registration 

 

there are multiple services offered by Amazon. we require the elastic computing as a 

need for our project. select the EC option as shown in figure. 
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Figure 6: AWS EC setup 

 

Click on the create new instance button for starting a fresh setup. 

 

 

Figure 7: AWS Launch New Instance 

 

This will take you to the process of building our machine as per the requirements . 

Amazon provides sever operating systems as shown below. choose the one by 

selecting the button on the right side of the page. It also allows us to choose among the  

32 bit/64 bit options. Select  ubuntu version-12 64 bit. As version 12 still the most stable 

release. 
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Figure 8: AWS Amazon Machine Image 

 

The next page will provide the different computing units. they are pre configured into the 

sub categories of memory optimized, computation optimized  and storage optimized. as 

we have high memory requirement . select M2.2 large. it provided sufficient computing 

power with enough ram to accommodate our training dataset and learning system's 

network size. 

 

 

Figure 9: AWS Instance Type 

 

The following page displays the number of instances of the machine we have selected 

are required to be instantiated. Select 1 and leave other configurations option as it is 
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and click on next button. the default setting of the configurations well suits our project 

requirement. 

 

 

Figure 10: AWS Configure Instance Details 

 

The amount of storage required for the system can be selected on the next page. The 

default option of 8 GB is enough for the project. 

 

Figure 11: AWS Add Storage 

 

We can provide a name to our machine. It is helpful to distinguish when we have 

multiple machines running on cloud. 
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Figure 12: AWS Tag Instance 

 

The following page provides the option to configure the network of the machine. We 

strictly require port 22 to be open for the SSH protocol. as we can only access the 

machine using the SSH client as the machine will be running over cloud. Remaining 

ports can be selected as per choose considering in mind the security issues. 

 

 

Figure 13: AWS Configure Security group 

 

After clicking on the next button we are done with the setup of our machine. the 

following page will ask us to give a final review to our application before we proceed 

ahead. 
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Figure 14: AWS Review Launch Instance 

 

After reviewing the details of the machine configuration successfully. We can proceed 

with the launch button. As the machine will be running on the cloud ,therefore for the 

purpose of security it will ask us to create a new key value pair, if one doesn't exist.  

 

Figure 15: AWS Key Pair 

 

Choose the first option for generating a new key value pair and provide a name to it. 
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A download key pair option will appear. click to download it and keep it in a safe place, 

as u will not be able to generate a duplicate key. Therefore, it has be keep safe for 

successful access to the machine. 

 

Figure 16: AWS new key pair 

 

Click on the launch button. a successful launch page will appear after the instance has 

been started. 

 

 

Figure 17 :AWS Launch Status 
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view instances button will display the console where all the machines created by this 

account is displayed .A particular machine information and control can be taken by 

selection the checkbox next to it. 

 

 

Figure 18: AWS Management console 

Tabs below provide the detail configuration  information for the machine selected above. 

 

 

Figure 19: AWS Instance Description 

Also, the system can be easily monitored by selecting the 'monitoring' tab next to the 

information tab. It display a series of graphs representing the current state of the 

system. like number of disk reads, network usage, ram usage, storage usage etc. 
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Figure 20: AWS  Instance Monitoring 

 

To start the machine, select the corresponding machine and click on connect. 

 

 

Figure 21: AWS Instance Connect 

 

The following page will provide the information to connect to the machine using the IP 

address. As the ip address is assign at the time of system start, therefore there will be 

different IP address allocate to the machine every time we restart the instance. 

 

There two options provided. we can either connect through the ssh client like putty, or 

through our web browser by selecting the second option. select the "a standalone ssh 

client" and copy the ip address. 
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Figure 22: AWS Instance Connection details 

 

To connect though putty. use the ip address provided .Also ,as we have selected the 

security through key pairs, therefore path to the private key download has to be 

provided to the ssh client. 

 

 

Figure 23: AWS Instance Putty Connection 

 

Traverse through the category structure presented on the left of the putty.  
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Connection -> SSH-> AUTH . It will display on the right, option to provide the path of the 

private key for the given ip address. 

 

Figure 24: AWS Instance Putty Private Key Setup 

 

As the private key generated was in the .pem  format we need to download use the 

putty key generator to convert the private key file from .pem format the .ppk format. It 

can be achieved as per the following steps: 

 

Figure 25: AWS Load .pem private key 

 

Load the .pem private key file using the load option as shown in figure. 
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Figure 26: AWS Rendering .PEM file 

 

After successfully rendering the .pem file. it will display the certificate in the text box as 

shown below.  

 

Figure 27: AWS Save private key 

 

Now, to convert it to the .ppk format. Select the save option and choose the format as . 

ppk.  
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Select yes when prompted for permission. it will convert the .pem file and save the file in 

the .ppk format. 

 

Figure 28: AWS .PPK file generation 

 

The generate .ppk file will be load in putty and click open to connect to the machine on 

AWS. 

 

Figure 29: AWS Putty Private Key Setup 

When connecting for the first time, the putty will prompt for the permission to connect for 

the security reasons. click yes and proceed to the login terminal of the machine. 
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enter the username : ubuntu 

By default, the username of the ubuntu Os is set to ubuntu .The login will not ask for the 

password authentication as the authentication was done trough public private key pair. 

 

Figure 30: AWS Connected using putty 

 

After displaying the command shell the Ubuntu Setup over AWS has been completed 

successfully. 
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4. Matlab neural network toolbox  

 

Following are the steps to demonstrate the working of the neural network toolbox in 

matlab. To start with, we generate some dummy training datase 

 input : matrix containing the input vectors. 

targetoutput  : matrix containing the corresponding desired outputs. 

 

Figure 31: Matlab: Sample Dataset 

 

We can start the neural network tool using the nnstart command. It will provide us with 

four options to select upon depending upon the type of training we are going to be 

required.  

 

 

Figure 32: Matlab: Neural Network toolbox 
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Select the pattern recognizing tool. It will display the following window containing the 

information about the type of training tool we have selected. Click next to proceed with 

the network construction 

 

Figure 33: Matlab: Pattern Recognization tool 

 

Select the input and target output required to train the network. From the drop down 

menu select the dummy input and target output matrices created earlier. 

 

 

Figure 34: Matlab: select Data 
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The next window will provide the options to divide the training dataset into three parts. 

value entered randomly divide the training dataset on percentage basis. 

 

Figure 35: Matlab: Validation  and test data 

 

The following window will allow the user to enter the number of hidden neurons required 

for the network. The input layer and output layer neurons will be automatically set from 

the training dataset provided earlier. 

 

Figure 36: Matlab: Network Architecture 
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The neural network has been constructed successfully. Clicking on the train button will 

start the network training as shown in the next figure. 

 

 

Figure 37: Matlab: Train Network 

 

The training window shows the following information : 

 - The network structure with number of neurons in each layer and the transfer functions 

used. 

- The training algorithms along with the data division parameters. 

- The status of the learning phase of the network 

-  Options to plot the different training graphs during and after learning 

There are two ways for the training to be completed. either can stop the training in 

between by clicking on the stop training button at any point of time or when the training 

gets automatically stop because any one of the network learning parameter like number 

of iterations, mean square error, minimum gradient ,number of validation stops ,etc. has 

been reached. 
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Figure 38: Matlab: Neural Network Training phase 

 

As shown in figure below, the training has been completed as the number of validation 

stops which has been set to 6 during network  initialization has been reached while 

training was in progress.   
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Figure 39:  Matlab: NN Training completed 

 

After training has been completed, the following window will show the option to retrain 

the network from start. 
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Figure 40 : Matlab: Retrain Network 

 

If the network performance is not as per the desired results this option can be selecting 

with the options to increase the network size or with increased training dataset. 

 

Figure 41 : Matlab: Evaluate Network 

 

After the training has been successfully completed the next window will help save the 

results.  
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Either choose from the options given to save parts of the training results or the entire 

training results can be saved by checking in the check box "save all". 

 

Figure 42: Matlab: Save results 

 

The save option will save the results on the current workspace. 

as shown in the figure below. the variable "net" has been saved to the current 

workspace. 

 

Figure 43: Matlab: Current Workspace 
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we can save the current trained network for future use in the file system using the save 

command as shown in the figure. 

 

 

Figure 44: Matlab: Saving workspace 

 

The previously saved network can be reloaded into the current workspace using the 

load command as shown in the figure below.  

 

 

Figure 45: Matlab: Load Workspace 

 

The trained network "net "is used to do predictions for the dataset  "inputdata" using the 

following command net("inpudata"). the results can be seen in the figure below. 
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Figure 46: Matlab: Predicting Output 

 

As we can see the predicted output matches the desired output. The training has been 

completed successfully. 
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5  IBM WATSON 

 

5.1 Data Processing 

 

5.1.1 Dataset Design : 

 

Datasets provided contains the following two files : 

Training dataset : 

It contains the data used to train the network. Following are characteristics of this 

dataset. 

1)Total number of rows: 2,39,944 

2) Each row contains one input vector. 

3) A row represented with the following format: 

 Input vector ID, Input vector, Target output 

 

Figure 47: Training Dataset 

Where,  

Input vector id: It is an integer which uniquely identifies the input vector 

and its target output 

Input vector: A 319-dimensions  vector to be used for the purpose of input 

training data. 
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Target output : The desired output in the form of TRUE or FALSE for the 

corresponding input vector.  

 

 Evaluation data set : 

It contains the data used to evaluate the machine which was trained using the training 

dataset earlier. Following are characteristics of this dataset. 

1)Total number of rows: 51,906 

2) Each row contains one input vector. 

3) A row represented with the following format: 

 Input vector ID, Input vector 

 

Figure 48: Evaluation Dataset 

 

where,         Input vector id: It is an integer which uniquely identifies the input vector 

Input vector: A 319-dimensions vector used for the purpose of generating 

predictions to evaluate the performance of the machine trained using 

training dataset. 
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5.1.2 Input data processing methods : 

 

The dataset files provided were in the csv (comma separated values) format, therefore, 

the datasets can be loaded into the matrix using the csvread command as follows: 

The following Matlab command reads the CSV files(containing only numeric values) into 

the matrix P: 

       P = CSVREAD("filename",row,column,csvrange); 

         where,  

 filename: The file to be read into matrix. 

row : This argument is optional and when provided, it reads the csv file starting 

from the row number provided by skipping the previous ones.  

col : This argument is optional and when provided, it reads the csv file starting 

from the column  number provided by skipping the previous ones. 

csvrange: This argument is optional and when provided, It reads only the range 

specified in this argument.  

 

Prepare and process the training input data : 

The training dataset file contains both the input vectors  and the corresponding target 

outputs along with the vector IDs. Two training matrices will be constructed from this 

single file, the input data matrix and the target output matrix. 

As the training dataset contains the target output in the form of True/False(and not in 

numeric form) therefore, the training dataset has to be processed before we can load it 

using csvread command. This can be easily done by following steps: 

1) Open a file in a text editor and use find and replace option to convert all the 

"True" alphabetical words into numerical value "1" and "False" with "0" or vice-

versa.  
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2 ) Using csvread command load the file into two matrices as follows: 

 p=csvread("training_dataset_filename",0,1,(0,1,239944,319)) 

 t=csvread("training_dataset_filename",0,319,(0,319,239944,320)) 

Here, input data matrix p will be created by loading file and skipping the first 

column, which are Vector ID's, and last columns, which are target outputs. 

The target output matrix t will be created by loading only the last column of the 

file by skipping everything else. 

Even though the training dataset is in a plain text format, its size is huge as it contains 

millions of rows of data, thus it may become bottleneck for some common text editors to 

process it efficiently. Therefore, another way to process the training input dataset 

through programming is by creating two csv files, one for each, the input vectors  and 

the target output in the form of  0/1. (See appendix no. for the java code). The resulted 

files can then be loaded directly using csvread command as follows. 

 p=csvread("training_dataset_filename") 

  t=csvread("training_dataset_filename_2")      

Process the evaluation data : 

The evaluation dataset contains the input vector ID and the input vector. As it contains 

only numeric data, unlike training input dataset which also had the alphabetical data in 

the form of target output, therefore, it can be directly loaded into evaluation  input 

matrix, without having the need of pre processing, using the csvread command as 

follows  

 eval_p=csvread("evaluation_dataset_filename",0,1) 

Here, evaluation input data matrix eval_p will be created by loading file and 

skipping only the first column, which are Vector ID's. 
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5.1.3 Output data predicted  processing method 

 

Generating Score for the trained Network 

The predicted output data file on the evaluation dataset is required to be submitted at 

the competition website to get the score for the trained machine. The required format of 

the prediction file is as follows: 

 

Figure 49: True Vector Id's 

 

1) It only contain the ID's for the input vectors generating "True" predictions.  

2) It should be a text file(.txt). 

 

Predicted output data pre-processing: 

The trained neural network is used to predict the output on the evaluation dataset. The 

output file generated contains the predictions in the form of numbers (generally, decimal 

numbers ranging from 0 to 1) for the corresponding input vectors in the evaluation 

dataset. As the prediction file required to be submitted should contain only the true 

predictions vector Id, therefore there is a need for the preprocessing of the output data 

file. One way to process the output data file through programming (see appendix for the 

java code) is as follows: 

1) As output contains numbers ranging from 0 to 1,set up a threshold limit for the 

numbers to be considered as True predictions. 
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2) Separate out the vector Ids generating number in the True predictions 

threshold limit . 

3) Save these true predictions vectors Id's in a .t 

 

 

5.2  Implementation 

 

5.2.1 Gradient descent back-propagation 

 

Algorithm : 

 

Back-propagation is a gradient descent algorithm. It's an algorithm for taking one 

training case and computing efficiently for every weight in the network depending upon 

how the error will change on that particular training case as you change the weight. We 

can compute how fast the error changes as we change a hidden activity on a particular 

training case. So instead of using activities of the hidden units as our desired states, we 

use the error derivatives with respect to our activities 

 

 
Figure 50: Back-propagation 
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The core of back propagation is taking error derivatives in one layer and from them 

computing the error derivatives in the layer that comes before that  as shown in the 

figure 2.1 

 

Configuration : 

 

Learning rate = 0.01 

Number of hidden layer  neurons = 639 

Training function used = traingd 

Transfer function  = tansig - tansig 

 

Results: 

 

Table 1: Gradient descent back-propagation Results 

Desired 
Performance(MSE) 

Performance reached epochs 

Less than 0.01 0.014 23 

 

 

 

Figure 51: Gradient descent back-propagation Performance Graph 
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The graph shows the performance curve of the gradient descent algorithm measured 

using mean square error (mse). Starting with the initial random weights of the network 

the learning curve shows the good descent within first few iterations as we can see a 

steep drop in the mse from 0.09 to 0.02 within first two iterations over the entire training 

dataset. The training continued to perform better for few more iterations only and finally 

became negligible/unaccountable after 23 passes over the entire training dataset. The 

best mse able to reached by the network is 0.014 within 23 epochs. 

 

 

5.2.2  Resilient back-propagation  

 

Algorithm : 

 

The motivation behind this approach is that the magnitude of the gradient can be very 

different for different weights & can change during learning. Therefore selecting a single 

global learning rate will not be easily possible. To come out with a solution we can 

modify our stochastic descent algorithm in such a way that it will now only consider the 

sign of the partial derivative over all patterns and thus it can be easily applied on 

different weights independently. The algorithm is as follows  

 

(1) If there is change in sign of the partial derivatives from previous iteration, then 

weight will be updated by a factor of η−.  

(2) If there is no change in sign of the partial derivatives from previous iteration, then 

weight will be updated by a factor of η+.  

 

Each weight is changed by its own update value, in the opposite direction of that 

weight's partial derivative. This method is one of the fastest and memory efficient weight 

update mechanisms as compared to standard steepest descent algorithm 
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Configuration: 

 

Learning rate = 0.01 

Number of hidden layer  neurons =639 

Training function used = trainrp 

Transfer function  = tansig - tansig 

Delta_increase  = 1.2  .It determines the Increment to the weight change 

Delta_increase  = 0.5  .It determines the Decrement to the weight change 

Delta_initial = 0.07 .it determines the initial weight change 

Delta_Maximum = 50 . it determines the maximum amount by which the weights can be 

updated  

 

Results: 

 

Table 2: Resilient back-propagation results 

Desired 
Performance(MSE) 

Performance reached epochs 

Less than 0.01 0.0145 20 
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Figure 52: Resilient back-propagation Performance Graph 

 

Figure shows the logarithmic performance curve of the resilient back-propagation 

algorithm measured using mse of the network with respect to the iterations over the 

training dataset. At start, with initial random weights, the training performing was getting 

worse, instead of reducing the error difference between the output predicted and the 

desired output, the training was updating weights resulting in increased mse for initial 

iterations producing steep slope upwards for the first two iterations. Compared to 

gradient descent, the results are completely opposite for  the initial learning phases of 

the training. The graph shows few spikes generated due to the policy of updating weight 

by η+. or  η−. only. The best mse able to reach by the network was 0.0145 in 20 epochs 

only. although the training was fast as compared  gradient descent but had a decreased 

in mse from 0.014 to 0.0145. 

 

 

5.2.3  Scaled conjugate gradient back-propagation 

 

Algorithm: 

 

The basic back-propagation algorithm adjusts the weights in the steepest descent 

direction where as  in scaled conjugate gradient descent a  search is performed  based 

on conjugate directions. It not perform a line search at each iteration. This algorithm is 

proved to be faster than the basic gradient descent back-propagation 
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Configuration: 

 

Learning rate = 0.01 

Number of hidden layer  neurons =639 

Training function used = trainscg 

Transfer function  = tansig - tansig 

sigma = 5.0e-5  .It determine change in weight for second derivative approximation 

lambda = 5.0e-7. The parameter for regulating the indefiniteness of the Hessian 

 

 Results: 

 

Table 3: Scaled conjugate gradient back-propagation results 

Desired 
Performance(MSE) 

Performance reached epochs 

Less than 0.01 0.010 22 

 

 

 

Figure 53 : Scaled conjugate gradient back-propagation Performance Graph 
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Figure shows the performance curve of the scaled conjugate algorithm using mse with 

respect to the number of iterations over the training dataset. During the initial learning 

phase of the training the performance was very similar to that of  gradient descent 

algorithm  generating a steep slope down  within first two iterations of the training but 

outperforms it later on by reaching the best mse of 0.010 as compared to 0.014 from  

gradient descent within 22 passes over the training dataset.  

  

 

5.2.4 Momentum  back-propagation 

Algorithm : 

 

Unlike in mini-batch learning, in Momentum method we use the change in gradient to 

update the velocity and not the position of weight particle. In this method, we take the 

fraction of the previous weight updates and add that to the current one. The main idea 

behind doing this is to improve the efficiency of the neural network by preventing the 

system to converge to a local minimum or to converge to a saddle point. 

 

 Considering that we have taken very high momentum parameter which may help us 

speed up the convergence rate of the neural network, but this may also incur the risk of 

overshooting the momentum and making system unstable generating more function 

hikes. On the other hand, if we take momentum parameter very small, it may happen 

that neural network learns very slowly. The tradeoff between high and low value have to 

be kept in mind before choosing the momentum magnitude for training. 

 

Configuration: 

 

Learning rate = 0.01 

Number of hidden layer  neurons =639 

Training function used = traingdm 

Transfer function  = tansig - tansig 

Momentum = 0.9 .it determines the momentum constant. 
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 Results : 

 

Table 4: Momentum  back-propagation Results 

Desired 
Performance(MSE) 

Performance 
reached 

epochs 

Less than 0.01 0.014 2 

 

 

 

Figure 54 : Momentum  back-propagation Performance Graph 

 

Figure shows the performance curve of the momentum back-propagation using mse 

with respect to the number of iterations over the training dataset. The Steep drop in mse 

showing by the graph for the first two iterations is similar to that of gradient descent and 

SCG but it differs at a point that the best mse of  0.014, which is similar to that SCG and 

not too far from gradient descent, was achieved in  first two epochs only. Although there 

was no any further/accountable decrease in network mse over the next few iterations 

continuously. 
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5.2.5 Adaptive Learning Rate  back-propagation 

Algorithm : 

 

We have used multi layer neural network, hence, we need to consider that there is a 

wide variation on what will be the suitable learning rate at each corresponding layer i.e. 

the respective gradient magnitudes at each layer are generally different. 

 

This situation motivates to use a global learning rate responsible for each weight 

update. With adaptive learning method, the trial and error search for the best initial 

values for the parameters can be avoided. Normally the adaption procedures are able to 

quickly adopt from the initial given values to the appropriate ones.  

 

Also, the amount of weight that can be allowed to adapt  depends on the shape of the 

error surface at each particular situation. The values of the learning rate should be 

sufficiently large to allow a fast learning process but also small enough to guarantee its 

effectiveness. If at some moment the search for the minimum is being carried out in the 

ravine, it is desirable to have a small learning rate, since otherwise the algorithm will 

oscillate between both sides of the ravine.  

 

 configuration: 

 

Learning rate = 0.01 

Number of hidden layer  neurons =639 

Training function used = traingda 

Transfer function  = tansig - tansig 

learning rate _increase = 1.05 .It determines the increase in learning rate. 

learning rate _decrease = 0.7  .It determines the decrease in learning rate. 
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Results : 

 

Table 5: Adaptive Learning Rate  back-propagation Results 

Desired 
Performance(MSE) 

Performance reached epochs 

Less than 0.01 0.015 28 

 

 

 

 

Figure 55 : Adaptive Learning Rate  back-propagation Performnace Graph 

 

Figure shows the performance curve of the adaptive learning back-propagation using 

mse with respect to the number of iterations over the training dataset. Following the 

similar pattern of mse curve as earlier algorithms the reduction in mse showed a steep 

slope within the first few iterations over the dataset but it differs at a point that it was 

able to reach the best mse of approx. 0.015 in 28 iterations. which by far is the highest 

mse up till now requiring largest number of iterations. 

 

 

5.2.6 Momentum  and Adaptive Learning Rate back-propagation 

Algorithm: 
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It combines both the momentum back-propagation and adaptive learning rate strategy 

to train the network. 

 

Configuration: 

 

Learning rate = 0.01 

Number of hidden layer  neurons =639 

Training function used = traingda 

Transfer function  = tansig - tansig 

Momentum = 0.9 .it determines the momentum constant. 

learning rate _increase = 1.05 .It determines the increase in learning rate. 

learning rate _decrease = 0.7  .It determines the decrease in learning rate. 

 

Results : 

 

Table 6  Momentum  and Adaptive Learning Rate back-propagation Results 

Desired 
Performance(MSE) 

Performance reached epochs 

Less than 0.01 0.015 3 
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Figure 56 : Momentum  and Adaptive Learning Rate  Performance Graph 

 

Figure shows the performance curve of the momentum back-propagation  and adaptive 

learning rate strategy using mse with respect to the number of iterations over the 

training dataset. The graph is almost similar to that of the adaptive learning rate 

algorithm reaching the best mse of 0.015 but the current method was much faster than 

the adaptive learning alone as the number of iterations reduces from 28 to 3 only.  

 

 

5.2.7 Method I: Non zero vector dimensions/features only  

 

Implementation : 

 

One of the method to improve performance can be done by preprocessing the data 
such that ,the columns which remain zero throughout the entire training dataset can be 
safely removed from the raw dataset. the constant columns do not provide any 
meaningful information in classification of the input vectors. Removing such columns 
helps reduce the dimensionality in the training input vectors, thus helping in reducing 
the size of the neural network due to reduce in the number of neurons required in the 
hidden layer of the network. 
In the IBM data set, After removing the constant columns of zero values from the entire 
data set, the dimensionality of the input vectors reduced from 319 to 261 only which 
eventually helped reduced the network size from having 639 neurons in the hidden layer 
to 523 neurons only. 
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Results : 

 

Table 7: Non-zero vector dimensions/features Results 

Desired 
Performance(MSE) 

Performance 
reached 

epochs 

Less than 0.01 0.068 39 

 

 

 

Figure 57 : zero vector dimensions/features Performance Graph 

 

The results shows a gradual decrease in the mse of the network. which at start look 

very promising due to the reduced network size but the training efficiency instead 

become worse requiring approx 40 iterations to reached an mse of 0.007 which is 

highest among all the previous algorithms discussed with full dataset. 

 

 

5.2.8 Method II: Four times more true vectors. 

 

Implementation : 

 

Another approach to preprocess the data to help increase the efficiency and accuracy of   
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the network is increasing the ratio of minorities in the raw training data by duplicating 

the vectors. 

for example, in IBM data set only 1.47 % of the input row vectors contains the target 

output of True .therefore , tried with boosting the true input row vectors 4 times by 

duplicating the data. 

 

Results : 

 

Table 8: four times more true vectors Results 

Desired Performance(MSE) Performance reached epochs 

Less than 0.01 0.026 47 

 

 

 

Figure 58 : four times more true vectors Performance Graph 

 

The Performance was much better compared to method 1approach but the results were 

not as close to those of training algorithms discussed earlier. The best mse able to 

reached was 0.026 in 47 epochs before the update in mse started became 

negligible/unaccountable for learning further learning. 
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5.2.9  Method III:  Removed all the Constant columns 

 

 Implementation  

 

Removed all the columns  which were constant in the entire training dataset. 

constant  columns(features) ) removed : 72 

                                features remaining : 247 

 Results : 

 

Table 9: Removed all the Constant columns 

Desired Performance(MSE) Performance reached epochs 

Less than 0.01 0.0243 24 

                                    

 

Figure 59 : Removed all the Constant columns 
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5.2.10  Method IV : Removing all the true vector constant columns  

 

 Implementation 

 

First found all the rows which were true, then search for all the columns which are 

constant  in these true rows set only, which  may or may not be constant in the entire 

training dataset. Now  removed all these constant columns from the entire training 

dataset. 

      constant  columns(features) ) removed : 78 

                                      features remaining : 241 

Results : 

 

Table 10: Removing all the true vector constant columns 

Desired Performance(MSE) Performance reached epochs 

Less than 0.01 0.0246 34 

 

 

Figure 60: Removing all the true vector constant columns 
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In this case, The training was fastest as the number of constant columns further 

increased by 5 more columns as compared to the case 2 above, But the network didn't 

able to improve the score. As we were not sure whether to provide those extra 5 

columns more priority over other columns or just discard them completely. and we tried 

by proceeded with the option of  discarding them. 

 

 

Comparison  and  Conclusion 

 

 

 

Figure 61 : Comparison  and  Conclusion Graph 

 

The figure shows the comparison of different learning algorithms used with respect to 

the number of iterations. Total number of iterations done are 40. During the initial phase 

of the training the learning curve is almost similar for most of the algorithms except 

resilient back propagation which generate the slope completely opposite to the others. 

To some extent the combined approach of momentum and adaptive learning also takes 

time to converge during the initial learning stages . The momentum algorithm converges 

fastest among all within two iterations but had a learning rate of 0.014.As it can be 

easily seen in the graph, the scaled conjugate gradient has the best performance in 

terms of accuracy in prediction by having  the least  mse of 0.01 only.  
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6  INNOCENTIVE  

 

6.1  Data Processing 

   

6.1.1 Dataset Design : 

 

Following were the details of the InnoCentive project challenge datasets available for 

training and prediction . The dataset is generated on the background of the game of 

trust which is played between two people , not necessary to be a friend or known to 

each other, judging whether the person should be trusted or not based on the promises 

which he has made and actions he has took in fulfilling of those promises all as a part of 

a game. 

 

Going through the challenge details found out there are two types of dataset available: 

 

1 RAW dataset  : it sizes ranges from 26 gb to 60 gb. the size is huge because it 

contains lots of readings from ECG and other electronic instruments to capture the 

person biological and physical readings during play 

 

2 PROCESSED dataset : size is of few kb's only.   

The processed dataset is derived from the raw dataset and contains the data in the 

format suitable for statistical, mathematical, cognitive or AI analysis. It contains the data 

in the form features. there are approx 100 features and few hundred rows in the training 

dataset. 

 

The processed dataset completely resembles the raw dataset and the competition will 

only consider the final score irrespective of which dataset set has been used for 

generating the results. Therefore downloaded all the Processed datasets for analyzing 

,training and final evaluation purpose. 

 

Analysis of the processed datasets provided on the challenge dashboard. 
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There are five types of data sets available: 

1) INSTINCT_Cortisol 

2) INSTINCT_Mayer 

3) INSTINCT_NEO 

4) INSTINCT_Oxytocin 

5) INSTINCT_Feature_Matrices 

Although the first four dataset has been provided for our evaluation and training purpose 

as these datasets were also derived as a byproduct from the raw datasets 

preprocessing but it is not known if that information will be helpful in predicting the 

results or not. The information containing in this matrices dataset is not included in the 

feature matrices dataset, which is  going to be used for machine learning. 

 

Training dataset : 

It contains the data used to train the network. Following are characteristics of this 

dataset. 

1)Total number of rows: 431 

2) Each row contains one input vector with 109 features . 

3) A row represented with the following format: 

 Input vector ID,constant , Target output, Input vector 



Big Data Analytics Using Neural Networks   Chetan Sharma 
 

 
62 

 

Figure 62: Training Dataset 

Where,  

Input vector id: It is an integer which uniquely identifies the training input 

vector and its target output 

Input vector: A 109-dimensions  vector to be used for the purpose of 

training  input data. 

Target output : The desired output in the form of  whether a person should 

be trust  or don't' trust for the corresponding input vector.  

Constant : is a part of training input vector. 

 

 Evaluation data set : 

It contains the data used to evaluate the machine which was trained using the training 

dataset earlier. Following are characteristics of this dataset. 

1)Total number of rows: 215 

2) Each row contains one input vector of 109 features. 

3) A row represented with the following format: 
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 Input vector ID,constant, Input vector

 

Figure 63: Evaluation Dataset 

where,      

Input vector id: It is an integer which uniquely identifies the evaluation input  

vector 

Input vector: A 109-dimensions vector used for the purpose of generating 

predictions to evaluate the performance of the machine trained using training 

dataset. 

Constant : is a part of training evaluation input vector. 

 

 

6.1.2 Input data processing methods : 

 

The dataset files provided were in the csv (comma separated values) format, therefore, 

the datasets can be loaded into the matrix using the csvread command. 

Prepare and process the training input data : 
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The training dataset file contains both the input vectors  and the corresponding target 

outputs along with the vector IDs. Two training matrices will be constructed from this 

single file, the input data matrix and the target output matrix. 

Apart from three feature columns,  

                             i.e.    column 5 ,column 6  and  column 7 

   which are string representations , all of the remaining features are in the format of 

numbers.  

As the training dataset contains the target output in the form of  string representations 

(and not in numeric form) therefore, the training dataset has to be processed before we 

can load it using csvread command. 

 

Figure 64: Input data processing methods 

 

1]  column 6 data will constitute the desired output of the training dataset .Following will 

be the  column 6 representations  into number data type : 

Column 6 : It has the following ranges: 

Exact amount promised,     -----------------------TRUST--------------------->        1 

More than promised            -----------------------TRUST--------------------->        1 

Promise not fulfill able          ----------------DO NOT TRUST---------------->       0 

Less than promised             ----------------DO NOT TRUST---------------->       0 
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As per the instructions mentioned in the challenge details: The player action is 

considered to be entitled for  TRUST classification if and only if either of the following 

two conditions satisfies: 

condition 1: The player(which can be a friend or stranger in the game) has provided the 

exact amount promised 

condition 2: the player has provided the amount which is more then what has been 

initially promised by him. 

Therefore, in dataset, all the strings representing above two conditions are replaced 

with (Trust) 1 and the remaining string representations with (Don't Trust) 0. 

 

2] column 7 data string data type  representations  into number data type : 

 

Column 7 : the column 7 has the following ranges: 

High           ----------------------->        100 

Medium      ----------------------->        50 

Low         ----------------------->       0 

 

3] The Unique row vectors Id's are constituted with the subset  containing  first four 

 columns of the dataset.: 

unique row vector ID's : [ PID, SESSION, BLOCK, ROUND] 

 

4] Column 5 is constant throughout  the entire training dataset ,therefore it's  

contribution to the training  is none. therefore, it will be removed from the training  

datasets. 
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Using csvread command load the file into two matrices as follows: 

 p=csvread("training_dataset_filename") 

 t=csvread("desired_output_dataset_filename") 

where,  p= input to the network. 

             t = desired output of the network. 

 

Process the evaluation data : 

Evaluation  dataset  also contains the input vectors  in the form of string representations 

(and not in numeric form) therefore, the evaluation  dataset has to be processed before 

we can load it using csvread command. 

 

Figure 65: Process the evaluation data 

 

Here , we only have one column , i.e   column 7   which is in string representations , all 

of the remaining features are in the format of numbers. therefore, like in training dataset 

we will convert the column 7 data  representations  into number data type : 

Column 7 : the column 7 has the following ranges: 

High           ----------------------->        100 

Medium      ----------------------->        50 

Low         ----------------------->       0 
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Like in training dataset, evaluation dataset's Unique row vectors Id's are also constituted 

with the subset  containing  first four columns of the dataset.: 

unique row vector ID's : [ pID, SESSION, BLOCK, ROUND] 

 Similarly, like in training dataset, column 5 is constant throughout  the entire evaluation  

dataset ,therefore it's  contribution to the prediction is none. therefore, it will be removed 

from the evaluation  datasets. 

The evaluation dataset  is loaded using the csvread command as follows  

 eval_p=csvread("evaluation_dataset_filename") 

 

 

6.1.3 Output data predicted  processing method 

 

Generating Score for the trained Network 

The predicted output data file on the evaluation dataset is required to be submitted at 

the competition website to get the score for the trained machine. The required format of 

the prediction file is as follows: 

 

 

Figure 66: Predicted Vector Id's 
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1)  First line should contain "test,,,," 

2)  It only contains the ID's for the evaluation vectors. 

3)  Id's should be followed by predictions TURST or DON'T TRUST 

4)  It should be a text file(.txt). which should be zipped in .zip /.rar format. 

 

Predicted output data pre-processing: 

The trained neural network is used to predict the output on the evaluation dataset. The 

output file generated contains the predictions in the form of numbers (generally, decimal 

numbers ranging from 0 to 1) for the corresponding input vectors in the evaluation 

dataset. As the prediction file required to be submitted should contain only the TRUST 

and DON'T TRUST values along with their  predictions vector Id, therefore there is a 

need for the preprocessing of the output data file.  

After training was completed and predictions were calculated on the evaluation data-set. 

combined the predicted classes as 

<=0.5       --------->        DONT' TRUST 

>0.5          --------->        TRUST 
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6.2  Implementation 

 

 

6.2.1  Gradient descent back-propagation 

 

Configuration : 

 

Learning rate = 0.01 

Number of hidden layer  neurons = 219 

Training function used = traingd 

Transfer function  = tansig - tansig 

 

Results: 

 

Table 11: Gradient descent back-propagation Results 

Desired 
Performance(MSE) 

Performance reached epochs 

Less than 0.01 0.198 517 

 

 

The graph shows the performance curve of the gradient descent algorithm measured 

using mean square error (mse). Starting with the initial random weights of the network 

the learning curve shows the good descent within first few iterations as we can see a 

steep drop in the mse within first few iterations over the entire training dataset. The 

training continued to perform better for few more iterations only and finally became 

negligible/unaccountable after 517 passes over the entire training dataset. The best 

validation performance mse able to reached by the network is 0.198 within 517 epochs. 
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Figure 67: Gradient descent back-propagation Performance Graph 

 

 

6.2.2  Resilient back-propagation  

 

Configuration: 

 

Learning rate = 0.01 

Number of hidden layer  neurons =219 

Training function used = trainrp 

Transfer function  = tansig - tansig 

Delta_increase  = 1.2  .It determines the Increment to the weight change 

Delta_increase  = 0.5  .It determines the Decrement to the weight change 
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Delta_initial = 0.07 .it determines the initial weight change 

Delta_Maximum = 50 . it determines the maximum amount by which the weights can be 

updated  

 

Results: 

 

Table 12: Resilient back-propagation results 

Desired 
Performance(MSE) 

Performance reached epochs 

Less than 0.01 0.20 66 

 

 

Figure 68: Resilient back-propagation Performance Graph 

 

Figure shows the logarithmic performance curve of the resilient back-propagation 

algorithm measured using mse of the network with respect to the iterations over the 
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training dataset. At start, with initial random weights, the training performance curve 

steadily keeps on declining up-till 2500 iterations. and later on the training become 

almost negligible. The validations performance is best at 0.204 which comes at much 

faster rate as compared to gradient descent algorithm.  

 

 

6.2.3  Scaled conjugate gradient back-propagation 

 

 Configuration: 

 

Learning rate = 0.01 

Number of hidden layer  neurons =219 

Training function used = trainscg 

Transfer function  = tansig - tansig 

sigma = 5.0e-5  .It determine change in weight for second derivative approximation 

lambda = 5.0e-7. The parameter for regulating the indefiniteness of the Hessian 

 

 Results: 

 

Table 13: Scaled conjugate gradient back-propagation results 

Desired 
Performance(MSE) 

Performance reached epochs 

Less than 0.01 0.192 43 

 

Figure shows the performance curve of the scaled conjugate algorithm using mse with 

respect to the number of iterations over the training dataset. During the initial learning 

phase of the training the performance is very different as compared to the graduate 

descent algorithm. It shows  a gradual slop for first few hundred iterations followed by a 

steep slope down  from 1000th to 1300th  iteration and  outperforms the gradient 

descent and resilient back propagation algorithms. by reaching the best validation 

performance  mse of  0.192  within much faster time of 43 iterations only. 
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Figure 69 : Scaled conjugate gradient back-propagation Performance Graph 

 

 

6.2.4 Momentum  back-propagation 

 

Configuration: 

 

Learning rate = 0.01 

Number of hidden layer  neurons =219 

Training function used = traingdm 

Transfer function  = tansig - tansig 

Momentum = 0.9 .it determines the momentum constant. 
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Results : 

 

Table 14: Momentum  back-propagation Results 

Desired 
Performance(MSE) 

Performance 
reached 

epochs 

Less than 0.01 0.201 868 

 

Figure shows the performance curve of the momentum back-propagation using mse 

with respect to the number of iterations over the training dataset. The drop in mse 

showing by the graph for the first few  iterations is similar to that of gradient descent and 

Scaled conjugate gradient but  later on the slop becomes almost flat. similar is the slope 

of validation performance and test performance of the network . Although there was no 

any further/accountable decrease in network mse over the next few iterations 

continuously, the performance of the network is almost similar to the resilient back 

propagation algorithm with best validation mse achieved is 0.20  

 

 

Figure 70 : Momentum  back-propagation Performance Graph 
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6.2.5 Adaptive Learning Rate  back-propagation 

 

Configuration: 

 

Learning rate = 0.01 

Number of hidden layer  neurons =219 

Training function used = traingda 

Transfer function  = tansig - tansig 

learning rate _increase = 1.05 .It determines the increase in learning rate. 

learning rate _decrease = 0.7  .It determines the decrease in learning rate. 

 

Results : 

 

Table 15: Adaptive Learning Rate  back-propagation Results 

Desired 
Performance(MSE) 

Performance reached epochs 

Less than 0.01 0.22 70 

 

Figure shows the performance curve of the adaptive learning back-propagation using 

mse with respect to the number of iterations over the training dataset. The curve 

contains ripples due to the nature of adaptive learning rate where the learning rate of 

the network is either increased or decreased depending on the learning threshold limit 

set for the network. this continuous change in learning rate resulted in back and forth 

movement of the curve. similar is the case with test and validations performance curves. 

The best validation performance the network able to reach was 0.223 in 70 iterations 

which is the highest value up till now. 
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Figure 71 : Adaptive Learning Rate  back-propagation Performance Graph 

 

 

6.2.6 Momentum  and Adaptive Learning Rate back-propagation 

 

 Configuration: 

 

Learning rate = 0.01 

Number of hidden layer  neurons =639 

Training function used = traingdx 

Transfer function  = tansig - tansig 

Momentum = 0.9 .it determines the momentum constant. 

learning rate _increase = 1.05 .It determines the increase in learning rate. 
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learning rate _decrease = 0.7  .It determines the decrease in learning rate. 

 

Results : 

 

Table 16  Momentum  and Adaptive Learning Rate back-propagation Results 

Desired 
Performance(MSE) 

Performance reached epochs 

Less than 0.01 0.22 98 

 

 

 

Figure 72 : Momentum  and Adaptive Learning Rate Performance Graph 

 

Figure shows the performance curve of the momentum back-propagation  and adaptive 

learning rate strategy using mse with respect to the number of iterations over the 

training dataset. The graph is almost similar to that of the adaptive learning rate 
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algorithm reaching the best validation performance mse of 0.22 but with a higher 

number of iterations comparatively 

 

 

6.2.7 Method I: Four classifications in desired output vector 

 

 Implementation : 

 

One of the method to improve the performance is by preprocessing the data such that , 

it completely resembles the strings  without any loss of information : therefore  Convert 

the column 6 data as shown below: 

 
 
                   Column 6 : the column 6 has the following ranges: 
 
       Exact amount promised,     -----------------------TRUST--------------------->        1 
      More than promised            -------------------------TRUST--------------------->        1.5 
      Promise not fulfillable          -----------------DO NOT TRUST---------------->       -1.5  
     Less than promised             ----------------DO NOT TRUST---------------->       1 
 
 
NOTE:  

After training is completed and predictions are made on the evaluation data-set. 
Combine the predicted classes as follows before submitting the prediction file on 
Innocentive for generating the score: 

 

                                     Prediction dataset  
 
                 1    and  1.5                             ---->    Trust 
                -1    and  - 1.5                           ---->    Do Not Trust  
 

Results : 

 

Table 17: Four classifications in desired output vector 

Desired Performance epochs 
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Performance(MSE) reached 

Less than 0.01 0.324 4 

 

 

 

 

Figure 73 : zero vector dimensions/features Performance Graph 

 

The results shows a increase in the mse of the network. which at start looked  very 

promising due to the steep slope of the curve but the best validation performance 

reached by the network is 0.324 which is highest among all the previous algorithms up 

till now. 
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6.2.8 Method II: Learning with two times more don't trust vectors. 

 

Implementation : 

 

Another approach to preprocess the data to help increase the efficiency and accuracy of 

the network is increasing the ratio of minorities in the raw training data by duplicating 

those vectors. for example, in INNOVATE data set only 30 % of the input row vectors 

containing the desired output of Trust, therefore, boosted the input training data 2x Trust 

row vectors by duplicating the data. 

 

 Results : 

 

Table 18: Learning with two times more don't trust vectors in training data set. 

Desired 
Performance(MSE) 

Performance reached epochs 

Less than 0.01 0.219 4 

 

 

Figure 74 : four times more true vectors Performance Graph 
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The Performance was much better compared to method 1approach but the results were 

not as close to those of training algorithms discussed earlier. The best validation 

performance mse able to reached was 0.219 in 4 epochs before the update in mse 

started became negligible/unaccountable for learning further learning. Although,This 

approach came out to be the fastest one converging in 4 iterations  only. 

 

 

6.2.9 Method III:  Variation in threshold limit  

 

Implementation 

 

Up till now, as the network is trained with desired output considering 0 for don't trust and 

1 for trust, therefore expected predicted  values from the trained network, which falls 

between 0 and 1, were classified into trust and don't trust predictions  using the 

threshold of 0.5, but  looking at the output predicted from the network found out ,two 

scenarios , which provides possibilities of increasing the threshold from 0.5 to 

somewhere between 0.6 and 0,65  to get a increase in the number of correct 

predictions. In scenario one, the output range predicted by the trained network has the 

least predicted value of approx 0.2 and highest predicted value of 0.99.therefore taking 

the median for the predicted dataset, which comes out to be (0.2+0.99)/2 ~ approx 

0.60.In second scenario, found out the following distribution in the predicted dataset.     

Between 0.5 to 0.59      Number of 0(Don't Trust) predictions Number of 1(Trust) predictions  

    0.5 to  0.59                20               26 

    0.6  to 0.69                15               46 

  

 therefore, up till now, we were not including these large set of 0(Don't trust) 

classifications in our final prediction datasets. as we can see in the above table, if we 

move the threshold to a little higher value say up to approx 0.60 ,the final prediction file 

will be including this large number of (0)don't trust predictions(20) but along with a cost 
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of somewhat similar  number of 1(trust) predictions(26) also .But as the cost of correct 

prediction of 0(don't trust) is higher than the cost of correct prediction of  1(trust) values, 

therefore, the above inclusion of values up till threshold of 0.60 should always be going 

to increasing the overall score despite having the similar number of correct trust 

predictions . 

As shown in the below table which shows a successful increment in the overall 

performance of the network boosting the final score to  0.69  by configuring the  

increment in the threshold value of the network from 0.50 to 0.62. 

Results : 

 

Table 19: Variation in threshold limit 

Threshold used for classifying 

True and False 

Total number of don't trust rows 

in the final predictions  

Score achieved  

0.50 40 0.57 

0.68 60 0.63 

0.62 52 0.69 

  

 

 

6.2.10 Method IV  : Focusing on reduced set of  training vectors 

 

 implementation : 

 

Analyzing the results from various experiments, found one thing similar in the behavior 

of the trained neural networks both in the training phase and in the prediction phase. 

Despite having a good mse the performance of the trained network was not that great. 

found out validation checks should be kept to a lower number. generated a more better 

mse this time but still the performance remained almost similar. Analyzing the predicted 
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values to find out what could have been the reason behind such behavior found out the 

following distribution of the values in the prediction results. 

 

 
Predicted values 

 
count 

 
0   (upto e^-6) 

 
71 

 
1   (from 0.8 ) 

 
253 

 
0  <------>  1 

 
115 

     
        Total 

     
      439 

 

 

As it can be seen, most of the predictions are able to provide concrete results of either 

TRUST (1) or DON"T TRUST(0). This was the similar behavior predicted by network 

with different algorithms and configurations used. having most of the predictions coming 

out straightly into either true or false category but  approx 100 values have a range 

between 0 and 1 ,which is making the difference in the overall performance of the 

network. 

Therefore, there was a need to try and lookout if there will be increase in the 

performance by focusing training  only on these row numbers .After done with the initial 

training with complete dataset, say network1, saved the weights and try training network 

with only considering those subset of rows which were earlier predicting range between 

0 to 1, say network_2. Following were the results predicted from final neural network 

network_2. 

 

 Results : 

Table 20: Focusing on reduced set of  training vectors 

Desired 
Performance(MSE) 

Performance 
reached 

epochs 

Less than 0.01 0.216 20 
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Figure 75 : Focusing on reduced set of  training vectors 

 

The best validation mse of 0.21 within 20 iterations achieved by this approach was 

almost similar to the method iv. 

 

 

6.2.11 Method V:  Increasing the validation and test dataset  

 

 implementation : 

 

There is always a tradeoff  between the percentage of training data assigned for the 

training of the network and the test or validation of the network. To improve the ability of 

the network to accurately predict for the unseen data, increased the test and validation 
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dataset percentage to 15%each.Folowing are the analyses of the approaches used, 

with having the best ones selected among them to generate the score from the 

Innocentive dashboard. 

Training_data      (Perf)        : 70 %  

 Validation_data  (Vperf)      : 15% 

Test_data            (Tperf )    : 15% 

 

Results : 

 

Table 21: Increasing the validation and test dataset percentage 

 

 

6.2.12 Method VI : Revising with important/ stringent vectors   

 

 implementation :  

 

One of the way we can increase the performance of the network is by simulating the 

learning of the neural networks with that of how we as human beings learn, especially 

 Configuration Stop Condition Performance Score 

1 trainscg__51neurons__tansig-
tansig__learngdm__epochs500__val

idation10000 

epochs best_perf: 0.1746 
  best_vperf: 0.2162                  
 best_tperf: 0.2455 

 

     

2 trainscg__51neurons__tansig-
tansig__learngdm__epochs1000__v

alidation10000 

epochs  best_perf: 0.1897 
   best_vperf: 0.1924 
  best_tperf: 0.1992 

0.57 

     

3 trainscg__51neurons__tansig-
purelin__learngdm__epochs10,000_

_validation10,000 

epochs  best_perf: 0.1678 
   best_vperf: 0.2105 
  best_tperf: 0.2289 

 

     

4 trainscg__219neurons__tansig-
tansig__learngdm__epochs50,000_

_validation10,000 

validation  best_perf: 0.2040 
   best_vperf: 0.1845 
  best_tperf: 0.2051 
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during exam times. once we are done with our entire syllabus we find out the topics 

which  we find hard to remember even after we have went through them while covering 

the whole book during the first time. Thus, marking out those topics and only go through 

these shortlisted set of topics instead of entire book to make our self more confident on 

these stringent /important topics. Similarly , in neural networks we follow the same 

analogy to try and improve the overall learning capability of the network. The approach 

used is mentioned below: 

Now, there is a need to find out the stringent /important input training vectors, which the 

network is not able to get trained successfully as compared to other input row vectors. . 

one method used to find out the stringent training vectors is to create multiple different 

networks with various configurations like, different training algorithms, different number 

of hidden neurons ,different transfer functions, variation in learning rate etc. After 

training completion, the predictions are made on the complete dataset by all the 

networks. All the wrong predictions were taken out from all the prediction sets and 

generated the frequency of each row vector from this wrong prediction datasets. 

Following table is generated with the total count of row vector ids grouped together by 

their frequency of occurrence in the wrong predictions dataset generated through 

multiple experiments as mentioned above. 

 

Frequency Stringent input 

vector count 

12 27 

11 28 

10 13 

9 34 

8 16 

7 3 

6 5 

5 12 

4 4 

3 7 

2 27 
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Scenario 1: 

 

In this method, we will start with our base neural network which performed the best 

among the different algorithmic technique experimented. i.e scaled conjugate algorithm 

network, which was first trained for the complete dataset similar to the analogy of 

human beings reading the whole book for the first time. After the first  training is 

complete ,say NN1, . Now, using NN1 as the base network and train the network 

completely only for the stringent set of training input vector generating a new network 

say NN2,in an analogy of the human beings doing revision of only the smaller set of 

most important/stringent topics at the end. Finally, NN2  will be used for the evaluation 

dataset for generating final predictions. following are the results of the above approach 

used where NN2 training was stopped after a particular number of iterations /mse to 

keep a check on the possibility of over training on the stringent vectors.  

 

 Results : 

 

Table 22: Revising with important/ stringent vectors 

 Desired Performance 
(MSE/EPOCHS) on revising 

dataset 

Performance 
reached on 
complete dataset 

Epochs 
reached 

1 Full 0.6248 446 

2 50 iterations 0.5656 50 

3 20 iterations 0.5936 20 

4 5 iterations 0.5685 5 

5 Mse   0.1  0.4684 16 

6      Mse   0.135  0.4364 10 

7    Mse   0.15  0.4854 6 

 

Following are the results for the sixth network in the above table 

 

Desired 
Performance(MSE) 

Performance reached on 
revising dataset  

epochs 

Less than 0.125 0.135 10 
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Figure 76 : Revising with important/ stringent vectors  scenario 1 

 

The best validation mse of 0.135 within 10 iterations achieved by this approach is the 

performance of the NN2 network on the revising dataset. The best  final performance of 

the network on the complete dataset is 0.43 in 10 iteration. 

Scenario 2 : 

 

In scenario 1,  NN2 was generated from NN1 after training on the stringent vectors for a 

particular amount of iterations /mse to avoid overtraining. Her , in this method, another 

level of neural network is generated ,say NN3,using nn2 as its base network. The 

concept behind this approach is once the network is retrained for the stringent vectors, it 

may happen that the network may become biased towards those smaller set of input 

row vectors. Taking analogy from the human beings by going over the entire book once 

again after done with revising of the important topics. Finally, NN3  will be used for the 

evaluation dataset for generating final predictions. Following are the results of the above 

approach used where the intermediate network NN2 was either trained for the full 
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number of iterations or stopped after a particular number of iterations /mse to keep a 

check on over-training on the stringent vectors followed by final NN3 training on 

complete dataset . 

Results : 

 

Table 23: Revising with important/ stringent vectors  scenario 2 

 Desired Performance 
(MSE/EPOCHS) on NN1 

Desired Performance 
(MSE/EPOCHS) on 
NN2 

Performance 
reached on 
complete dataset 

Epochs 
reached 

1 Full Full 0.1856 11 

2 Mse 0.25  Full 0.1915 53 

3 Full 20 iterations 0.2722 20 

 

Following are the results for the first network in the above table 

Desired 
Performance(MSE) 

Performance 
reached 

epochs 

Less than 0.01 0.1856 11 

 

 

Figure 77 : Revising with important/ stringent vectors scenario 2 
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The best validation mse of 0.185 within 11 iterations achieved by this approach is the 

best performance achieved by any network up till now. 

 

 

6.2.13 Method VII : Excluding Noise from the network 

 

implementations : 

 

There are possibilities that the desired output provided in the training dataset may not 

be always 100% correct. Such input row vectors are called noise in the training dataset. 

Presence of such data deviates the network training with false weight updates. 

Therefore, it is very necessary to remove the noise from the training dataset before 

feeding it into the network. One of the method to find out the noisy input training vectors 

is similar to the method vi , i,e  create multiple different networks with various 

configurations and carry out the predictions on the training dataset itself. Analyze and 

compare the predictions from all the networks, select only those rows numbers whose 

predictions were constantly fluctuating between Trust and Don't trust. Finally, the 

highest frequency fluctuation are the strong candidate for the noisy input training 

vectors. 

Following are the results of the training carried out on the dataset exclusive of noisy 

input row vectors . 

 

Results : 

 

Table 24: Excluding Noise from the network 

 Desired Performance 
(MSE/EPOCHS) on NN1 

Desired 
Performance 
(MSE/EPOCHS) on 
NN2 

Performance 
reached on 
complete dataset 

Epochs 
reached 

1 Full - 0.1955 59 

2 Full Full 0.145 18 

 

Following are the results for the second  network in the above table 
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Desired 
Performance(MSE) 

Performance 
reached 

epochs 

Less than 0.01 0.145 18 

 

 

Figure 78 :  Excluding Noise from the network 

 

The best validation mse of 0.145 within 18 iterations achieved by this approach crossed 

the performance achieved by the method vi significantly and become the best network 

up till now. 

 

6.2.14 Method VIII : Merging method VI and VII 

 

implementations : 
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This method combines the last two approaches of revision and noise exclusion, As 

these two analyzing techniques has achieved a significant mse improvement. In this 

approach, starting with NN1 as an initial trained network, the network is trained with 

noise exclusive method producing a intermediate trained network NN2. now, NN2 will 

be used to train with the revising method and generate another neural network 

NN3.Thereafter, NN3 is fed with the complete dataset for the purpose of generalized 

training generating NN4.Finally, NN4 is used for the predictions on the evaluation 

datasets. following are the results of the above approach: 

Results : 

 

Table 25: merging method VI and VII 

Desired 
Performance(MSE) 

Desired 
Performance 

(MSE/EPOCHS) 
on NN2 

Desired 
Performance 

(MSE/EPOCHS) 
on NN3 

Desired 
Performance 

(MSE/EPOCHS) 
on NN4 

Performance 
reached 

epochs 

Less than 0.01 full full full 0.127 609 

 

 

Figure 79 : Merging method VI and VII 
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The best validation mse of 0.127  achieved by this network was a significant 

improvement over the last two already best approaches and thus producing the best 

network up till now. 

 

 Comparison  and  Conclusion 

 

Table 26 :  Table of comparison 

 Approach Performance Epochs 

1 Gradient descent back-propagation 0.198 517 

2 Resilient back-propagation 0.20 66 

3 Scaled conjugate gradient back-propagation 0.192 43 

4 Momentum  back-propagation 0.201 868 

5 Adaptive Learning Rate  back-propagation 0.22 70 

6 Momentum  and Adaptive Learning Rate back-propagation 0.22 98 

7 Four classifications in desired output vector 0.324 39 

8 Two times more don't trust vectors 0.219 4 

9 Variation in threshold limit 0.1924 43 

10 Focusing on Reduced set of training vectors 0.216 20 

11 Increasing the validation and test dataset 0.1924 43 

12 Revising with important/ stringent vectors scenario 1 0.4364 10 

13 Revising with important/ stringent vectors scenario 2 0.1856 11 

14 Noise exclusion from the network 0.145 18 

15 Merging method VI and VII 0.127 609 
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The table shows the comparison of different learning algorithms and techniques used 

along with the performance achieved by the network respectively.  

Starting with performing different experiments with all the various training algorithms to 

find out the best algorithm with the lowest possible mse on the training dataset. The 

results from gradient descent and scaled conjugate gradient descent provided good 

mse as compared to other training algorithms. The scaled conjugate gradient descent 

produced the least mse of 0.192 among all the training algorithms ,therefore continued 

training with more advanced analytical methods using this particular algorithms 

configurations as the basis for the experiments  

In the series of different analytical models ,initially very promising results were achieved 

with the help of the variation in the threshold technique which helped the score increase 

from 0.54 earlier to 0.69 on the Innocentive leadership dashboard.  

In later stages of the analysis, the technique of retraining the already trained networks 

for the important rows found very effective in reducing the mse from 0.192 to 0.185.  

The exclusion of noise from the network further took mse to one of the best possible 

value so far achieved. 

Finally, as the last two approaches looked very promising in increasing the network 

performance therefore  merge both the techniques resulted in a level 4 neural network 

which produced the lowest ever mse of 0.127 only. which was much closer to the 

desired mse of 0.1 . 
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7. Future Work 

 

 As the number of features in the application dataset increase, like in the case of large 

scale applications , the layers size( neurons ) of the artificial neural network needs to be 

increased to accommodate the increased  dimensions of the input dataset. After certain 

point, the network size becomes so huge that it becomes almost infeasible to be 

implemented efficiently because of the increased complexity induced due to the 

exponential growth of the inter-connections among the nodes(neurons) in the network. 

This phenomenon is generally phrased as the " the curse of dimensionality" in the field 

of machine learning. Therefore, there is a need to come out with an algorithm to 

process large dataset efficiently keeping the neural network size considerable small by 

optimizing the numbers of neurons and the interconnection between them.. The future 

work will be on optimizing the neural networks. There are several paper published with 

different approaches to achieve this, but the two most promising ones are genetic 

algorithms and modular design technique. 
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9. Appendix 

 

9.1 Algorithm to process the predicted output data: 

 
 
/*algorithm to process the predicted output data*/ 
import java.io.BufferedReader; 
import java.io.BufferedWriter; 
import java.io.FileInputStream; 
import java.io.FileWriter; 
import java.io.InputStream; 
import java.io.InputStreamReader; 
 
public class DataPredicted { 
 
public static void main(String [] args) throws Exception{ 
 
   InputStream    file_input_stream; 
   BufferedReader buffer_reader; 
    
 try { 
 
      file_input_stream = new FileInputStream("Predicted_output.txt"); 
      buffer_reader = new BufferedReader(new InputStreamReader(file_input_stream)); 
      FileWriter file_stream = new FileWriter("JMDAUM_outputPredicted_IDs.txt"); 
      BufferedWriter out = new BufferedWriter(file_stream); 
 
  String L = ""; 
  Double Threshold_true = 0.7; 
  int i =1; 
 
      while (( L = buffer_reader.readline()) != null) 
  { 
   L=L.trim(); 
   if( Double.parseDouble(L)>=Threshold_true) 
       out.write((400000+i)+"\n"); 
    i++; 
  } 
 
 out.close(); 
   }catch(Exception ex) 
 { 
      ex.printStackTrace(); 
      } 
} 
} 
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9.2 Algorithm to prepare the training input dataset : 

 
import java.io.BufferedReader; 
import java.io.BufferedWriter; 
import java.io.FileInputStream; 
import java.io.FileWriter; 
import java.io.InputStream; 
import java.io.InputStreamReader; 
 
public class InputData { 
   public static void main(String [] args) throws Exception{      
 InputStream    file_input_stream; 
 BufferedReader buffer_reader; 
 
  try { 
 file_input_stream = new FileInputStream("traintgmc.csv"); 
 buffer_reader = new BufferedReader(new InputStreamReader(file_input_stream)); 
 FileWriter file_stream = new FileWriter("input_tgmctrain.txt"); 
 BufferedWriter output = new BufferedWriter(file_stream); 
 FileWriter file_stream2 = new 
 FileWriter("output_tgmctrain.txt"); 
 BufferedWriter output2 = new BufferedWriter(file_stream2); 
 
 String L =""; 
 
  while ((L = buffer_reader.readLine()) != null) 
 { 
 L = L.trim(); 
 if(L.contains("false")) 
  { 
   L=L.replace(",false",""); 
   output.write(L); 
      output2.write('0'); 
  } 
 else 
  { 
  L=L.replace(",true",""); 
  output.write(L); 
  output2.write('1'); 
  } 
       output.write("\n"); 
       output2.write("\n"); 
      } 
  output.close(); 
  output2.close(); 
}catch(Exception ex){ 
  ex.printStackTrace(); 
 } 
 }} 
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 9.3 Algorithm to double the true vectors in input dataset data :  

 
import java.io.BufferedReader; 
import java.io.BufferedWriter; 
import java.io.FileInputStream; 
import java.io.FileWriter; 
import java.io.InputStream; 
import java.io.InputStreamReader; 
 
public class DoubleTrueVectors { 
    public static void main(String [] args) throws Exception{ 
 
   InputStream    file_input_stream; 
   BufferedReader buffer_reader; 
   InputStream    fis_intermdiate; 
   BufferedReader br_intermdiate; 
  try { 
 file_input_stream = new FileInputStream("train_tgmc.csv"); 
 buffer_reader = new BufferedReader(new InputStreamReader(file_input_stream)); 
 
 FileWriter file_stream = new  FileWriter("intermediate_tgmctrain.txt"); 
 BufferedWriter output = new BufferedWriter(file_stream); 
 String L = ""; 
 
  while ((L = buffer_reader.readLine()) != null) 
   { 
     if(L.contains("true")) 
    output.write(L+"\n"); 
   } 
        output.close(); 
     fis_intermdiate = new FileInputStream("intermediate_tgmctrain.txt"); 
     br_intermdiate = new BufferedReader(new InputStreamReader(fis_intermdiate)); 
     file_stream = new FileWriter("2xTrueVector_tgmctrains.txt"); 
     output = new BufferedWriter(file_stream); 
     L = ""; 
 
 int i = 1; 
 while ((L = buffer_reader.readLine()) != null) 
   { 
    output.write(L +"\n"); 
    if(i==10 && (L = br_intermdiate.readLine()) != null ) 
     { 
             i=0; 
       output.write(L +"\n"); 
     } 
     i++; 
          output.write(','); 
         } 
       output.close();    
}catch(Exception ex){ 
  ex.printStackTrace();   }}} 
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