
San Jose State University
SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

Spring 2014

Big Data Analytics Using Neural networks
Chetan Sharma
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

Part of the Computer Sciences Commons

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU ScholarWorks. It has been
accepted for inclusion in Master's Projects by an authorized administrator of SJSU ScholarWorks. For more information, please contact
scholarworks@sjsu.edu.

Recommended Citation
Sharma, Chetan, "Big Data Analytics Using Neural networks" (2014). Master's Projects. 368.
DOI: https://doi.org/10.31979/etd.72at-vza4
https://scholarworks.sjsu.edu/etd_projects/368

https://scholarworks.sjsu.edu?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F368&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F368&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F368&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F368&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F368&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/368?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F368&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

Big Data Analytics Using Neural Networks Chetan Sharma

1

Big Data Analytics Using Neural networks

A Master's Project

Presented to

The Faculty of the Department of Computer Science

San José State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

Advisor: Dr. Chris Tseng

by

Chetan Sharma

May 2014

Big Data Analytics Using Neural Networks Chetan Sharma

2

© 2014

Chetan Sharma

ALL RIGHTS RESERVED

Big Data Analytics Using Neural Networks Chetan Sharma

3

The Designated Master Project Committee Approves the Master's Project Titled

BIG DATA ANALYTICS USING NEURAL NETWORKS

by

Chetan Sharma

APPROVED FOR THE DEPARTMENT OF COMPUETR SCIENCE

SAN JOSÉ STATE UNIVERSITY

May 2014

Dr. Chris Tseng Date
Department of Computer Science

Dr. Sami Khuri Date
Department of Computer Science

Mr Sri Ram Date
Senior Manager, IBM Silicon Valley Lab

Big Data Analytics Using Neural Networks Chetan Sharma

4

ACKNOWLEDGEMENTS

I would like to express my sincere thanks to Dr. Chris Tseng, my project advisor, for

providing me with all his support and expert guidance with constant encouragement

throughout the project. I would like to thank my committee members, Dr. Sami Khuri

and Mr. Sri Ram, for their important suggestions. At last, I would like thank my family for

their encouraging support through the course of the project.

Big Data Analytics Using Neural Networks Chetan Sharma

5

ABSTRACT

Machine learning is a branch of artificial intelligence in which the system is made to

learn from data which can be used to make predictions, real world simulations, pattern

recognitions and classifications of the input data. Among the various machine learning

approaches in the sub-field of data classification, neural-network methods have been

found to be an useful alternatives to the statistical techniques. An artificial neural

network is a mathematical model, inspired by biological neural networks, are used for

modeling complex relationships between inputs and outputs or to find patterns in data.

The goal of the project is to construct a system capable of analyzing and predicting the

output for the evaluation dataset provided by the "IBM Watson: The Great Mind

Challenge" organized by IBM Research and "InnoCentive INSTINCT (Investigating

Novel Statistical Techniques to Identify Neurophysiological Correlates of

Trustworthiness) : The IARPA Trustworthiness Challenge" organized by the office of

The Director Of National Intelligence. The objective of this paper is to understand the

machine learning using neural networks. At the end of the paper, the comparison

between different learning strategies have been shown which are used to increase the

accuracy of the predictions. From the trained neural network up to a satisfactory level,

we will be able to classify any generalized input, process often termed as generalization

capability of the learning system.

Big Data Analytics Using Neural Networks Chetan Sharma

6

TABLE OF CONTENTS

Contents

1. Project Description: ... 10

2. Artificial Neural Network .. 11

2.1 Introduction .. 11

2.2 Back propagation Algorithm ... 12

2.3 Learning parameters .. 12

3. AWS Setup .. 13

4. Matlab neural network toolbox .. 28

5 IBM WATSON ... 38

5.1 Data Processing ... 38

5.1.1 Dataset Design : .. 38

5.1.2 Input data processing methods : .. 40

5.1.3 Output data predicted processing method .. 42

5.2 Implementation ... 43

5.2.1 Gradient descent back-propagation ... 43

5.2.2 Resilient back-propagation ... 45

5.2.3 Scaled conjugate gradient back-propagation .. 47

5.2.4 Momentum back-propagation ... 49

5.2.5 Adaptive Learning Rate back-propagation .. 51

5.2.6 Momentum and Adaptive Learning Rate back-propagation 52

5.2.7 Method I: Non zero vector dimensions/features only 54

5.2.8 Method II: Four times more true vectors. ... 55

5.2.9 Method III: Removed all the Constant columns ... 57

5.2.10 Method IV : Removing all the true vector constant columns 58

Comparison and Conclusion .. 59

6 INNOCENTIVE .. 60

6.1 Data Processing .. 60

Big Data Analytics Using Neural Networks Chetan Sharma

7

6.1.1 Dataset Design : .. 60

6.1.2 Input data processing methods : .. 63

6.1.3 Output data predicted processing method .. 67

6.2 Implementation ... 69

6.2.1 Gradient descent back-propagation .. 69

6.2.2 Resilient back-propagation ... 70

6.2.3 Scaled conjugate gradient back-propagation .. 72

6.2.4 Momentum back-propagation ... 73

6.2.5 Adaptive Learning Rate back-propagation .. 75

6.2.6 Momentum and Adaptive Learning Rate back-propagation 76

6.2.7 Method I: Four classifications in desired output vector 78

6.2.8 Method II: Learning with two times more don't trust vectors. 80

6.2.9 Method III: Variation in threshold limit ... 81

6.2.10 Method IV : Focusing on reduced set of training vectors 82

6.2.11 Method V: Increasing the validation and test dataset 84

6.2.12 Method VI : Revising with important/ stringent vectors 85

6.2.13 Method VII : Excluding Noise from the network ... 90

6.2.14 Method VIII : Merging method VI and VII ... 91

Comparison and Conclusion .. 93

7. Future Work .. 95

8. References .. 96

9. Appendix ... 97

9.1 Algorithm to process the predicted output data: ... 97

9.2 Algorithm to prepare the training input dataset : .. 98

9.3 Algorithm to double the true vectors in input dataset data : 99

Big Data Analytics Using Neural Networks Chetan Sharma

8

Figures

Figure 1: An Artificial Neural Network -- 11

Figure 2: Activation Functions --- 13

Figure 3: Transfer Function :sigmoid --- 13

Figure 4: Amazon web services sign up --- 14

Figure 5: Amazon Web Services Registration --- 14

Figure 6: AWS EC setup -- 15

Figure 7: AWS Launch New Instance -- 15

Figure 8: AWS Amazon Machine Image -- 16

Figure 9: AWS Instance Type --- 16

Figure 10: AWS Configure Instance Details -- 17

Figure 11: AWS Add Storage -- 17

Figure 12: AWS Tag Instance --- 18

Figure 13: AWS Configure Security group -- 18

Figure 14: AWS Review Launch Instance -- 19

Figure 15: AWS Key Pair --- 19

Figure 16: AWS new key pair -- 20

Figure 17 :AWS Launch Status-- 20

Figure 18: AWS Management console -- 21

Figure 19: AWS Instance Description -- 21

Figure 20: AWS Instance Monitoring -- 22

Figure 21: AWS Instance Connect --- 22

Figure 22: AWS Instance Connection details -- 23

Figure 23: AWS Instance Putty Connection -- 23

Figure 24: AWS Instance Putty Private Key Setup --- 24

Figure 25: AWS Load .pem private key --- 24

Figure 26: AWS Rendering .PEM file -- 25

Figure 27: AWS Save private key --- 25

Figure 28: AWS .PPK file generation -- 26

Figure 29: AWS Putty Private Key Setup --- 26

Figure 30: AWS Connected using putty --- 27

Figure 31: Matlab: Sample Dataset -- 28

Figure 32: Matlab: Neural Network toolbox --- 28

Figure 33: Matlab: Pattern Recognization tool --- 29

Figure 34: Matlab: select Data --- 29

Figure 35: Matlab: Validation and test data -- 30

Figure 36: Matlab: Network Architecture -- 30

Figure 37: Matlab: Train Network --- 31

Figure 38: Matlab: Neural Network Training phase --- 32

Figure 39: Matlab: NN Training completed --- 33

Big Data Analytics Using Neural Networks Chetan Sharma

9

Figure 40: Matlab: Retrain Network -- 34

Figure 41: Matlab: Evaluate Network -- 34

Figure 42: Matlab: Save results --- 35

Figure 43: Matlab: Current Workspace -- 35

Figure 44: Matlab: Saving workspace --- 36

Figure 45: Matlab: Load Workspace --- 36

Figure 46: Matlab: Predicting Output --- 37

Figure 47: Training Dataset -- 38

Figure 48: Evaluation Dataset --- 39

Figure 49: True Vector Id's --- 42

Figure 50: Back-propagation --- 43

Figure 51: Gradient descent back-propagation Performance Graph ----------------------- 44

Figure 52: Resilient back-propagation Performance Graph ---------------------------------- 47

Figure 53: Scaled conjugate gradient back-propagation Performance Graph ------------ 48

Figure 54: Momentum back-propagation Performance Graph ------------------------------ 50

Figure 55: Adaptive Learning Rate back-propagation Performnace Graph -------------- 52

Figure 56: Momentum and Adaptive Learning Rate Performance Graph ---------------- 54

Figure 57: Zero vector dimensions/features Performance Graph --------------------------- 55

Figure 58: Four times more true vectors Performance Graph -------------------------------- 56

Figure 59: Removed all the Constant columns -- 57

Figure 60: Removing all the true vector constant columns ----------------------------------- 58

Figure 61: Comparison and Conclusion Grpah -- 59

Figure 62: Training Dataset -- 62

Figure 63: Evaluation Dataset --- 63

Figure 64: Input data processing methods -- 64

Figure 65: Process the evaluation data-- 66

Figure 66: Predicted Vector Id's --- 67

Figure 67: Gradient descent back-propagation Performance Graph ----------------------- 70

Figure 68: Resilient back-propagation Performance Graph ---------------------------------- 71

Figure 69: Scaled conjugate gradient back-propagation Performance Graph ------------ 73

Figure 70: Momentum back-propagation Performance Graph ------------------------------ 74

Figure 71: Adaptive Learning Rate back-propagation Performnace Graph -------------- 76

Figure 72: Momentum and Adaptive Learning Rate Performance Graph ---------------- 77

Figure 73: Zero vector dimensions/features Performance Graph --------------------------- 79

Figure 74: Four times more true vectors Performance Graph -------------------------------- 80

Figure 75: Focusing on reduced set of training vectors --------------------------------------- 84

Figure 76: Revising with important/ stringent vectors scenario 1 --------------------------- 88

Figure 77: Revising with important/ stringent vectors scenario 2 ---------------------------- 89

Figure 78: Excluding Noise from the network -- 91

Figure 79: Merging method VI and VII --- 92

Big Data Analytics Using Neural Networks Chetan Sharma

10

1. Project Description:

The goal of the project is to construct a system capable of analyzing and predicting

output for the large scale applications by efficiently handling the data consisting of very

high dimensionality. Experiments using different learning strategies and data

preprocessing methods will be carried out to increase the accuracy of the predictions.

The project will serve the part of the "IBM Watson, The Great Mind Challenge" technical

intercollegiate competition and InnoCentive INSTINCT: The IARPA (Investigating Novel

Statistical Techniques to Identify Neurophysiological Correlates of Trustworthiness)

Trustworthiness Challenge. The objective of the project is to server two purpose, one is

to generate an neural network predicting results as close as possible to the ones which

would have been generated by the, one of the most intelligent supercomputer in the

world, IBM Watson for the IBM challenge and second is to generate a neural network

capable to most accurately predict whether to trust or do not trust a person based on its

biological and physical behavior. Therefore, the generated system will be validated with

the cutting edge technology in today's world of machine learning, IBM Watson dataset

and with the nationwide open challenge competition with a prize money of $25000.

From the trained system up to a satisfactory level, we will be able to classify any

generalized input , process often termed as generalization capability of the learning

system.

Big Data Analytics Using Neural Networks Chetan Sharma

11

2. Artificial Neural Network

2.1 Introduction

Artificial neural networks natural metaphor representation is a “Brain” of an individual.

The basic concept in machine learning using neural networks is based on the learning

process of a living thing i.e. how we are able to learn new things with the help of our

experience since childhood. An artificial neural network can be defined as a computing

system made up of number of simple highly interconnected processing elements which

processes information by their dynamic state response to external inputs. Information

processing is carried out through connectionist approach to computation. An example of

such a neural network appears in figure 2.1.

Figure 1: An Artificial Neural Network

Here, there can be any number of input, hidden and output layers connected in the

network. In simplest terms, neural network, initially, makes random guesses and sees

how far its answers are from the actual answers and makes an appropriate adjustment

to its node-connection weights.

Big Data Analytics Using Neural Networks Chetan Sharma

12

2.2 Back propagation Algorithm

Back propagation algorithm is used to train the artificial neural network described in

previous section. It helps achieve desired outputs from provided inputs under

supervised learning

2.3 Learning parameters

Learning rate : Learning rate is the rate at which we want neural network to learn

training function. Keeping it too small, neural network convergence to desired results

becomes extremely slow. Keeping it too large, neural network may not converge at all.

Thus, it is very important to choose learning rate properly.

Hidden layer neurons : According to the Kolmogorov equation, any given continuous

function can be implemented exactly by a 3-layer neural network with n neurons in the

input layer, 2n+1 neurons in the hidden layer and m neurons in the output layer.

Weight and biases : They are used to reduce the difference between actual and

desired output. This kind of learning is termed as supervised learning in which neural

network is feed with inputs and corresponding desired outputs.

Activation Function :The activation function of a node defines the output of that node

given an input or set of inputs. In its simplest form, this function is binary—that is, either

the neuron is firing or not.

Big Data Analytics Using Neural Networks Chetan Sharma

13

Figure 2: Activation Functions

Transfer Function :It calculate a layer's output from its net input. The sigmoid function

introduces non-linearity in the network. Without it, the net can only learn functions which

are linear combinations of its inputs

Figure 3: Transfer Function :sigmoid

3. AWS Setup

The project was implemented over the Amazon web services. following are the steps

explaining the AWS setup procedure.

Go to the link : http://aws.amazon.com/console/. it will display the startup page of the

AWS. To work on Amazon cloud we require to register to the website. Click on the sign

in button as shown in the figure to proceed with the login.

Big Data Analytics Using Neural Networks Chetan Sharma

14

Figure 4: Amazon web services sign up

If you are signing for the first time for the Amazon cloud services, choose the first option

which will take you to the registration page. after successful sign up, come back to this

page and proceed with the second option to enter the AWS console.

Figure 5: Amazon Web Services Registration

there are multiple services offered by Amazon. we require the elastic computing as a

need for our project. select the EC option as shown in figure.

Big Data Analytics Using Neural Networks Chetan Sharma

15

Figure 6: AWS EC setup

Click on the create new instance button for starting a fresh setup.

Figure 7: AWS Launch New Instance

This will take you to the process of building our machine as per the requirements .

Amazon provides sever operating systems as shown below. choose the one by

selecting the button on the right side of the page. It also allows us to choose among the

32 bit/64 bit options. Select ubuntu version-12 64 bit. As version 12 still the most stable

release.

Big Data Analytics Using Neural Networks Chetan Sharma

16

Figure 8: AWS Amazon Machine Image

The next page will provide the different computing units. they are pre configured into the

sub categories of memory optimized, computation optimized and storage optimized. as

we have high memory requirement . select M2.2 large. it provided sufficient computing

power with enough ram to accommodate our training dataset and learning system's

network size.

Figure 9: AWS Instance Type

The following page displays the number of instances of the machine we have selected

are required to be instantiated. Select 1 and leave other configurations option as it is

Big Data Analytics Using Neural Networks Chetan Sharma

17

and click on next button. the default setting of the configurations well suits our project

requirement.

Figure 10: AWS Configure Instance Details

The amount of storage required for the system can be selected on the next page. The

default option of 8 GB is enough for the project.

Figure 11: AWS Add Storage

We can provide a name to our machine. It is helpful to distinguish when we have

multiple machines running on cloud.

Big Data Analytics Using Neural Networks Chetan Sharma

18

Figure 12: AWS Tag Instance

The following page provides the option to configure the network of the machine. We

strictly require port 22 to be open for the SSH protocol. as we can only access the

machine using the SSH client as the machine will be running over cloud. Remaining

ports can be selected as per choose considering in mind the security issues.

Figure 13: AWS Configure Security group

After clicking on the next button we are done with the setup of our machine. the

following page will ask us to give a final review to our application before we proceed

ahead.

Big Data Analytics Using Neural Networks Chetan Sharma

19

Figure 14: AWS Review Launch Instance

After reviewing the details of the machine configuration successfully. We can proceed

with the launch button. As the machine will be running on the cloud ,therefore for the

purpose of security it will ask us to create a new key value pair, if one doesn't exist.

Figure 15: AWS Key Pair

Choose the first option for generating a new key value pair and provide a name to it.

Big Data Analytics Using Neural Networks Chetan Sharma

20

A download key pair option will appear. click to download it and keep it in a safe place,

as u will not be able to generate a duplicate key. Therefore, it has be keep safe for

successful access to the machine.

Figure 16: AWS new key pair

Click on the launch button. a successful launch page will appear after the instance has

been started.

Figure 17 :AWS Launch Status

Big Data Analytics Using Neural Networks Chetan Sharma

21

view instances button will display the console where all the machines created by this

account is displayed .A particular machine information and control can be taken by

selection the checkbox next to it.

Figure 18: AWS Management console

Tabs below provide the detail configuration information for the machine selected above.

Figure 19: AWS Instance Description

Also, the system can be easily monitored by selecting the 'monitoring' tab next to the

information tab. It display a series of graphs representing the current state of the

system. like number of disk reads, network usage, ram usage, storage usage etc.

Big Data Analytics Using Neural Networks Chetan Sharma

22

Figure 20: AWS Instance Monitoring

To start the machine, select the corresponding machine and click on connect.

Figure 21: AWS Instance Connect

The following page will provide the information to connect to the machine using the IP

address. As the ip address is assign at the time of system start, therefore there will be

different IP address allocate to the machine every time we restart the instance.

There two options provided. we can either connect through the ssh client like putty, or

through our web browser by selecting the second option. select the "a standalone ssh

client" and copy the ip address.

Big Data Analytics Using Neural Networks Chetan Sharma

23

Figure 22: AWS Instance Connection details

To connect though putty. use the ip address provided .Also ,as we have selected the

security through key pairs, therefore path to the private key download has to be

provided to the ssh client.

Figure 23: AWS Instance Putty Connection

Traverse through the category structure presented on the left of the putty.

Big Data Analytics Using Neural Networks Chetan Sharma

24

Connection -> SSH-> AUTH . It will display on the right, option to provide the path of the

private key for the given ip address.

Figure 24: AWS Instance Putty Private Key Setup

As the private key generated was in the .pem format we need to download use the

putty key generator to convert the private key file from .pem format the .ppk format. It

can be achieved as per the following steps:

Figure 25: AWS Load .pem private key

Load the .pem private key file using the load option as shown in figure.

Big Data Analytics Using Neural Networks Chetan Sharma

25

Figure 26: AWS Rendering .PEM file

After successfully rendering the .pem file. it will display the certificate in the text box as

shown below.

Figure 27: AWS Save private key

Now, to convert it to the .ppk format. Select the save option and choose the format as .

ppk.

Big Data Analytics Using Neural Networks Chetan Sharma

26

Select yes when prompted for permission. it will convert the .pem file and save the file in

the .ppk format.

Figure 28: AWS .PPK file generation

The generate .ppk file will be load in putty and click open to connect to the machine on

AWS.

Figure 29: AWS Putty Private Key Setup

When connecting for the first time, the putty will prompt for the permission to connect for

the security reasons. click yes and proceed to the login terminal of the machine.

Big Data Analytics Using Neural Networks Chetan Sharma

27

enter the username : ubuntu

By default, the username of the ubuntu Os is set to ubuntu .The login will not ask for the

password authentication as the authentication was done trough public private key pair.

Figure 30: AWS Connected using putty

After displaying the command shell the Ubuntu Setup over AWS has been completed

successfully.

Big Data Analytics Using Neural Networks Chetan Sharma

28

4. Matlab neural network toolbox

Following are the steps to demonstrate the working of the neural network toolbox in

matlab. To start with, we generate some dummy training datase

 input : matrix containing the input vectors.

targetoutput : matrix containing the corresponding desired outputs.

Figure 31: Matlab: Sample Dataset

We can start the neural network tool using the nnstart command. It will provide us with

four options to select upon depending upon the type of training we are going to be

required.

Figure 32: Matlab: Neural Network toolbox

Big Data Analytics Using Neural Networks Chetan Sharma

29

Select the pattern recognizing tool. It will display the following window containing the

information about the type of training tool we have selected. Click next to proceed with

the network construction

Figure 33: Matlab: Pattern Recognization tool

Select the input and target output required to train the network. From the drop down

menu select the dummy input and target output matrices created earlier.

Figure 34: Matlab: select Data

Big Data Analytics Using Neural Networks Chetan Sharma

30

The next window will provide the options to divide the training dataset into three parts.

value entered randomly divide the training dataset on percentage basis.

Figure 35: Matlab: Validation and test data

The following window will allow the user to enter the number of hidden neurons required

for the network. The input layer and output layer neurons will be automatically set from

the training dataset provided earlier.

Figure 36: Matlab: Network Architecture

Big Data Analytics Using Neural Networks Chetan Sharma

31

The neural network has been constructed successfully. Clicking on the train button will

start the network training as shown in the next figure.

Figure 37: Matlab: Train Network

The training window shows the following information :

 - The network structure with number of neurons in each layer and the transfer functions

used.

- The training algorithms along with the data division parameters.

- The status of the learning phase of the network

- Options to plot the different training graphs during and after learning

There are two ways for the training to be completed. either can stop the training in

between by clicking on the stop training button at any point of time or when the training

gets automatically stop because any one of the network learning parameter like number

of iterations, mean square error, minimum gradient ,number of validation stops ,etc. has

been reached.

Big Data Analytics Using Neural Networks Chetan Sharma

32

Figure 38: Matlab: Neural Network Training phase

As shown in figure below, the training has been completed as the number of validation

stops which has been set to 6 during network initialization has been reached while

training was in progress.

Big Data Analytics Using Neural Networks Chetan Sharma

33

Figure 39: Matlab: NN Training completed

After training has been completed, the following window will show the option to retrain

the network from start.

Big Data Analytics Using Neural Networks Chetan Sharma

34

Figure 40 : Matlab: Retrain Network

If the network performance is not as per the desired results this option can be selecting

with the options to increase the network size or with increased training dataset.

Figure 41 : Matlab: Evaluate Network

After the training has been successfully completed the next window will help save the

results.

Big Data Analytics Using Neural Networks Chetan Sharma

35

Either choose from the options given to save parts of the training results or the entire

training results can be saved by checking in the check box "save all".

Figure 42: Matlab: Save results

The save option will save the results on the current workspace.

as shown in the figure below. the variable "net" has been saved to the current

workspace.

Figure 43: Matlab: Current Workspace

Big Data Analytics Using Neural Networks Chetan Sharma

36

we can save the current trained network for future use in the file system using the save

command as shown in the figure.

Figure 44: Matlab: Saving workspace

The previously saved network can be reloaded into the current workspace using the

load command as shown in the figure below.

Figure 45: Matlab: Load Workspace

The trained network "net "is used to do predictions for the dataset "inputdata" using the

following command net("inpudata"). the results can be seen in the figure below.

Big Data Analytics Using Neural Networks Chetan Sharma

37

Figure 46: Matlab: Predicting Output

As we can see the predicted output matches the desired output. The training has been

completed successfully.

Big Data Analytics Using Neural Networks Chetan Sharma

38

5 IBM WATSON

5.1 Data Processing

5.1.1 Dataset Design :

Datasets provided contains the following two files :

Training dataset :

It contains the data used to train the network. Following are characteristics of this

dataset.

1)Total number of rows: 2,39,944

2) Each row contains one input vector.

3) A row represented with the following format:

 Input vector ID, Input vector, Target output

Figure 47: Training Dataset

Where,

Input vector id: It is an integer which uniquely identifies the input vector

and its target output

Input vector: A 319-dimensions vector to be used for the purpose of input

training data.

Big Data Analytics Using Neural Networks Chetan Sharma

39

Target output : The desired output in the form of TRUE or FALSE for the

corresponding input vector.

 Evaluation data set :

It contains the data used to evaluate the machine which was trained using the training

dataset earlier. Following are characteristics of this dataset.

1)Total number of rows: 51,906

2) Each row contains one input vector.

3) A row represented with the following format:

 Input vector ID, Input vector

Figure 48: Evaluation Dataset

where, Input vector id: It is an integer which uniquely identifies the input vector

Input vector: A 319-dimensions vector used for the purpose of generating

predictions to evaluate the performance of the machine trained using

training dataset.

Big Data Analytics Using Neural Networks Chetan Sharma

40

5.1.2 Input data processing methods :

The dataset files provided were in the csv (comma separated values) format, therefore,

the datasets can be loaded into the matrix using the csvread command as follows:

The following Matlab command reads the CSV files(containing only numeric values) into

the matrix P:

 P = CSVREAD("filename",row,column,csvrange);

 where,

 filename: The file to be read into matrix.

row : This argument is optional and when provided, it reads the csv file starting

from the row number provided by skipping the previous ones.

col : This argument is optional and when provided, it reads the csv file starting

from the column number provided by skipping the previous ones.

csvrange: This argument is optional and when provided, It reads only the range

specified in this argument.

Prepare and process the training input data :

The training dataset file contains both the input vectors and the corresponding target

outputs along with the vector IDs. Two training matrices will be constructed from this

single file, the input data matrix and the target output matrix.

As the training dataset contains the target output in the form of True/False(and not in

numeric form) therefore, the training dataset has to be processed before we can load it

using csvread command. This can be easily done by following steps:

1) Open a file in a text editor and use find and replace option to convert all the

"True" alphabetical words into numerical value "1" and "False" with "0" or vice-

versa.

Big Data Analytics Using Neural Networks Chetan Sharma

41

2) Using csvread command load the file into two matrices as follows:

 p=csvread("training_dataset_filename",0,1,(0,1,239944,319))

 t=csvread("training_dataset_filename",0,319,(0,319,239944,320))

Here, input data matrix p will be created by loading file and skipping the first

column, which are Vector ID's, and last columns, which are target outputs.

The target output matrix t will be created by loading only the last column of the

file by skipping everything else.

Even though the training dataset is in a plain text format, its size is huge as it contains

millions of rows of data, thus it may become bottleneck for some common text editors to

process it efficiently. Therefore, another way to process the training input dataset

through programming is by creating two csv files, one for each, the input vectors and

the target output in the form of 0/1. (See appendix no. for the java code). The resulted

files can then be loaded directly using csvread command as follows.

 p=csvread("training_dataset_filename")

 t=csvread("training_dataset_filename_2")

Process the evaluation data :

The evaluation dataset contains the input vector ID and the input vector. As it contains

only numeric data, unlike training input dataset which also had the alphabetical data in

the form of target output, therefore, it can be directly loaded into evaluation input

matrix, without having the need of pre processing, using the csvread command as

follows

 eval_p=csvread("evaluation_dataset_filename",0,1)

Here, evaluation input data matrix eval_p will be created by loading file and

skipping only the first column, which are Vector ID's.

Big Data Analytics Using Neural Networks Chetan Sharma

42

5.1.3 Output data predicted processing method

Generating Score for the trained Network

The predicted output data file on the evaluation dataset is required to be submitted at

the competition website to get the score for the trained machine. The required format of

the prediction file is as follows:

Figure 49: True Vector Id's

1) It only contain the ID's for the input vectors generating "True" predictions.

2) It should be a text file(.txt).

Predicted output data pre-processing:

The trained neural network is used to predict the output on the evaluation dataset. The

output file generated contains the predictions in the form of numbers (generally, decimal

numbers ranging from 0 to 1) for the corresponding input vectors in the evaluation

dataset. As the prediction file required to be submitted should contain only the true

predictions vector Id, therefore there is a need for the preprocessing of the output data

file. One way to process the output data file through programming (see appendix for the

java code) is as follows:

1) As output contains numbers ranging from 0 to 1,set up a threshold limit for the

numbers to be considered as True predictions.

Big Data Analytics Using Neural Networks Chetan Sharma

43

2) Separate out the vector Ids generating number in the True predictions

threshold limit .

3) Save these true predictions vectors Id's in a .t

5.2 Implementation

5.2.1 Gradient descent back-propagation

Algorithm :

Back-propagation is a gradient descent algorithm. It's an algorithm for taking one

training case and computing efficiently for every weight in the network depending upon

how the error will change on that particular training case as you change the weight. We

can compute how fast the error changes as we change a hidden activity on a particular

training case. So instead of using activities of the hidden units as our desired states, we

use the error derivatives with respect to our activities

Figure 50: Back-propagation

Big Data Analytics Using Neural Networks Chetan Sharma

44

The core of back propagation is taking error derivatives in one layer and from them

computing the error derivatives in the layer that comes before that as shown in the

figure 2.1

Configuration :

Learning rate = 0.01

Number of hidden layer neurons = 639

Training function used = traingd

Transfer function = tansig - tansig

Results:

Table 1: Gradient descent back-propagation Results

Desired
Performance(MSE)

Performance reached epochs

Less than 0.01 0.014 23

Figure 51: Gradient descent back-propagation Performance Graph

Big Data Analytics Using Neural Networks Chetan Sharma

45

The graph shows the performance curve of the gradient descent algorithm measured

using mean square error (mse). Starting with the initial random weights of the network

the learning curve shows the good descent within first few iterations as we can see a

steep drop in the mse from 0.09 to 0.02 within first two iterations over the entire training

dataset. The training continued to perform better for few more iterations only and finally

became negligible/unaccountable after 23 passes over the entire training dataset. The

best mse able to reached by the network is 0.014 within 23 epochs.

5.2.2 Resilient back-propagation

Algorithm :

The motivation behind this approach is that the magnitude of the gradient can be very

different for different weights & can change during learning. Therefore selecting a single

global learning rate will not be easily possible. To come out with a solution we can

modify our stochastic descent algorithm in such a way that it will now only consider the

sign of the partial derivative over all patterns and thus it can be easily applied on

different weights independently. The algorithm is as follows

(1) If there is change in sign of the partial derivatives from previous iteration, then

weight will be updated by a factor of η−.

(2) If there is no change in sign of the partial derivatives from previous iteration, then

weight will be updated by a factor of η+.

Each weight is changed by its own update value, in the opposite direction of that

weight's partial derivative. This method is one of the fastest and memory efficient weight

update mechanisms as compared to standard steepest descent algorithm

Big Data Analytics Using Neural Networks Chetan Sharma

46

Configuration:

Learning rate = 0.01

Number of hidden layer neurons =639

Training function used = trainrp

Transfer function = tansig - tansig

Delta_increase = 1.2 .It determines the Increment to the weight change

Delta_increase = 0.5 .It determines the Decrement to the weight change

Delta_initial = 0.07 .it determines the initial weight change

Delta_Maximum = 50 . it determines the maximum amount by which the weights can be

updated

Results:

Table 2: Resilient back-propagation results

Desired
Performance(MSE)

Performance reached epochs

Less than 0.01 0.0145 20

Big Data Analytics Using Neural Networks Chetan Sharma

47

Figure 52: Resilient back-propagation Performance Graph

Figure shows the logarithmic performance curve of the resilient back-propagation

algorithm measured using mse of the network with respect to the iterations over the

training dataset. At start, with initial random weights, the training performing was getting

worse, instead of reducing the error difference between the output predicted and the

desired output, the training was updating weights resulting in increased mse for initial

iterations producing steep slope upwards for the first two iterations. Compared to

gradient descent, the results are completely opposite for the initial learning phases of

the training. The graph shows few spikes generated due to the policy of updating weight

by η+. or η−. only. The best mse able to reach by the network was 0.0145 in 20 epochs

only. although the training was fast as compared gradient descent but had a decreased

in mse from 0.014 to 0.0145.

5.2.3 Scaled conjugate gradient back-propagation

Algorithm:

The basic back-propagation algorithm adjusts the weights in the steepest descent

direction where as in scaled conjugate gradient descent a search is performed based

on conjugate directions. It not perform a line search at each iteration. This algorithm is

proved to be faster than the basic gradient descent back-propagation

Big Data Analytics Using Neural Networks Chetan Sharma

48

Configuration:

Learning rate = 0.01

Number of hidden layer neurons =639

Training function used = trainscg

Transfer function = tansig - tansig

sigma = 5.0e-5 .It determine change in weight for second derivative approximation

lambda = 5.0e-7. The parameter for regulating the indefiniteness of the Hessian

 Results:

Table 3: Scaled conjugate gradient back-propagation results

Desired
Performance(MSE)

Performance reached epochs

Less than 0.01 0.010 22

Figure 53 : Scaled conjugate gradient back-propagation Performance Graph

Big Data Analytics Using Neural Networks Chetan Sharma

49

Figure shows the performance curve of the scaled conjugate algorithm using mse with

respect to the number of iterations over the training dataset. During the initial learning

phase of the training the performance was very similar to that of gradient descent

algorithm generating a steep slope down within first two iterations of the training but

outperforms it later on by reaching the best mse of 0.010 as compared to 0.014 from

gradient descent within 22 passes over the training dataset.

5.2.4 Momentum back-propagation

Algorithm :

Unlike in mini-batch learning, in Momentum method we use the change in gradient to

update the velocity and not the position of weight particle. In this method, we take the

fraction of the previous weight updates and add that to the current one. The main idea

behind doing this is to improve the efficiency of the neural network by preventing the

system to converge to a local minimum or to converge to a saddle point.

 Considering that we have taken very high momentum parameter which may help us

speed up the convergence rate of the neural network, but this may also incur the risk of

overshooting the momentum and making system unstable generating more function

hikes. On the other hand, if we take momentum parameter very small, it may happen

that neural network learns very slowly. The tradeoff between high and low value have to

be kept in mind before choosing the momentum magnitude for training.

Configuration:

Learning rate = 0.01

Number of hidden layer neurons =639

Training function used = traingdm

Transfer function = tansig - tansig

Momentum = 0.9 .it determines the momentum constant.

Big Data Analytics Using Neural Networks Chetan Sharma

50

 Results :

Table 4: Momentum back-propagation Results

Desired
Performance(MSE)

Performance
reached

epochs

Less than 0.01 0.014 2

Figure 54 : Momentum back-propagation Performance Graph

Figure shows the performance curve of the momentum back-propagation using mse

with respect to the number of iterations over the training dataset. The Steep drop in mse

showing by the graph for the first two iterations is similar to that of gradient descent and

SCG but it differs at a point that the best mse of 0.014, which is similar to that SCG and

not too far from gradient descent, was achieved in first two epochs only. Although there

was no any further/accountable decrease in network mse over the next few iterations

continuously.

Big Data Analytics Using Neural Networks Chetan Sharma

51

5.2.5 Adaptive Learning Rate back-propagation

Algorithm :

We have used multi layer neural network, hence, we need to consider that there is a

wide variation on what will be the suitable learning rate at each corresponding layer i.e.

the respective gradient magnitudes at each layer are generally different.

This situation motivates to use a global learning rate responsible for each weight

update. With adaptive learning method, the trial and error search for the best initial

values for the parameters can be avoided. Normally the adaption procedures are able to

quickly adopt from the initial given values to the appropriate ones.

Also, the amount of weight that can be allowed to adapt depends on the shape of the

error surface at each particular situation. The values of the learning rate should be

sufficiently large to allow a fast learning process but also small enough to guarantee its

effectiveness. If at some moment the search for the minimum is being carried out in the

ravine, it is desirable to have a small learning rate, since otherwise the algorithm will

oscillate between both sides of the ravine.

 configuration:

Learning rate = 0.01

Number of hidden layer neurons =639

Training function used = traingda

Transfer function = tansig - tansig

learning rate _increase = 1.05 .It determines the increase in learning rate.

learning rate _decrease = 0.7 .It determines the decrease in learning rate.

Big Data Analytics Using Neural Networks Chetan Sharma

52

Results :

Table 5: Adaptive Learning Rate back-propagation Results

Desired
Performance(MSE)

Performance reached epochs

Less than 0.01 0.015 28

Figure 55 : Adaptive Learning Rate back-propagation Performnace Graph

Figure shows the performance curve of the adaptive learning back-propagation using

mse with respect to the number of iterations over the training dataset. Following the

similar pattern of mse curve as earlier algorithms the reduction in mse showed a steep

slope within the first few iterations over the dataset but it differs at a point that it was

able to reach the best mse of approx. 0.015 in 28 iterations. which by far is the highest

mse up till now requiring largest number of iterations.

5.2.6 Momentum and Adaptive Learning Rate back-propagation

Algorithm:

Big Data Analytics Using Neural Networks Chetan Sharma

53

It combines both the momentum back-propagation and adaptive learning rate strategy

to train the network.

Configuration:

Learning rate = 0.01

Number of hidden layer neurons =639

Training function used = traingda

Transfer function = tansig - tansig

Momentum = 0.9 .it determines the momentum constant.

learning rate _increase = 1.05 .It determines the increase in learning rate.

learning rate _decrease = 0.7 .It determines the decrease in learning rate.

Results :

Table 6 Momentum and Adaptive Learning Rate back-propagation Results

Desired
Performance(MSE)

Performance reached epochs

Less than 0.01 0.015 3

Big Data Analytics Using Neural Networks Chetan Sharma

54

Figure 56 : Momentum and Adaptive Learning Rate Performance Graph

Figure shows the performance curve of the momentum back-propagation and adaptive

learning rate strategy using mse with respect to the number of iterations over the

training dataset. The graph is almost similar to that of the adaptive learning rate

algorithm reaching the best mse of 0.015 but the current method was much faster than

the adaptive learning alone as the number of iterations reduces from 28 to 3 only.

5.2.7 Method I: Non zero vector dimensions/features only

Implementation :

One of the method to improve performance can be done by preprocessing the data
such that ,the columns which remain zero throughout the entire training dataset can be
safely removed from the raw dataset. the constant columns do not provide any
meaningful information in classification of the input vectors. Removing such columns
helps reduce the dimensionality in the training input vectors, thus helping in reducing
the size of the neural network due to reduce in the number of neurons required in the
hidden layer of the network.
In the IBM data set, After removing the constant columns of zero values from the entire
data set, the dimensionality of the input vectors reduced from 319 to 261 only which
eventually helped reduced the network size from having 639 neurons in the hidden layer
to 523 neurons only.

Big Data Analytics Using Neural Networks Chetan Sharma

55

Results :

Table 7: Non-zero vector dimensions/features Results

Desired
Performance(MSE)

Performance
reached

epochs

Less than 0.01 0.068 39

Figure 57 : zero vector dimensions/features Performance Graph

The results shows a gradual decrease in the mse of the network. which at start look

very promising due to the reduced network size but the training efficiency instead

become worse requiring approx 40 iterations to reached an mse of 0.007 which is

highest among all the previous algorithms discussed with full dataset.

5.2.8 Method II: Four times more true vectors.

Implementation :

Another approach to preprocess the data to help increase the efficiency and accuracy of

Big Data Analytics Using Neural Networks Chetan Sharma

56

the network is increasing the ratio of minorities in the raw training data by duplicating

the vectors.

for example, in IBM data set only 1.47 % of the input row vectors contains the target

output of True .therefore , tried with boosting the true input row vectors 4 times by

duplicating the data.

Results :

Table 8: four times more true vectors Results

Desired Performance(MSE) Performance reached epochs

Less than 0.01 0.026 47

Figure 58 : four times more true vectors Performance Graph

The Performance was much better compared to method 1approach but the results were

not as close to those of training algorithms discussed earlier. The best mse able to

reached was 0.026 in 47 epochs before the update in mse started became

negligible/unaccountable for learning further learning.

Big Data Analytics Using Neural Networks Chetan Sharma

57

5.2.9 Method III: Removed all the Constant columns

 Implementation

Removed all the columns which were constant in the entire training dataset.

constant columns(features)) removed : 72

 features remaining : 247

 Results :

Table 9: Removed all the Constant columns

Desired Performance(MSE) Performance reached epochs

Less than 0.01 0.0243 24

Figure 59 : Removed all the Constant columns

Big Data Analytics Using Neural Networks Chetan Sharma

58

5.2.10 Method IV : Removing all the true vector constant columns

 Implementation

First found all the rows which were true, then search for all the columns which are

constant in these true rows set only, which may or may not be constant in the entire

training dataset. Now removed all these constant columns from the entire training

dataset.

 constant columns(features)) removed : 78

 features remaining : 241

Results :

Table 10: Removing all the true vector constant columns

Desired Performance(MSE) Performance reached epochs

Less than 0.01 0.0246 34

Figure 60: Removing all the true vector constant columns

Big Data Analytics Using Neural Networks Chetan Sharma

59

In this case, The training was fastest as the number of constant columns further

increased by 5 more columns as compared to the case 2 above, But the network didn't

able to improve the score. As we were not sure whether to provide those extra 5

columns more priority over other columns or just discard them completely. and we tried

by proceeded with the option of discarding them.

Comparison and Conclusion

Figure 61 : Comparison and Conclusion Graph

The figure shows the comparison of different learning algorithms used with respect to

the number of iterations. Total number of iterations done are 40. During the initial phase

of the training the learning curve is almost similar for most of the algorithms except

resilient back propagation which generate the slope completely opposite to the others.

To some extent the combined approach of momentum and adaptive learning also takes

time to converge during the initial learning stages . The momentum algorithm converges

fastest among all within two iterations but had a learning rate of 0.014.As it can be

easily seen in the graph, the scaled conjugate gradient has the best performance in

terms of accuracy in prediction by having the least mse of 0.01 only.

Big Data Analytics Using Neural Networks Chetan Sharma

60

6 INNOCENTIVE

6.1 Data Processing

6.1.1 Dataset Design :

Following were the details of the InnoCentive project challenge datasets available for

training and prediction . The dataset is generated on the background of the game of

trust which is played between two people , not necessary to be a friend or known to

each other, judging whether the person should be trusted or not based on the promises

which he has made and actions he has took in fulfilling of those promises all as a part of

a game.

Going through the challenge details found out there are two types of dataset available:

1 RAW dataset : it sizes ranges from 26 gb to 60 gb. the size is huge because it

contains lots of readings from ECG and other electronic instruments to capture the

person biological and physical readings during play

2 PROCESSED dataset : size is of few kb's only.

The processed dataset is derived from the raw dataset and contains the data in the

format suitable for statistical, mathematical, cognitive or AI analysis. It contains the data

in the form features. there are approx 100 features and few hundred rows in the training

dataset.

The processed dataset completely resembles the raw dataset and the competition will

only consider the final score irrespective of which dataset set has been used for

generating the results. Therefore downloaded all the Processed datasets for analyzing

,training and final evaluation purpose.

Analysis of the processed datasets provided on the challenge dashboard.

Big Data Analytics Using Neural Networks Chetan Sharma

61

There are five types of data sets available:

1) INSTINCT_Cortisol

2) INSTINCT_Mayer

3) INSTINCT_NEO

4) INSTINCT_Oxytocin

5) INSTINCT_Feature_Matrices

Although the first four dataset has been provided for our evaluation and training purpose

as these datasets were also derived as a byproduct from the raw datasets

preprocessing but it is not known if that information will be helpful in predicting the

results or not. The information containing in this matrices dataset is not included in the

feature matrices dataset, which is going to be used for machine learning.

Training dataset :

It contains the data used to train the network. Following are characteristics of this

dataset.

1)Total number of rows: 431

2) Each row contains one input vector with 109 features .

3) A row represented with the following format:

 Input vector ID,constant , Target output, Input vector

Big Data Analytics Using Neural Networks Chetan Sharma

62

Figure 62: Training Dataset

Where,

Input vector id: It is an integer which uniquely identifies the training input

vector and its target output

Input vector: A 109-dimensions vector to be used for the purpose of

training input data.

Target output : The desired output in the form of whether a person should

be trust or don't' trust for the corresponding input vector.

Constant : is a part of training input vector.

 Evaluation data set :

It contains the data used to evaluate the machine which was trained using the training

dataset earlier. Following are characteristics of this dataset.

1)Total number of rows: 215

2) Each row contains one input vector of 109 features.

3) A row represented with the following format:

Big Data Analytics Using Neural Networks Chetan Sharma

63

 Input vector ID,constant, Input vector

Figure 63: Evaluation Dataset

where,

Input vector id: It is an integer which uniquely identifies the evaluation input

vector

Input vector: A 109-dimensions vector used for the purpose of generating

predictions to evaluate the performance of the machine trained using training

dataset.

Constant : is a part of training evaluation input vector.

6.1.2 Input data processing methods :

The dataset files provided were in the csv (comma separated values) format, therefore,

the datasets can be loaded into the matrix using the csvread command.

Prepare and process the training input data :

Big Data Analytics Using Neural Networks Chetan Sharma

64

The training dataset file contains both the input vectors and the corresponding target

outputs along with the vector IDs. Two training matrices will be constructed from this

single file, the input data matrix and the target output matrix.

Apart from three feature columns,

 i.e. column 5 ,column 6 and column 7

 which are string representations , all of the remaining features are in the format of

numbers.

As the training dataset contains the target output in the form of string representations

(and not in numeric form) therefore, the training dataset has to be processed before we

can load it using csvread command.

Figure 64: Input data processing methods

1] column 6 data will constitute the desired output of the training dataset .Following will

be the column 6 representations into number data type :

Column 6 : It has the following ranges:

Exact amount promised, -----------------------TRUST---------------------> 1

More than promised -----------------------TRUST---------------------> 1

Promise not fulfill able ----------------DO NOT TRUST----------------> 0

Less than promised ----------------DO NOT TRUST----------------> 0

Big Data Analytics Using Neural Networks Chetan Sharma

65

As per the instructions mentioned in the challenge details: The player action is

considered to be entitled for TRUST classification if and only if either of the following

two conditions satisfies:

condition 1: The player(which can be a friend or stranger in the game) has provided the

exact amount promised

condition 2: the player has provided the amount which is more then what has been

initially promised by him.

Therefore, in dataset, all the strings representing above two conditions are replaced

with (Trust) 1 and the remaining string representations with (Don't Trust) 0.

2] column 7 data string data type representations into number data type :

Column 7 : the column 7 has the following ranges:

High -----------------------> 100

Medium -----------------------> 50

Low -----------------------> 0

3] The Unique row vectors Id's are constituted with the subset containing first four

 columns of the dataset.:

unique row vector ID's : [PID, SESSION, BLOCK, ROUND]

4] Column 5 is constant throughout the entire training dataset ,therefore it's

contribution to the training is none. therefore, it will be removed from the training

datasets.

Big Data Analytics Using Neural Networks Chetan Sharma

66

Using csvread command load the file into two matrices as follows:

 p=csvread("training_dataset_filename")

 t=csvread("desired_output_dataset_filename")

where, p= input to the network.

 t = desired output of the network.

Process the evaluation data :

Evaluation dataset also contains the input vectors in the form of string representations

(and not in numeric form) therefore, the evaluation dataset has to be processed before

we can load it using csvread command.

Figure 65: Process the evaluation data

Here , we only have one column , i.e column 7 which is in string representations , all

of the remaining features are in the format of numbers. therefore, like in training dataset

we will convert the column 7 data representations into number data type :

Column 7 : the column 7 has the following ranges:

High -----------------------> 100

Medium -----------------------> 50

Low -----------------------> 0

Big Data Analytics Using Neural Networks Chetan Sharma

67

Like in training dataset, evaluation dataset's Unique row vectors Id's are also constituted

with the subset containing first four columns of the dataset.:

unique row vector ID's : [pID, SESSION, BLOCK, ROUND]

 Similarly, like in training dataset, column 5 is constant throughout the entire evaluation

dataset ,therefore it's contribution to the prediction is none. therefore, it will be removed

from the evaluation datasets.

The evaluation dataset is loaded using the csvread command as follows

 eval_p=csvread("evaluation_dataset_filename")

6.1.3 Output data predicted processing method

Generating Score for the trained Network

The predicted output data file on the evaluation dataset is required to be submitted at

the competition website to get the score for the trained machine. The required format of

the prediction file is as follows:

Figure 66: Predicted Vector Id's

Big Data Analytics Using Neural Networks Chetan Sharma

68

1) First line should contain "test,,,,"

2) It only contains the ID's for the evaluation vectors.

3) Id's should be followed by predictions TURST or DON'T TRUST

4) It should be a text file(.txt). which should be zipped in .zip /.rar format.

Predicted output data pre-processing:

The trained neural network is used to predict the output on the evaluation dataset. The

output file generated contains the predictions in the form of numbers (generally, decimal

numbers ranging from 0 to 1) for the corresponding input vectors in the evaluation

dataset. As the prediction file required to be submitted should contain only the TRUST

and DON'T TRUST values along with their predictions vector Id, therefore there is a

need for the preprocessing of the output data file.

After training was completed and predictions were calculated on the evaluation data-set.

combined the predicted classes as

<=0.5 ---------> DONT' TRUST

>0.5 ---------> TRUST

Big Data Analytics Using Neural Networks Chetan Sharma

69

6.2 Implementation

6.2.1 Gradient descent back-propagation

Configuration :

Learning rate = 0.01

Number of hidden layer neurons = 219

Training function used = traingd

Transfer function = tansig - tansig

Results:

Table 11: Gradient descent back-propagation Results

Desired
Performance(MSE)

Performance reached epochs

Less than 0.01 0.198 517

The graph shows the performance curve of the gradient descent algorithm measured

using mean square error (mse). Starting with the initial random weights of the network

the learning curve shows the good descent within first few iterations as we can see a

steep drop in the mse within first few iterations over the entire training dataset. The

training continued to perform better for few more iterations only and finally became

negligible/unaccountable after 517 passes over the entire training dataset. The best

validation performance mse able to reached by the network is 0.198 within 517 epochs.

Big Data Analytics Using Neural Networks Chetan Sharma

70

Figure 67: Gradient descent back-propagation Performance Graph

6.2.2 Resilient back-propagation

Configuration:

Learning rate = 0.01

Number of hidden layer neurons =219

Training function used = trainrp

Transfer function = tansig - tansig

Delta_increase = 1.2 .It determines the Increment to the weight change

Delta_increase = 0.5 .It determines the Decrement to the weight change

Big Data Analytics Using Neural Networks Chetan Sharma

71

Delta_initial = 0.07 .it determines the initial weight change

Delta_Maximum = 50 . it determines the maximum amount by which the weights can be

updated

Results:

Table 12: Resilient back-propagation results

Desired
Performance(MSE)

Performance reached epochs

Less than 0.01 0.20 66

Figure 68: Resilient back-propagation Performance Graph

Figure shows the logarithmic performance curve of the resilient back-propagation

algorithm measured using mse of the network with respect to the iterations over the

Big Data Analytics Using Neural Networks Chetan Sharma

72

training dataset. At start, with initial random weights, the training performance curve

steadily keeps on declining up-till 2500 iterations. and later on the training become

almost negligible. The validations performance is best at 0.204 which comes at much

faster rate as compared to gradient descent algorithm.

6.2.3 Scaled conjugate gradient back-propagation

 Configuration:

Learning rate = 0.01

Number of hidden layer neurons =219

Training function used = trainscg

Transfer function = tansig - tansig

sigma = 5.0e-5 .It determine change in weight for second derivative approximation

lambda = 5.0e-7. The parameter for regulating the indefiniteness of the Hessian

 Results:

Table 13: Scaled conjugate gradient back-propagation results

Desired
Performance(MSE)

Performance reached epochs

Less than 0.01 0.192 43

Figure shows the performance curve of the scaled conjugate algorithm using mse with

respect to the number of iterations over the training dataset. During the initial learning

phase of the training the performance is very different as compared to the graduate

descent algorithm. It shows a gradual slop for first few hundred iterations followed by a

steep slope down from 1000th to 1300th iteration and outperforms the gradient

descent and resilient back propagation algorithms. by reaching the best validation

performance mse of 0.192 within much faster time of 43 iterations only.

Big Data Analytics Using Neural Networks Chetan Sharma

73

Figure 69 : Scaled conjugate gradient back-propagation Performance Graph

6.2.4 Momentum back-propagation

Configuration:

Learning rate = 0.01

Number of hidden layer neurons =219

Training function used = traingdm

Transfer function = tansig - tansig

Momentum = 0.9 .it determines the momentum constant.

Big Data Analytics Using Neural Networks Chetan Sharma

74

Results :

Table 14: Momentum back-propagation Results

Desired
Performance(MSE)

Performance
reached

epochs

Less than 0.01 0.201 868

Figure shows the performance curve of the momentum back-propagation using mse

with respect to the number of iterations over the training dataset. The drop in mse

showing by the graph for the first few iterations is similar to that of gradient descent and

Scaled conjugate gradient but later on the slop becomes almost flat. similar is the slope

of validation performance and test performance of the network . Although there was no

any further/accountable decrease in network mse over the next few iterations

continuously, the performance of the network is almost similar to the resilient back

propagation algorithm with best validation mse achieved is 0.20

Figure 70 : Momentum back-propagation Performance Graph

Big Data Analytics Using Neural Networks Chetan Sharma

75

6.2.5 Adaptive Learning Rate back-propagation

Configuration:

Learning rate = 0.01

Number of hidden layer neurons =219

Training function used = traingda

Transfer function = tansig - tansig

learning rate _increase = 1.05 .It determines the increase in learning rate.

learning rate _decrease = 0.7 .It determines the decrease in learning rate.

Results :

Table 15: Adaptive Learning Rate back-propagation Results

Desired
Performance(MSE)

Performance reached epochs

Less than 0.01 0.22 70

Figure shows the performance curve of the adaptive learning back-propagation using

mse with respect to the number of iterations over the training dataset. The curve

contains ripples due to the nature of adaptive learning rate where the learning rate of

the network is either increased or decreased depending on the learning threshold limit

set for the network. this continuous change in learning rate resulted in back and forth

movement of the curve. similar is the case with test and validations performance curves.

The best validation performance the network able to reach was 0.223 in 70 iterations

which is the highest value up till now.

Big Data Analytics Using Neural Networks Chetan Sharma

76

Figure 71 : Adaptive Learning Rate back-propagation Performance Graph

6.2.6 Momentum and Adaptive Learning Rate back-propagation

 Configuration:

Learning rate = 0.01

Number of hidden layer neurons =639

Training function used = traingdx

Transfer function = tansig - tansig

Momentum = 0.9 .it determines the momentum constant.

learning rate _increase = 1.05 .It determines the increase in learning rate.

Big Data Analytics Using Neural Networks Chetan Sharma

77

learning rate _decrease = 0.7 .It determines the decrease in learning rate.

Results :

Table 16 Momentum and Adaptive Learning Rate back-propagation Results

Desired
Performance(MSE)

Performance reached epochs

Less than 0.01 0.22 98

Figure 72 : Momentum and Adaptive Learning Rate Performance Graph

Figure shows the performance curve of the momentum back-propagation and adaptive

learning rate strategy using mse with respect to the number of iterations over the

training dataset. The graph is almost similar to that of the adaptive learning rate

Big Data Analytics Using Neural Networks Chetan Sharma

78

algorithm reaching the best validation performance mse of 0.22 but with a higher

number of iterations comparatively

6.2.7 Method I: Four classifications in desired output vector

 Implementation :

One of the method to improve the performance is by preprocessing the data such that ,

it completely resembles the strings without any loss of information : therefore Convert

the column 6 data as shown below:

 Column 6 : the column 6 has the following ranges:

 Exact amount promised, -----------------------TRUST---------------------> 1
 More than promised -------------------------TRUST---------------------> 1.5
 Promise not fulfillable -----------------DO NOT TRUST----------------> -1.5
 Less than promised ----------------DO NOT TRUST----------------> 1

NOTE:

After training is completed and predictions are made on the evaluation data-set.
Combine the predicted classes as follows before submitting the prediction file on
Innocentive for generating the score:

 Prediction dataset

 1 and 1.5 ----> Trust
 -1 and - 1.5 ----> Do Not Trust

Results :

Table 17: Four classifications in desired output vector

Desired Performance epochs

Big Data Analytics Using Neural Networks Chetan Sharma

79

Performance(MSE) reached

Less than 0.01 0.324 4

Figure 73 : zero vector dimensions/features Performance Graph

The results shows a increase in the mse of the network. which at start looked very

promising due to the steep slope of the curve but the best validation performance

reached by the network is 0.324 which is highest among all the previous algorithms up

till now.

Big Data Analytics Using Neural Networks Chetan Sharma

80

6.2.8 Method II: Learning with two times more don't trust vectors.

Implementation :

Another approach to preprocess the data to help increase the efficiency and accuracy of

the network is increasing the ratio of minorities in the raw training data by duplicating

those vectors. for example, in INNOVATE data set only 30 % of the input row vectors

containing the desired output of Trust, therefore, boosted the input training data 2x Trust

row vectors by duplicating the data.

 Results :

Table 18: Learning with two times more don't trust vectors in training data set.

Desired
Performance(MSE)

Performance reached epochs

Less than 0.01 0.219 4

Figure 74 : four times more true vectors Performance Graph

Big Data Analytics Using Neural Networks Chetan Sharma

81

The Performance was much better compared to method 1approach but the results were

not as close to those of training algorithms discussed earlier. The best validation

performance mse able to reached was 0.219 in 4 epochs before the update in mse

started became negligible/unaccountable for learning further learning. Although,This

approach came out to be the fastest one converging in 4 iterations only.

6.2.9 Method III: Variation in threshold limit

Implementation

Up till now, as the network is trained with desired output considering 0 for don't trust and

1 for trust, therefore expected predicted values from the trained network, which falls

between 0 and 1, were classified into trust and don't trust predictions using the

threshold of 0.5, but looking at the output predicted from the network found out ,two

scenarios , which provides possibilities of increasing the threshold from 0.5 to

somewhere between 0.6 and 0,65 to get a increase in the number of correct

predictions. In scenario one, the output range predicted by the trained network has the

least predicted value of approx 0.2 and highest predicted value of 0.99.therefore taking

the median for the predicted dataset, which comes out to be (0.2+0.99)/2 ~ approx

0.60.In second scenario, found out the following distribution in the predicted dataset.

Between 0.5 to 0.59 Number of 0(Don't Trust) predictions Number of 1(Trust) predictions

 0.5 to 0.59 20 26

 0.6 to 0.69 15 46

 therefore, up till now, we were not including these large set of 0(Don't trust)

classifications in our final prediction datasets. as we can see in the above table, if we

move the threshold to a little higher value say up to approx 0.60 ,the final prediction file

will be including this large number of (0)don't trust predictions(20) but along with a cost

Big Data Analytics Using Neural Networks Chetan Sharma

82

of somewhat similar number of 1(trust) predictions(26) also .But as the cost of correct

prediction of 0(don't trust) is higher than the cost of correct prediction of 1(trust) values,

therefore, the above inclusion of values up till threshold of 0.60 should always be going

to increasing the overall score despite having the similar number of correct trust

predictions .

As shown in the below table which shows a successful increment in the overall

performance of the network boosting the final score to 0.69 by configuring the

increment in the threshold value of the network from 0.50 to 0.62.

Results :

Table 19: Variation in threshold limit

Threshold used for classifying

True and False

Total number of don't trust rows

in the final predictions

Score achieved

0.50 40 0.57

0.68 60 0.63

0.62 52 0.69

6.2.10 Method IV : Focusing on reduced set of training vectors

 implementation :

Analyzing the results from various experiments, found one thing similar in the behavior

of the trained neural networks both in the training phase and in the prediction phase.

Despite having a good mse the performance of the trained network was not that great.

found out validation checks should be kept to a lower number. generated a more better

mse this time but still the performance remained almost similar. Analyzing the predicted

Big Data Analytics Using Neural Networks Chetan Sharma

83

values to find out what could have been the reason behind such behavior found out the

following distribution of the values in the prediction results.

Predicted values

count

0 (upto e^-6)

71

1 (from 0.8)

253

0 <------> 1

115

 Total

 439

As it can be seen, most of the predictions are able to provide concrete results of either

TRUST (1) or DON"T TRUST(0). This was the similar behavior predicted by network

with different algorithms and configurations used. having most of the predictions coming

out straightly into either true or false category but approx 100 values have a range

between 0 and 1 ,which is making the difference in the overall performance of the

network.

Therefore, there was a need to try and lookout if there will be increase in the

performance by focusing training only on these row numbers .After done with the initial

training with complete dataset, say network1, saved the weights and try training network

with only considering those subset of rows which were earlier predicting range between

0 to 1, say network_2. Following were the results predicted from final neural network

network_2.

 Results :

Table 20: Focusing on reduced set of training vectors

Desired
Performance(MSE)

Performance
reached

epochs

Less than 0.01 0.216 20

Big Data Analytics Using Neural Networks Chetan Sharma

84

Figure 75 : Focusing on reduced set of training vectors

The best validation mse of 0.21 within 20 iterations achieved by this approach was

almost similar to the method iv.

6.2.11 Method V: Increasing the validation and test dataset

 implementation :

There is always a tradeoff between the percentage of training data assigned for the

training of the network and the test or validation of the network. To improve the ability of

the network to accurately predict for the unseen data, increased the test and validation

Big Data Analytics Using Neural Networks Chetan Sharma

85

dataset percentage to 15%each.Folowing are the analyses of the approaches used,

with having the best ones selected among them to generate the score from the

Innocentive dashboard.

Training_data (Perf) : 70 %

 Validation_data (Vperf) : 15%

Test_data (Tperf) : 15%

Results :

Table 21: Increasing the validation and test dataset percentage

6.2.12 Method VI : Revising with important/ stringent vectors

 implementation :

One of the way we can increase the performance of the network is by simulating the

learning of the neural networks with that of how we as human beings learn, especially

 Configuration Stop Condition Performance Score

1 trainscg__51neurons__tansig-
tansig__learngdm__epochs500__val

idation10000

epochs best_perf: 0.1746
 best_vperf: 0.2162
 best_tperf: 0.2455

2 trainscg__51neurons__tansig-
tansig__learngdm__epochs1000__v

alidation10000

epochs best_perf: 0.1897
 best_vperf: 0.1924
 best_tperf: 0.1992

0.57

3 trainscg__51neurons__tansig-
purelin__learngdm__epochs10,000_

_validation10,000

epochs best_perf: 0.1678
 best_vperf: 0.2105
 best_tperf: 0.2289

4 trainscg__219neurons__tansig-
tansig__learngdm__epochs50,000_

_validation10,000

validation best_perf: 0.2040
 best_vperf: 0.1845
 best_tperf: 0.2051

Big Data Analytics Using Neural Networks Chetan Sharma

86

during exam times. once we are done with our entire syllabus we find out the topics

which we find hard to remember even after we have went through them while covering

the whole book during the first time. Thus, marking out those topics and only go through

these shortlisted set of topics instead of entire book to make our self more confident on

these stringent /important topics. Similarly , in neural networks we follow the same

analogy to try and improve the overall learning capability of the network. The approach

used is mentioned below:

Now, there is a need to find out the stringent /important input training vectors, which the

network is not able to get trained successfully as compared to other input row vectors. .

one method used to find out the stringent training vectors is to create multiple different

networks with various configurations like, different training algorithms, different number

of hidden neurons ,different transfer functions, variation in learning rate etc. After

training completion, the predictions are made on the complete dataset by all the

networks. All the wrong predictions were taken out from all the prediction sets and

generated the frequency of each row vector from this wrong prediction datasets.

Following table is generated with the total count of row vector ids grouped together by

their frequency of occurrence in the wrong predictions dataset generated through

multiple experiments as mentioned above.

Frequency Stringent input

vector count

12 27

11 28

10 13

9 34

8 16

7 3

6 5

5 12

4 4

3 7

2 27

Big Data Analytics Using Neural Networks Chetan Sharma

87

Scenario 1:

In this method, we will start with our base neural network which performed the best

among the different algorithmic technique experimented. i.e scaled conjugate algorithm

network, which was first trained for the complete dataset similar to the analogy of

human beings reading the whole book for the first time. After the first training is

complete ,say NN1, . Now, using NN1 as the base network and train the network

completely only for the stringent set of training input vector generating a new network

say NN2,in an analogy of the human beings doing revision of only the smaller set of

most important/stringent topics at the end. Finally, NN2 will be used for the evaluation

dataset for generating final predictions. following are the results of the above approach

used where NN2 training was stopped after a particular number of iterations /mse to

keep a check on the possibility of over training on the stringent vectors.

 Results :

Table 22: Revising with important/ stringent vectors

 Desired Performance
(MSE/EPOCHS) on revising

dataset

Performance
reached on
complete dataset

Epochs
reached

1 Full 0.6248 446

2 50 iterations 0.5656 50

3 20 iterations 0.5936 20

4 5 iterations 0.5685 5

5 Mse 0.1 0.4684 16

6 Mse 0.135 0.4364 10

7 Mse 0.15 0.4854 6

Following are the results for the sixth network in the above table

Desired
Performance(MSE)

Performance reached on
revising dataset

epochs

Less than 0.125 0.135 10

Big Data Analytics Using Neural Networks Chetan Sharma

88

Figure 76 : Revising with important/ stringent vectors scenario 1

The best validation mse of 0.135 within 10 iterations achieved by this approach is the

performance of the NN2 network on the revising dataset. The best final performance of

the network on the complete dataset is 0.43 in 10 iteration.

Scenario 2 :

In scenario 1, NN2 was generated from NN1 after training on the stringent vectors for a

particular amount of iterations /mse to avoid overtraining. Her , in this method, another

level of neural network is generated ,say NN3,using nn2 as its base network. The

concept behind this approach is once the network is retrained for the stringent vectors, it

may happen that the network may become biased towards those smaller set of input

row vectors. Taking analogy from the human beings by going over the entire book once

again after done with revising of the important topics. Finally, NN3 will be used for the

evaluation dataset for generating final predictions. Following are the results of the above

approach used where the intermediate network NN2 was either trained for the full

Big Data Analytics Using Neural Networks Chetan Sharma

89

number of iterations or stopped after a particular number of iterations /mse to keep a

check on over-training on the stringent vectors followed by final NN3 training on

complete dataset .

Results :

Table 23: Revising with important/ stringent vectors scenario 2

 Desired Performance
(MSE/EPOCHS) on NN1

Desired Performance
(MSE/EPOCHS) on
NN2

Performance
reached on
complete dataset

Epochs
reached

1 Full Full 0.1856 11

2 Mse 0.25 Full 0.1915 53

3 Full 20 iterations 0.2722 20

Following are the results for the first network in the above table

Desired
Performance(MSE)

Performance
reached

epochs

Less than 0.01 0.1856 11

Figure 77 : Revising with important/ stringent vectors scenario 2

Big Data Analytics Using Neural Networks Chetan Sharma

90

The best validation mse of 0.185 within 11 iterations achieved by this approach is the

best performance achieved by any network up till now.

6.2.13 Method VII : Excluding Noise from the network

implementations :

There are possibilities that the desired output provided in the training dataset may not

be always 100% correct. Such input row vectors are called noise in the training dataset.

Presence of such data deviates the network training with false weight updates.

Therefore, it is very necessary to remove the noise from the training dataset before

feeding it into the network. One of the method to find out the noisy input training vectors

is similar to the method vi , i,e create multiple different networks with various

configurations and carry out the predictions on the training dataset itself. Analyze and

compare the predictions from all the networks, select only those rows numbers whose

predictions were constantly fluctuating between Trust and Don't trust. Finally, the

highest frequency fluctuation are the strong candidate for the noisy input training

vectors.

Following are the results of the training carried out on the dataset exclusive of noisy

input row vectors .

Results :

Table 24: Excluding Noise from the network

 Desired Performance
(MSE/EPOCHS) on NN1

Desired
Performance
(MSE/EPOCHS) on
NN2

Performance
reached on
complete dataset

Epochs
reached

1 Full - 0.1955 59

2 Full Full 0.145 18

Following are the results for the second network in the above table

Big Data Analytics Using Neural Networks Chetan Sharma

91

Desired
Performance(MSE)

Performance
reached

epochs

Less than 0.01 0.145 18

Figure 78 : Excluding Noise from the network

The best validation mse of 0.145 within 18 iterations achieved by this approach crossed

the performance achieved by the method vi significantly and become the best network

up till now.

6.2.14 Method VIII : Merging method VI and VII

implementations :

Big Data Analytics Using Neural Networks Chetan Sharma

92

This method combines the last two approaches of revision and noise exclusion, As

these two analyzing techniques has achieved a significant mse improvement. In this

approach, starting with NN1 as an initial trained network, the network is trained with

noise exclusive method producing a intermediate trained network NN2. now, NN2 will

be used to train with the revising method and generate another neural network

NN3.Thereafter, NN3 is fed with the complete dataset for the purpose of generalized

training generating NN4.Finally, NN4 is used for the predictions on the evaluation

datasets. following are the results of the above approach:

Results :

Table 25: merging method VI and VII

Desired
Performance(MSE)

Desired
Performance

(MSE/EPOCHS)
on NN2

Desired
Performance

(MSE/EPOCHS)
on NN3

Desired
Performance

(MSE/EPOCHS)
on NN4

Performance
reached

epochs

Less than 0.01 full full full 0.127 609

Figure 79 : Merging method VI and VII

Big Data Analytics Using Neural Networks Chetan Sharma

93

The best validation mse of 0.127 achieved by this network was a significant

improvement over the last two already best approaches and thus producing the best

network up till now.

 Comparison and Conclusion

Table 26 : Table of comparison

 Approach Performance Epochs

1 Gradient descent back-propagation 0.198 517

2 Resilient back-propagation 0.20 66

3 Scaled conjugate gradient back-propagation 0.192 43

4 Momentum back-propagation 0.201 868

5 Adaptive Learning Rate back-propagation 0.22 70

6 Momentum and Adaptive Learning Rate back-propagation 0.22 98

7 Four classifications in desired output vector 0.324 39

8 Two times more don't trust vectors 0.219 4

9 Variation in threshold limit 0.1924 43

10 Focusing on Reduced set of training vectors 0.216 20

11 Increasing the validation and test dataset 0.1924 43

12 Revising with important/ stringent vectors scenario 1 0.4364 10

13 Revising with important/ stringent vectors scenario 2 0.1856 11

14 Noise exclusion from the network 0.145 18

15 Merging method VI and VII 0.127 609

Big Data Analytics Using Neural Networks Chetan Sharma

94

The table shows the comparison of different learning algorithms and techniques used

along with the performance achieved by the network respectively.

Starting with performing different experiments with all the various training algorithms to

find out the best algorithm with the lowest possible mse on the training dataset. The

results from gradient descent and scaled conjugate gradient descent provided good

mse as compared to other training algorithms. The scaled conjugate gradient descent

produced the least mse of 0.192 among all the training algorithms ,therefore continued

training with more advanced analytical methods using this particular algorithms

configurations as the basis for the experiments

In the series of different analytical models ,initially very promising results were achieved

with the help of the variation in the threshold technique which helped the score increase

from 0.54 earlier to 0.69 on the Innocentive leadership dashboard.

In later stages of the analysis, the technique of retraining the already trained networks

for the important rows found very effective in reducing the mse from 0.192 to 0.185.

The exclusion of noise from the network further took mse to one of the best possible

value so far achieved.

Finally, as the last two approaches looked very promising in increasing the network

performance therefore merge both the techniques resulted in a level 4 neural network

which produced the lowest ever mse of 0.127 only. which was much closer to the

desired mse of 0.1 .

Big Data Analytics Using Neural Networks Chetan Sharma

95

7. Future Work

 As the number of features in the application dataset increase, like in the case of large

scale applications , the layers size(neurons) of the artificial neural network needs to be

increased to accommodate the increased dimensions of the input dataset. After certain

point, the network size becomes so huge that it becomes almost infeasible to be

implemented efficiently because of the increased complexity induced due to the

exponential growth of the inter-connections among the nodes(neurons) in the network.

This phenomenon is generally phrased as the " the curse of dimensionality" in the field

of machine learning. Therefore, there is a need to come out with an algorithm to

process large dataset efficiently keeping the neural network size considerable small by

optimizing the numbers of neurons and the interconnection between them.. The future

work will be on optimizing the neural networks. There are several paper published with

different approaches to achieve this, but the two most promising ones are genetic

algorithms and modular design technique.

Big Data Analytics Using Neural Networks Chetan Sharma

96

8. References

[1] Anderson, J. R., Michalski, R. S., Carbonell, J. G., & Mitchell, T. M. (1983). Machine

learning: an artificial intelligence approach. Palo Alto, Calif.: Tioga Pub. Co..

[2] Bishop, C. M. (1998). Neural networks and machine learning. Berlin: Springer.

[3] Chauvin, Y. (1994). Backpropagation theory, architectures, and applications.

Hillsdale, N.J.: Lawrence Erlbaum Associates.

[4] Fausett, L. V. (1994). Fundamentals of neural networks: architectures, algorithms,

and applications. Englewood Cliffs, NJ ; Delhi: Prentice-Hall ; Dorling Kindersley.

[5] Graupe, D. (2007). Principles of artificial neural networks (2nd ed.). New Jersey:

World Scientific.

[6] Hassoun, M. H. (1995). Fundamentals of artificial neural networks. Cambridge,

Mass.: MIT Press.

[7] Kwon, S. J. (2011). Artificial neural networks. New York: Nova Science Publishers.

[8] Mehrotra, K., Mohan, C. K., & Ranka, S. (1997). Elements of artificial neural

networks. Cambridge, Mass.: MIT Press.

[9] Mitchell, T. M. (1997). Machine Learning. New York: McGraw-Hill.

[10] Pfister, M., & Rojas, R. (1993). Backpropagation algorithms: their characteristics

and efficiency. Berlin: Freie Univ., Fachbereich Mathematik.

[11] Proceedings / International Work Conference on Artificial and Natural Neural

Networks, IWANN '99. (1999). Berlin: Springer.

[12] Reed, R. D., & Marks, R. J. (1999). Neural smithing supervised learning in

feedforward artificial neural networks. Cambridge, Mass.: MIT Press.

[13] Schalkoff, R. J. (1997). Artificial neural networks. New York: McGraw-Hill.

Big Data Analytics Using Neural Networks Chetan Sharma

97

9. Appendix

9.1 Algorithm to process the predicted output data:

/*algorithm to process the predicted output data*/
import java.io.BufferedReader;
import java.io.BufferedWriter;
import java.io.FileInputStream;
import java.io.FileWriter;
import java.io.InputStream;
import java.io.InputStreamReader;

public class DataPredicted {

public static void main(String [] args) throws Exception{

 InputStream file_input_stream;
 BufferedReader buffer_reader;

 try {

 file_input_stream = new FileInputStream("Predicted_output.txt");
 buffer_reader = new BufferedReader(new InputStreamReader(file_input_stream));
 FileWriter file_stream = new FileWriter("JMDAUM_outputPredicted_IDs.txt");
 BufferedWriter out = new BufferedWriter(file_stream);

 String L = "";
 Double Threshold_true = 0.7;
 int i =1;

 while ((L = buffer_reader.readline()) != null)
 {
 L=L.trim();
 if(Double.parseDouble(L)>=Threshold_true)
 out.write((400000+i)+"\n");
 i++;
 }

 out.close();
 }catch(Exception ex)
 {
 ex.printStackTrace();
 }
}
}

Big Data Analytics Using Neural Networks Chetan Sharma

98

9.2 Algorithm to prepare the training input dataset :

import java.io.BufferedReader;
import java.io.BufferedWriter;
import java.io.FileInputStream;
import java.io.FileWriter;
import java.io.InputStream;
import java.io.InputStreamReader;

public class InputData {
 public static void main(String [] args) throws Exception{
 InputStream file_input_stream;
 BufferedReader buffer_reader;

 try {
 file_input_stream = new FileInputStream("traintgmc.csv");
 buffer_reader = new BufferedReader(new InputStreamReader(file_input_stream));
 FileWriter file_stream = new FileWriter("input_tgmctrain.txt");
 BufferedWriter output = new BufferedWriter(file_stream);
 FileWriter file_stream2 = new
 FileWriter("output_tgmctrain.txt");
 BufferedWriter output2 = new BufferedWriter(file_stream2);

 String L ="";

 while ((L = buffer_reader.readLine()) != null)
 {
 L = L.trim();
 if(L.contains("false"))
 {
 L=L.replace(",false","");
 output.write(L);
 output2.write('0');
 }
 else
 {
 L=L.replace(",true","");
 output.write(L);
 output2.write('1');
 }
 output.write("\n");
 output2.write("\n");
 }
 output.close();
 output2.close();
}catch(Exception ex){
 ex.printStackTrace();
 }
 }}

Big Data Analytics Using Neural Networks Chetan Sharma

99

 9.3 Algorithm to double the true vectors in input dataset data :

import java.io.BufferedReader;
import java.io.BufferedWriter;
import java.io.FileInputStream;
import java.io.FileWriter;
import java.io.InputStream;
import java.io.InputStreamReader;

public class DoubleTrueVectors {
 public static void main(String [] args) throws Exception{

 InputStream file_input_stream;
 BufferedReader buffer_reader;
 InputStream fis_intermdiate;
 BufferedReader br_intermdiate;
 try {
 file_input_stream = new FileInputStream("train_tgmc.csv");
 buffer_reader = new BufferedReader(new InputStreamReader(file_input_stream));

 FileWriter file_stream = new FileWriter("intermediate_tgmctrain.txt");
 BufferedWriter output = new BufferedWriter(file_stream);
 String L = "";

 while ((L = buffer_reader.readLine()) != null)
 {
 if(L.contains("true"))
 output.write(L+"\n");
 }
 output.close();
 fis_intermdiate = new FileInputStream("intermediate_tgmctrain.txt");
 br_intermdiate = new BufferedReader(new InputStreamReader(fis_intermdiate));
 file_stream = new FileWriter("2xTrueVector_tgmctrains.txt");
 output = new BufferedWriter(file_stream);
 L = "";

 int i = 1;
 while ((L = buffer_reader.readLine()) != null)
 {
 output.write(L +"\n");
 if(i==10 && (L = br_intermdiate.readLine()) != null)
 {
 i=0;
 output.write(L +"\n");
 }
 i++;
 output.write(',');
 }
 output.close();
}catch(Exception ex){
 ex.printStackTrace(); }}}

	San Jose State University
	SJSU ScholarWorks
	Spring 2014

	Big Data Analytics Using Neural networks
	Chetan Sharma
	Recommended Citation

	tmp.1401373925.pdf.N0fE7

