
San Jose State University
SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

Spring 2014

Big Data Analysis Using Neuro-Fuzzy System
Amir Eibagi
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

Part of the Computer Sciences Commons

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU ScholarWorks. It has been
accepted for inclusion in Master's Projects by an authorized administrator of SJSU ScholarWorks. For more information, please contact
scholarworks@sjsu.edu.

Recommended Citation
Eibagi, Amir, "Big Data Analysis Using Neuro-Fuzzy System" (2014). Master's Projects. 367.
DOI: https://doi.org/10.31979/etd.3w8d-f4hk
https://scholarworks.sjsu.edu/etd_projects/367

https://scholarworks.sjsu.edu?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F367&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F367&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F367&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F367&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F367&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/367?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F367&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

CS298 Report

Big Data Analysis Using Neuro-Fuzzy System

Advisor: Dr. Chris Tseng

Amir Eibagi

May 2014

© 2014

Amir Eibagi

ALL RIGHTS RESERVED

The Designated Committee Approves the Project Titled

Big Data Analysis Using Neuro Fuzzy System

By

Amir Eibagi

Approved for the Department of Computer Science

San Jose State University

May 2014

Dr. Chris Tseng Department of Computer Science

Dr. Thomas Austin Department of Computer Science

Mr. Aditya Ramesh MTS, Nutanix

Abstract

This project addresses big data classification using hybrid Intelligence

Classification System. Hybrid Intelligence classification system is a system that

combines at least two intelligent technologies. Specifically, the focus of this project is to

apply hybrid Neuro-Fuzzy system to the IBM Watson data and Innocentive

Trustworthiness challenge data for prediction and classification. Neural network are low-

level computational structure which has ability to learn and performs well on the raw

data. On the other hand, fuzzy logic deals with reasoning on higher level using If-then

rules and linguistic variables. So combining these two methods can provide us with a

very powerful classification system.

List of Figures:
Fig1: Sample membership functions for feature one

Fig2: Perceptron overview

Fig3: Multi-Layer Neural Network

Fig4: Project Design Overview for Neural Network

Fig5: traingscg- Error vs. Epochs

Fig6: traingscg- Gradient vs. Epochs

Fig7: traingscg- Confusion Matrix (Correct and Incorrect Classifications)

Fig8: Improved traingscg- Error vs. Epochs

Fig9: Improved traingscg- Gradient vs. Epochs

Fig10: Improved traingscg- Confusion Matrix (Correct and Incorrect Classifications)

Fig11: Neuro Fuzzy system Structure

Fig11:BackProp 3 memFunc-Error vs Epochs

Fig12: BackProp 3 memFunc - Gradient vs Epochs

Fig13: BackProp 3 memFunc - Confusion Matrix (Correct and Incorrect Classifications)

Fig14: Zeroes in training dataset(x-axis: features--------y-axis: percentage of zeroes 0-100)

Fig15: Zeroes in evaluation dataset(x-axis: features--------y-axis: percentage of zeroes 0-100)

Fig16: Zeroes in training dataset(x-axis: features--------y-axis: percentage of zeroes 0-100)

Fig17-Zeroes in evaluation dataset(x-axis: features--------y-axis: percentage of zeroes 0-100)

Fig18: only zeroes-Error vs Epochs

Fig19: only zeroes - Gradient vs Epochs

Fig20- only zeroes - Confusion Matrix (Correct and Incorrect Classifications)

Fig21: combined 0s and 1s-Error vs Epochs

Fig22- combined 0s and 1s - Confusion Matrix (Correct and Incorrect Classifications)

Fig23: remove 0s column over 98%-Error vs Epochs

Fig24: remove 0s column over 98%- Gradient vs Epochs

Fig25- remove 0s column over 98% - Confusion Matrix (Correct and Incorrect Classifications)

Fig26:row selection -Error vs Epochs

Fig27: row selection - Gradient vs Epochs

Fig28- row selection- Confusion Matrix (Correct and Incorrect Classifications)

Fig29: row & column combined -Error vs Epochs

Fig30: row & column combined - Gradient vs Epochs

Fig31- row & column combined - Confusion Matrix (Correct and Incorrect Classifications)

Fig32: IBM classifier 1 -Error vs Epochs

Fig33: IBM classifier 1 - Gradient vs Epochs

Fig34- IBM classifier 1 - Confusion Matrix (Correct and Incorrect Classifications)

Fig35: IBM classifier 2 -Error vs Epochs

Fig36: IBM classifier 2 - Gradient vs Epochs

Fig37: IBM classifier 3 -Error vs Epochs

Fig38: IBM classifier 3 - Gradient vs Epochs

Fig39- IBM classifier 3 - Confusion Matrix (Correct and Incorrect Classifications)

Fig40: IBM classifier 4 -Error vs Epochs

Fig41: IBM classifier 4 - Gradient vs Epochs

Fig42: Neuro Fuzzy 3 memFunc -Error vs Epochs

Fig43: Neuro Fuzzy 3 memFunc - Gradient vs Epochs

Fig44- Neuro Fuzzy 3 memFunc - Confusion Matrix (Correct and Incorrect Classifications)

Fig45: 4 classes dataset -Error vs Epochs

Fig46: 4 classes dataset - Gradient vs Epochs

Fig47- 4 classes dataset - Confusion Matrix (Correct and Incorrect Classifications)

Fig48: Trust classifier 1 -Error vs Epochs

Fig49: Trust classifier 1 - Gradient vs Epochs

Fig50- Trust classifier 1 - Confusion Matrix (Correct and Incorrect Classifications)

Fig51: Trust classifier 2 -Error vs Epochs

Fig52: Trust classifier 2 - Gradient vs Epochs

Fig53- Trust classifier 2 - Confusion Matrix (Correct and Incorrect Classifications)

Fig54: Trust classifier 3 -Error vs Epochs

Fig55: Trust classifier 3 - Gradient vs Epochs

Fig56- Trust classifier 3 - Confusion Matrix (Correct and Incorrect Classifications)

Fig57: Trust classifier 4 -Error vs Epochs

Fig58: Trust classifier 4 - Gradient vs Epochs

Fig59- Trust classifier 4 - Confusion Matrix (Correct and Incorrect Classifications)

Fig60: Retrain classifier - Error vs Epochs

Fig61: Retrain classifier - Gradient vs Epochs

Fig62- Retrain classifier - Confusion Matrix (Correct and Incorrect Classifications)

List of Tables:
Table1: Reduced weighted Fuzzy Classifier result on IBM dataset

Table2: Comparison of trainscg method with different parameter

Table3-Fuzzy System vs Neural Network

Table4-feature Selection result

Table5-Momentum learning with trapezoid membership functions

Table6-classifier comparison using triangular membership functions

Table7-classifier comparison using trapezoid membership functions

Table8-classifier comparison using Gaussian membership functions

Table8-classifier comparison using Gaussian membership functions on Trust datatset-79 hidden

Table9-classifier comparison using Gaussian membership functions on Trust datatset-100 hidden

Table10-classifier comparison using Gaussian membership functions on Trust datatset-56 hidden

TABLE OF CONTENTS

PROJECT DESCRIPTION 1.0 .. 1
IBM Great mind Challenge 1.1 ... 1
Instinct Trustworthiness Challenge 1.2 .. 2
Report Flow 1.3 ... 2

PREVIOUS WORK 2.0
Fuzzy Classifier 2.2.1 ... 3
Step1: Fuzzify training data 2.2.1.1 ... 3
Step2: Generate Reduced Fuzzy Rules 2.2.1.2 ... 4
Step3: Defuzzify and Classify 2.2.1.3 .. 5
Improvement to the fuzyy rule generation 2.2.1.4 .. 5
Results (Reduced fuzzy classifier) 2.2.1.5 ... 6
Neural Network Classifier 2.2.2 .. 7
Neural Network Design Overview 2.2.2.1 .. 9
Raw Data 2.2.2.2 ... 10
Data Preparation2.2.2.3 ... 10
Training algorithm used 2.2.2.4 ... 10
Experiment Result 2.2.2.5 ... 11

NEURO FUZZY CLASSIFIER 3.0 ... 14
Design Overview .. 15
Neuro Fuzzy in IBM Great Mind Challenge .. 17
Neuro Fuzzy Improvements and Result .. 19
Removing Data redundancy/Feature Selection ... 19
Row Selection .. 24
Changing Learning Algorithm/Membership function type ... 26
Neuro Fuzzy in Trustworthiness challenge ... 33
Challenge Description ... 33
Data Preparation... 33
Trust worthiness challenge Improvements and Result ... 33
Applying Neuro Fuzzy Classifier on Evaluation dataset .. 34
Change Number of Classes ... 34
Change Network Parameters ... 37
Retrain the network on its Weakness .. 41
Change threshold……………………………………………………………………………………………………..44

CONCLUSION 4.0... 44
REFERENCES 4.0 .. 46

1. Project Description

1.1 IBM Great Mind Challenge

The focus of this project is to analyze and predict the data of IBM Watson.
Watson is an artificially intelligent computer system capable of answering questions
posed in natural language. So in this project, I participated in the IBM Great Mind
Challenge. In this 4-week competition, we are presented with a very large dataset of
IBM Watson. The data consists of 240000 rows and 320 columns. The 320th column of
each row is marked with one of the following labels: true or false. So each row of data
indicates a question presented to Watson. So all the numbers from column 1 to 319 of
each row will be injected to Watson as feature vector and Watson assigns true if it
believes the question has been answered correctly or false otherwise.

So we treat these data as our training data set. Once we have fully developed
and trained our artificial intelligent algorithm, we will be given an evaluation dataset.
The evaluation dataset is very similar to the training dataset except the very last
column. In the evaluation dataset, the last column which indicates true or false labels
has been removed. This is our job to use our trained algorithm to predict the outcome
of each row of data to either true or false.

I used three different methods for this project. In the first method, I used a fuzzy
classifier based on the paper “Generating Weighted Fuzzy Rules from Training Data for
Dealing with the Iris Data Classification Problem”. In the second method, I used neural
network classifier. Lastly, I combined the two previous methods in a Neuro-Fuzzy
system. Then I will compare the result obtained from each method.

1.2 Instinct Trustworthiness Challenge

This challenge is very similar to IBM Great mind challenge in terms of the data
classification problem. However the format of the training dataset is very different from
IBM training data. The training dataset is consists of 415 rows and 115 columns. The first
5 columns in the training data indicates the id of each row. The sixth column
corresponds to the class label. In this case, we have four different labels in training
dataset; exact amount promised, more than promised, less than promised, and
promised not fulfiliable. The rest of the columns are the input features. So each row can
be interpreted as a person with many different events and signals (the signals are the
input features which in this case is 109). Based on these input features, we can
determine where or not trust that person. One thing to note here is that the number of

1

http://en.wikipedia.org/wiki/Artificial_intelligence
http://en.wikipedia.org/wiki/Natural_language

“Don’t trust” class in training data is much lower compare to the “trust” class. “Don’t
trust” class contains 10% of the whole training data. So this constrain makes it harder to
predict don’t trust classes in the evaluation dataset. For this challenge, unlike IBM
challenge, we are only limited to seven submission per team each week. Also to sign up
for trustworthiness competition, we had to form a team. Our team consists of three
members where each member uses three different algorithm to obtain better result.
The algorithm used are Neuro Fuzzy, genetic decision tree, and neural network
classifiers.

2

1.3 Report Flow

This focus of this report is to analyze the prediction score based on the dataset
of the two challenges mentioned above. IBM Great mind challenge happens every
academic semester. On the other hand Instinct trustworthiness was introduced to us
during spring semester. So we are first going to introduce the methods used against IBM
Great mind Challenge and then analyze the results. We then introduce the new method,
neuro fuzzy, used this semester to improve the prediction score in IBM challenge. Lastly,
we are going to analyze the experiment result using the same method in Great Mind
Challenge against Instinct Trustworthiness challenge.

2. Previous Work
2.2.1: Fuzzy Classifier
2.2.1.1: Step1: Fuzzify training data

In this step, we can choose as many fuzzy label/sections for each feature of our
data as we desire; this step is called generating membership functions. In this project, I
used seven fuzzy membership functions for each feature of data. Since data consists of
319 columns, then we have 319 features; each with 7 equally spaced fuzzy membership
functions. As an example, the following picture shows membership function for feature
one.

Fig1-Sample membership functions for feature one

X-axis: Range of input value
Y-axis: Fuzzy membership value for input X

Here the Y axis shows a range from 0 to 1. X-axis is the ranges of values for feature one
in the data.

So if an input number is 8.46, then this feature 30% belongs to the MN class and %70
belongs to the HN class. Normally, we fuzzify input value to the membership function

3

with the highest probability. After fuzzifying all the input features, we can move on to
the next step.

2.2.1.2: Step2: Generate Reduced Fuzzy Rules

In this step, we use all of the converted training data and generate human
readable rules. One solution was is that to convert each row of the data into the fuzzy
rules. For example one of the rules could be the following:

If feature1 is MN and feature2 is SN and feature3 is HP and … and feature319 is SN then
class is true

The problem with this approach is that we will end up with a very large set of
rules which slows down the performance. So an alternate solution is to use reduce fuzzy
rule method to shrink the size of the rule set.

Reduce Fuzzy Rule Method:

In this method, we originally start by having each line of the fuzzify training data as
our initial rule set. The final reduced rules will be saved into the definitive rule set. We
pick a rule from initial rule set and we perform the following checks on it:

1. If Definitive rule set is empty, then we insert the rule into the definitive rule set.
2. If definitive rule set is not empty, we find a rule in the definitive set which has

the same class label. We merge these two rules together. Merging of the rules is
done as follows:
Rule1: If feature1 is MN and feature2 is SN then class is True
Rule2: If feature1 is HP and feature2 is SP then class is True
Merged rule: iffeature1 is (MN,HP) and feature2 is (SN,SP) then class is true

3. Once we have merged a rule, we should check for collision. This is how we
determine if there is a collision: If there exists a rule in the original rule set which
has the same features as the merged rule but has different class label, then we
have a collision. In case of a collision, merged is not allowed and the rule needs
to be added to the definitive rule set.

4. If there is no collision, then we can merge the two rules together and update it in
the definitive rule set.

This method allows us to shrink the number of fuzzy rules which will improve our
performance.

4

2.2.1.3: Step3: Defuzzify and classify

This is the final step of the fuzzy classifier method. In this step, we first convert
the input data into the fuzzy labels. We can then go through our definitive rule set and
check which rule matches the input data. If there is only one match, then we can simply
classify the input data with the class label of the matched rule.

However if there is no match or there are two rules matched with different class labels,
then we need to generate weights for each fuzzy rule.

Fuzzy rule weight generation:

The degree of the weighted fuzzy rule can be calculated using the following formula:

R = �𝜑𝜑𝐿𝐿𝑖𝑖 ∗ 𝑋𝑋𝑖𝑖 ∗ 𝑊𝑊𝑖𝑖

𝑛𝑛

𝑖𝑖=1

Where 𝜑𝜑𝐿𝐿𝑖𝑖 is the degree of membership function for the input𝑋𝑋𝑖𝑖,

And 𝑊𝑊𝑖𝑖can be calculated as following:

𝑣𝑣𝑖𝑖 =
|𝑃𝑃𝑃𝑃|
|𝑊𝑊𝑊𝑊|

Where |WD| is the whole domain of the input variable 𝑋𝑋𝑖𝑖 and PD is the set of intervals
I1, I2, … which are not overlapping with the domain of the input variable 𝑋𝑋𝑖𝑖 for each type
of the classification output.

So |PD| = |I1| + |I2| +|I3| + ….

And finally

𝑊𝑊𝑖𝑖 = �
|𝑃𝑃𝑃𝑃|

𝑚𝑚𝑚𝑚𝑚𝑚(𝑣𝑣1, 𝑣𝑣2, … , 𝑣𝑣𝑛𝑛)
�
2

We finally pick a class label which correspond to the rule with the highest weight in our
definitive rule set.

2.2.1.4 Improvement to the fuzzy rule generation method:

Since our data is very large, sometimes we got the same rule weight for two or
more fuzzy rules. So in this case, we add up the weights for each classification output in
the definitive rule set. For example if we have four rules in our definitive rule set with
the following information:

5

Rule1 with weight 0.4 represent class True

Rule2 with weight 0.2 represent class True

Rule3 with weight 0.4 represent class False

Rule4 with weight 0.1 represent class False

Then if we can add up rule weights for each type of classification, we get the following:

Class true with weight 0.6

Class false with weight 0.5

We can then conclude: we classify data with the true label.

Again, due to the large dataset, this improvement may still result into the
duplicate rules with the same weights. In this case, I used the centroid method to
perform a better classification. In order to use the centroid method, first we need to
determine the membership function for the output. We are only going to have two
different types of outputs: true and false. So we only need to have two membership
functions. I used the triangular membership function for both true and false labels. To
make the calculation easier, I used -1 as false class and used 1 as true class then I used
the rule weights along with their class label in the centroid method to find the center of
weights in the output membership functions:

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =
∑ 𝑊𝑊𝑖𝑖 ∗ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖
𝑛𝑛=𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑜𝑜𝑜𝑜 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑖𝑖=0

∑ 𝑊𝑊𝑖𝑖
𝑛𝑛=𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑜𝑜𝑜𝑜 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑖𝑖=0

Now by picking a threshold for result we can simply distinguish two class labels.

2.2.1.5 Results (Reduced weighted fuzzy classifier)

The way scores are determined in the IBM Great Mind Challenge is that they
count the correct number True questions submitted. We need to submit a simple text
file which contains IDs of the questions that we have classified them into the True
category. Negative points will be applied for each question incorrectly classified. For
example if you submit a file with 200 entries and 50 entries of the entire file is actually
belong to the false category while the rest (the other 150) belongs to the true category,
then your score will be 150.

So after running the reduced fuzzy classifier, we obtained a low score of 5 on the
IBM dataset. We noticed that our reduced rule set contains 53 rules in total. Out of

6

these rule only 10 rules reflect to the “True” classes. This could mean that we do not
have enough true classes’ rule for our reduced fuzzy classifier.

Also the way we are calculating weights may cause having this low score. We are
looking for overlap intervals for both True and false classes but due to the low number
of true classes, we will not have too many overlaps. Therefore “False” class rules will
most likely have higher weights associated with them. Some other rule weight
generation can be used and experimented. We also conduct a small test to detect how
well our reduced fuzzy classifier can predict and here are the result:

Classes Correct Classification Incorrect Classification
True 0.1% 6.9%
False 92% 1%

Table1-Reduced weighted Fuzzy Classifier result on IBM dataset

The table above covers the whole 100% of the data. So 7% of the data are True classes
and the rest are all “False” classes.

 Since we have such low score for reduced Fuzzy Classifier, we decided to use Neural
Network on IBM data set.

2.2.2: Neural Network Classifier

Our brain is made up a lot of tiny unit called neurons. Each neuron is connected
to so many other neurons and it communicates with them via electrochemical signal. To
simplify things, when a message received to a neuron by other neurons (here we call
them input signals), then neuron somehow sums up the inputted signals. If the inputted
signal is above some threshold, then neuron generates and fires an output voltage. This
is how neurons transmit an action in human brain.

To illustrate the same behavior, we use the idea of artificial neural network.
Similarly, neural networks are made of many artificial neurons. Normally, we design
neural network layer by layer. If our neural network is only consists of two layers, input
and output layers, then neural network is called a perceptron. The following picture
shows a perceptron:

7

Fig2-Perceptron overview

The problem with perceptron is that it is very limited. It means that if the
training data is linearly separable then perceptron converges. Otherwise it fails to
classify. So this was the motivation of designing multi-layer neural networks.

In multi-layer neural networks, we have input layer, hidden middle layer, and output
layer as shown below:

Fig3-Multi-Layer Neural Network

Note that the above picture only shows 3-layer neural network. We could design
a neural network with many hidden layers. Each of the neurons in the input layer could
be connected to many neurons in the hidden layer. Similarly, each neuron in the hidden
layer could be connected to only one or many output neurons depending on number of
the outputs. But the question here is how does multi-layer neural network learns and
predict the output?

8

There are many different learning algorithms for neural network such as feed-
forward, mini-batch, momentum, adaptive learning rate, rmsprop and many others. To
illustrated learning, each neuron is connected to a neuron in the next layer with a
weight. Depending on how close neural network predict the output value with the
correct value, the weights in each layer gets updated. Once of the most well-known and
widely used neural networks is a feed-forward neural network with back propagation
learning algorithm. In the feed-forward neural network, there is no cycle; information
from neurons either passes forward until it reaches the output. In the back propagation
algorithm, the output value is compared to the original value using mean squared error
(other comparison method could be used but MSE is the most popular and accurate
one). Once error is determined, then error back propagates throughout the network and
weights will be updated depending on the error.

2.2.2.1 Neural network Design Overview

Neural networks are very suitable for pattern recognition and classification.
Matlab provides an extensive library and toolbox on neural network. I design a neural
network using Matlab Neural network toolbox and exercised it by changing different
parameters in order to obtain a better performance and result. The basic design of the
project is as follows:

Fig4- Project Design Overview for Neural Network

• Raw Data

• Data Preparation

• Neural network/Training

• Unclassified data

• Predict Using Neural Network

• Classified Data

9

2.2.2.2 Raw Data

For this project, we are given a very large dataset of IBM Watson. The dataset
divides into two main components; training dataset and evaluation dataset. The training
data set is a labeled data consists of 239000 rows and 320 columns. Each row and
column, except last column, contains some number. The last column in the training
dataset is labeled either true or false. As described earlier, each row of the training
dataset can be interpreted as a question presented to Watson. Depending on the
numbers given, Watson then evaluates the question to be either true or false. On the
other hand, evaluation dataset is very similar to the training dataset except the last
column in training dataset is removed from the data. Evaluation dataset will be fed into
the neural network in order to predict the outcome as either true or false labels.

 2.2.2.3 Data preparation

Since the data is very large, it will not be able to fit into the Matlab. Matlab will
run out of memory if the whole data is presented all at one. So the training data needs
to be broken into several parts. I used CSVChunker to split the training data into 13
different parts. Each part contains 20000 rows of original training dataset.

On the other hand, Matlab neural network require two different file, input and
output files, in order to perform classification. Input file will be all the training input
from column 1 to column 319. Output file will contain either 0 as false label or 1 as true
label.

2.2.2.4 Training algorithms used.

Neural networks can be trained with different training algorithms. Matlab has a
very large library in terms of training functions. For this project, we experiment with all
different Matlab training functions and recorded the result. We will only show the result
of Scaled Conjugate Gradient Descent Method because it gave us the best prediction
score. The training functions that Matlab offers are:

1. Levenberg-Marquardt (trainlm)
2. Bayesian Regularization (trainbr)
3. BFGS Quasi-Newton (trainbfg)
4. Resilient Backpropagation (trainrp)
5. Scaled Conjugate Gradient (trainscg)
6. Conjugate Gradient With Powell/Beale Restarts (traincgb)
7. Fletcher-Powell Conjugate Gradient (traincfg)
8. Polak-RiBiere Conjugate Gradient (traincgp)

10

9. One Step Secant (trainoss)
10. Variable Learning Rate Gradient Descent (traingdx)
11. Gradient Descent with Momentum (traingdm)
12. and Gradient Decent (traingd)

2.2.2.5 Experiment Result

Out of all of the training algorithms mentioned above, Scaled Conjugate Gradient
gave the he best prediction score. This training method combine the model-trust region
approach used in the Levenberg-Marquardt algorithm, with the conjugate gradient
approach. So it doesn’t perform line search for finding the direction of gradient descent.
Since this method initially, default parameters, gave a better result than all other
methods, we decided to use this method and change parameters in order to increase
the scoring result. Initially we use 20 hidden neurons and 10 validation checks. For this
configuration we had a score about 103 with.

 So here are the error, gradient and confusion plots for the setting mentioned above:

 fig5-trainsgc-Error vs Epochs fig-6 tarinscg- Gradient vs Epochs

11

fig7- trainscg- Confusion Matrix (Correct and Incorrect Classifications)

Looking at the MSE graph, we see that error becomes constant after epoch 60
and gradient is not very stable. The result we have obtained here has the lowest error
and gradient compare to most of the other methods which explain high prediction score

Now we tried to change some parameters such as number of hidden layers,
number of validation checks, and initial seed number to increase the training epoch and
decrease the error rate and gradient. Here is the table of different scores with different
parameters:

Test Hidden Layers Validation
Checks

Seed Score

1 20 6 49122356 103
2 20 10 49122356 100
3 40 10 49122356 106
4 70 10 49122356 74
5 10 10 49122356 91
6 25 10 49122356 106
7 30 10 49122356 117
8 100 10 49122356 100
9 200 10 49122356 87

10 35 10 49122356 118
11 35 10 49121 130
12 52 10 4912183 131
13 55 10 4912183 135

12

14 55 20 4912183 145
15 55 40 4912183 145

Table2-Comparison of trainscg method with different parameter

Tests 1 through 10 show how changing number of hidden neurons in the hidden
layer can affect the scoring result. We then focus on changing the random seed number
as well as hidden neurons. After many trials, we decided to choose random seed
number as 4912183. Also increasing the number of hidden neurons to 55 gave us a
higher score. We then noticed that increasing the validation checks causes neural
network to perform more iteration therefore we will get a lower error rate and gradient
descent. So here are the final; plots which reflect test 15:

Fig8-Improved trainsgc-Error vs Epochs Fig9- Improved tarinscg- Gradient vs Epochs

13

Fig10- improved trainscg- Confusion Matrix (Correct and Incorrect Classifications)

Notice now training error is constantly decreasing. Also we have obtained a much lower
gradient. Looking at the confusion matrix, we can see that now we have performed
better in terms of misclassification and correct classification of “true” class.

3. New Method (Neuro Fuzzy Classifier)

Hybrid intelligence systems became popular to solve more complex problem in
machine learning in terms of space and dimension. Hybrid intelligence system combines
two or more artificial intelligence technique and algorithms. Fuzzy-Neuro System is a
hybrid intelligence system where it combines both Fuzzy logic and neural network.

 Fuzzy System Neural Network
Knowledge representation Yes No

Uncertainty tolerance Yes Yes
Imprecision tolerance Yes Yes

Adaptability Yes Yes
Learning ability No Yes

Explanation ability Yes No

Table3-Fuzzy System vs Neural Network

14

According to the table …., we can see that Fuzzy systems are very suitable for
data/knowledge representation (using IF-Then rules) as well as explanation and analysis
of data. Even though fuzzy systems are great in presenting and explaining data but they
do not have learning capability. On the other hand, neural networks have the many
different learning algorithm but they are not so great when it comes to knowledge
presentation. We can’t just present knowledge by saying a particular weight would give
us the best result; the knowledge is distributed throughout the whole network. So this
makes neural network like a black box to the user. In addition, neural network can’t
really explain data which makes it very crucial when it comes into prediction. Neural
network only outputs the data from the training it had without any further explanation.
So combining these two systems can helps obtain better prediction rate in the IBM great
mind Challenge.

3.1 Design Overview

A Neuro Fuzzy system is a homogenous hybrid intelligence system. It takes
advantage of a neural network learning ability to design a network which is very similar
to the fuzzy inference system in terms of functionality. Such system uses base fuzzy
system and expert knowledge to present data and then it uses neural network in order
to develop if-then rules and adjust input/output membership function to improve the
overall performance of the system. The overall structure of the Neuro Fuzzy system is
very alike neural network. Basically the system consists of 5 layers. Similar to neural
network, it has an input and output layer as well as 3 middle layer in order to present
the fuzzy system. The overall architecture of the Neuro Fuzzy system is shown in the
picture below:

15

Fig11-Neuro Fuzzy system Structure

a. Layer 1 (Input layer):

In this layer input neurons enter the network. The input neurons here are the
crisp values that are in our dataset. So we simply forward these neurons into the
next layer.

b. Layer 2 (Fuzzification Layer):

In this layer, input neurons will be fuzzified according to the membership
function chosen for the input neurons. Basically this layer is responsible to
determine a degree in which a crisp input value belongs to a certain membership
function. As mentioned earlier, there are three major type of a membership
function (Bell, Triangular and Trapezoid) and each can be a fit into our Neuro
Fuzzy system depending on the problem. Normally Bell (Gaussian) membership
function gives us a better result since it is covering the other two cases however
sometimes we need to be very precise on the fuzzy value. So we can use either
trapezoid or triangular membership functions.

c. Layer 3 (Fuzzy Rule Layer)

This layer represent the fuzzy rules that we have in our system. Each neuron is
mapped into a fuzzy rule. So for example in the picture above, R2 is a fuzzy rule

16

which receive input s from A1 and B2. Then the intersection of these two input
neurons (according to the rule) needs to be computed by using a product
operator.

𝑌𝑌𝑖𝑖
(3) = 𝑋𝑋1𝑖𝑖

(3) × 𝑋𝑋2𝑖𝑖
(3) × … × 𝑋𝑋𝑘𝑘𝑘𝑘

(3)
𝑌𝑌𝑅𝑅2

(3) = 𝜇𝜇𝐴𝐴1 × 𝜇𝜇𝐵𝐵2 = 𝜇𝜇𝑅𝑅2

d. Layer 4 (Output fuzzy set)

This layer represents the output neurons processed by fuzzy system. Number of
neurons in this layer corresponds to the number of classes we have in our
dataset. So the input to this layer is the output of the fuzzy rules Therefore new
need to take a union of the inputs in order to defined a fuzzified output neuron.

𝑌𝑌𝑖𝑖
(3) = 𝑋𝑋1𝑖𝑖

(4) ⊕ 𝑋𝑋2𝑖𝑖
(4) ⊕ … ⊕ 𝑋𝑋𝑘𝑘𝑘𝑘

(4)

𝑌𝑌𝐶𝐶2
(4) = 𝜇𝜇𝑅𝑅1 ⊕𝜇𝜇𝑅𝑅2 ⊕ 𝜇𝜇𝑅𝑅4 ⊕𝜇𝜇𝑅𝑅5 = 𝜇𝜇𝐶𝐶2

e. Layer 5 (Defuzzification layer)

Finally we need to defuzzify our processed neurons into a crisp output value. In
this layer, we use the output membership functions to obtain a value for the
input neuron. Depending on where exactly the value will be defuzzified into, we
can associate an appropriate class label to that value. There could be many
different defuzzification method applied in this layer such as centroid and sum of
product. Defuzzification method is explained in detail under “Step3: Defuzzify
and Classify” of fuzzy systems

3.2 Neuro Fuzzy in IBM great mind Challenge

 We have used neural network and fuzzy classifier in the previous IBM challenge.
So we decided to use the new method using Neuro fuzzy classifier to come up with a
prediction score and then compare it to neural network and fuzzy system classifiers. To
start with, we used a Neuro fuzzy classifier developed in matlab. This tool requires set of
fuzzy rules as input as well as network parameter adjustments such as type of fuzzy
membership functions, number of membership functions, hidden layers, number of
validation checks, and random seed value.

Once again, the goal of this competition is to predict and find the rows in
evaluation dataset where we believe they belong to the class labeled “true”. The Neuro
fuzzy classifier tool in matlab consist of 4 different classifiers, each with slightly different
setup. So the initial setup that we used consist of 50 hidden neurons, 7 triangular
membership functions, no random seed value, and reduced fuzzy rules (explained in
Fuzzy classifier section). We first used the first classifier which uses a simple

17

backpropagation and a triangular membership function. The score we obtained wasn’t
very impressive. The total true values detected was around 67.

Fig11-BackProp 3 memFunc-Error vs Epochs

Fig13- BackProp 3 memFunc – Confusion Matrix (Correct and Incorrect Classifications)

The overall error is already low enough but the prediction score is not very
satisfying. The reason could be triangular membership function uses a crisp output
value. So in the new few sections, we are going to use different methods in order to
improve the prediction scores.

18

3.3 Neuro Fuzzy improvements and result

3.3.1 Removing data redundancy/feature selection

Since our dataset is very large, there is always a chance for data redundancy. Our
data consist of 319 columns. Each column can be interpreted as a feature. So feature
selection can help us to reduce number of features in our dataset which will simplify our
problem. The first step is to find out how many columns in training and evaluation
dataset has all zeroes or ones. Furthermore, we need make sure that these features
match in both training and evaluation dataset. Looking at the graphs below, we can see
that the distribution of zeroes and ones in training and evaluation dataset are very
similar therefore we can remove them from dataset.

Fig14-Zeroes in training dataset(x-axis: features--------y-axis: percentage of zeroes 0-100)

Fig15-Zeroes in evaluation dataset(x-axis: features--------y-axis: percentage of zeroes 0-100)

19

Fig16-Ones in training dataset(x-axis: features--------y-axis: percentage of zeroes 0-100)

Fig17-Ones in evaluation dataset (x-axis: features--------y-axis: percentage of zeroes 0-100)

We first removed columns that are all zeroes from two dataset. This method
reduced number of features to 273 features. This is the decrease of 52 features in our
dataset. We then used this new dataset against Neuro Fuzzy classifier (first classifier in
Matlab neuro fuzzy classifier tool). The overall process was faster than the original
dataset because we have less number of feature. The prediction rate was almost the
same as what I had obtained from last semester. The prediction rate was around 90%,
and the number of true values I detected in the evaluation dataset was 118. This is a
great improvement compare to the original network setup. Graphs below show a
decrease in overall MSE and performance of the network which result in a better
prediction scores.

Fig18-only zeroes-Error vs Epochs Fig19- only zeroes – Gradient vs Epochs

20

Fig20- only zeroes – Confusion Matrix (Correct and Incorrect Classifications)

The next step was to remove features where there are all ones from the original
dataset. This time the prediction rate dropped to 85% and the total number of true
values detected was 104. This method reduces features to 300 features.

The last feature selection test was to remove features where there are all ones and
zeroes. This method reduced number of features to 267. This significantly improved the
computation time as well as prediction score. I was able to improve the prediction to
94% . The total number of true values detected was 125. The below graph shows that
prediction error for training, validation, and test are very similar with each other.
Looking at the confusion matrix, we can see that prediction has been improved to 0.4%
true values predicted.

21

Fig21-combined 0s and 1s-Error vs Epochs

Fig22- combined 02 and 1s – Confusion Matrix (Correct and Incorrect Classifications)

We also tried to only remove the features where the percentage of zeroes in a feature is
greater than 98%. But this method didn’t work well as expected. The prediction rate was
very low (around 50%) and 76 true values were predicted.

22

Fig18-0s columns over 98% -Error vs Epochs Fig19- 0s columns over 98% - Gradient vs
 Epochs

Fig25- 0s columns over 98% - Confusion Matrix (Correct and Incorrect Classifications)

 Here is the summary of the results using feature selection:

 Prediction rate (training set) Final Score
No feature selection 43% 67
Remove ones only 85% 104

Remove zeroes only 90% 118
Remove zeroes if > 98% 50% 76

Remove ones and zeroes 94% 125

Table4-feature Selection result

23

3.3.2 Row selection

Since we have lots of rows in our training dataset, it will make our problem much
simpler if we can remove some of the rows from our dataset. So initial approach was
similar to what we had done during feature selection. We tried to remove rows where
there is all zeroes or ones. Unfortunately there wasn’t a single row which satisfy this
condition. We then defined a threshold. Initially we removed rows where the threshold
of having zeroes is greater than 98%. The result wasn’t really impressive. Only 20 true
values were predicted from evaluation dataset. Then we tried the same approach to
remove rows numbers of ones in the row is greater than 98%. Again the true value
detection wasn’t very good; it was around 17.

Fig26-row selection –Error vs Epochs Fig27- row selection – Gradient vs Epochs

24

Fig28- row selection – Confusion Matrix (Correct and Incorrect Classifications)

So we decided to combine the two methods mentioned above, remove rows
where number of ones exceeds 98% or number of zeroes exceeds 98%, in order to
produce a better result just like the feature selection which we used in previous
improvement method. Indeed, the result was higher than the two methods mentioned
above but it was not as good as feature selection result. With this combined method, 30
true values were predicted which compare to 125 obtained from feature selection is not
very impressive.

Fig29-row & column cobined –Error vs Epochs Fig27- row & column combined
 - Gradient vs Epochs

25

Fig31- row & column combined – Confusion Matrix (Correct and Incorrect
Classifications)

3.3.3 Change learning algorithm\mebership function type

Here we tried to use some different learning algorithm as well a membership
functions in order to obtain a better prediction score for our Neuro Fuzzy classifier. As
mentioned earlier, the first Neuro Fuzzy classifier, used 50 hidden neurons with 5
triangular member ship functions and reduced fuzzy rules as its input. Now in the
second Neuro fuzzy classifier, we used uses trapezoid membership functions with
momentum as its learning method. We trained our network on training data set after
applying feature selection method as mentioned above. Increasing the number of
hidden neurons to 79 gave us the best result. The prediction score with 79 hidden
neurons and 7 trapezoid membership function was 137. Here is the summary table of
using trapezoid membership functions with momentum learning method

Hidden
layer

memFunc
type

#of
memFunc

Prediction
rate

MSE Final score

50 Trapezoid 5 43% 0.83 67
55 Trapezoid 5 52% 0.54 77
67 Trapezoid 7 71% 0.33 112
79 Trapezoid 7 94% 0.034 137
92 Trapezoid 7 86% 0.076 121
100 Trapezoid 7 73% 0.103 116

26

Table5-Momentum learning with trapezoid membership functions

The next classifier we tried, it uses SCG as its learning method. When we used
neural network for classification, SCG learning method gave us better result compare to
momentum method. Similarly, when we ran the classifier, with 7 membership function
(Trapezoid membership function), the result wasn’t really impressive. We were only
able to detect 107, true values. So next step was to change the actual shape of the
membership function to see if there will be any improvement. When we change the
shape of membership function from trapezoid to Gaussian, we saw an increase in
prediction; 118 true values were detected. Next, we reduced the number of
membership functions to 5 and we obtained a much better result. With this setup, 132
true values were predicted. The last classifier, is just an improvement to the previous
classifier. The last classifier is much more efficient in terms of computation using SCG
learning algorithm. This classifier uses batch method to update network’s weights.
However, the result were very similar to the previous classifier. Here is the summary of
the 4 different classifier result with different configuration:

 Learning Alg Hidden
layers

MemF
type

of
MemF

MSE Score

Classifier
1

backpropagation 50 Triangular 7 0.082 87

Classifier
2

momentum 50 Triangular 7 0.062 96

Classifier
3

SCG 50 Triangular 7 0.021 114

Classifier
4

SCG batch 50 Triangular 7 0.034 109

Table6-classifier comparison using triangular membership functions

 Learning Alg Hidden
layers

MemF
type

of
MemF

MSE Score

Classifier
1

backpropagation 67 Trapezoid 7 0.052 102

Classifier
2

momentum 67 Trapezoid 7 0.032 108

Classifier
3

SCG 67 Trapezoid 7 0.0110 121

Classifier
4

SCG batch 67 Trapezoid 7 0.0124 118

27

Table7-classifier comparison using trapezoid membership functions

 Learning Alg Hidden
layers

MemF
type

of
MemF

MSE Score

Classifier
1

backpropagation 79 Gaussian 5 0.01297 102

Classifier
2

momentum 79 Gaussian 5 0.01055

108

Classifier
3

SCG 79 Gaussian 5 0.010126 148

Classifier
4

SCG batch 79 Gaussian 5 0.010197 132

Table8-classifier comparison using Gaussian membership functions

Here are performance, gradient, and confusion matrices of all 4 classifier explained
above.

Classifier 1:

Fig32-IBM classifier 1 -Error vs Epochs Fig33- IBM classifier 1 - Gradient vs Epochs

28

Fig34- IBM classifier 1 - Confusion Matrix (Correct and Incorrect Classifications)

Even though the performance of overall networks looks pretty reasonable but
prediction of the True values is still very low (Confusion matrix shows a lot of false
positive). Also it seems that we have over trained the network since there is an increase
in the gradient of the network.

Classifier 2:

Fig35-IBM classifier 2 -Error vs Epochs Fig36- IBM classifier 2 - Gradient vs Epochs

In this classifier Gradient looks more stable than the previous classifier, but the
momentum methods perform slightly as good as the previous backgropagation
classifier.

29

Classifier 3:

Fig37-IBM classifier 3 -Error vs Epochs

Fig38- IBM classifier 3 - Gradient vs Epochs

30

Fig39- IBM classifier 1 - Confusion Matrix (Correct and Incorrect Classifications)

This classifier uses “trainscg” which significantly improves the prediction score.
The graphs above proves it. The prediction of false positive has decreased as shown in
the confusion matrix and gradient has reached its minimum value compare to all other
classifiers.

Next classifier uses a batch training of the third classifier. The result of the fourth
classifier is slightly lower to the third classifier. We have concluded that online training
works the best for IBM Great Mind Challenge.

Classifier 4:

31

Fig40-IBM classifier 4 -Error vs Epochs

Fig41- IBM classifier 4- Gradient vs Epochs

Finally IBM great mind challenge provided us with a completely new dataset and
now this time we are given only one chance to submit. So we decided to use the neuro-
fuzzy with 5 Gaussian membership functions and SCG learning. When Neuro fuzzy
classifier was ran against the final evaluation dataset, 140 true values were predicted
which is still close to the 148 true values that we detected using old evaluation dataset.
This result put our team in the fourth place of the competition after they announced the
top three winners. Here is the screen shot of the top three winners of the completion.
So the score we obtained is only three points away from the third place team.

32

3.4 Neuro Fuzzy in the IARPA Trustworthiness Challenge

3.4.1 Data Preparation

We divided the four class labels in our training data into two classes as follows:

Promised belongs to the “trust” class

Promised not fulfiliable belongs to the “don't trust” class.

More than promised belongs to “trust” class

Less than promised belongs to the “don't trues” class

Furthermore “trust” class is represented with number 1 and “don’t trust” class is
0 in our dataset. There is also a feature B-ALS which is presented by labels in the training
dataset. The labels are low, medium and high. This feature is the signal to identify if the
person is at risk. So we converted these three labels into 0, 50 and 100 respectively.
Now the training dataset is ready to be fitted into the Neuro Fuzzy classifier. In the next
section, we are going to run the classifier against the evaluation dataset and analyze the
result.

3.4.3 Trustworthiness challenge improvements and results

3.4.3.1 Applying Neuro Fuzzy classifier on evaluation set

So when we ran the fuzz-neural network against training dataset, the score
obtained was -0.03. This score is based on how well we predicted the trust and don’t
trust label in the evaluation dataset. Basically, we need to run our trained network
against evaluation dataset (new dataset, separate than training dataset) and for each
row in our evaluation dataset, we need to predict whether it belongs to “trust” or “don’t
trust” class. I used neuro fuzzy system with 3 triangular membership functions and 57
hidden neurons. The network error is increasing as we train the network. This explain
why we have such low score in our prediction.

33

Fig42-Neuro Fuzzy 3 memFunc -Error vs Epochs Fig43- Neuro Fuzzy 3 memFunc -
 Gradient vs Epochs

Fig44- IBM classifier 1 - Confusion Matrix (Correct and Incorrect Classifications)

3.4.3.2 Change number of classes

Previously, in our training dataset, we had four different vales to determine the
classes; exact amount promised, more than promised, less than promised, promise not

34

fulfillable. In the previous approach, we decided to associate “exact amount promised”
and “more than promised” to the class “trust” by replacing it with value 1 in our training
dataset. Similarly we associated class “don’t trust” to “less than promised” and “promise
not fulfillable” by replacing them with 0 in our tarring dataset.

Now in the new approach, we give each of these four cases a special number
which represent a new class in our training. So now our training dataset contains 4
distinct classes. We give value 1.5 to more than promised, 1 to exact amount promised,
-1 to less than promised and -1.5 to promised not fulfillable. We trained our Neuro
Fuzzy network on these 4 classes. In order to classify after we ran our network on
evaluation dataset, we need to map “more than promised” and “exact amount
promised” to “Trust” class. Similarly we mapped “promised not fulfillable” and “less
than promised” to “Don’t trust” labels.

We tested our Neuro Fuzzy network against this new approach. Since we are only
limited to 7 submission pre week, we need to submit the solution which we believe it
would give us the best solution. In order to determine the best solution, we heavily rely
on the MSE of our network. We submitted a solution where our network had a very low
MSE; around 0.13896. The score of the submission was 0.02 which was higher than
what we had obtained previously.

Fig44-4 classes dataset -Error vs Epochs

35

Fig45- 4 classes dataset -Gradient vs Epochs

Fig46- 4 classes dataset - Confusion Matrix (Correct and Incorrect Classifications)

36

Even though, nework error and gradient are decreasing, but we have completely failed
to detect one classe in our confusion matrix which s “promise not fulfilable.”

3.4.3.3 Change network parameters

Originally we used 3 triangular membership functions. That setup didn’t give us a good
score; in fact it generated a negative score. So we decided to change the membership
function into 3 trapezoid functions. It slightly improved the score. The score wasn’t
negative anymore but the overall prediction score was around 0.03. We then focused
more on the neural network side of the neuro-fuzzy system. We tried to change some
parameters such as evaluation checks, random seed value, number of hidden layers and
number of iterations. The score improved when number of hidden layers are between
50 to 60 and validation checks are at minimal. The score was improved to 0.14. Here are
some tables which summarizes the result of changing some network parameters.

 Learning Alg Hidden
layers

MemF
type

of
MemF

MSE Score

Classifier 1 backpropagation 79 Gaussian 5 0.793 0.02
Classifier 2 momentum 79 Gaussian 5 0.701 0.07
Classifier 3 SCG 79 Gaussian 5 0.473 0.12
Classifier 4 SCG batch 79 Gaussian 5 0.514 0.09

Table8-classifier comparison using Gaussian membership functions on Trust datatset-79 hidden

 Learning Alg Hidden
layers

MemF
type

of MemF MSE Score

Classifier 1 backpropagation 100 Gaussian 5 1.04 -0.02
Classifier 2 momentum 100 Gaussian 5 0.957 0.013
Classifier 3 SCG 100 Gaussian 5 0.831 0.062
Classifier 4 SCG batch 100 Gaussian 5 0.846 0.058

Table9-classifier comparison using Gaussian membership functions on Trust datatset-100 hidden

 Learning Alg Hidden
layers

MemF
type

of
MemF

MSE Score

Classifier 1 backpropagation 56 Gaussian 5 0.320 0.07
Classifier 2 momentum 56 Gaussian 5 0.199 0.14
Classifier 3 SCG 56 Gaussian 5 0.199 0.36
Classifier 4 SCG batch 56 Gaussian 5 0.224 0.21

Table10-classifier comparison using Gaussian membership functions on Trust datatset-56 hidden

Classifier 1:

37

Fig47-Trust Classifier 1 -Error vs Epochs Fig48- Trust Classifier 1 - Gradient vs
 Epochs

Fig49- Trust classifier 1 - Confusion Matrix (Correct and Incorrect Classifications)

According to the confusion matrix, we have failed to detect “Don’t trust” class in our
training, test, and validation dataset. Notice that how network performance, and
gradient increase over network training time. This explain low prediction score that we
have for this method.

38

Classifier 2:

Fig50-Trust Classifier 2 -Error vs Epochs Fig51- Trust Classifier 2 - Gradient vs
 Epochs

Fig52- Trust classifier 1 - Confusion Matrix (Correct and Incorrect Classifications)

Here we have improved our prediction over “Don’t trust” class. We have also almost
stable network performance and gradient. So this momentum method slightly improved
our prediction score.

Classifier 3:

39

Fig53-Trust Classifier 3 -Error vs Epochs Fig54- Trust Classifier 3 - Gradient vs

 Epochs

Fig55- Trust classifier 3 - Confusion Matrix (Correct and Incorrect Classifications)

Once again, “trainscg” gave us the best prediction score compare to other classifiers
used against this dataset. Overall 7% error rate in “don’t trust” classes is better compare
to the overall error (false positive) in other classifiers.

Classifier 4:

40

Fig56-Trust Classifier 4 -Error vs Epochs Fig57- Trust Classifier 4 - Gradient vs
 Epochs

Fig58- Trust classifier 4 - Confusion Matrix (Correct and Incorrect Classifications)

3.4.3.4 Retrain the network on its weakness

Since we were not improving by changing many different parameters as
mentioned in the previous improvements, we started focusing on the root cause of this
issue. In order to find the issue, we tried to analyze the training dataset. In other words,
we wanted to see how well we can predict the entire training set. So the goal is to train

41

the Neuro Fuzzy classifier on the entire training dataset, and then use the same training
set in order to predict the outcome. We noticed that, we were not able to fully predict
the training set. Specifically, the prediction of “don’t trust” class was extremely poor;
around 40%. This explains the low prediction score that we have on the evaluation
dataset.

So we tried to improve the prediction rate on the training dataset by using
different learning algorithms. Only SCG learning algorithm gave us the highest
prediction score. Also changing the fuzzy parameters in the network didn’t really help
much. So the last option we tried was to retrain the network on the set of data were we
predicted wrong class labels. We noticed that 121 rows in our training dataset will
always misclassified. So we retrain our network on these 121 rows.

Fig59-Retarain Classifier -Error vs Epochs

42

Fig60- Retrain Classifier - Gradient v Epochs

Fig61- Retrain classifier- Confusion Matrix (Correct and Incorrect Classifications)

Here we can see that MSE, performance and gradient of the network is decreasing
as we train the network. We retrain the network on the data where it failed to predict
using the same learning algorithm (trainscg) and same network parameters. This shows
an impressive in the network prediction score as well as total number of errors for

43

detecting “Don’t trust” labels (only 2%). The prediction score was at 0.21. The prediction
is still not very high and this could be due to our network become bias toward the 121
rows that we retrained on.

3.4.3.5 Changing the threshold

 The last improvement was to find an optimal threshold for our classifier. We
noticed that some output values of our network is not very close to 0 or 1 which
indicate “trust” and “don’t’ trust” class respectively. Some values falls between 0 and 1.
So we need a threshold to determine a boundary between “trust” and “don’t trust”
class.

The following table shows the different threshold used in order to decide the
best boundary for separating trust and don’t trust classes.

So according to this table threshold of 0.61 gave us the best prediction score of 0.59.

We have entered in this competition as a team. So our team score for this competition
is 0.72. The top 25 teams which have score greater than 0.70 are eligible to participate
in the final round. At this stage, teams are required to submit their solutions along with
their code and their report. There are awards for the top three teams of this
competition.

4. Conclusion:

44

In this paper, we presented three classifier on IBM Great Mind Challenge Dataset
and Innocentive Trustworthiness dataset; Reduced Weighted Fuzzy Classifier, Neural
Network Classifier, and Neuro Fuzzy Classifier. As we discussed, we obtained a relatively
low score using reduced fuzzy classifier. The problem were mostly involved in the way
fuzzy rules were generated and how weights are associated to the fuzzy rules. We then
decided to use neural network to compare the result with our fuzzy classifier. Many
different algorithms on Matlab Neural Network were put into practice. The result of
each learning method were recorded for further analysis. We have concluded that
Neural Network will give us much higher score compare to Fuzzy Classifier. Fuzzy logic
cannot learn but it is really powerful in making decision based on imprecise and
ambiguous data. On the other hand, Neural Network have the learning ability but are
not as powerful as fuzzy logic in terms of making decision. So combining these two
method could give us a very powerful classifier. A homogeneous artificial intelligence
algorithm that uses both Neural Network and Fuzzy Logic is called Neuro-fuzzy system.
As we saw in experiment result, We have improved our prediction score by using Neuro
Fuzzy System. In both IBM Great Mind Challenge and Innocentive Trustworthiness
challenge, we wre eable to finish in the top ten. IN IBM Great Mind Challenge, out of 55
participant teams, we ranked 4th. In Innocentive Challenge, out of 453 teams, we ranked
8th in the overall competition.

45

5. References:

[1] Yung-Chou Chena., Li-Hui Wangb., Shyi-Ming Chen.: Generating Weighted Fuzzy
Rules from Training Data for Dealing with the Iris Data Classification Problem (2006).

[2] Castro, J. L., Castro-Schez, J. J., and Zurita, J. M. 1999. Learning maximal structure
rules in fuzzy logic for knowledge acquisition in expert systems. Fuzzy Sets and
Systems, 101, 3: 331-342. (1999)

[3] Castro, J. L. and Zurita, J. M. 1997. An inductive learning algorithm in fuzzy systems.
Fuzzy Sets and Systems, 89, 2:193-203. (2001)

[4] Bulbul, A. A Short Fuzzy Logic Tutorial. (2010)
 http://www.calvin.edu/~pribeiro/othrlnks/Fuzzy/home.htm

[5] Sun, C.-T., Jang, j.-s.: A neuro-fuzzy classifier and its applications (1993)

[6] Gabrys, b.: Combining neuro-fuzzy classifiers for improved generalisation and
reliability (2002)

[7] gabrys, b.: Learning hybrid neuro-fuzzy classifier models from data: to combine or not
to combine (2001)

[8] Fuller, b.: Neuro-Fuzzy Methods. (2001)
 http://uni-obuda.hu/users/fuller.robert/dam.pdf

[9] Reby, D, Lek, S, Dimopoulos, I, Joachim, J, Lauga, J, Aulagnier, S.: Artificial neural
networks as a classification method in the behavioural sciences

[11] Zhou, Z., Chen S., Chen Z.: FANNC: A Fast Adaptive Neural Network Classifier
(2000)

[12] Hybrid Intelligence Systems. (2004)
 www.computing.surrey.ac.uk

[13] Negnevitsky, M. Hybrid Neuro-Fuzzy Systems. (2013)

http://www.iaria.org/conferences2013/filesINTELLI13/INTELLI%20Keynote_Negnevitsky.
pdf

[14] Negoita, M., Neagu, D., Palade, V.: Neuro-Fuzzy Integration in Hybrid Intelligent
Systems (2005)

46

	San Jose State University
	SJSU ScholarWorks
	Spring 2014

	Big Data Analysis Using Neuro-Fuzzy System
	Amir Eibagi
	Recommended Citation

	1. Project Description
	1.1 IBM Great Mind Challenge
	1.2 Instinct Trustworthiness Challenge
	1.3 Report Flow

	2. Previous Work
	2.2.1: Fuzzy Classifier
	2.2.1.1: Step1: Fuzzify training data
	2.2.1.2: Step2: Generate Reduced Fuzzy Rules
	2.2.1.3: Step3: Defuzzify and classify
	2.2.1.4 Improvement to the fuzzy rule generation method:
	2.2.1.5 Results (Reduced weighted fuzzy classifier)
	2.2.2: Neural Network Classifier

	2.2.2.1 Neural network Design Overview
	2.2.2.2 Raw Data
	2.2.2.3 Data preparation
	2.2.2.4 Training algorithms used.
	2.2.2.5 Experiment Result

	3. New Method (Neuro Fuzzy Classifier)
	3.1 Design Overview
	3.2 Neuro Fuzzy in IBM great mind Challenge
	3.3 Neuro Fuzzy improvements and result
	3.3.1 Removing data redundancy/feature selection
	3.3.2 Row selection
	3.3.3 Change learning algorithm\mebership function type
	3.4 Neuro Fuzzy in the IARPA Trustworthiness Challenge
	3.4.1 Data Preparation
	3.4.3 Trustworthiness challenge improvements and results
	3.4.3.1 Applying Neuro Fuzzy classifier on evaluation set
	3.4.3.2 Change number of classes
	3.4.3.3 Change network parameters
	3.4.3.4 Retrain the network on its weakness
	3.4.3.5 Changing the threshold

	4. Conclusion:
	5. References:
	[5] Sun, C.-T., Jang, j.-s.: A neuro-fuzzy classifier and its applications (1993)

