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Abstract 
 

This project addresses big data classification using hybrid Intelligence 

Classification System. Hybrid Intelligence classification system is a system that 

combines at least two intelligent technologies. Specifically, the focus of this project is to 

apply hybrid Neuro-Fuzzy system to the IBM Watson data and Innocentive 

Trustworthiness challenge data for prediction and classification. Neural network are low-

level computational structure which has ability to learn and performs well on the raw 

data. On the other hand, fuzzy logic deals with reasoning on higher level using If-then 

rules and linguistic variables. So combining these two methods can provide us with a 

very powerful classification system.  
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1. Project Description 

1.1 IBM Great Mind Challenge 
 

The focus of this project is to analyze and predict the data of IBM Watson. 
Watson is an artificially intelligent computer system capable of answering questions 
posed in natural language. So in this project, I participated in the IBM Great Mind 
Challenge. In this 4-week competition, we are presented with a very large dataset of 
IBM Watson. The data consists of 240000 rows and 320 columns. The 320th column of 
each row is marked with one of the following labels: true or false. So each row of data 
indicates a question presented to Watson. So all the numbers from column 1 to 319 of 
each row will be injected to Watson as feature vector and Watson assigns true if it 
believes the question has been answered correctly or false otherwise.  

 

So we treat these data as our training data set. Once we have fully developed 
and trained our artificial intelligent algorithm, we will be given an evaluation dataset. 
The evaluation dataset is very similar to the training dataset except the very last 
column. In the evaluation dataset, the last column which indicates true or false labels 
has been removed. This is our job to use our trained algorithm to predict the outcome 
of each row of data to either true or false.  

 

I used three different methods for this project. In the first method, I used a fuzzy 
classifier based on the paper “Generating Weighted Fuzzy Rules from Training Data for 
Dealing with the Iris Data Classification Problem”. In the second method, I used neural 
network classifier. Lastly, I combined the two previous methods in a Neuro-Fuzzy 
system. Then I will compare the result obtained from each method. 

 

1.2 Instinct Trustworthiness Challenge 
 

This challenge is very similar to IBM Great mind challenge in terms of the data 
classification problem. However the format of the training dataset is very different from 
IBM training data. The training dataset is consists of 415 rows and 115 columns. The first 
5 columns in the training data indicates the id of each row. The sixth column 
corresponds to the class label. In this case, we have four different labels in training 
dataset; exact amount promised, more than promised, less than promised, and 
promised not fulfiliable. The rest of the columns are the input features. So each row can 
be interpreted as a person with many different events and signals (the signals are the 
input features which in this case is 109). Based on these input features, we can 
determine where or not trust that person. One thing to note here is that the number of 
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“Don’t trust” class in training data is much lower compare to the “trust” class. “Don’t 
trust” class contains 10% of the whole training data. So this constrain makes it harder to 
predict don’t trust classes in the evaluation dataset. For this challenge, unlike IBM 
challenge, we are only limited to seven submission per team each week. Also to sign up 
for trustworthiness competition, we had to form a team. Our team consists of three 
members where each member uses three different algorithm to obtain better result. 
The algorithm used are Neuro Fuzzy, genetic decision tree, and neural network 
classifiers.
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1.3 Report Flow 
 

This focus of this report is to analyze the prediction score based on the dataset 
of the two challenges mentioned above. IBM Great mind challenge happens every 
academic semester. On the other hand Instinct trustworthiness was introduced to us 
during spring semester. So we are first going to introduce the methods used against IBM 
Great mind Challenge and then analyze the results. We then introduce the new method, 
neuro fuzzy, used this semester to improve the prediction score in IBM challenge. Lastly, 
we are going to analyze the experiment result using the same method in Great Mind 
Challenge against Instinct Trustworthiness challenge.       

 

2. Previous Work 
2.2.1: Fuzzy Classifier 
2.2.1.1: Step1: Fuzzify training data 
 

In this step, we can choose as many fuzzy label/sections for each feature of our 
data as we desire; this step is called generating membership functions. In this project, I 
used seven fuzzy membership functions for each feature of data. Since data consists of 
319 columns, then we have 319 features; each with 7 equally spaced fuzzy membership 
functions. As an example, the following picture shows membership function for feature 
one.  

 
Fig1-Sample membership functions for feature one 

X-axis: Range of input value 
Y-axis: Fuzzy membership value for input X   

 

Here the Y axis shows a range from 0 to 1. X-axis is the ranges of values for feature one 
in the data.  

So if an input number is 8.46, then this feature 30% belongs to the MN class and %70 
belongs to the HN class. Normally, we fuzzify input value to the membership function 
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with the highest probability. After fuzzifying all the input features, we can move on to 
the next step. 

  

2.2.1.2: Step2: Generate Reduced Fuzzy Rules 
 

In this step, we use all of the converted training data and generate human 
readable rules. One solution was is that to convert each row of the data into the fuzzy 
rules. For example one of the rules could be the following: 

If feature1 is MN and feature2 is SN and feature3 is HP and … and feature319 is SN then 
class is true 

The problem with this approach is that we will end up with a very large set of 
rules which slows down the performance. So an alternate solution is to use reduce fuzzy 
rule method to shrink the size of the rule set.  

 

Reduce Fuzzy Rule Method: 

In this method, we originally start by having each line of the fuzzify training data as 
our initial rule set. The final reduced rules will be saved into the definitive rule set. We 
pick a rule from initial rule set and we perform the following checks on it: 

1. If Definitive rule set is empty, then we insert the rule into the definitive rule set. 
2. If definitive rule set is not empty, we find a rule in the definitive set which has 

the same class label. We merge these two rules together. Merging of the rules is 
done as follows:  
Rule1: If feature1 is MN and feature2 is SN then class is True 
Rule2: If feature1 is HP and feature2 is SP then class is True 
Merged rule: iffeature1 is (MN,HP) and feature2 is (SN,SP) then class is true 

3. Once we have merged a rule, we should check for collision. This is how we 
determine if there is a collision: If there exists a rule in the original rule set which 
has the same features as the merged rule but has different class label, then we 
have a collision. In case of a collision, merged is not allowed and the rule needs 
to be added to the definitive rule set.  

4. If there is no collision, then we can merge the two rules together and update it in 
the definitive rule set.  

This method allows us to shrink the number of fuzzy rules which will improve our 
performance.  
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2.2.1.3: Step3: Defuzzify and classify 
 

This is the final step of the fuzzy classifier method. In this step, we first convert 
the input data into the fuzzy labels. We can then go through our definitive rule set and 
check which rule matches the input data. If there is only one match, then we can simply 
classify the input data with the class label of the matched rule. 

However if there is no match or there are two rules matched with different class labels, 
then we need to generate weights for each fuzzy rule. 

 

Fuzzy rule weight generation: 

The degree of the weighted fuzzy rule can be calculated using the following formula: 

R = �𝜑𝜑𝐿𝐿𝑖𝑖 ∗ 𝑋𝑋𝑖𝑖 ∗  𝑊𝑊𝑖𝑖

𝑛𝑛

𝑖𝑖=1

 

Where 𝜑𝜑𝐿𝐿𝑖𝑖 is the degree of membership function for the input𝑋𝑋𝑖𝑖, 

And 𝑊𝑊𝑖𝑖can be calculated as following: 

𝑣𝑣𝑖𝑖 =
|𝑃𝑃𝑃𝑃|
|𝑊𝑊𝑃𝑃|

 

Where |WD| is the whole domain of the input variable 𝑋𝑋𝑖𝑖 and PD is the set of intervals 
I1, I2, … which are not overlapping with the domain of the input variable 𝑋𝑋𝑖𝑖 for each type 
of the classification output.  

So |PD| = |I1| + |I2| +|I3| + …. 

And finally  

𝑊𝑊𝑖𝑖 = �
|𝑃𝑃𝑃𝑃|

𝑚𝑚𝑚𝑚𝑚𝑚(𝑣𝑣1, 𝑣𝑣2, … , 𝑣𝑣𝑛𝑛)
�
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We finally pick a class label which correspond to the rule with the highest weight in our 
definitive rule set.  

2.2.1.4 Improvement to the fuzzy rule generation method: 
 

Since our data is very large, sometimes we got the same rule weight for two or 
more fuzzy rules. So in this case, we add up the weights for each classification output in 
the definitive rule set. For example if we have four rules in our definitive rule set with 
the following information: 
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Rule1 with weight 0.4 represent class True 

Rule2 with weight 0.2 represent class True 

Rule3 with weight 0.4 represent class False 

Rule4 with weight 0.1 represent class False 

Then if we can add up rule weights for each type of classification, we get the following: 

Class true with weight 0.6  

Class false with weight 0.5 

We can then conclude: we classify data with the true label. 

 

Again, due to the large dataset, this improvement may still result into the 
duplicate rules with the same weights. In this case, I used the centroid method to 
perform a better classification. In order to use the centroid method, first we need to 
determine the membership function for the output. We are only going to have two 
different types of outputs: true and false. So we only need to have two membership 
functions. I used the triangular membership function for both true and false labels. To 
make the calculation easier, I used -1 as false class and used 1 as true class then I used 
the rule weights along with their class label in the centroid method to find the center of 
weights in the output membership functions: 

 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =
∑ 𝑊𝑊𝑖𝑖 ∗ 𝐶𝐶𝑅𝑅𝑚𝑚𝑅𝑅𝑅𝑅 𝐿𝐿𝑚𝑚𝐿𝐿𝑅𝑅𝑅𝑅𝑖𝑖
𝑛𝑛=𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠 𝑜𝑜𝑜𝑜 𝑑𝑑𝑠𝑠𝑜𝑜𝑖𝑖𝑛𝑛𝑖𝑖𝑑𝑑𝑖𝑖𝑑𝑑𝑠𝑠
𝑖𝑖=0

∑ 𝑊𝑊𝑖𝑖
𝑛𝑛=𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠 𝑜𝑜𝑜𝑜 𝑑𝑑𝑠𝑠𝑜𝑜𝑖𝑖𝑛𝑛𝑖𝑖𝑑𝑑𝑖𝑖𝑑𝑑𝑠𝑠
𝑖𝑖=0

 

Now by picking a threshold for result we can simply distinguish two class labels.  

 

2.2.1.5 Results (Reduced weighted fuzzy classifier) 
 

The way scores are determined in the IBM Great Mind Challenge is that they 
count the correct number True questions submitted. We need to submit a simple text 
file which contains IDs of the questions that we have classified them into the True 
category. Negative points will be applied for each question incorrectly classified. For 
example if you submit a file with 200 entries and 50 entries of the entire file is actually 
belong to the false category while the rest (the other 150) belongs to the true category, 
then your score will be 150.  

So after running the reduced fuzzy classifier, we obtained a low score of 5 on the 
IBM dataset. We noticed that our reduced rule set contains 53 rules in total. Out of 
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these rule only 10 rules reflect to the “True” classes. This could mean that we do not 
have enough true classes’ rule for our reduced fuzzy classifier.  

Also the way we are calculating weights may cause having this low score. We are 
looking for overlap intervals for both True and false classes but due to the low number 
of true classes, we will not have too many overlaps. Therefore “False” class rules will 
most likely have higher weights associated with them. Some other rule weight 
generation can be used and experimented. We also conduct a small test to detect how 
well our reduced fuzzy classifier can predict and here are the result: 

Classes Correct Classification Incorrect Classification 
True 0.1% 6.9% 
False 92% 1% 

Table1-Reduced weighted Fuzzy Classifier result on IBM dataset 

The table above covers the whole 100% of the data. So 7% of the data are True classes 
and the rest are all “False” classes.  

 Since we have such low score for reduced Fuzzy Classifier, we decided to use Neural 
Network on IBM data set.   

 

2.2.2: Neural Network Classifier 
 

Our brain is made up a lot of tiny unit called neurons. Each neuron is connected 
to so many other neurons and it communicates with them via electrochemical signal. To 
simplify things, when a message received to a neuron by other neurons (here we call 
them input signals), then neuron somehow sums up the inputted signals. If the inputted 
signal is above some threshold, then neuron generates and fires an output voltage. This 
is how neurons transmit an action in human brain.  

 

To illustrate the same behavior, we use the idea of artificial neural network. 
Similarly, neural networks are made of many artificial neurons. Normally, we design 
neural network layer by layer. If our neural network is only consists of two layers, input 
and output layers, then neural network is called a perceptron. The following picture 
shows a perceptron:  
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Fig2-Perceptron overview 

The problem with perceptron is that it is very limited. It means that if the 
training data is linearly separable then perceptron converges. Otherwise it fails to 
classify. So this was the motivation of designing multi-layer neural networks.  

In multi-layer neural networks, we have input layer, hidden middle layer, and output 
layer as shown below: 

 
Fig3-Multi-Layer Neural Network 

Note that the above picture only shows 3-layer neural network. We could design 
a neural network with many hidden layers.  Each of the neurons in the input layer could 
be connected to many neurons in the hidden layer. Similarly, each neuron in the hidden 
layer could be connected to only one or many output neurons depending on number of 
the outputs. But the question here is how does multi-layer neural network learns and 
predict the output? 
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There are many different learning algorithms for neural network such as feed-
forward, mini-batch, momentum, adaptive learning rate, rmsprop and many others. To 
illustrated learning, each neuron is connected to a neuron in the next layer with a 
weight. Depending on how close neural network predict the output value with the 
correct value, the weights in each layer gets updated. Once of the most well-known and 
widely used neural networks is a feed-forward neural network with back propagation 
learning algorithm. In the feed-forward neural network, there is no cycle; information 
from neurons either passes forward until it reaches the output. In the back propagation 
algorithm, the output value is compared to the original value using mean squared error 
(other comparison method could be used but MSE is the most popular and accurate 
one). Once error is determined, then error back propagates throughout the network and 
weights will be updated depending on the error.  

 

2.2.2.1 Neural network Design Overview 
 

Neural networks are very suitable for pattern recognition and classification. 
Matlab provides an extensive library and toolbox on neural network. I design a neural 
network using Matlab Neural network toolbox and exercised it by changing different 
parameters in order to obtain a better performance and result.  The basic design of the 
project is as follows: 

 
Fig4- Project Design Overview for Neural Network 

 

• Raw Data

• Data Preparation

• Neural network/Training

• Unclassified data

• Predict Using Neural Network

• Classified Data
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2.2.2.2 Raw Data 
 

For this project, we are given a very large dataset of IBM Watson. The dataset 
divides into two main components; training dataset and evaluation dataset. The training 
data set is a labeled data consists of 239000 rows and 320 columns. Each row and 
column, except last column, contains some number. The last column in the training 
dataset is labeled either true or false. As described earlier, each row of the training 
dataset can be interpreted as a question presented to Watson. Depending on the 
numbers given, Watson then evaluates the question to be either true or false.  On the 
other hand, evaluation dataset is very similar to the training dataset except the last 
column in training dataset is removed from the data. Evaluation dataset will be fed into 
the neural network in order to predict the outcome as either true or false labels.  

 

 2.2.2.3 Data preparation 
 

Since the data is very large, it will not be able to fit into the Matlab. Matlab will 
run out of memory if the whole data is presented all at one. So the training data needs 
to be broken into several parts.  I used CSVChunker to split the training data into 13 
different parts. Each part contains 20000 rows of original training dataset. 

On the other hand, Matlab neural network require two different file, input and 
output files, in order to perform classification. Input file will be all the training input 
from column 1 to column 319. Output file will contain either 0 as false label or 1 as true 
label. 

 

2.2.2.4 Training algorithms used.  
 

Neural networks can be trained with different training algorithms. Matlab has a 
very large library in terms of training functions. For this project, we experiment with all 
different Matlab training functions and recorded the result. We will only show the result 
of Scaled Conjugate Gradient Descent Method because it gave us the best prediction 
score. The training functions that Matlab offers are:   

1. Levenberg-Marquardt  (trainlm) 
2. Bayesian Regularization (trainbr)  
3. BFGS Quasi-Newton (trainbfg) 
4. Resilient Backpropagation (trainrp) 
5.  Scaled Conjugate Gradient (trainscg) 
6.  Conjugate Gradient With Powell/Beale Restarts (traincgb) 
7. Fletcher-Powell Conjugate Gradient (traincfg) 
8.  Polak-RiBiere Conjugate Gradient (traincgp) 
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9. One Step Secant (trainoss) 
10. Variable Learning Rate Gradient Descent (traingdx) 
11. Gradient Descent with Momentum (traingdm) 
12. and Gradient Decent (traingd) 

 

2.2.2.5 Experiment Result  
 

Out of all of the training algorithms mentioned above, Scaled Conjugate Gradient 
gave the he best prediction score. This training method combine the model-trust region 
approach used in the Levenberg-Marquardt algorithm, with the conjugate gradient 
approach. So it doesn’t perform line search for finding the direction of gradient descent. 
Since this method initially, default parameters, gave a better result than all other 
methods, we decided to use this method and change parameters in order to increase 
the scoring result.  Initially we use 20 hidden neurons and 10 validation checks. For this 
configuration we had a score about 103 with. 

 So here are the error, gradient and confusion plots for the setting mentioned above: 

 
                    fig5-trainsgc-Error vs Epochs                  fig-6 tarinscg- Gradient vs Epochs   
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fig7- trainscg- Confusion Matrix (Correct and Incorrect Classifications) 

Looking at the MSE graph, we see that error becomes constant after epoch 60 
and gradient is not very stable. The result we have obtained here has the lowest error 
and gradient compare to most of the other methods which explain high prediction score 

 

Now we tried to change some parameters such as number of hidden layers, 
number of validation checks, and initial seed number to increase the training epoch and 
decrease the error rate and gradient. Here is the table of different scores with different 
parameters: 

 

Test Hidden Layers Validation 
Checks 

Seed Score 

1 20 6 49122356 103 
2 20 10 49122356 100 
3 40 10 49122356 106 
4 70 10 49122356 74 
5 10 10 49122356 91 
6 25 10 49122356 106 
7 30 10 49122356 117 
8 100 10 49122356 100 
9 200 10 49122356 87 

10 35 10 49122356 118 
11 35 10 49121 130 
12 52 10 4912183 131 
13 55 10 4912183 135 
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14 55 20 4912183 145 
15 55 40 4912183 145 

Table2-Comparison of trainscg method with different parameter 

 

Tests 1 through 10 show how changing number of hidden neurons in the hidden 
layer can affect the scoring result. We then focus on changing the random seed number 
as well as hidden neurons. After many trials, we decided to choose random seed 
number as 4912183. Also increasing the number of hidden neurons to 55 gave us a 
higher score. We then noticed that increasing the validation checks causes neural 
network to perform more iteration therefore we will get a lower error rate and gradient 
descent. So here are the final; plots which reflect test 15: 

 
Fig8-Improved trainsgc-Error vs Epochs         Fig9- Improved tarinscg- Gradient vs Epochs    
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Fig10- improved trainscg- Confusion Matrix (Correct and Incorrect Classifications) 

Notice now training error is constantly decreasing. Also we have obtained a much lower 
gradient. Looking at the confusion matrix, we can see that now we have performed 
better in terms of misclassification and correct classification of “true” class. 

 

3. New Method (Neuro Fuzzy Classifier) 
 

Hybrid intelligence systems became popular to solve more complex problem in 
machine learning in terms of space and dimension. Hybrid intelligence system combines 
two or more artificial intelligence technique and algorithms. Fuzzy-Neuro System is a 
hybrid intelligence system where it combines both Fuzzy logic and neural network.  

 

 Fuzzy System Neural Network 
Knowledge representation Yes No 

Uncertainty tolerance Yes Yes 
Imprecision tolerance Yes Yes 

Adaptability Yes Yes 
Learning ability No Yes 

Explanation ability Yes No 
 

Table3-Fuzzy System vs Neural Network 
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According to the table …., we can see that Fuzzy systems are very suitable for 
data/knowledge representation (using IF-Then rules) as well as explanation and analysis 
of data. Even though fuzzy systems are great in presenting and explaining data but they 
do not have learning capability. On the other hand, neural networks have the many 
different learning algorithm but they are not so great when it comes to knowledge 
presentation. We can’t just present knowledge by saying a particular weight would give 
us the best result; the knowledge is distributed throughout the whole network. So this 
makes neural network like a black box to the user. In addition, neural network can’t 
really explain data which makes it very crucial when it comes into prediction. Neural 
network only outputs the data from the training it had without any further explanation.  
So combining these two systems can helps obtain better prediction rate in the IBM great 
mind Challenge. 

 

3.1 Design Overview 
 

A Neuro Fuzzy system is a homogenous hybrid intelligence system. It takes 
advantage of a neural network learning ability to design a network which is very similar 
to the fuzzy inference system in terms of functionality. Such system uses base fuzzy 
system and expert knowledge to present data and then it uses neural network in order 
to develop if-then rules and adjust input/output membership function to improve the 
overall performance of the system. The overall structure of the Neuro Fuzzy system is 
very alike neural network. Basically the system consists of 5 layers. Similar to neural 
network, it has an input and output layer as well as 3 middle layer in order to present 
the fuzzy system. The overall architecture of the Neuro Fuzzy system is shown in the 
picture below: 
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Fig11-Neuro Fuzzy system Structure 

a. Layer 1 (Input layer):  
 
In this layer input neurons enter the network. The input neurons here are the 
crisp values that are in our dataset. So we simply forward these neurons into the 
next layer. 
  

b. Layer 2 (Fuzzification Layer): 
 
In this layer, input neurons will be fuzzified according to the membership 
function chosen for the input neurons. Basically this layer is responsible to 
determine a degree in which a crisp input value belongs to a certain membership 
function. As mentioned earlier, there are three major type of a membership 
function (Bell, Triangular and Trapezoid) and each can be a fit into our Neuro 
Fuzzy system depending on the problem. Normally Bell (Gaussian) membership 
function gives us a better result since it is covering the other two cases however 
sometimes we need to be very precise on the fuzzy value. So we can use either 
trapezoid or triangular membership functions. 
 

c. Layer 3 (Fuzzy Rule Layer) 
 
This layer represent the fuzzy rules that we have in our system. Each neuron is 
mapped into a fuzzy rule. So for example in the picture above, R2 is a fuzzy rule 
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which receive input s from A1 and B2.  Then the intersection of these two input 
neurons (according to the rule) needs to be computed by using a product 
operator.  
 

𝑌𝑌𝑖𝑖
(3) = 𝑋𝑋1𝑖𝑖

(3)  ×   𝑋𝑋2𝑖𝑖
(3)  × … ×  𝑋𝑋𝑘𝑘𝑖𝑖

(3) 
𝑌𝑌𝑅𝑅2

(3) = 𝜇𝜇𝐴𝐴1 × 𝜇𝜇𝐵𝐵2 =  𝜇𝜇𝑅𝑅2 
 

d. Layer 4 (Output fuzzy set) 
 
This layer represents the output neurons processed by fuzzy system. Number of 
neurons in this layer corresponds to the number of classes we have in our 
dataset. So the input to this layer is the output of the fuzzy rules Therefore new 
need to take a union of the inputs in order to defined a fuzzified output neuron.  
 

𝑌𝑌𝑖𝑖
(3) = 𝑋𝑋1𝑖𝑖

(4)  ⊕   𝑋𝑋2𝑖𝑖
(4)  ⊕ … ⊕   𝑋𝑋𝑘𝑘𝑖𝑖

(4) 
 

𝑌𝑌𝐶𝐶2
(4) = 𝜇𝜇𝑅𝑅1  ⊕𝜇𝜇𝑅𝑅2 ⊕ 𝜇𝜇𝑅𝑅4  ⊕𝜇𝜇𝑅𝑅5 =  𝜇𝜇𝐶𝐶2 

 
e. Layer 5 (Defuzzification layer) 

 
Finally we need to defuzzify our processed neurons into a crisp output value. In 
this layer, we use the output membership functions to obtain a value for the 
input neuron. Depending on where exactly the value will be defuzzified into, we 
can associate an appropriate class label to that value. There could be many 
different defuzzification method applied in this layer such as centroid and sum of 
product. Defuzzification method is explained in detail under “Step3: Defuzzify 
and Classify” of fuzzy systems 

3.2 Neuro Fuzzy in IBM great mind Challenge 
 

 We have used neural network and fuzzy classifier in the previous IBM challenge. 
So we decided to use the new method using Neuro fuzzy classifier to come up with a 
prediction score and then compare it to neural network and fuzzy system classifiers. To 
start with, we used a Neuro fuzzy classifier developed in matlab. This tool requires set of 
fuzzy rules as input as well as network parameter adjustments such as type of fuzzy 
membership functions, number of membership functions, hidden layers, number of 
validation checks, and random seed value. 

Once again, the goal of this competition is to predict and find the rows in 
evaluation dataset where we believe they belong to the class labeled “true”. The Neuro 
fuzzy classifier tool in matlab consist of 4 different classifiers, each with slightly different 
setup. So the initial setup that we used consist of 50 hidden neurons, 7 triangular 
membership functions, no random seed value, and reduced fuzzy rules (explained in 
Fuzzy classifier section). We first used the first classifier which uses a simple 
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backpropagation and a triangular membership function. The score we obtained wasn’t 
very impressive. The total true values detected was around 67.  

 
Fig11-BackProp 3 memFunc-Error vs Epochs     

 
Fig13- BackProp 3 memFunc – Confusion Matrix (Correct and Incorrect Classifications) 

 

The overall error is already low enough but the prediction score is not very 
satisfying. The reason could be triangular membership function uses a crisp output 
value. So in the new few sections, we are going to use different methods in order to 
improve the prediction scores.  
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3.3 Neuro Fuzzy improvements and result 

3.3.1 Removing data redundancy/feature selection 
 

Since our dataset is very large, there is always a chance for data redundancy. Our 
data consist of 319 columns. Each column can be interpreted as a feature. So feature 
selection can help us to reduce number of features in our dataset which will simplify our 
problem. The first step is to find out how many columns in training and evaluation 
dataset has all zeroes or ones. Furthermore, we need make sure that these features 
match in both training and evaluation dataset. Looking at the graphs below, we can see 
that the distribution of zeroes and ones in training and evaluation dataset are very 
similar therefore we can remove them from dataset.  

 

Fig14-Zeroes in training dataset(x-axis: features--------y-axis: percentage of zeroes 0-100) 

 

 

Fig15-Zeroes in evaluation dataset(x-axis: features--------y-axis: percentage of zeroes 0-100) 
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Fig16-Ones in training dataset(x-axis: features--------y-axis: percentage of zeroes 0-100) 

 

 

Fig17-Ones in evaluation dataset (x-axis: features--------y-axis: percentage of zeroes 0-100) 

 

We first removed columns that are all zeroes from two dataset. This method 
reduced number of features to 273 features. This is the decrease of 52 features in our 
dataset. We then used this new dataset against Neuro Fuzzy classifier (first classifier in 
Matlab neuro fuzzy classifier tool). The overall process was faster than the original 
dataset because we have less number of feature. The prediction rate was almost the 
same as what I had obtained from last semester. The prediction rate was around 90%, 
and the number of true values I detected in the evaluation dataset was 118. This is a 
great improvement compare to the original network setup. Graphs below show a 
decrease in overall MSE and performance of the network which result in a better 
prediction scores.  

 
Fig18-only zeroes-Error vs Epochs     Fig19- only zeroes – Gradient vs Epochs    
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Fig20- only zeroes – Confusion Matrix (Correct and Incorrect Classifications) 

The next step was to remove features where there are all ones from the original 
dataset. This time the prediction rate dropped to 85% and the total number of true 
values detected was 104. This method reduces features to 300 features.  

 

The last feature selection test was to remove features where there are all ones and 
zeroes. This method reduced number of features to 267. This significantly improved the 
computation time as well as prediction score. I was able to improve the prediction to 
94% . The total number of true values detected was 125. The below graph shows that 
prediction error for training, validation, and test are very similar with each other. 
Looking at the confusion matrix, we can see that prediction has been improved to 0.4% 
true values predicted. 
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Fig21-combined 0s and 1s-Error vs Epochs 

 
Fig22- combined 02 and 1s – Confusion Matrix (Correct and Incorrect Classifications) 

 

 

We also tried to only remove the features where the percentage of zeroes in a feature is 
greater than 98%. But this method didn’t work well as expected. The prediction rate was 
very low (around 50%) and 76 true values were predicted. 
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Fig18-0s columns over 98% -Error vs Epochs   Fig19- 0s columns over 98% - Gradient vs  
                                                                                  Epochs 

 
Fig25- 0s columns over 98% - Confusion Matrix (Correct and Incorrect Classifications) 

 

 Here is the summary of the results using feature selection: 

 Prediction rate (training set) Final Score 
No feature selection 43% 67 
Remove ones only 85% 104 

Remove zeroes only 90% 118 
Remove zeroes if > 98% 50% 76 

Remove ones and zeroes 94% 125 
 

Table4-feature Selection result 
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3.3.2 Row selection 
 

Since we have lots of rows in our training dataset, it will make our problem much 
simpler if we can remove some of the rows from our dataset. So initial approach was 
similar to what we had done during feature selection. We tried to remove rows where 
there is all zeroes or ones. Unfortunately there wasn’t a single row which satisfy this 
condition. We then defined a threshold. Initially we removed rows where the threshold 
of having zeroes is greater than 98%. The result wasn’t really impressive. Only 20 true 
values were predicted from evaluation dataset. Then we tried the same approach to 
remove rows numbers of ones in the row is greater than 98%. Again the true value 
detection wasn’t very good; it was around 17.  

 

 
Fig26-row selection –Error vs Epochs                    Fig27- row selection – Gradient vs Epochs 
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Fig28- row selection – Confusion Matrix (Correct and Incorrect Classifications) 

 

So we decided to combine the two methods mentioned above, remove rows 
where number of ones exceeds 98% or number of zeroes exceeds 98%, in order to 
produce a better result just like the feature selection which we used in previous 
improvement method. Indeed, the result was higher than the two methods mentioned 
above but it was not as good as feature selection result. With this combined method, 30 
true values were predicted which compare to 125 obtained from feature selection is not 
very impressive.  

 

Fig29-row & column cobined –Error vs Epochs       Fig27- row & column combined  
                                     - Gradient vs Epochs 
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Fig31- row & column combined – Confusion Matrix (Correct and Incorrect 
Classifications) 

3.3.3 Change learning algorithm\mebership function type 
 

Here we tried to use some different learning algorithm as well a membership 
functions in order to obtain a better prediction score for our Neuro Fuzzy classifier. As 
mentioned earlier, the first Neuro Fuzzy classifier, used 50 hidden neurons with 5 
triangular member ship functions and reduced fuzzy rules as its input. Now in the 
second Neuro fuzzy classifier, we used uses trapezoid membership functions with 
momentum as its learning method. We trained our network on training data set after 
applying feature selection method as mentioned above. Increasing the number of 
hidden neurons to 79 gave us the best result. The prediction score with 79 hidden 
neurons and 7 trapezoid membership function was 137. Here is the summary table of 
using trapezoid membership functions with momentum learning method 

Hidden 
layer 

memFunc 
type 

#of 
memFunc 

Prediction 
rate 

MSE Final score 

50 Trapezoid  5 43% 0.83 67 
55 Trapezoid 5 52% 0.54 77 
67 Trapezoid 7 71% 0.33 112 
79 Trapezoid 7 94% 0.034 137 
92 Trapezoid 7 86% 0.076 121 
100 Trapezoid 7 73% 0.103 116 
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Table5-Momentum learning with trapezoid membership functions 

 

 

The next classifier we tried, it uses SCG as its learning method.  When we used 
neural network for classification, SCG learning method gave us better result compare to 
momentum method. Similarly, when we ran the classifier, with 7 membership function 
(Trapezoid membership function), the result wasn’t really impressive. We were only 
able to detect 107, true values. So next step was to change the actual shape of the 
membership function to see if there will be any improvement. When we change the 
shape of membership function from trapezoid to Gaussian, we saw an increase in 
prediction; 118 true values were detected. Next, we reduced the number of 
membership functions to 5 and we obtained a much better result. With this setup, 132 
true values were predicted. The last classifier, is just an improvement to the previous 
classifier. The last classifier is much more efficient in terms of computation using SCG 
learning algorithm.  This classifier uses batch method to update network’s weights. 
However, the result were very similar to the previous classifier. Here is the summary of 
the 4 different classifier result with different configuration: 

 

 Learning Alg Hidden 
layers 

MemF 
type 

# of 
MemF 

MSE Score 

Classifier 
1 

backpropagation 50 Triangular 7 0.082 87 

Classifier 
2 

momentum 50 Triangular 7 0.062 96 

Classifier 
3 

SCG 50 Triangular 7 0.021 114 

Classifier 
4 

SCG batch 50 Triangular 7 0.034 109 

 
Table6-classifier comparison using triangular membership functions 

 Learning Alg Hidden 
layers 

MemF 
type 

# of 
MemF 

MSE Score 

Classifier 
1 

backpropagation 67 Trapezoid 7 0.052 102 

Classifier 
2 

momentum 67 Trapezoid 7 0.032 108 

Classifier 
3 

SCG 67 Trapezoid 7 0.0110 121 

Classifier 
4 

SCG batch 67 Trapezoid 7 0.0124 118 

27 
 



 
Table7-classifier comparison using trapezoid membership functions 

 Learning Alg Hidden 
layers 

MemF 
type 

# of 
MemF 

MSE Score 

Classifier 
1 

backpropagation 79 Gaussian 5 0.01297 102 

Classifier 
2 

momentum 79 Gaussian 5 0.01055 
 

108 

Classifier 
3 

SCG 79 Gaussian 5 0.010126 148 

Classifier 
4 

SCG batch 79 Gaussian 5 0.010197 132 

 
Table8-classifier comparison using Gaussian membership functions 

 

Here are performance, gradient, and confusion matrices of all 4 classifier explained 
above.  

Classifier 1:  

 

 

Fig32-IBM classifier 1 -Error vs Epochs             Fig33- IBM classifier 1 - Gradient vs Epochs 
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Fig34- IBM classifier 1 - Confusion Matrix (Correct and Incorrect Classifications) 

Even though the performance of overall networks looks pretty reasonable but 
prediction of the True values is still very low (Confusion matrix shows a lot of false 
positive). Also it seems that we have over trained the network since there is an increase 
in the gradient of the network. 

Classifier 2: 

 

 

Fig35-IBM classifier 2 -Error vs Epochs            Fig36- IBM classifier 2 - Gradient vs Epochs 

In this classifier Gradient looks more stable than the previous classifier, but the 
momentum methods perform slightly as good as the previous backgropagation 
classifier.  
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Classifier 3: 

 
Fig37-IBM classifier 3 -Error vs Epochs 

 

 
Fig38- IBM classifier 3 - Gradient vs Epochs 
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Fig39- IBM classifier 1 - Confusion Matrix (Correct and Incorrect Classifications) 

This classifier uses “trainscg” which significantly improves the prediction score. 
The graphs above proves it. The prediction of false positive has decreased as shown in 
the confusion matrix and gradient has reached its minimum value compare to all other 
classifiers.  

Next classifier uses a batch training of the third classifier. The result of the fourth 
classifier is slightly lower to the third classifier. We have concluded that online training 
works the best for IBM Great Mind Challenge.   

Classifier 4: 
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Fig40-IBM classifier 4 -Error vs Epochs 

 

 
Fig41- IBM classifier 4- Gradient vs Epochs 

 

Finally IBM great mind challenge provided us with a completely new dataset and 
now this time we are given only one chance to submit. So we decided to use the neuro-
fuzzy with 5 Gaussian membership functions and SCG learning. When Neuro fuzzy 
classifier was ran against the final evaluation dataset, 140 true values were predicted 
which is still close to the 148 true values that we detected using old evaluation dataset.  
This result put our team in the fourth place of the competition after they announced the 
top three winners. Here is the screen shot of the top three winners of the completion. 
So the score we obtained is only three points away from the third place team. 
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3.4 Neuro Fuzzy in the IARPA Trustworthiness Challenge 

3.4.1 Data Preparation 
 

We divided the four class labels in our training data into two classes as follows: 

Promised belongs to the “trust” class 

Promised not fulfiliable belongs to the “don't trust” class. 

More than promised belongs to “trust” class  

Less than promised belongs to the “don't trues” class  

Furthermore “trust” class is represented with number 1 and “don’t trust” class is 
0 in our dataset. There is also a feature B-ALS which is presented by labels in the training 
dataset. The labels are low, medium and high. This feature is the signal to identify if the 
person is at risk. So we converted these three labels into 0, 50 and 100 respectively. 
Now the training dataset is ready to be fitted into the Neuro Fuzzy classifier. In the next 
section, we are going to run the classifier against the evaluation dataset and analyze the 
result.  

 

3.4.3 Trustworthiness challenge improvements and results 

3.4.3.1 Applying Neuro Fuzzy classifier on evaluation set 
 

So when we ran the fuzz-neural network against training dataset, the score 
obtained was -0.03. This score is based on how well we predicted the trust and don’t 
trust label in the evaluation dataset. Basically, we need to run our trained network 
against evaluation dataset (new dataset, separate than training dataset) and for each 
row in our evaluation dataset, we need to predict whether it belongs to “trust” or “don’t 
trust” class. I used neuro fuzzy system with 3 triangular membership functions and 57 
hidden neurons. The network error is increasing as we train the network. This explain 
why we have such low score in our prediction. 
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Fig42-Neuro Fuzzy 3 memFunc -Error vs Epochs         Fig43- Neuro Fuzzy 3 memFunc -  
                                                                                               Gradient vs Epochs 

 

 
Fig44- IBM classifier 1 - Confusion Matrix (Correct and Incorrect Classifications) 

 

 

3.4.3.2 Change number of classes 
 

Previously, in our training dataset, we had four different vales to determine the 
classes; exact amount promised, more than promised, less than promised, promise not 
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fulfillable.  In the previous approach, we decided to associate “exact amount promised” 
and “more than promised” to the class “trust” by replacing it with value 1 in our training 
dataset. Similarly we associated class “don’t trust” to “less than promised” and “promise 
not fulfillable” by replacing them with 0 in our tarring dataset.  

Now in the new approach, we give each of these four cases a special number 
which represent a new class in our training. So now our training dataset contains 4 
distinct classes. We give value 1.5 to more than promised, 1 to exact amount promised, 
-1 to less than promised and -1.5 to promised not fulfillable. We trained our Neuro 
Fuzzy network on these 4 classes. In order to classify after we ran our network on 
evaluation dataset, we need to map “more than promised” and “exact amount 
promised” to “Trust” class. Similarly we mapped “promised not fulfillable” and “less 
than promised”  to “Don’t trust” labels.  

We tested our Neuro Fuzzy network against this new approach. Since we are only 
limited to 7 submission pre week, we need to submit the solution which we believe it 
would give us the best solution. In order to determine the best solution, we heavily rely 
on the MSE of our network. We submitted a solution where our network had a very low 
MSE; around 0.13896. The score of the submission was 0.02 which was higher than 
what we had obtained previously. 

 
Fig44-4 classes dataset -Error vs Epochs 
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Fig45- 4 classes dataset -Gradient vs Epochs 

 

 
Fig46- 4 classes dataset - Confusion Matrix (Correct and Incorrect Classifications) 
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Even though, nework error and gradient are decreasing, but we have completely failed 
to detect one classe in our confusion matrix which s “promise not fulfilable.” 

3.4.3.3 Change network parameters 
 

Originally we used 3 triangular membership functions. That setup didn’t give us a good 
score; in fact it generated a negative score. So we decided to change the membership 
function into 3 trapezoid functions. It slightly improved the score. The score wasn’t 
negative anymore but the overall prediction score was around 0.03. We then focused 
more on the neural network side of the neuro-fuzzy system. We tried to change some 
parameters such as evaluation checks, random seed value, number of hidden layers and 
number of iterations. The score improved when number of hidden layers are between 
50 to 60 and validation checks are at minimal. The score was improved to 0.14. Here are 
some tables which summarizes the result of changing some network parameters.   

  Learning Alg Hidden 
layers 

MemF 
type 

# of 
MemF 

MSE Score 

Classifier 1 backpropagation 79 Gaussian 5 0.793 0.02 
Classifier 2 momentum 79 Gaussian 5 0.701 0.07 
Classifier 3 SCG 79 Gaussian 5 0.473 0.12 
Classifier 4 SCG batch 79 Gaussian 5 0.514 0.09 

Table8-classifier comparison using Gaussian membership functions on Trust datatset-79 hidden 

 

  Learning Alg Hidden 
layers 

MemF 
type 

# of MemF MSE Score 

Classifier 1 backpropagation 100 Gaussian 5 1.04 -0.02 
Classifier 2 momentum 100 Gaussian 5 0.957 0.013 
Classifier 3 SCG 100 Gaussian 5 0.831 0.062 
Classifier 4 SCG batch 100 Gaussian 5 0.846 0.058 

Table9-classifier comparison using Gaussian membership functions on Trust datatset-100 hidden 

 

 Learning Alg Hidden 
layers 

MemF 
type 

# of 
MemF 

MSE Score 

Classifier 1 backpropagation 56 Gaussian 5 0.320 0.07 
Classifier 2 momentum 56 Gaussian 5 0.199 0.14 
Classifier 3 SCG 56 Gaussian 5 0.199 0.36 
Classifier 4 SCG batch 56 Gaussian 5 0.224 0.21 

 
Table10-classifier comparison using Gaussian membership functions on Trust datatset-56 hidden 

Classifier 1: 
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Fig47-Trust Classifier 1 -Error vs Epochs            Fig48- Trust Classifier 1 - Gradient vs  
                                                                                  Epochs 

 

 

 
Fig49- Trust classifier 1 - Confusion Matrix (Correct and Incorrect Classifications) 

 

According to the confusion matrix, we have failed to detect “Don’t trust” class in our 
training, test, and validation dataset. Notice that how network performance, and 
gradient increase over network training time. This explain low prediction score that we 
have for this method. 
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Classifier 2: 

 
Fig50-Trust Classifier 2 -Error vs Epochs            Fig51- Trust Classifier 2 - Gradient vs  
                                                                                  Epochs 

 
Fig52- Trust classifier 1 - Confusion Matrix (Correct and Incorrect Classifications) 

Here we have improved our prediction over “Don’t trust” class. We have also almost 
stable network performance and gradient. So this momentum method slightly improved 
our prediction score. 

 

Classifier 3: 
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Fig53-Trust Classifier 3 -Error vs Epochs            Fig54- Trust Classifier 3 - Gradient vs  

                                                                                  Epochs 

 

 
Fig55- Trust classifier 3 - Confusion Matrix (Correct and Incorrect Classifications) 

 

Once again, “trainscg” gave us the best prediction score compare to other classifiers 
used against this dataset. Overall 7% error rate in “don’t trust” classes is better compare 
to the overall error (false positive) in other classifiers.  

 

Classifier 4: 
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Fig56-Trust Classifier 4 -Error vs Epochs            Fig57- Trust Classifier 4 - Gradient vs  
                                                                                  Epochs 

 
Fig58- Trust classifier 4 - Confusion Matrix (Correct and Incorrect Classifications) 

 

3.4.3.4 Retrain the network on its weakness 
 

Since we were not improving by changing many different parameters as 
mentioned in the previous improvements, we started focusing on the root cause of this 
issue. In order to find the issue, we tried to analyze the training dataset. In other words, 
we wanted to see how well we can predict the entire training set. So the goal is to train 
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the Neuro Fuzzy classifier on the entire training dataset, and then use the same training 
set in order to predict the outcome. We noticed that, we were not able to fully predict 
the training set. Specifically, the prediction of “don’t trust” class was extremely poor; 
around 40%. This explains the low prediction score that we have on the evaluation 
dataset.   

So we tried to improve the prediction rate on the training dataset by using 
different learning algorithms. Only SCG learning algorithm gave us the highest 
prediction score. Also changing the fuzzy parameters in the network didn’t really help 
much. So the last option we tried was to retrain the network on the set of data were we 
predicted wrong class labels. We noticed that 121 rows in our training dataset will 
always misclassified. So we retrain our network on these 121 rows.  

 
 

Fig59-Retarain Classifier  -Error vs Epochs             
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Fig60- Retrain Classifier - Gradient v Epochs 

 
Fig61- Retrain classifier- Confusion Matrix (Correct and Incorrect Classifications) 

 

 

Here we can see that MSE, performance and gradient of the network is decreasing 
as we train the network. We retrain the network on the data where it failed to predict 
using the same learning algorithm (trainscg) and same network parameters. This shows 
an impressive in the network prediction score as well as total number of errors for 
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detecting “Don’t trust” labels (only 2%).  The prediction score was at 0.21. The prediction 
is still not very high and this could be due to our network become bias toward the 121 
rows that we retrained on.  

 

3.4.3.5 Changing the threshold 
 

 The last improvement was to find an optimal threshold for our classifier. We 
noticed that some output values of our network is not very close to 0 or 1 which 
indicate “trust” and “don’t’ trust” class respectively. Some values falls between 0 and 1. 
So we need a threshold to determine a boundary between “trust” and “don’t trust” 
class.  

The following table shows the different threshold used in order to decide the 
best boundary for separating trust and don’t trust classes.  

 

 

So according to this table threshold of 0.61 gave us the best prediction score of 0.59.  

 

 

We have entered in this competition as a team. So our team score for this competition 
is 0.72. The top 25 teams which have score greater than 0.70 are eligible to participate 
in the final round. At this stage, teams are required to submit their solutions along with 
their code and their report. There are awards for the top three teams of this 
competition. 

 

4. Conclusion: 
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In this paper, we presented three classifier on IBM Great Mind Challenge Dataset 
and Innocentive Trustworthiness dataset; Reduced Weighted Fuzzy Classifier, Neural 
Network Classifier, and Neuro Fuzzy Classifier. As we discussed, we obtained a relatively 
low score using reduced fuzzy classifier. The problem were mostly involved in the way 
fuzzy rules were generated and how weights are associated to the fuzzy rules. We then 
decided to use neural network to compare the result with our fuzzy classifier. Many 
different algorithms on Matlab Neural Network were put into practice. The result of 
each learning method were recorded for further analysis. We have concluded that 
Neural Network will give us much higher score compare to Fuzzy Classifier. Fuzzy logic 
cannot learn but it is really powerful in making decision based on imprecise and 
ambiguous data. On the other hand, Neural Network have the learning ability but are 
not as powerful as fuzzy logic in terms of making decision. So combining these two 
method could give us a very powerful classifier. A homogeneous artificial intelligence 
algorithm that uses both Neural Network and Fuzzy Logic is called Neuro-fuzzy system.  
As we saw in experiment result, We have improved our prediction score by using Neuro 
Fuzzy System. In both IBM Great Mind Challenge and Innocentive Trustworthiness 
challenge, we wre eable to finish in the top ten. IN IBM Great Mind Challenge, out of 55 
participant teams, we ranked 4th. In Innocentive Challenge, out of 453 teams, we ranked 
8th in the overall competition.  
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