
San Jose State University
SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

Spring 2014

ANALYZING BIG DATA WITH DECISION
TREES
Lok Kei Leong
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

Part of the Computer Sciences Commons

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU ScholarWorks. It has been
accepted for inclusion in Master's Projects by an authorized administrator of SJSU ScholarWorks. For more information, please contact
scholarworks@sjsu.edu.

Recommended Citation
Leong, Lok Kei, "ANALYZING BIG DATA WITH DECISION TREES" (2014). Master's Projects. 366.
DOI: https://doi.org/10.31979/etd.9wrj-crra
https://scholarworks.sjsu.edu/etd_projects/366

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by SJSU ScholarWorks

https://core.ac.uk/display/70408793?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.sjsu.edu?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F366&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F366&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F366&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F366&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F366&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/366?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F366&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

 ANALYZING BIG DATA WITH DECISION TREES

A Writing Project

Presented to

The Faculty of the Department of Computer Science

San José State University

In Partial Fulfillment

of the Requirements of the Degree

Master of Science

by

Lok Kei Leong

Spring 2014

© 2014

Lok Kei Leong

ALL RIGHTS RESERVED

The Designated Project Committee Approves the Project Titled

ANALYZING BIG DATA WITH DECISION TREES

by

Lok Kei Leong

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

SAN JOSÉ STATE UNIVERSITY

May 2014

Dr. Chris Tseng Department of Computer Science

Dr. Sami Khuri Department of Computer Science

Mr. Frank Butt Department of Computer Science

ABSTRACT

ANALYZING BIG DATA WITH DECISION TREES

by Lok Kei Leong

Machine learning is widely used for many current technologies. One of the fundamental
machine learning methods is Decision Tree due to its fast learning tasks and consistent
prediction results. In this project, we developed machine-learning programs to predict
answers in an evaluation dataset after learning from the feature vectors in a provided
training dataset. The programs were put to the test in two competitions, The Great Mind
Challenge: Watson by IBM, which uses very large datasets, and The IARPA
Trustworthiness Challenge by InnoCentive, which uses smaller datasets. This document
proposed using Pruning, AdaBoost, RobustBoost, and a hybrid approach with Genetic
Algorithm as methods of building decision trees. We developed the programs using
Mathworks Matlab and compared the results. We observed that for large datasets,
pruning has bad rates of prediction due to overfitting. AdaBoost yielded better rates of
prediction but is easily affected by random noise. RobustBoost is able to avoid overfitting
and random noise, which makes it the best rate of prediction for large datasets. For small
datasets, Pruning, AdaBoost, and RobustBoost yielded the poor prediction rates. The
hybrid Genetic Algorithm approach yielded the best prediction rates due to its ability to
evolve until identifying the best feature vectors.

5

ACKNOWLEDGMENTS

 I would like to express my gratitude to my project advisor, Dr. Chris Tseng, for his
motivation, support, and for giving me opportunities to participate in challenges. His
guidance helped me in research and solving problems.

 I would like to thank Dr. Sami Khuri and Mr. Frank Butt for contributing as my
committee members, and giving me their opinions and comments.

 I would also like to thank the Computer Science department’s professors and staff
members that have been helping me during my study in San Jose State University.

 Lastly, I would like to thank my family and friends who have helped me successfully
completing this project with their thoughts and encouragement.

6

TABLE OF CONTENTS
1.0 Introduction ... 10

1.1 Problem Statement ... 11

2.0 Project Design .. 12

2.1 Decision Tree ... 14

2.2 Overfitting and Pruning ... 15

2.3 AdaBoost ... 20

2.4 RobustBoost .. 20

2.5 Feature Selection using Genetic Algorithm .. 22

2.5.1 Genetic Algorithm .. 23

2.5.2 Hybrid approach of Genetic Algorithm and Decision Tree 25

2.5.3 Fitness function and scoring judgment ... 26

3.0 Matlab for Challenges ... 27

3.1 Data Preparation for Matlab Code ... 27

4.0 Experimental Outcome and Analysis .. 29

4.1 The Great Mind Challenge .. 29

4.1.1 Pruning ... 29

4.1.2 RobustBoost ... 31

4.1.3 Feature Selection .. 34

4.2 The Trustworthiness Challenge .. 35

4.2.1 Pruning ... 35

4.2.2 RobustBoost ... 36

7

4.2.3 Feature Selection .. 38

5.0 Conclusions .. 40

REFERENCES .. 42

8

LIST OF FIGURES

Figure 1 Decision Tree of Discount .. 15	

Figure 2 Decision Tree built from IBM Training Dataset ... 17	

Figure 3 Pruned Decision Tree .. 19	

Figure 4 Pruned Decision Tree Classification Rules ... 19	

Figure 5 Example of weak classifiers in RobustBoost .. 22	

Figure 6 Original dragons in our gene pool ... 24	

Figure 7 two dragons with the most desired traits ... 25	

Figure 8 Dragon traits after performing crossover .. 25	

Figure 9 Dragon traits after mutation applied in addition to crossover 25	

Figure 10 Genetic Algorithm with Decision Tree Hybrid approach 26	

Figure 11 Pruning Errors in Great Mind Challenge .. 30	

Figure 12 Weak Classifiers and Error Goal .. 32	

Figure 13 Root Mean Square Errors in RobustBoost and AdaBoost 33	

Figure 14 Pruning Errors in Trustworthiness Challenge ... 36	

Figure 15 Boosting Algorithm Errors in Trustworthiness Challenge 37	

Figure 16 Max and Min Fitness Score in each Iteration ... 39

9

LIST OF TABLE

Table 1 Pruning Root Mean Square Rate .. 30	

Table 2 Great Mind Challenge ‘s Root Mean Square Errors in Boost Algorithm 33	

Table 3 Pruning Error Rate in Trustworthiness Challenge ... 35	

Table 4 The Trustworthiness Challenge’s Root Mean Square Errors in Boost Algorith .. 37	

Table 5 Size of initial gene .. 39	

10

1.0 Introduction

 In 1959, Arthur Samuel defined machine learning as the “field of study that gives

computers the ability to learn without being explicitly programmed”. Machine learning

is a field of computer sciences that incorporates different algorithms to create a system

capable of automatically predicting and taking actions based on data. This master's

project involves using machine-learning algorithms to learn from a set of labeled training

data and predict values in unseen datasets. This learning method is call supervised-

learning. The master's project is divided into two main parts. In the first part, we will

create different machine-learning algorithms to be tested in The Great Mind Challenge:

Watson Edition (TGMC). The Great Mind Challenge is a series of software development

competitions organized by IBM open to university students. The Watson Edition is

designed specifically for students attending universities within the United States. The

goal of this competition is to create an algorithm capable of analyzing a training dataset

in order to predict the answers of an Evaluation dataset with the highest level of accuracy

possible. This competition is inspired in the IBM Watson supercomputer, which is a

system that was specifically designed to compete in the general knowledge quiz show

Jeopardy! to answer questions formulated in natural language. Unlike the IBM Watson

system, the algorithm being used for the Great Mind Challenge competition uses numeric

datasets to produce True or False answers. In the second part of the project, we will

create a machine-learning algorithm for the IARPA Trustworthiness Challenge. This

challenge is another machine-learning competition organized by the crowdsourcing

11

company InnoCentive. The Trustworthiness Challenge is similar to The Great Mind

Challenge: Watson Edition. But instead of analyzing the feature vectors to predict the

answers as true or false, the IARPA Trustworthiness Challenge uses the feature vectors to

label the answers as trustworthy or not. For this competition, the feature vectors represent

different kinds of human behavior and the answer labels represents the level of

trustworthiness for a person.

 In the following sections, we will identify and work on solutions to the problems that

The Great Mind Challenge: Watson Edition and the Trustworthiness Challenge

present. We will use different algorithms, such as decision tree, pruning, Adaboost,

Robustboost, and a hybrid approach of decision tree with Genetic Algorithm, and develop

programs to test their performance in the IBM and InnoCentive challenges. Next, we will

analyze and discuss the results of the programs in an attempt to identify which algorithms

are more effective to create machine-learning systems for this kind of application.

1.1 Problem Statement

 The Great Mind Challenge and the Trustworthiness Challenge can be divided in two

phases: the testing phase and the evaluation phase. For the first phase of each

competition, both IBM and InnoCentive released two CSV files with different

datasets. The first CSV files contained the Training datasets. These datasets contained

data fields with Question ID, Problem ID, multiple Feature Vectors, and Answers. The

second CSV files contained the Evaluation datasets. These datasets contained the same

fields as the first CSV files, but the Answers columns were left unanswered. The purpose

of the algorithms was to analyze and learn from the numeric patterns of the Feature

12

Vectors fields provided in the Training dataset, and then, use this information as a

reference to predict the data in the Answers fields in the Evaluation datasets and label

them as True or False, or Trust or Don’t Trust. For the first phase, the challenge

participants are allowed to submit the Evaluation datasets with the predicted answers to

the IBM or InnoCentive’s websites for unlimited verifications. These verifications allow

the participants to fine tune their algorithm. For the second phase of the competitions,

the evaluation phase, both IBM and InnoCentive provide a new dataset with the answers

field blanked. In this phase, participants are only allowed to submit this Evaluation

datasets with predicted answers once to get the final judgment for the competitions. The

Great Mind Challenge’s training dataset contained approximately 2,400 data rows and

321 field columns. The first two columns were the Question ID and Problem ID,

respectively. The next 319 columns were Feature Vectors, and the final column contained

the Answer. The Trustworthiness Challenge’s training dataset contained approximately

430 data rows and 115 field columns. The first four columns were the Question ID and

Section ID fields, followed by one Answer column for the trustworthiness conditions.

The remaining 109 columns contained the Feature Vectors. The main objective of the

two challenges was to predict as many right answers as possible in the evaluation phase,

and the participant with the highest amount of correct answers became the winner of the

challenge.

2.0 Project Design

 For the development and implementation of the programs, we looked into different

13

machine-learning algorithms that were designed for data classification problems. Among

the most notorious algorithms considered for the competitions, we investigated Neural

Networks, Data Clustering, Bayesian Networks, Decision Trees, Support-Vector

Networks, Genetic Algorithms, and others. Most of those algorithms have the potential

to produce good predictions for classification problems. However, some of them were

unsuitable for the challenges, since they were not very efficient at predicting large

amounts of generic undefined feature data provided. As a result of the investigation, it

was decided that the best way of efficiently predicting the answers for the Evaluation

datasets was to use the Decision Tree algorithm. A decision tree is a simple

straightforward algorithm. It uses a white box process, which can be easy to

debug. Moreover, a decision tree can handle missing data, as well as making changes to

the structure of the tree using boosting or bagging techniques. This allows decision trees

to be used for supervised and unsupervised learning. However, when dealing with very

large datasets like the ones used in The Great Mind Challenge and The Trustworthiness

Challenge, the Decision Tree algorithm could get overwhelmed by an infinite amount of

potential outcomes. More importantly, having so many potential outcomes would reduce

the probability of finding the correct answer and would require far more processing

power from the computer system running the programs. To reduce the size of the trees

and increase the precision of their predictions, we implemented other algorithms into our

decision tree. Amongst the algorithms implemented, we have Pruning, AdaBoost,

RobustBoost, and a hybrid approach with Genetic Algorithm, which will be discussed in

more detail in the following sections.

14

2.1 Decision Tree

 A decision tree is a decision-making technique that is commonly used by making a

graphical representation of the possible consequences of a number of given cases. It is

called a decision tree since the graph used to represent the ramifications of the possible

consequences, resemble the branches of a tree. Because of that, a decision tree can be

used as a predictive model in a machine learning application. Kotsiantis has a formal

definition of a decision tree as a predictive model; “Each node in a decision tree

represents a feature in an instance to be classified, and each branch represents a value that

the node can assume. Instances are classified starting at the root node and sorted based on

their feature values” (Kotsiantis, 2007). Decision tree algorithms also have classification

models, such as Iterative Dichotomiser 3 (ID3), C4.5, and Classification And Regression

Tree (CART). For both The Great Mind Challenge and the Trustworthiness Challenge,

we have decided to use the C4.5 classification model to create all decision trees. The

C4.5 algorithm uses a set of training data and the concept of information entropy, a

measure of the uncertainty in a random variable (Ihara, 1993), to build the decision tree.

Because of its common application in classification tasks, C4.5 is usually defined as a

statistical classifier. An example of a C4.5 decision tree is given in Figure 1, where we

can see a decision tree created to predict if a movie theater customer is eligible to get a

ticket discount based on different data features. The data features in this example would

be the ages of the customers, and if they are currently students enrolled in a high school

or university. Once the decision tree has been built, the algorithm would be able to

classify the customers as senior citizens, students, both or none of the two, and then

15

decide if the customer qualifies for the discount. The example in Figure 1 is just a

simplified version of a decision tree using C4.5 since this algorithm can be used in far

more complex situations, such as the datasets used in The Great Mind Challenge and The

Trustworthiness Challenge.

Figure 1 Decision Tree of Discount

The following, is a pseudo-code for building C4.5 decision tree algorithm from

(Kotsiantis, 2007):

1 Check for base cases
2 For each attribute x

 Find the normalized information gain ratio from splitting on x
3 Let the highest normalized information gain be a_best
4 Create a decision node that splits on a_best
5 Recursive on the sub lists obtained by splitting on a_best, and add those nodes as
children of node

2.2 Overfitting and Pruning

 When an algorithm tries to build a decision tree, oftentimes it overfits its training

16

data. To explain the definition of overfitting, Kotsiantis states that for “a decision tree, or

any learned hypothesis h, is said to overfit training data if another hypothesis h’ exists

that has a larger error than h when tested on the training data, but a smaller error than h

when tested on the entire dataset” (Kotsiantis, 2007). For The Great Mind Challenge and

The Trustworthiness Challenge, we were given very large sets of data. When the

decision tree was built, a lot of branches that were only associated with very few specific

cases appeared. Those branches could have confused the decision tree data predictions

by creating several potential answers. Because of that, building an entire decision tree

utilizing every single value in the dataset may not have helped predicting the best

answers for our Evaluation dataset accurately. In Figure 2, we can observe the decision

tree built by our algorithm using the Training dataset provided for The Great Mind

Challenge. In the figure, we can observe that the decision tree algorithm alone created a

very large tree with lots of branches, which represent hundreds of potential answers for

our prediction.

17

Figure 2 Decision Tree built from IBM Training Dataset

 As part of the research, we have looked into five different ways of avoiding

overfitting the training data for a decision tree. The first method is to stop the training

algorithm before it is able to produce a fully developed decision tree. To do so, a

threshold is set up to limit the amount of branches being built in the tree. The threshold

would control the size of the decision tree and therefore, the amount of potential answers

would be limited. However, the main problem with this method is that some relevant

answers might be excluded from the tree since the threshold doesn’t

discriminate. Because of that, this method was not used for our algorithm. The second

method is to prune the branches carrying answers with the least probability of being

correct. If two decision trees perform a prediction with the same level of accuracy, the

one with the least amount of branches would be preferred. The pruning process can be

applied before the decision tree is built or after. When pruning is applied before the

18

decision tree is built, it is called pre-pruning. When pruning is applied after the decision

tree is built, it is called post-pruning. To optimize the decision tree for both The Great

Mind Challenge and The Trustworthiness Challenge, we decide to use post-pruning

algorithms. After our algorithm created the decision trees using the Training datasets, it

had to calculate the best amount of pruning to be applied to the trees based on

classification error. To calculate the classification error for each level of pruning, the

algorithm used 10-fold cross validation. The level that came up with the lowest rate of

classification error was then set as the optimal level. Once the optimal level was defined,

the algorithm was ready to prune the decision tree. In Figure 3, we can observe a pruned

version of one of the decision trees created for The Great Mind Challenge. Compared to

the un-pruned decision tree shown in Figure 2, the new decision tree is much more

smaller with a maximum length of six branches and maximum width of four branches.

We can observe the classification rules for the pruned tree in Figure 4.

19

Figure 3 Pruned Decision Tree

Figure 4 Pruned Decision Tree Classification Rules

20

2.3 AdaBoost

 The third method used to attenuate the effects of overfitting is known as AdaBoost,

the short form for Adaptive Boosting, is a boosting algorithm created by Yoav Freund

and Robert Schapire. The algorithm combines multiple weak classifiers to create one

single strong classifier by using multiple weighted samples in training stages. As a result,

the system is capable of focusing in learning from the most difficult examples instead of

combining classifiers that have equal weight. The AdaBoost algorithm improves the

prediction progressively depending on the time spent learning and the number of weak

classifiers being used. One disadvantage for AdaBoost is that it gives too much weight to

outliers or data that is irrelevant. Therefore, if the dataset where AdaBoost is being

applied has lots of noisy data, the algorithm could produce incorrect

predictions. Nevertheless, applying AdaBoost is a good way of avoiding training data

overfits for a decision tree if the amount of noise is low.

2.4 RobustBoost

 Implementing the AdaBoost algorithm in our decision tree allowed our program to

reduce the size of its decision tree and improve the prediction results. However, we still

needed to decrease the overfitting effect coming from noisy data due to the size of the

datasets evaluated for both IBM and InnoCentive’s challenges. To do so, we found

another boosting algorithm called RobustBoost (Freund, 2009). RobustBoost works in a

similar manner to AdaBoost. Nevertheless, RobustBoost was designed to be more

resistant to the effects of random data noise and imbalanced data in comparison to

AdaBoost. To decrease the effect from outliers, RobustBoost uses a classification margin

21

threshold, which limits how much the decision tree can grow within the training dataset

in order to minimize the number of training samples being created for the training

dataset. Also, to minimize the cost functions, RobustBoost normalizes the relevance

weight of each vector. This normalization process can reduce the effects from outliers

when creating decision trees. Therefore, RobustBoost is able to perform better average

classifications with more accuracy.

The pseudo-code for RobustBoost algorithm by Freund is shown below:

1. The algorithm starts at t = 0.
2. At every step, Robust Boost solves an optimization problem to find a positive step in
time Δt and a corresponding positive change in the average margin for training data Δm.

 3. RobustBoost stops the training and exits if at least one of these three conditions is
true:

• Time t >= 1.
• RobustBoost cannot find a solution to the optimization problem with positive

updates Δt and Δm.
• RobustBoost grows as many learners as requested.

RobustBoost is a self-terminating algorithm. It will end the learning process as soon as

the time is greater or equal to one. If the error goal is set to a number that is too small,

then RobustBoost will not terminate the process. Setting the right value for the error goal

is done by searching for the minimal value of error rates for which the algorithm

terminates within a reasonable number of iterations. Figure 5 shows one of the weak

classifiers created using Robustboost for The Great Mind Challenge dataset. After

running our program, we determined that using 1820 weak classifiers and a 0.1 error goal

gives the best prediction result for The Great Mind Challenge.

22

Figure 5 Example of weak classifiers in RobustBoost

2.5 Feature Selection using Genetic Algorithm

 The fifth method for preventing building a large decision tree is by selecting the most

important feature vectors from the dataset and building a smaller decision tree. The

datasets provided by The Great Mind Challenge and The Trustworthiness Challenge have

a huge amount of feature vectors and not all of the features may be useful for decision

making. Therefore if we can eliminate the false feature vectors, we could have a better

prediction. One of the ways of eliminating the false feature vectors is by using Genetic

Algorithm. Stein et al. have done similar research on feature selection using Genetic

Algorithm, in our project, we follows Stein et al’s method and apply on the challenges.

23

2.5.1 Genetic Algorithm

 Genetic Algorithm (GA) is a searching algorithm designed to mimic the biological

process of evolution by natural selection. Forrest compares genetic algorithms and

natural selection, “Genetic algorithms are loosely based on ideas from population

genetics; they feature population genotypes, an individual’s genetic material, stored in

memory, differential reproduction of these genotypes, and variations that are created by

processes analogous to the biological processes of mutation and crossover” (Forrest,

1993). A Genetic Algorithm starts with a large population of potential solutions to a

problem. The potential solutions evolve towards even better solutions. Each potential

solution has a set of properties called hypothesis, which can mutate or alter. Usually the

initial hypothesis is randomly generated and is evaluated through fitness functions. If the

hypothesis has a higher fitness score it will be selected in the next generation of potential

solutions. The next generation of solution is generated by the best two hypothesis with

crossover or mutation processes. The hypothesis will continue changing until it either

fulfills the fitness function requirements or exceeds the maximum number of generations.

 A crossover is a way of exchanging and combining two separate hypotheses. Genetic

Algorithm chooses a random point in a hypothesis and swaps and combines the first half

of the first hypotheses and the second half to the other hypotheses. One possible

downside on using crossover is that it could take several generations of evolution before

it generates good types of hypotheses. A mutation is a process that randomly adds or

deletes data from the hypothesis to give it more variety. An example is given in Figure

6. Figure 6 shows three types of dragons with their different genetic traits or

24

characteristics. Our goal is to create a dragon which genetic traits make it able to fly, has

strong eyesight, and has strong teeth. A fitness function identifies the dragons with the

most number of desired traits and eliminates from the gene pool the dragon that doesn’t

have enough desired traits, as can be observed in Figure 7. To create our dragon, we can

perform a crossover, find a random point in the genes, split the gene in half, and swap the

first half with the first gene and the second half with the second gene. This would mix

and combine the characteristics of the two genes. The process would be repeated until

we end up with a dragon with the desired characteristics, as shown in Figure 8. Now,

let’s assume that in addition to the traits mentioned before, we also want to include the

ability to swim trait to our new dragon. Since we already eliminated the third original

dragon from our process, its traits are not available to our new dragon’s gene pool

anymore. Thus, we are unable to add this new trait to our dragon-using crossover. To

solve this problem, we can apply mutation to the dragon creation process. This process

would add random traits to our new dragon until we obtain the perfect individual, as

shown in Figure 9.

Figure 6 Original dragons in our gene pool

25

Figure 7 two dragons with the most desired traits

Figure 8 Dragon traits after performing crossover

Figure 9 Dragon traits after mutation applied in addition to crossover

2.5.2 Hybrid approach of Genetic Algorithm and Decision Tree

 Genetic Algorithm is known for optimization in large datasets (Mitchell,

1996). Because of this conception, we believe Generic Algorithm can help our program

finding the most meaningful feature vectors in the Great Mind Challenge and the

Trustworthiness Challenge datasets. In our prediction program, Genetic Algorithm is

applied before the decision tree is built. To perform our predictions, we divided the

training datasets into 70% for training and 30% for testing, and then we create 20

distance genes. From each gene, the program randomly generates a potential solution

population based on the data obtained from the training dataset. Next, the Genetic

Algorithm selects features vectors from the dataset and creates a decision tree. The

decision tree then attempts to predict the answers in the testing dataset and calculates the

prediction score. The prediction score is then compared with the fitness function to

26

identify the genes that have the two highest scores. Once we identified the top genes in

our gene pool, we perform a crossover. If the prediction scores of the new genes are

better, Genetic Algorithm replaces the two genes that have the lowest score with the new

better genes. If the prediction scores reach a tie, which means the highest score and the

lowest score end up being the same, then the algorithm randomly selects a gene and

perform mutation. The mutation gives our gene pool more variety and therefore, better

prediction scoring genes could be created. The entire process is repeated over and over

until our program obtains an optimal prediction score to generate the final decision tree or

reaches the maximum number of evolved generations. Once the final decision tree is

created, the program is ready to be applied to the Evaluation dataset. Figure 10 shows the

processes of feature selection using Genetic Algorithm.

Figure 10 Genetic Algorithm with Decision Tree Hybrid approach

2.5.3 Fitness function and scoring judgment

 The fitness function in Genetic Algorithm follows the scoring method used by The

Great Mind Challenge. For The Great Mind Challenge scoring method, if the answers in

the prediction and the answer key are both true, one point is added. If the prediction

answer is true, but the answer in the answer key is false, one point is deducted. If the

Generate Next Generation
(crossover /mutation)

Training Data

Decision Tree
Evaluator

Fitness
Computation

Randomly
generated
population

Feature
Selection

Building
Decision Tree

Final Decision
Tree Classifier

Validation Data Testing Data

27

prediction answer is false, and the answer in the answer key is either true or false, we do

not deduct or add any points.

3.0 Matlab for Challenges

 For this project, we chose to use Matlab, a numerical computing environment. Matlab

has a friendly user interface, as well as easy access to virtualization and a wide range of

toolboxes capable of executing pruning and boosting algorithms. In order to run our

algorithms, we required a computer system with MathWorks Matlab with the

Optimization Toolbox set installed. For this project, we used Matlab version R2013b in

Windows 7. The program was installed in a PC with an Intel i5-2500k CPU clocked at

4.2GHz and 16GB of RAM, which provided enough computer resources to execute our

algorithm.

3.1 Data Preparation for Matlab Code

 Before analyzing the Training dataset, we need to modify the raw data files provided

by IBM and InnoCentive in order to build the decision trees properly. In The Great Mind

Challenge, the answers field in the Training dataset displays a string value of either

“True” or “False”. We converted the “True” values to 1 and the “False” values to 0 to

allow Matlab to recognize the answers as binary Boolean outputs. The size of the

Training datasets weighed approximately 390MB, while the Evaluation datasets weighed

around 84MB. Both the Training and Evaluation datasets provided for The Great Mind

Challenge are relatively big compared to the Trustworthiness Challenge, and because of

this, our computer system was able to execute our machine-learning program without

28

using up all the computer resources in our system. For the Trustworthiness Challenge,

two of columns in the training dataset need to be converted. The B-ALS column displays

a string value of either “High” ,”Medium” or “Low”. This column contains the risk of

trusting a in the dataset person. For our algorithm, we converted the “High” values to 1,

the “Medium” values to 0.5, and the “Low” values to 0, in order to give them a numeric

representation for within the program. The second column that needs to be converted is

the answers field, which displays answers as “Exact amount promised.”, “More than

promised.” , “Promise not fulfillable.”, or “Less than promised.”. According to The

Trustworthiness Challenge guidelines, those conditions are ultimately used to label the

people in the dataset as trustworthy and untrustworthy. Therefore, we converted the

answer values “Exact amount promised.” and “More than promised.” to a 1, and the

answer values “Promise not fulfillable.”, or “Less than promised.” to a 0. These two

numbers were used as numeric representations of trustworthy and untrustworthy,

respectively.

29

4.0 Experimental Outcome and Analysis

 In this section, we are comparing the error rates produced by the Pruning, AdaBoost,

RobustBoost, and the hybrid decision tree algorithms that were applied to The Great

Mind Challenge and The Trustworthiness Challenge. Since as part of both competitions,

we are not able to obtain the answer key for the Evaluation datasets in both challenges,

we decided to use the training datasets to perform the tests on the prediction accuracy for

each algorithm. For these tests, we used 70% of the dataset for training and 30% for

evaluation. Next, we compared the results the newly evaluated dataset with the already

known answers.

4.1 The Great Mind Challenge

4.1.1 Pruning

 In order to evaluate the efficiency of 10-fold cross-validation as a way of finding the

most optimal level of pruning, we tested different levels of pruning in the decision

tree. From testing results shown in Table 1, as well as in Figure 11, we can observe that a

pruning level of 80 yields the smallest error rate. We can also notice that after we

increased the level of pruning, the root mean square error also started decreasing until the

decision tree reached the maximum level of pruning. Any pruning after we applied reach

maximum level will not work because the algorithm would start removing potential

answers with high probability of occurrence. In the decision tree created for The Great

Mind Challenge’s Training dataset, the maximum level of pruning was 85, and applying

any higher level of pruning resulted in an error in our program. Additionally, the optimal

30

pruning level in a decision tree is not a fixed numeric value. The levels of pruning are

dependent on the structure of the decision tree.

Table 1 Pruning Root Mean Square Rate

Pruning Level Root Mean
Square Error

0 0.1363
10 0.1355
20 0.1329
30 0.1272
40 0.1183
50 0.1124
60 0.1071
70 0.1049
80 0.1038
81 0.1040
82 0.1042
83 0.1040
84 0.1049
85 0.1104

Figure 11 Pruning Errors in Great Mind Challenge

0.05	

0.07	

0.09	

0.11	

0.13	

0.15	

0	 10	 20	 30	 40	 50	 60	 70	 80	 81	 82	 83	 84	 85	

Ro
ot
	 M
ea
n	
Sq
ua
re
	 E
rr
or
	

Pruning	 Level	

Pruning	 Error	 in	 Great	 Mind	
Challenge	

RMSE	

31

4.1.2 RobustBoost

 The Matlab RobustBoost function has four parameters that allow the adjustment of

the prediction accuracy: number of weak classifiers, RobustErrorGoal,

RobustMaxMargin, and RobustMarginSigma. The RobustErrorGoal parameter is the

target classification error, ranging from 0 to 1. The RobustMaxMargin parameter is the

maximum classification margin in a training set. The margin minimizes the number of

observations in the training set and acts as the bottleneck for classification margins. The

RobustMarginSigma parameter represents the variation of the output value. This

parameter is used for classification margins in the training set, and only allows positive

numeric values. For The Great Mind Challenge, we set the RobustErrorGoal parameter

to 0.01, the RobustMaxMargin parameter to 0, and the RobustMarginSigma parameter to

0.01. In order to test the effect of the number weak classifiers used for RobustBoost, we

tested the algorithm with up to 1820 weak classifiers. In Figure 12, we can observe that

as we get a higher amount of weak classifiers involved with the training, the error rate

gets closer to the error goal.

32

Figure 12 Weak Classifiers and Error Goal

 From the results in Table 2, we can observe that the root mean square error obtained

after applying RobustBoost is smaller than the root mean square error obtained after

using the pruning and AdaBoost algorithms. Figure 13 shows that as the number of weak

classifier increases, the root mean square error decreases. Nevertheless, the biggest

challenge of using RobustBoost is to able to find the right amount of weak classifiers,

since having too many weak classifiers would require more time for training and could

also increase the probability of predicting bad results. Figure 13 also shows the

RobustBoost root mean square error fluctuating higher and lower. For this experiment,

the best number of weak classifier was found to be 250. In Figure 13 we can also

observe the results from AdaBoost, which ended up having a much higher error rate than

RobustBoost. AdaBoost also showed the same unstable behavior as RobustBoost.

33

Table 2 Great Mind Challenge ‘s Root Mean Square Errors in Boost Algorithm

Number of Weak
Classifiers

Root Mean Square Error
AdaBoost

Root Mean Square
Error RobustBoost

25 0.1077 0.1026
50 0.1037 0.1016
100 0.1034 0.1011
150 0.1027 0.1005
250 0.1021 0.0994
500 0.1019 0.0997
750 0.1021 0.1001
1000 0.1026 0.0999
1250 0.1027 0.1000
1500 0.1025 0.0997
1750 0.1026 0.0997
1820 0.1025 0.0998

Figure 13 Root Mean Square Errors in RobustBoost and AdaBoost

0.094	
0.096	
0.098	
0.1	

0.102	
0.104	
0.106	
0.108	
0.11	

Ro
ot
	 M
ea
n	
Sq
ua
re
	 E
rr
or
	

Number	 of	 Weak	 Classi?ier	 	

Root	 Mean	 Square	 Errors	 in	 Boost	
Algorithm	 	

AdaBoost	

RobustBoost	

34

4.1.3 Feature Selection	

 In the Great Mind Challenge training dataset, we noticed that 72 feature vectors have

the same value throughout the entire dataset. Therefore, those feature vectors can be

removed in order to reduce the number of features used for building the decision

tree. Besides having repeated values, some features vectors may also have values with no

effect on the decision making process. To deal with these feature vectors, we tried to

apply the hybrid approach to select the most useful features used for building the decision

tree. However, due to the large size of the datasets used in the competition, building

decision trees on each iteration required an excessive amount of system resources. As a

result, the entire program took several hours and even more than a full day to

run. Because of this, we were not able to find the optimal features to build the decision

tree using this specific algorithm due to its impracticality. We also attempted to run the

program using Amazon’s Elastic Computing Cloud (EC2) as a system resource, which

offers a 32-core Xeon E5-2680 v2 processor running at 3.2 GHz and 60 GB of RAM

memories. But since the algorithms are applied using Matlab tools optimized for single-

core processing, running the programs in EC2 actually took longer than our local system.

Therefore, we consider that using the hybrid approach to eliminate low relevance features

vectors is not suitable for The Great Mind Challenge datasets.

35

4.2 The Trustworthiness Challenge

4.2.1 Pruning

 We used the 10-fold cross-validation to find the best level for pruning. As a result,

the best level of pruning in the Trustworthiness Challenge’s decision tree was found at

the eighth level, which yielded a root mean square error of 0.5261. Although the eighth

level gives the smallest root mean square error, the decision tree predicted every answer

as ‘Trustworthy’. This occurred because the Trustworthiness Challenge dataset is much

smaller than The Great Mind Challenge’s dataset. Therefore, pruning a relatively small

decision tree is not a suitable method for the Trustworthiness Challenge since the pruning

could end up making the rate of prediction worse.

Table 3 Pruning Error Rate in Trustworthiness Challenge

Pruning Level Root Mean Square Error
0 0.5901
1 0.6124
2 0.6268
3 0.6268
4 0.6268
5 0.6124
6 0.6196
7 0.5825
8 0.5261

36

Figure 14 Pruning Errors in Trustworthiness Challenge

4.2.2 RobustBoost

 Since The Trustworthiness Challenge’s dataset has a similar structure to the dataset

provided by The Great Mind Challenge, it was initially thought that RobustBoost and

AdaBoost would improve our rates of prediction. However, as observed in the results in

Table 4 the root mean square error for the predictions doesn’t seem to see an impact after

we apply the algorithms. We do not see a lot of improvement either after increasing the

amount of weak classifiers. Therefore, RobustBoost and AdaBoost are not a suitable

method for the Trustworthiness Challenge.

0.46	
0.48	
0.5	
0.52	
0.54	
0.56	
0.58	
0.6	
0.62	
0.64	

0	 1	 2	 3	 4	 5	 6	 7	 8	

	 R
oo
t	 M

ea
n	
Sq
ua
re
	 E
rr
or
	

	 Pruning	 Level	

Pruning	 Error	 in	 Trustworthiness	
Challenge	

RMSE	

37

Table 4 The Trustworthiness Challenge’s Root Mean Square Errors in Boost
Algorithm

Number of Weak
Classifiers

Root Error Rate
AdaBoost

Root Error Rate
RobustBoost

25 0.6409 0.6478

50 0.5976 0.5901

100 0.5825 0.5669

150 0.5510 0.5748

250 0.5825 0.5825

500 0.5669 0.5669

600 0.5748 0.5590

650 0.5825 0.5590

	

Figure 15 Boosting Algorithm Errors in Trustworthiness Challenge

0.5	
0.52	
0.54	
0.56	
0.58	
0.6	
0.62	
0.64	
0.66	

25	 50	 100	 150	 250	 500	 600	 650	 	 R
oo
t	 M

ea
n	
Sq
ua
re
	 E
rr
or
	

Interation	

Boosting	 Algorihtm	 Root	
Mean	 Square	 Errors	

AdaBoost	

RobustBoost	

38

4.2.3 Feature Selection

 In the Trustworthiness Challenge, we created 50 genes for the Genetic Algorithm

feature selection process. As the results in Table 5 demonstrate, we experimented with

different sizes of initial gene pools and found out that a gene that has around 50 features

yields the lowest root mean square error. The original dataset has a total of 109 features,

and after applying Genetic Algorithm; our program selected the 50 features that were

most useful for making predictions. Figure 16 shows the score obtained by the fitness

function during the training process. The figure shows the level of improvement in each

iteration. The blue line in the graph represents the highest score on each iteration. The

red line represents the lowest score. We observe that after applying many crossovers, the

maximum and the minimum scores end up being the same. At this point we apply

mutation to randomly add or delete features that could potentially improve the score. If

the mutation is not able to improve the score, the genetic algorithm process will stop and

return the optimal features. Also, from Table 5, we can observe that using all of the

features for predicting yields the highest root mean square error. Therefore, selecting

fewer features can potentially improve the prediction rates.

39

Figure 16 Max and Min Fitness Score in each Iteration

Table 5 Size of initial gene

Numbers of features pick initial Number of features picked after GA RMSE

109 109 0.5901

100 103 0.5261

70 79 0.5000

50 63 0.4629

30 52 0.4725

18	
21	
24	
27	
30	
33	
36	
39	
42	
45	
48	
51	
54	

1	 14
	

27
	

40
	

53
	

66
	

79
	

92
	

10
5	

11
8	

13
1	

14
4	

15
7	

17
0	

18
3	

19
6	

20
9	

22
2	

23
5	

24
8	

26
1	

27
4	

28
7	

30
0	

31
3	

32
6	

Fi
tn
es
s	
Sc
or
e	

Iteration	

Fitness	 Score	 in	 each	 Iteration	

max	

min	

40

5.0 Conclusions

 For The Great Mind Challenge and The Trustworthiness Challenge, we proposed

creating a supervised learning program using decision trees with different algorithms:

Pruning, AdaBoost, RobustBoost, and a Genetic Algorithm Hybrid. Out of the four

algorithms, RobustBoost produced the best rate of prediction in the Great Mind

Challenge, while the Decision Tree with Genetic Algorithm hybrid produced the best rate

of prediction in the Trustworthiness Challenge. Using Adaboost was inefficient for this

type of datasets due to the susceptibility to data noise while Pruning was very limiting

and was unable to discern between weak and strong classifiers.

 For The Great Mind Challenge, the RobustBoost approach performed better than the

other algorithms due to its ability of removing noisy data. In order to obtain good rates of

prediction, our training program identified and analyzed weak classifiers. While a larger

number of weak classifiers improved our prediction results, it also made the execution

time much longer. Because of this, defining the right amount of weak classifiers was

crucial in order to run the program efficiently. The decision tree with Genetic Algorithm

hybrid approach was not used for the Great Mind Challenge due to its inefficiency. This

was caused by the large size of the datasets provided by IBM, which required several

hours or days to run for each iteration of our training program. Nevertheless, the hybrid

approach proved to be very effective at identifying the best feature vectors in smaller

datasets. This allowed us to build optimal decision trees for the datasets in the

Trustworthiness Challenge. On the other hand, RobustBoost was unable to find enough

41

weak classifiers in these datasets due to the small amount of data available for the

training process.

 From these results, we can conclude that the RobustBoost algorithm can provide the

best approach if we are dealing with very large datasets with several feature vectors

available for training. For smaller the datasets, the decision tree with Genetic Algorithm

hybrid approach proved to produce the best predictions rates due to its ability of

improving its results after each program iteration.

42

REFERENCES

Experiments with a new Boosting Algorithm
http://cseweb.ucsd.edu/classes/fa01/cse291/AdaBoost.pdf

Forrest, Stephanie (1993, Aug. 13) Genetic Algorithms: Principles of Natural Selection

Applied to Computation, Vol. 261, No. 5123. p. 872-878

Freund, Yoav (2009, May 13). A more robust boosting algorithm. Retrieved May 13,

2009 from http://arxiv.org/pdf/0905.2138.pdf

Freund, Yoav (2009, June). Drifting Games, Boosting and Online Learning. Retrieved

June 2009 from http://dev.videolectures.net/icml09_freund_dgb/

Gary Stein, Bing Chen, Annie S. Wu, and Kien A. Hua. (2005). Decision tree classifier

for network intrusion detection with GA-based feature selection. In Proceedings of
the 43rd annual Southeast regional conference - Volume 2 (ACM-SE 43), Vol. 2.
ACM, New York, NY, USA, 136-141. DOI=10.1145/1167253.1167288 from
http://doi.acm.org/10.1145/1167253.1167288

Ihara, Shunsuke (1993). Information theory for continuous systems. World Scientific. p.

2. ISBN 978-981-02-0985-8.

Kotsiantis, S. B. (2007, July 16). Supervised Machine Learning: A Review of

Classification Techniques. Retrieved July 16, 2007, from
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.95.9683&rep=rep1&type=
pdf.

Mohri, M., & Rostamizadeh, A. (2012). Learning scenarios. Foundations of machine
learning (p. 7). Cambridge, MA: MIT Press.

MathWorks filensemble http://www.mathworks.com/help/stats/fitensemble.html

The Great Mind Challenge Watson Edition 2013 Official site

https://www.ibm.com/developerworks/community/groups/service/html/communityvi
ew?communityUuid=116b5889-5469-4114-971c-21cc9c5dd859

	San Jose State University
	SJSU ScholarWorks
	Spring 2014

	ANALYZING BIG DATA WITH DECISION TREES
	Lok Kei Leong
	Recommended Citation

	Microsoft Word - ANALYZING BIG DATA WITH DECISION TREES_final_no_code_edited.docx

