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Low Mach Number Fluctuating Hydrodynamics of Diffusively Mixing Fluids
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We formulate low Mach number fluctuating hydrodynamic equations appropriate for mod-
eling diffusive mixing in isothermal mixtures of fluids with different density and transport
coefficients. These equations eliminate the fluctuations in pressure associated with the prop-
agation of sound waves by replacing the equation of state with a local thermodynamic con-
straint. We demonstrate that the low Mach number model preserves the spatio-temporal
spectrum of the slower diffusive fluctuations. We develop a strictly conservative finite-volume
spatial discretization of the low Mach number fluctuating equations in both two and three
dimensions and construct several explicit Runge-Kutta temporal integrators that strictly
maintain the equation of state constraint. The resulting spatio-temporal discretization is
second-order accurate deterministically and maintains fluctuation-dissipation balance in the
linearized stochastic equations. We apply our algorithms to model the development of giant
concentration fluctuations in the presence of concentration gradients, and investigate the
validity of common simplifications such as neglecting the spatial non-homogeneity of density
and transport properties. We perform simulations of diffusive mixing of two fluids of dif-
ferent densities in two dimensions and compare the results of low Mach number continuum
simulations to hard-disk molecular dynamics simulations. Excellent agreement is observed
between the particle and continuum simulations of giant fluctuations during time-dependent

diffusive mixing.
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I. INTRODUCTION

Stochastic fluctuations are intrinsic to fluid dynamics because fluids are composed of molecules
whose positions and velocities are random at thermodynamic scales. Because they span the whole
range of scales from the microscopic to the macroscopic [1I 2], fluctuations need to be consistently
included in all levels of description. Stochastic effects are important for flows in new microfluidic,
nanofluidic and microelectromechanical devices [3]; novel materials such as nanofluids [4]; biological
systems such as lipid membranes [5], Brownian molecular motors [6], nanopores [7]; as well as
processes where the effect of fluctuations is amplified by strong non-equilibrium effects, such as
ultra clean combustion, capillary dynamics [8, 9], and hydrodynamic instabilities [I0HI2].

One can capture thermal fluctuations using direct particle level calculations. But even coarse-
grained particle methods [I}, [I3], 14] are computationally expensive because the dynamics of indi-
vidual particles has time scales significantly shorter than hydrodynamic time scales. Alternatively,
thermal fluctuations can be included in the Navier-Stokes equations through stochastic forcing
terms, as proposed by Landau and Lifshitz [I5] and later extended to fluid mixtures [16]. The ba-
sic idea of fluctuating hydrodynamics is to add a stochastic fluxr corresponding to each dissipative
(irreversible, diffusive) flux [I7]. This ensures that the microscopic conservation laws and thermo-
dynamic principles are obeyed while also maintaining fluctuation-dissipation balance. Specifically,
the equilibrium thermal fluctuations have the Gibbs-Boltzmann distribution dictated by statistical
mechanics. Fluctuating hydrodynamics is a useful tool in understanding complex fluid flows far
from equilibrium [I6] but theoretical calculations are often only feasible after ignoring nonlineari-
ties, inhomogeneities in density, temperature, and transport properties, surface dynamics, gravity,
unsteady flow patterns, and other important effects. In the past decade fluctuating hydrodynam-
ics has been applied to study a number of nontrivial practical problems [9 I8-20]; however, the
numerical methods used are far from the comparable state-of-the-art for deterministic solvers.

Previous computational studies of the effect of thermal fluctuations in fluid mixtures [9} 19,
21] have been based on the compressible fluid equations and thus require small time steps to
resolve fast sound waves (pressure fluctuations). Recently, some of us developed finite-volume
methods for the incompressible equations of fluctuating hydrodynamics [22], which eliminate the
stiffness arising from the separation of scales between the acoustic and vortical modes [23], 24].
For inhomogeneous fluids with non-constant density, diffusive mass and heat fluxes create local
expansion and contraction of the fluid and the incompressibility constraint should be replaced by a

“quasi-incompressibility” constraint [24, 25]. The resulting low-Mach number equations have been



used for some time to model deterministic flows with thermo-chemical effects [24] [26], and several
conservative finite-volume techniques have been developed for solving equations of this type [27-
31]. To our knowledge, thermal fluctuations have not yet been incorporated in low Mach number
models.

In this work we extend the staggered-grid, finite-volume approach developed in Ref. [22] to
isothermal mixtures of fluids with unequal densities. The imposition of the quasi-incompressibility
constraint poses several nontrivial mathematical and computational challenges. At the mathemat-
ical level, the traditional low Mach number asymptotic expansions [23] 24] assume spatio-temporal
smoothness of the flow and thus do not directly apply in the stochastic context. At the com-
putational level, enforcing the quasi-incompressibility or equation of state (EOS) constraint in a
conservative and stable manner requires specialized spatio-temporal discretizations. By careful se-
lection of the analytical form of the EOS constraint and the spatial discretization of the advective
fluxes we are able to maintain strict local conservation and enforce the EOS to within numerical
tolerances. In the present work, we employ an explicit projection-based temporal discretizations
because of the substantial complexity of designing and implementing semi-implicit discretizations
of the momentum equation for spatially-inhomogeneous fluids [32].

Thermal fluctuations exhibit unusual features in systems out of thermodynamic equilibrium.
Notably, external gradients can lead to enhancement of thermal fluctuations and to long-range
correlations between fluctuations [16], [33H36]. Sharp concentration gradients present during diffu-
sive mixing lead to the development of macroscopic or giant fluctuations [37H39] in concentration,
which have been observed using light scattering and shadowgraphy techniques [2, 40} [41]. These
experimental studies have found good but imperfect agreement between the predictions of a sim-
plified fluctuating hydrodynamic theory and experiments. Computer simulations are, in principle,
an ideal tool for studying such complex time-dependent processes in the presence of nontrivial
boundary conditions without making the sort of approximations necessary for analytical calcula-
tions, such as assuming spatially-constant density and transport coeflicients and spatially-uniform
gradients. On the other hand, the multiscale (more precisely, many-scale) nature of the equations
of fluctuating hydrodynamics poses many mathematical and computational challenges that are yet
to be addressed. Notably, it is necessary to develop temporal integrators that can accurately and
robustly handle the large separation of time scales between different physical processes, such as
mass and momentum diffusion. The computational techniques we develop here form the foundation
for incorporating additional physics, such as heat transfer and internal energy fluctuations, phase

separation and interfacial dynamics, and chemical reactions.



We begin Section [[ by formulating the fluctuating low Mach number equations for an isothermal
binary fluid mixture. We present both a traditional pressure (constrained) formulation and a gauge
(unconstrained) formulation. We analyze the spatio-temporal spectrum of the thermal fluctuations
in the linearized equations and demonstrate that the low Mach equations eliminate the fast (sonic)
pressure fluctuations but maintain the correct spectrum of the slow (diffusive) fluctuations. In Sec-
tion [ITT] we develop projected Runge-Kutta schemes for solving the spatially-discretized equations,
including a midpoint and a trapezoidal second-order predictor-corrector scheme, and a third-order
three-stage scheme. In Section [[V] we describe a spatial discretization of the equations that strictly
maintains the equation of state constraint and also obeys a fluctuation-dissipation balance principle
[42]. In Section [V| we study the steady-state spectrum of giant concentration fluctuations in the
presence of an applied concentration gradient in a mixture of two dissimilar fluids, and test the ap-
plicability of common approximations that neglect spatial inhomogeneities. In Section [VI we study
the dynamical evolution of giant interface fluctuations during diffusive mixing of two dissimilar flu-
ids, using both hard-disk molecular dynamics and low Mach number fluctuating hydrodynamics.
We find excellent agreement between the two, providing a strong support for the usefulness of the
fluctuating low Mach number equations as a coarse-grained model of complex fluid mixtures. In
Section [VII] we offer some concluding remarks and point out several outstanding challenges for the

future. Several technical calculations and procedures are detailed in Appendices.

II. LOW MACH NUMBER EQUATIONS

The compressible equations of fluctuating hydrodynamics were proposed some time ago [15]
and have since been studied and applied successfully to a variety of situations [I6]. The presence
of rapid pressure fluctuations due to the propagation of sound waves leads to stiffness that makes
it computationally expensive to solve the fully compressible equations numerically, especially for
typical liquids. It is therefore important to develop fluctuating hydrodynamics equations that
capture the essential physics in cases where acoustics can be neglected.

Developing coarse-grained models that only resolve the relevant spatio-temporal scales is a
well-studied but still ad hoc procedure that requires substantial a priori physical insight [17].
More precise mathematical mode-elimination procedures [43], [44] are technically involved and often
purely formal, especially in the context of stochastic partial differential equations (SPDEs). Here
we follow a heuristic approach to constructing fluctuating low Mach number equations, starting

from the well-known deterministic low Mach equations (which can be obtained via asymptotic



analysis [23], 24]) and then adding fluctuations in a manner consistent with fluctuation-dissipation
balance. Alternatively, our low Mach number equations can be seen as a formal asymptotic limit
in which the noise terms are formally treated as smooth forcing terms; a more rigorous derivation

is nontrivial and is deferred for future work.

A. Compressible Equations

The starting point of our investigations is the system of isothermal compressible equations of
fluctuating hydrodynamics for the density p(r,t), velocity v(r,t), and mass concentration c(r,t) for
a mixture of two fluids in d dimensions. In terms of mass and momentum densities the equations

can be written as conservation laws [16, 17, 21],
dip+V - (pv) =0

2
9, (pv) + V- (pvv") == VP + V- n(Vv—I—VTv)—f—(m—dn) (V~v)I+E] + pg

9: (p1) + V- (p1v) =V - [px (Ve + KpVP) + ¥, (1)
where p; = pc is the density of the first component, p, = (1 — ¢)p is the density of the second
component, P(p,c;T) is the equation of state for the pressure at the reference temperature T' =
T, = const., and g is the gravitational acceleration. Temperature fluctuations are neglected in this
study but can be accounted for using a similar approach. The shear viscosity n, bulk viscosity x,
mass diffusion coefficient x, and baro-diffusion coefficient Kp, in general, depend on the state. The
baro-diffusion coefficient Kp above [denoted with kp/P in Ref. [21], see Eq. (A.17) in that paper]
is not a transport coefficient but rather determined from thermodynamics [45],

(Op/oP), ,(0p/de), _ (OP/0c),

Ke = Gujaa, = " Oujoe), ~ pdm (2)

where p is the chemical potential of the mixture at the reference temperature, p. = (9p/dc),,

and ¢3. = (OP/dp), is the isothermal speed of sound. The capital Greek letters denote stochastic

momentum and mass fluxes that are formally modeled as [22]

S = VnksT <W +WT — %Tr W) /25T oy and @ = V2xpu ks T W, (3)

d
where kjp, is Boltzmann’s constant, and W and W are standard white-noise random Gaussian tensor

and vector fields with uncorrelated components.



B. Low Mach Equations

At mesoscopic scales, in typical liquids, sound waves are much faster than momentum diffusion
and can usually be eliminated from the fluid dynamics description. Formally, this corresponds to
taking the zero Mach number singular limit ¢; — oo of the system by performing an asymptotic
analysis as the Mach number Ma = U/cr — 0, where U is a reference flow velocity. The limiting
dynamics can be obtained by performing an asymptotic expansion in the Mach number [23]. In a
deterministic setting this analysis shows that the pressure can be written in the form

P(r,t) = Py(t) + w(r,t)

where 7 = O Ma® . The low Mach number equations can then be obtained by making the anzatz
that the thermodynamic behavior of the system is captured by the reference pressure, P,, and =
captures the mechanical behavior while not affecting the thermodynamics. We note that when
the system is sufficiently large or the gravitational forcing is sufficiently strong, assuming a spatial
constant reference pressure is not valid. In those cases, the reference pressure represents a global
hydrostatic balance, VP, = p,g (see [40] for details of the construction of these types of models).
Here, however, we will restrict consideration to cases where gravity causes negligible changes in the
thermodynamic state across the domain.

In this case, the reference pressure constrains the system so that the evolution of p and c remains
consistent with the thermodynamic equation of state

Plp(r.t).c(r,t):T] = Py (1). (4)
This constraint means that any change in concentration (equivalently, p,) must be accompanied by
a corresponding change in density, as would be observed in a system at thermodynamic equilibrium
held at the fixed reference pressure and temperature. This implies that variations in density are
coupled to variations in composition. Note that we do not account for temperature variations in
our isothermal model.

The equation for p, can be written in primitive (non-conservation) form as the concentration

equation

D
pﬁj:thc:p(ﬁthﬂv'Vc):V'F, (5)
where the non-advective (diffusive and stochastic) fluxes are denoted with

F =pxVc+ W.

Note that there is no barodiffusion flux because barodiffusion is of thermodynamic origin (as seen

from [16]) and involves the gradient of the thermodynamic pressure VP, = 0. By differentiating



the EOS constraint along a Lagrangian trajectory we obtain

Dp Dc
where the solutal expansion coefficient
1 0
Bloy== 2F
p Odc p

is determined by the specific form of the EOS.
Equation @ shows that the EOS constraint can be re-written as a constraint on the divergence

of velocity,
pV - v=—BV. F. (7)

Note that the usual incompressibility constraint is obtained when the density is not affected by
changes in concentration, 3 = 0. When 3 # 0 changes in composition (concentration) due to
diffusion cause local expansion and contraction of the fluid and thus a nonzero V-v. It is important
at this point to consider the boundary conditions. For a closed system, such as a periodic domain
or a system with rigid boundaries, we must ensure that the integral of V - v over the domain
is zero. This is consistent with if B/p is constant, so that we can rewrite @ in the form
V.v=-V-((8/p)F). In this case P, does not vary in time. If 8/p is not constant, then for a
closed system the reference pressure P, must vary in time to enforce that the total fluid volume
remains constant. Here we will assume that 8/p = const., and we will give a specific example of an
EOS that obeys this condition.

The asymptotic low Mach analysis of is standard and follows the procedure outlined in Ref.
[23], formally treating the stochastic forcing as smooth. This analysis leads to the isothermal low

Mach number equations for a binary mixture of fluids in conservation form,

9, (pv) +Vr ==V - pov" +V-[n Vo+ Vv +3]+pg= flp,v,c,t) (8)
0; (p1) = =V - (p1v) +V - F = h(p, v, ¢, 1) (9)

9, (p2) ==V - (pov) =V - F (10)

st. V.v=—(p'8) V-F=S8(pc,t). (11)

The gradient of the non-thermodynamic component of the pressure m (Lagrange multiplier) appears
in the momentum equation as a driving force that ensures the EOS constraint is obeyed. We
note that the bulk viscosity term gives a gradient term that can be absorbed in = and therefore
does not explicitly need to appear in the equations. By adding the two density equations

we get the usual continuity equation for the total density,

Op=—V - (pv) (12)



Our conservative numerical scheme is based on Egs. .

In Appendix [A] we apply the standard linearized fluctuating hydrodynamics analysis to the
low Mach number equations. This gives expressions for the equilibrium and nonequilibrium static
and dynamic covariances (spectra) of the fluctuations in density and concentration as a function
of wavenumber and wavefrequency. Specifically, the dynamic structure factor in the low Mach
number approximation has the form

Sp.p (k,w) = <(<57>) (57))*> = B (pu; ' ksT) m
The linearized analysis shows that the low Mach number equations reproduce the slow fluctuations
(small w) in density and concentration (central Rayleigh peak in the dynamic structure factor
[16][42]) as in the full compressible equations (see Section[A 1)), while eliminating the fast isentropic
pressure fluctuations (side Brillouin peaks) from the dynamics.

The fluctuations in velocity, however, are different between the compressible and low Mach
number equations. In the compressible equations, the dynamic structure factor for the longitudinal
component of velocity decays to zero as w — oo because it has two sound (Brillouin) peaks centered
around w =~ +crk, in addition to the central diffusive (Rayleigh) peak. The low Mach number
equations reproduce the central peak (slow fluctuations) correctly, replacing the side peaks with a
flat spectrum for large w, which is unphysical as it formally makes the velocity white in time. The
low Mach equations should therefore be used only for time scales larger than the sound propagation
time.

The fact that the velocity fluctuations are white in space and in time poses a further challenge
in interpreting the nonlinear low Mach number equations, and in particular, numerical schemes
may not converge to a sensible limit as the time step goes to zero. In practice, just as the spatial
discretization of the equations imposes a spatial smoothing or regularization of the fluctuations, the
temporal discretization of the equations imposes a temporal smoothing and filters the problematic
large frequencies. In the types of problems we study in this work the problem concentration
fluctuations can be neglected, ¥ ~ 0, because the concentration fluctuations are dominated by
nonequilibrium effects. If ¥ = 0 the problematic white-in-time longitudinal component of velocity

disappears.



1. Model Equation of State

In general, the EOS constraint is a non-linear constraint. In this work we consider a specific
linear EOS,

+

1—
g, Qode (13
1 P2 P1 P2

where p, and p, are the densities of the pure component fluids (¢ = 1 and ¢ = 0, respectively), giving
1 1 01 — P

L e (14

It is important that for this specific form of the EOS 3/p is a material constant independent of the

concentration. The density dependence (14) on concentration arises if one assumes that the two

fluids do not change volume upon mixing. This is a reasonable assumption for liquids that are not

too dissimilar at the molecular level. Surprisingly the EOS is also valid for a mixture of ideal

gases, since

P:P1+P2:POanBT:(n1+n2)kBT= &—'—& kBT,

mq mo

where m is molecular mass and n = p/m is the number density. This is exactly of the form
with p, = m P/ (kgT) = nm, and p, = nm,.

Even if the specific EOS is not a very good approximation over the entire range of con-
centration 0 < ¢ < 1, may be a very good approximation over the range of concentrations of
interest if p; and p, are adjusted accordingly. In this case p; and p, are not the densities of the pure
component fluids but rather fitting parameters that approximate the true EOS in the range of con-
centrations of interest. For small variations in concentration around some reference concentration ¢
and density p one can approximate 3 ~ p~' (0p/0c), by a constant and determine appropriate values
of p; and p, from and the EOS evaluated at the reference state. Our specific form choice
of the EOS will aid significantly in the construction of simple conservative spatial discretizations

that strictly maintain the EOS without requiring complicated nonlinear iterative corrections.

2. Boundary Conditions

Several different types of boundary conditions can be imposed for the low Mach number equa-
tions, just as for the more familiar incompressible equations. The simplest case is when periodic
boundary conditions are used for all of the variables. We briefly describe the different types of

conditions that can be imposed at a physical boundary with normal direction n.
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For the concentration (equivalently, p,), either Neumann (zero mass flux) or Dirichlet (fixed
concentration) boundary conditions can be imposed. Physically, a Neumann condition corresponds
to a physical boundary that is impermeable to mass, while Dirichlet conditions correspond to a
permeable membrane that connects the system to a large reservoir held at a specified concentration.
In the case of Neumann conditions for concentration, both the normal component of the diffusive
flux F, = 0 and the advective flux p,v, = 0 vanish at the boundary, implying that the normal
component of velocity must vanish, v, = 0. For Dirichlet conditions on the concentration, however,
there will, in general, be a nonzero normal diffusive flux F,, through the boundary. This diffusive
flux for concentration will induce a corresponding mass flux, as required to maintain the equation
of state near the boundary. From the condition , we infer the proper boundary condition for
the normal component of velocity to be

vy =—(p"'B) F. (15)
This condition expresses the notion that there is no net volume change for the fluid in the domain.
Note that no additional boundary conditions can be specified for p since its boundary conditions
follow from those on ¢ via the EOS constraint.

For the tangential component of velocity v., we either impose a no-slip condition v, = 0, or
a free slip boundary condition in which the tangential component of the normal viscous stress

vanishes,

ov, Ov.
_|_

orT on 0.

In the case of zero normal mass flux, v, = 0, the free slip condition simplifies to a Neumann

condition for the tangential velocity, dv,/dn = 0.

C. Gauge Formalism

The low Mach number system of equations is a constrained problem. For the purposes
of analysis and in particular for constructing higher-order temporal integrators, it is useful to
rewrite the constrained low Mach number equations as an unconstrained initial value problem.
In the incompressible case, V - v = 0, we can write the constrained Navier-Stokes equations as
an unconstrained system by eliminating the pressure using a projection operator formalism. The
constraint V- v = 0 is a constant linear constraint and independent of the state and of time.
However, in the low Mach number equations the velocity-divergence constraint V - v = —3D,c

depends on concentration, and also on time when there are additional (stochastic or deterministic)
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forcing terms in the concentration equation. Treating this type of system requires a more general
vector field decomposition. This more general vector field decomposition provides the basis for a
projection-based discretization of the constrained system. We also introduce a gauge formulation
of the system [47] that casts the evolution as a nonlocal unconstrained system that is analytically
equivalent to the orignal constrained evolution. The gauge formulation allows us to develop higher-

order method-of-lines temporal integration algorithms.

1. Vector Field Decomposition

The velocity in the low Mach number equations can be split into two components,
v=u+ V(,
where V -u = 0 is a divergence-free (solenoidal or vortical) component, and therefore
V.v=V?=S(pect).

This is a Poisson problem for ¢ that is well-posed for appropriate boundary conditions on wv.
Specifically, periodic boundary conditions on v imply periodic boundary conditions for » and (.
At physical boundaries where a Dirichlet condition is specified for the normal component of
the velocity, we set u,, = 0 and use Neumann conditions for the Poisson solve, 9¢/dn = v,,.

We can now define a more general vector field decomposition that plays the role of the Hodge
decomposition in incompressible flow. Given a vector field © and a density p we can decompose ¥

into three components
v=u+V(+p V.

This decomposition can be obtained by using the condition V -« = 0 and V?¢ = S, which allows

us to define a density-weighted Poisson equation for 1,
V- (p7'Vy)=-V-(0-V() =-V-v+S(pc,t).
Let L)" denote the solution operator to the density-dependent Poisson problem, formally,
L) =[V-(p'V)] ",
and also define a density-dependent projection operator P, defined through its action on a vector

field w,
Pw=w—p 'V L' (V- -w) .

This is a well-known variable density generalization [4§] of the constant-density projection operator
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Pw=w-V V (V- w). We can now write
u=P,(®-V)=P,0+p 'V L 'S(p,c,t) —VC.
This gives
v:u+V<:RS(6)7
where we have introduced an affine transformation Rg(p,c,t) that depends on p, ¢ and ¢ through
S(p,c,t), and is defined via its action on a vector field w,
Rs(w)=w—p'V L' (V-w-25) . (16)

Note that application of R s requires only one Poisson solve and does not actually require computing

¢

2.  Gauge Formulation

The low Mach number system has the form
dp = =V - (pv)
om+ V1 = f(cv,t)
Op1 = h(c,v,t)

V.-v = S(p,ct), (17)
where m = pv is the momentum density, and f, h and S are as defined in . At present, we
will assume that these functions are smooth functions of time, which is only justified in the presence
of stochastic forcing terms in a linearized setting. We note that, for the constrained system, p is not

an independent variable because of the EOS constraint ([13]); however, we will retain the evolution

of p with the implicit understanding that the evolution must be constrained so that p and ¢ remain
consistent with .

To define the gauge formulation, we introduce a new variable
m=pv =m+ Vi,
where ¢ is a gauge variable. We note that ¢ is not uniquely determined; however, the specific

choice does not matter. If we choose the gauge so that 9,4 = 7 then the momentum equation in

is equivalent to
om = f (p,v,c,t).

The appropriate boundary conditions for ¢ are linked to the boundary conditions on v; we set

to be periodic if v is periodic, and employ a homogeneous Neumann (natural) boundary condition
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Oy /On = 0 if a Dirichlet condition is specified for the normal component of the velocity
v,. Note that in the spatially-discrete staggered formulation that we employ, the homogeneous
Neumann condition follows automatically from the boundary conditions on velocity used to define
the appropriate divergence and gradient operators in the interior of the domain.

If we know m and p, we can then define © = m/p and compute v = Ry (v), where R is defined
in . Thus by using the gauge formulation we can formally write the low Mach number equations
in the form of an unconstrained initial value problem

= F(p(c), R (8) ,e.1) (18)

dipr = h(p(0), Rs (8) ,ct). (19)
The utility of the gauge formulation is that in fact, we do not need to know % in order to determine
v. Therefore, the time evolution equation for ) does not actually need to be solved, and in
particular, 7 does not need to be computed. Futhermore, by adopting the gauge formulation, we
can directly use a method of lines approach for spatially-discretizing the system , and then
apply standard Runge-Kutta temporal integrators to the resulting system of ordinary (stochastic)
differential equations.

It is important to emphasize that the actual independent physical variables in the low Mach
formulation are the vortical (solenoidal) component of velocity u and the concentration c.
The density p = p(c) and the velocity v =u+V V2S(p,c,t) are determined from u and ¢ and the
constraints; hence they can formally be eliminated from the system, as can be seen in the linearized
analysis in Appendix[A] which shows that fluctuations in the vortical velocity modes are decoupled

from the longitudinal fluctuations.

III. TEMPORAL INTEGRATION

Our spatio-temporal discretization follows a “method of lines” approach in which we first dis-
cretize the equations in space and then integrate the resulting semi-continuum equations
in time. Our uniform staggered-grid spatial discretization of the low Mach number equations is
relatively standard and is described in Section [V} The main difficulty is the temporal integration
of the resulting equations in the presence of the EOS constraint. Our temporal integrators are
based on the gauge formulation of the low Mach equations. The gauge formulation is un-
constrained and enables us to use standard temporal integrators for initial-value problems. In the
majority of this section, we assume that all of the fields and differential operators have already been

spatially discretized and focus on the temporal integration of the resulting initial-value problem.
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Because in the present schemes we handle both diffusive and advective fluxes explicitly, the
time step size At is restricted by well-known CFL conditions. For fluctuating hydrodynamics

applications the time step is typically limited by momentum diffusion,
_ VAt < 1
WT A2 S 2

where d is the number of spatial dimensions and Az is the grid spacing. The design and imple-

mentation of numerical methods that handle momentum diffusion semi-implicitly, as done in Ref.
[22] for incompressible flow, is substantially more difficult for the low Mach number equations be-
cause it requires a variable coefficient implicit fluid solver. We have recently developed an efficient
Stokes solver for solving variable-density and variable-viscosity time-dependent and steady Stokes
problems [32], and in future work we will employ this solver to construct a semi-implicit temporal
integrator for the low Mach number equations.

Our temporal discretization will make use of the special form of the EOS and the discretization
of mass advection described in Section in order to strictly maintain the EOS relation (13
between density and concentration in each cell at all intermediate values. Therefore, no additional
action is needed to enforce the EOS constraint after an update of p, and p. This is, however, only
true to within the accuracy of the Poisson solver and also roundoff, and it is possible for a slow
drifting off the EOS to occur over many time steps. In Section [[IIC| we describe a correction
that prevents such drifting and ensures that the EOS is obeyed at all times to essentially roundoff
tolerance. For simplicity, we will often omit the explicit update for the density p and instead focus
on updating p; and the momentum density m = pv, with the understanding that p is updated

whenever p, is.

A. Euler Scheme

The foundation for our higher-order explicit temporal integrators is the first-order Euler method

applied to the gauge formulation ((18}J19)).

1. Gauge-Free Euler Update

We use a superscript to denote the time step and the point in time where a given term is
evaluated, e.g., f* = fp (p",v™,c", t") where f, denotes the spatial discretization of f with analogous

definitions for A" and S™. We also denote the time step size with At = t"*! — ¢*. Assume that at
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the beginning of timestep n we know m" and we can then compute

by enforcing the constraint . Here R% denotes the affine transformation with all terms
evaluated at the beginning of the time step, so that V - v™ = S*. An Euler step for the low Mach
equations then consists of the update
Pl = 4 Ath"
m"t = m" + At ", (20)
together with an update of the density p"*' consistent with pJ**.

n+1

At the beginning of the next time step, v"*! will be calculated from 7" by applying R,
and it is only »™*! that will actually be used during time step n + 1. We therefore do not need to
explicitly store m™*" and can instead replace it with m"*! = p»+tv"*! without changing any of the
observable results. This is related to the fact that the gauge is de facto arbitrary and, in the present
setting, the gauge formulation is simply a formalism to put the equations in an unconstrained form
suitable for method of lines discretization. The difference between m and m is a (discrete) gradient
of a scalar. Since our temporal integrators only use linear combinations of the intermediate values,
the difference between the final result for m™*" and m” is also a gradient of a scalar and replacing

n+1

m"* with m™*! simply amounts to redefining the (arbitrary) gauge variable. For these reasons,

the Euler advance,
P = o+ AL
mt = R () (mn 4 A (21)
is analytically equivalent to (20]). We will use this form as the foundation for our temporal integra-
tors. The equivalence to the gauge form implies that the update specified by can be viewed
as an explicit update in spite of the formal dependence of the update on the solution at both old

and new time levels.

2. Stochastic Forcing

Thermal fluctuations cannot be straightforwardly incorporated in because it is not clear
how to define Re*'. In the deterministic setting, S is a function of concentration and density and
can be evaluated pointwise at time level n + 1. When the white-in-time stochastic concentration
flux ¥ is included, however, S cannot be evaluated at a particular point of time. Instead, one must

think of ¥ as representing the average stochastic flux over a given time interval §¢, which can be
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expressed in terms of the increments V5t W of the underlying Wiener processes,

2xpu; kT —
StAV ’

where W is a collection of normal variates generated using a pseudo-random number generator,

U 5t W =

and AV is the volume of the hydrodynamic cells. Similarly, the average stochastic momentum flux

over a time step is modeled as

nkBT
St AV
where W are normal random variates. As described in more detail in Ref. [22], stochastic fluxes

> (5t, W) = wW+w” |

are spatially discretized by generating normal variates on the faces of the grid on which the corre-
sponding variable is discretized, independently at each time step.
With this in mind, we first evaluate the velocity divergence associated with the constraint using

the particular sample of ¥,
S=—(p'B) V- pxVec+¥ 6t, W
We then define a discrete affine operator Ry dt, W in terms of its action on the momentum m
Rp 0t, W (m)=pRs(p'm).
Using this shorthand notation, the momentum update in in the presence of thermal fluctuations

can be written as
mmt = REOAL W (mn o ALFY.

Observe that this is a conservative momentum update since the application of Ry subtracts the
(discrete) gradient of a scalar from the momentum. In actual implementation, it is preferable to
apply R at the beginning of the time step n + 1 instead of at the end of time step n, once the

value S™*! is computed from the diffusive and stochastic fluxes for the concentration.

3. Euler-Maruyama Update

Following the above discussion, we can write an Euler-Maruyama temporal integrator for the

low Mach number equations in the shorthand notation,
m" = RL ALW  (m")
Pt =t ALK+ AT AL W
m" = mr AL+ f (A, W, (22)
where W™ and W' are collections of standard normal variates generated using a pseudo-random

number generator independently at each time step. Here the deterministic increments are written
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using the shorthand notation,
f=V. —pvvi4+n Vo+ Vv +pg
h = V- (=pyv+pxVe).

The stochastic increments are written in terms of

/ 7 (kpT) ot

Ft,w) = [V.E(ét,W)}(Stzv.[ 77(’?‘37‘/)& W+WT]
_ N - N

st W = V.- ot W 6tzv.[ WW],

where W and W are vectors of standard Gaussian variables [49].

B. Higher-Order Temporal Integrators

A good strategy for composing higher-order temporal integrators for the low Mach number
equations is to use a linear combination of several projected Euler steps of the form . In this
way, the higher-order integrators inherit the properties of the Euler step. In our case, this will be
very useful in constructing conservative discretizations that strictly maintain the EOS constraint
and only evaluate fluxes at states that strictly obey the EOS constraint.

The incorporation of stochastic forcing in the Runge-Kutta temporal integrators that we use
is described in Refs. [42, 49]; here we only summarize the resulting schemes. We note that the
stochastic terms should be considered additive noise, even though we evaluate them using an

instantaneous state like multiplicative noise [22].

1. Ezplicit Trapezoidal Rule

A weakly second-order temporal integrator for is provided by the explicit trapezoidal
rule, in which we first take a predictor Euler step
m' = RLALW (")
Pt = Pl AR+ R AL W (23)
st

= m"+Atf" + (AL, W), (24)

The corrector step is a linear combination of the predictor and another Euler update,

—~n

m*,nJrl _ R},nJrl At, W ,rh*v"Jrl
1,1 ; ; W
P = Spi s T AR R AL W (25)
1 1 —%.n Mk,
’ﬁ’l,n+1 _ 7mn 4= m*,n+1 4 Aff ,n+1 + f +1 (At, Wn) , (26)

2 2
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and reuses the same random numbers W™ and W' as the predictor step.

Note that both the predicted and the corrected values for density and concentration obey the
EOS. We numerically observe that the trapezoidal rule does exhibit a slow but systematic numerical
drift in the EOS, and therefore it is necessary to use the correction procedure described in Section
at the end of each time step. The analysis in Ref. [49] indicates that for the incompressible
case the trapezoidal scheme exhibits second-order weak accuracy in the nonlinear and linearized

settings.

2.  FExplicit Midpoint Rule

An alternative second-order scheme is the explicit midpoint rule, which can be summarized
as follows. First we take a projected Euler step to estimate midpoint values (denoted here with

superscript x,n + ),

At —n
m" = R% - Wi (m")
ol L At- o At —n
p1 e :pl+?h +h PR W,
PAN AN 4
et = m'+—f+f -5, Wi (27)

and then we complete the time step with another Euler-like update

1, 1 n - 1
moth = RITE AL W m*nt

prtt o+ At prmtth g ot At, w"
= mt o AP PR (AL W (28)
where the standard Gaussian variates
ﬁ//n . WT —+ W;
\/5 ’

and the vectors of standard normal variates W? and W; are independent, and similarly for W7

and W3 . Note that I/JV/T and W7 are used in both the predictor and the corrector stages, while W;
and W7 are used in the corrector only. Physically, the random numbers W7 /v/2 (and similarly for
W/T) correspond to the increments of the underlying Wiener processes AB, = At/2 W7 over the
first half of the time step, and the random numbers W7 //2 correspond to the Wiener increments
for the second half of the timestep [49].

Note that both the midpoint and the endpoint values for density and concentration obey the

EOS. We numerically observe that the midpoint rule does not exhibit a systematic numerical drift

in the EOS, and can therefore be used without the correction procedure described in Section [[ITC]
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The analysis in Ref. [49] indicates that for the incompressible case the midpoint scheme exhibits
second-order weak accuracy in the nonlinear setting. Furthermore, in the linearized setting it

reproduces the steady-state covariances of the fluctuating fields to third order in the time step size.

3. Three-Stage Runge-Kutta (RK3) Rule

We have also tested and implemented the three-stage Runge Kutta scheme that was used in
Refs. [22, 42]. This scheme can be expressed as a linear combination of three Euler steps. The

first stage is a predictor Fuler step,

m" R AL, W' (")
Pl o= P+ AR+ B AL W (29)
m* = m"+Atf + f (AL, W) (30)

The second stage is a midpoint predictor

n

m = R, ALW T (m)

3 1 _ . —~ x,n

pr= P PLEALR R AL W (31)
3 1 e *

M= Smt s mt AL (AL W) (32)

and a final corrector stage completes the time step

n

m* = Ry AW ()
1 2
ntl _ T n -
pl 3p1 + 3
1 2 —xx kk
,rhn+1 — gmn+ g m**+Atf +.f (At, W**,n) . (34)
Here the stochastic fluxes between different stages are related to each other via
22 3
V2+V3 W
)
—4+4/243v3
V2 5 V3 W
Vi-2v3
R (35)
where W7 and W are independent and generated independently at each RK3 step, and similarly

n

P AR+ AL W

W" =W} +
W =W+

W**,n :W? +

for W. The weights of W7 are chosen to maximize the weak order of accuracy of the scheme while
still using only two random samples of the stochastic fluxes per time step [49].

The RK3 method is third-order accurate deterministically, and stable even in the absence of
diffusion/viscosity (i.e., for advection-dominated flows). Note that the predicted, the midpoint
and the endpoint values for density and concentration all obey the EOS. We numerically observe

that the RK3 scheme does exhibit a systematic numerical drift in the EOS, and therefore it is
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necessary to use the correction procedure described in Section [[ITC| at the end of each time step.
The analysis in Ref. [49] indicates that for the incompressible case the RK3 scheme exhibits
second-order weak accuracy in the nonlinear setting. In the linearized setting it reproduces the

steady-state covariances of the fluctuating fields to third order in the time step size.

C. EOS drift

While in principle our temporal integrators should strictly maintain the EOS, roundoff errors
and the finite tolerance employed in the iterative Poisson solver lead to a small drift in the constraint
that can, depending on the specific scheme, lead to an exponentially increasing violation of the EOS
over many time steps. In order to maintain the EOS at all times to within roundoff tolerance, we
periodically apply a globally-conservative L, projection of p and p, onto the linear EOS constraint.

This projection step consists of correcting p, in cell k using

(0 A ()~ Bo2)e — 5 S 1A () = Bloa)ul + 5 3 (00

k/
where N is the number of hydrodynamic cells in the system and
_ A _ _Pipe
pi+ 3 P+ 03
Note that the above update, while nonlocal in nature, conserves the total mass >",, (p1),,. A similar

update applies to p,, or equivalently, p = p; + ps.

IV. SPATIAL DISCRETIZATION

The spatial discretization we employ follows closely the spatial discretization of the constant-
coefficient incompressible equations described in Ref. [22]. Therefore, we focus here on the differ-
ences, specifically, the use of conserved variables, the handling of the variable-density projection
and variable-coefficient diffusion, and the imposition of the low Mach number constraint. Note
that the handling of the stochastic momentum and mass fluxes is identical to that described in
Ref. [22].

For simplicity of notation, we focus on two dimensional problems, with straightforward gener-
alization to three spatial dimensions. Our spatial discretization follows the commonly-used MAC
approach [50], in which the scalar conserved quantities p and p, are defined on a regular Cartesian
grid. The vector conserved variables m = pv are defined on a staggered grid, such that the
component of momentum is defined on the faces of the scalar variable Cartesian grid in the k* di-

rection, see Fig. [1} For simplicity of notation, we often denote the different components of velocity
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Figure 1: Staggered (MAC) finite-volume discretization on a uniform Cartesian two-dimensional grid. (Left)
Control volume and flux discretization for cell-centered scalar fields, such as densities p and py. (Middle)
Control volume for the z-component of face-centered vector fields, such as m, (Right) Control volume for

the y-component of face-centered vector fields, such as m,,.

as v = (u,v) in two dimensions and v = (u,v,w) in three dimensions. The terms “cell-centered”,
“edge-centered”, and “face-centered” refer to spatial locations relative to the underlying scalar grid.
Our discretization is based on calculating fluxes on the faces of a finite-volume grid and is thus
locally conservative. It is important to note, however, that for the MAC grid different control
volumes are used for the scalars and the components of the momentum, see Fig. [I}

From the cell-centered p and p, we can define other cell-centered scalar quantities, notably, the
concentration ¢; ; = (p1), ; /p:,; and the transport quantities x;; and 7, ;, which typically depend
on the local density p,; and concentration ¢, ; (and temperature for non-isothermal models), and
can, in general, also depend on the spatial position of the cell (z,y) = (iAz, jAy). In order to
define velocities we need to interpret the continuum relationship m = pv on the staggered grid.
This is done by defining face-centered scalar quantities obtained as an arithmetic average of the

corresponding cell-centered quantities in the two neighboring cells. Specifically, we define

PitV,j = v Uil = )
2 pi+1/2»j

except at physical boundaries, where the value is obtained from the imposed boundary conditions

_ PijtPiv1; (mm)i+1/2,j (36)

(see Section [V E]). Arithmetic averaging is only one possible interpolation from cells to faces [48].
In general, other forms of averaging such as a harmonic or geometric average or higher-order,
wider stencils [42], [51] can be used. Most components of the spatial discretization can easily be
generalized to other choices of interpolation. As we explain later, the use of linear averaging

simplifies the construction of conservative advection.
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A. Diffusion

In this section we describe the spatial discretization of the diffusive mass flux term V - pxVe in

@D. The discretization is based on conservative centered differencing [42, [49],

_ Jc Jdc _ Jc Jc
(V-pxVe)i; =A™ pxo— - X7 +Ay7" px - XA ., (37)
9 i+75,7 Oz i—Y,3 8y i3+ 8y i,j—Y%
where, for example,
ac Cit1 i C; j
¢ = o1 . X,  —dbd T 38
anLL‘ oy PitYo,i  XitY,j Az ) ( )

and x,,1,; is an interpolated face-centered diffusion coefficient, for example, as done for p in Eq.
(36),

_ Xig T Xit+1g
XitYj = B )

except at physical boundaries, where the value is obtained from the imposed boundary conditions.
Regardless of the specific form of the interpolation operator, the same face-centered diffusion

coefficient x,,1, ; must be used when calculating the magnitude of the stochastic mass flux on face

(Z + 1/2aj)7

o)y, ,; = \/2X1+1/2,j (prc)i 5 k5T Wiy, ;.

This ensures discrete fluctuation-dissipation balance in the linearized setting. Specifically, at ther-
modynamic equilibrium the static covariance of the concentration is determined from the equi-
librium value of (pu;!) (thermodynamics) independently of the particular values of the transport

coefficients (dynamics), as seen in (A1) and dictated by statistical mechanics principles.

B. Viscous Terms

In Ref. [22] a Laplacian form of the viscous term nV?v is assumed, which is not applicable when
viscosity is spatially varying and V -v = S = 0. In two dimensions, the divergence of the viscous
stress tensor in the momentum equation , neglecting bulk viscosity effects, is

2.9 7737“ + 0 n@ +773J
V-n Vo+Vie = OI o a‘y 5{)1, o ) (39)
25 0% + & nf e
The discretization of the viscous terms requires 7 at cell-centers and edges (note that in two

dimensions the edges are the same as the nodes (i + s, j + 1) of the grid). The value of 7 at a
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node is interpolated as the arithmetic average of the four neighboring cell-centers,
1
itV jt Y = 1 (Wi + M1 g1 + Miv1j + Migr1) s
except at physical boundaries, where the values are obtained from the prescribed boundary condi-
tions. The different viscous friction terms are discretized by straightforward centered differences.

Explicitly, for the z-component of momentum

0 ou Ap-l ou ou
e e = Az Na - N
or Ox Y ox i1 ox i
with
77@ — Uitlpj — Wit
ox .. I Az

?,J

Similarly, for the term involving a second derivative in y,

0 ou . ou ou
o 778* = Ay 7787 - 7787 )
Y Y i+Y,j Y i+,5+ Y% Y i+Y%,i—Y%
with
77% — Wity i1 — Uil j
8y s i+ /2,047 Ay
A similar construction is used for the mixed-derivative term,
TN o
ay oz oY o "oz ’
Y i+Y,j i+Y%,5+% i+Ym,5—"%
with
v Vit1,i+% — Yig+l

na- = Mit Yo+
O i+Y,5+Y% Az

The stochastic stress tensor discretization is described in more detail in Ref. [22] and applies
in the present context as well. For the low Mach number equations, just as for the compressible
equations, the symmetric form of the stochastic stress tensor must be used in order to ensure discrete
fluctuation-dissipation balance between the viscous dissipation and stochastic forcing. Additionally,
when 7 is not spatially uniform the same interpolated viscosity 7,,1, ;,1, as used in the viscous terms
must be used when calculating the amplitude in the stochastic forcing v/nkzT at the edges (nodes)
of the grid.

C. Advection

It is challenging to construct spatio-temporal discretizations that conserve the total mass while
remaining consistent with the equation of state [28, B0, [52], as ensured in the continuum context

by the constraint . We demonstrate here how the special linear form of the constraint
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can be exploited in the discrete context. Following Ref. [22], we spatially discretize the advective

terms in ([9) using a centered (skew-adjoint [53]) discretization,

& (Pl'”)]i’j =Az~! (Pl)i+1/2,j Uiy Y5 — (Pl)i_l/m- Uiy, 5 + Ay~! (pl)i,j-‘-l/z Vij+% — (/’1)1-,]-_1/2 Vij—Y
(40)
and similarly for . We would like this discrete advection to maintain the equation of state

at the discrete level, that is, maintain the constraint relating (p,), ; and (p2), ; in every cell (i, 7).

irj
Because the different dimensions are decoupled and the divergence is simply the sum of the

one-dimensional difference operators, it is sufficient to consider @ in one spatial dimension. The

method of lines discretization is given by the system of ODEs, one differential equation per cell 4,

(Op1); = Azt Fiy, —Fi_y, — Az~! (Pl)prl/2 Wity — (Pl)i,l/z Wiy

and similarly for (9,p.),. As a shorthand, denote the quantity that appears in (13)) with

s=rp 2y
P1 P2
If we use the linear interpolation to calculate face-centered densities, then because of the
linearity of the EOS the face-centered densities obey the EOS if the cell-centered ones do, since
0; + 0541
Oip1y, = = 1.
The rate of change of § in cell i is

Az (9,9), = (p7'B) Fiiy, —Fi_y, — 5i+1/2ui+1/2 - 52‘71/2%71/2

= (p_lﬁ) Fopyy = Fioy, — upy, —uy, =0
This simple calculation shows that the EOS constraint § = 1 is obeyed discretely in each cell at

all times if it is initially satisfied and the velocities used to advect mass obey the discrete version

of the constraint ,
(41)

Al -1
Sig = Ax™ wy, s —u s FAYT v =0
1 1 -1 -1
= ——— A Fy,—F oy, +Ay F 0, —F ;.

P P2
in two dimensions. Our algorithm ensures that advective terms are always evaluated using a

=Y

discrete velocity field that obeys this constraint. This is accomplished by using a discrete projection
operator, as we describe in the next section.

The spatial discretization of the advection terms in the momentum equation is constructed
using centered differences on the corresponding shifted (staggered) grid, as described in Ref. [22].

For example, for the xz-component of momentum m, = pu,
[V (mav)], ;= Az [(mew)irry — (Maw)ig] + Ay~ (mav)igy, 5y — (Ma¥)igy, 5oy, (42)

where simple averaging is used to interpolate momenta to the cell centers and edges (nodes) of the
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grid, for example,
(ma);_y,; + (Ma)iyy, Ui Yy 5+ Uiyl
2 2

Because of the linearity of the interpolation procedure, the interpolated discrete velocity used to

(43)

(mat)i; = (Ma)i Uiy =

advect m, obeys the constraint on the shifted grid, with a right-hand side S, ,1, ; interpolated
using the same arithmetic average used to interpolate the velocities. In particular, in the incom-
pressible case all variables, including momentum, are advected using a discretely divergence-free
velocity, ensuring discrete fluctuation-dissipation balance [22] [49].

It is well-known that the centered discretization of advection we employ here is not robust
for advection-dominated flows, and higher-order limiters and upwinding schemes are generally
preferred in the deterministic setting [54]. However, these more robust advection schemes add
artificial dissipation, which leads to a violation of discrete fluctuation-dissipation balance [49].
In Appendix [B] we describe an alternative filtering procedure that can be used to handle strong

advection while continuing to use centered differencing.

D. Discrete Projection

We now briefly discuss the spatial discretization of the affine operator R¢ defined by , as
used in our explicit temporal integrators. The discrete projection takes a face-centered (staggered)
discrete velocity field © = (@, ©) and a velocity divergence S and projects v = R (v) onto the
constraint (41) in a conservative manner. Specifically, the projection consists of finding a cell-
centered discrete scalar field ¢ such that

pv=p0—Vo¢, and V-v =25,

where the gradient is discretized using centered differences, e.g.,

- 1 Giv1,; — Gi
=1, — : 2 44
/Ul+1/27.] UZ+1/2,J Pitly s Ax ( )
The pressure correction ¢ is the solution to the variable-coefficient discrete Poisson equation,
i 1 Git1,; — Pij B 1 Gij— Pij 1
Az iy, Az Pit,5 Az
_|_L 1 Gi 41 — Pij . 1 Gij— Pij1
Ay P Ay Pij~Ys Ay
Uiy, — U1, - V.1 — U, 1
=S, — i+ 72,3 i— 72,3 i+ 72 ii— /2 7 45
J Az + Ay (45)

which can be solved efficiently using a standard multigrid approach [48].
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E. Boundary Conditions

The handling of different type