
San Jose State University
SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

Spring 2014

INCORPORATING PRIVACY AND
SECURITY FEATURES IN AN OPEN
SOURCE SEARCH ENGINE A Project Report
Presented to
Akash Patel
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

Part of the Computer Sciences Commons

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU ScholarWorks. It has been
accepted for inclusion in Master's Projects by an authorized administrator of SJSU ScholarWorks. For more information, please contact
scholarworks@sjsu.edu.

Recommended Citation
Patel, Akash, "INCORPORATING PRIVACY AND SECURITY FEATURES IN AN OPEN SOURCE SEARCH ENGINE A Project
Report Presented to" (2014). Master's Projects. 362.
DOI: https://doi.org/10.31979/etd.ye8d-rxuw
https://scholarworks.sjsu.edu/etd_projects/362

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by SJSU ScholarWorks

https://core.ac.uk/display/70408782?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.sjsu.edu?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F362&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F362&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F362&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F362&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F362&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/362?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F362&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

INCORPORATING PRIVACY AND SECURITY FEATURES IN AN
OPEN SOURCE SEARCH ENGINE

A Project Report

Presented to

The faculty of Department of Computer Science

San Jose State University

In Partial fulfillment

of the Requirements for the Degree

Master of Science in Computer Science

by

Akash Patel

May 2014

© 2014

Akash Patel

ALL RIGHTS RESERVED
2

SAN JOSE STATE UNIVERSITY

The Undersigned Project Committee Approves the Project Titled

INCORPORATING PRIVACY AND SECURITY FEATURES IN AN
OPEN SOURCE SEARCH ENGINE

by

 Akash Patel

APPROVED FOR THE DEPARTMENT OF COMPUTER
SCIENCE

Dr. Chris Pollett, Department of Computer Science Date

Dr. Sami Khuri, Department of Computer Science Date

Dr. Chris Tseng, Department of Computer Science Date

APPROVED FOR THE UNIVERSITY

Associate Dean Office of Graduate Studies and Research Date

3

ABSTRACT

INCORPORATING PRIVACY AND SECURITY FEATURES IN AN
OPEN SOURCE SEARCH ENGINE

The aim of this project was to explore and implement various privacy and security

features in an open-source search engine and enhance the security and privacy capabilities

of Yioop. Yioop, an open-source PHP search engine based on GPLv3 license, is designed

and developed by Dr. Chris Pollett. We have enabled a crawl, search and index

mechanism for hidden services by execution of codes, which has facilitated access of the

Tor network in Yioop. We have diversified the ability of the previously supported text

CAPTCHA functionality in Yioop by implementing hash CAPTCHA and provided

feasibility to toggle between text CAPTCHA and hash CAPTCHA. To enable the user to

log in to his or her respective Yioop account without sharing the password over the

network, we have incorporated zero knowledge authentications in which Yioop does not

store the user’s real password, but it stores the numerical password, which is derived from

the user’s original password.

4

ACKNOWLEDGEMENTS

I would like to thank Dr. Chris Pollett for being my advisor and guiding me throughout

the project. I express my gratitude towards Dr. Sami Khuri and Dr. Chris Tseng for their

time and feedback. I thank Ms. Binal Thakkar and Mr.Sanket Sheth for their advice in

technical writing. Finally, I would also like to convey my special thanks to my family,

and friends for their help and support.

5

TABLE OF CONTENTS

1. INTRODUCTION ... 10

2. SUMMARY OF BACKGROUND WORK IN YIOOP ... 11

3. PERFECT FORWARD SECRECY ... 13

3.1 OVERVIEW OF PFS... 13

3.2 PFS VERIFICATION AND PFS CHECKER SCRIPT 16

3.3 CONCLUSION.. 18

4. CRAWLING TOR NETWORK ... 19

4.1 OVERVIEW OF THE TOR NETWORK ... 19

4.2 YIOOP AS A TOR HIDDEN SERVICE .. 20

4.3 CRAWLING TOR NETWORK ... 22

4.4 TOR PROXY LINK .. 24

4.5 CONCLUSION.. 25

5. HASH CAPTCHA .. 26

5.1 EXISTING CAPTCHA SYSTEM.. 26

5.2 CRYPTOGRAPHIC HASH FUNCTION .. 29

5.3 HASH CAPTCHA ... 31

5.4 HASH CAPTCHA IN YIOOP ... 33

5.5 CONCLUSION.. 36

6. ZERO KNOWLEDGE AUTHENTICATION SYSTEM ... 37

6.1 TRADITIONAL AUTHENTICATION SYSTEM 37

6.2 FIAT-SHAMIR PROTOCOL .. 39

6.3 ZERO KNOWLEDGE AUTHETICATION IN YIOOP 41

6.4 CONCLUSION.. 46

7. CONCLUSION ... 47

8. REFERENCES .. 48

6

LIST OF FIGURES

Figure 1: SSL handshaking .. 14

Figure 2: Settings in httpd-sslconfig file to enable PFS .. 15

Figure 3: Browser support for PFS .. 16

Figure 4: PFS verification of Yioop using SSL scan utility .. 17

Figure 5: PFS verification of Yioop using PFS checker PHP script 18

Figure 6: Working of the Tor network ... 20

Figure 7: Example of the Tor hidden service ... 21

Figure 8: Proxy settings in Tor browser ... 22

Figure 9: Tor proxy settings in Yioop .. 23

Figure 10: Yioop crawling an Onion URL ... 23

Figure 11: Onion URL search query on Yioop ... 24

Figure 12: Proxy link feature in Yioop .. 25

Figure 13: Different type of CAPTCHAs .. 27

Figure 14: User's response on CAPTCHA ... 28

Figure 15: Example of a cryptographic hash function .. 29

Figure 16: CAPTCHA setting option in Yioop .. 34

Figure 17: Hash CAPTCHA in “Suggest a URL” module .. 35

Figure 18: Hash CAPTCHA in “Create Account” module ... 35

Figure 19: Test run of SHA1 test case ... 36

Figure 20: Workflow of the traditional login system .. 38

Figure 21: Possible attacks on various authentication systems 38

Figure 22: Fiat-Shamir protocol .. 40

Figure 23: Example of fiat-Shamir protocol ... 42

7

Figure 24: Authentication mode option in a Yioop .. 43

Figure 25: Registration module in a Yioop .. 44

Figure 26: Login module in a Yioop .. 45

8

LIST OF TABLES

Table 1: PFS test on various search engines ... 18

Table 2: Example of rainbow table... 29

Table 3: Example of a cryptographic SHA1 function ... 30

Table 4: Example of a cryptographic SHA256 function ... 30

Table 5: Execution time comparison of the SHA1 and SHA256 function 32

Table 6: Example of hash CAPTCHA proof of work ... 33

9

CHAPTER 1
INTRODUCTION

Most modern search engines record a user’s IP address, the time of visit and the

user’s tracking cookies to keep track of searched terms in order to improve efficiency of

the search results and to show user specific advertisements. This information can be used

to reveal personal information and hence, many people object to its collection.

The goal of this project was to learn about various security protocols and

implement security and privacy features in an open-source search engine. We have

explained Perfect Forward Secrecy (PFS) and steps to implement it. A PFS checker script

written by us can be used to test whether a website supports PFS or not. We have gained

knowledge of the Tor network and Tor hidden service, and also covered proxy settings in

the Tor network to enable crawl of the Tor hidden service. We have designed hash

CAPTCHA, which can be used as a substitute for text CAPTCHA. We incorporated a zero

knowledge authentication system, which allows a system to authenticate users without any

need for sharing an actual password over the network.

The report is sorted into chapters. Chapter 2 briefly describes Yioop and its

features. Chapter 3 explains Perfect Forward Secrecy (PFS) and detailed steps to

implement and verify PFS. Chapter 4 presents an overview of the Tor network and Tor

hidden service. Chapter 5 illustrates existing CAPTCHA system and implementation of

the hash CAPTCHA. Chapter 6 briefs about zero knowledge authentication system.

Chapter 7 gives the conclusion based on the results obtains in the previous chapters

followed by the references.

10

CHAPTER 2
SUMMARY OF BACKGROUND

WORK IN YIOOP

Yioop, an open source PHP Search engine created by Dr. Chris Pollett. It allows

user to index a website or a collection of websites. In Yioop, the user has control over the

exact sites which are being indexed with Yioop. Yioop supports the indexing of many

different file types including: HTML, Atom, BMP, DOC, ePub, GIF, JPG, PDF, PPT,

PPTX, PNG, RSS, RTF, Sitemaps, SVG, XLSX, and XML. It has a web interface for

controlling which, amongst these file types (or all of them) user want to index. It supports

also attempting to extract information from unknown file types. . It can index page ranges

up to tens or hundreds of millions. It is designed to work on PC, Smartphone and tablet.

Yioop supports crawling, indexing and searching on either single machine and or

several machines. Yioop crawler can crawl websites and non-web archives. It has two

important processes: fetcher and queue server. A fetcher downloads the contents from

crawled web pages or non-web archives and processes them. The queue server performs

of index building and scheduling activities. It is written using its own model-view-

controller framework with a user interface that is simple and user-friendly For further

details on Yioop’s features user can refer to SeekQuarry website [1].

Dr. Pollett has started developing Yioop in 2010. He is the primary author of

Yioop. In the past, few students had incorporated various features in Yioop. Students had

implemented new features such as autosuggest and spell check, text summarization,

source-code searching capability and geographical location local search, access control in

a social networking environment and wordnet feature.

11

 Prior to this project, Yioop could not crawl the Tor network; hence it was not

possible to index the Tor hidden services. We modified Fetch URL function of Yioop to

provide capability of accessing the Tor network. New code was added in the controllers,

models and views to support the hash CAPTCHA and zero knowledge authentication. To

calculate SHA1 and Fiat-Shamir parameters new JavaScripts have been implemented.

“SHA1_test” case is also written to verify the output of SHA1 JavaScript.

12

CHAPTER 3
PERFECT FORWARD

SECRECY

Perfect Forward Secrecy (PFS) is a property of a key-agreement protocol which

guarantees that a session key used to encrypt the data will never be compromised even

though a private key is compromised in the future [2].

3.1 Overview of PFS

Let’s assume a user accesses a website which uses HTTPS protocol for secure

communication. In the beginning of this process, the client requests the secure connection

to which the server sends back the certificate detail which contains its public key. The

server also has a private key which can be used to decrypt the data encrypted using its

public key. The client browser generates a session key and encrypts the data using it. It

then encrypts the session key using the public key provided by the server. Along with this

data, the client also shares the encrypted session key with the server. The server uses its

private key to decrypt the encrypted session key and this key is used to decrypt all the

communication messages. In this setup, the session key is known only to the client and the

private key is known only to the server. Figure 1 shows the steps involved in SSL

handshaking. An attacker can sniff over the network and capture this encrypted data. The

attacker needs either the session key which is generated by the client or a private key of the

server to decrypt this data. As he is not aware of either of these keys, he will not be able to

decrypt the data. However, he can still store all the intercepted messages and later on if he

obtains the private key by some technique like breaking into the server computers, he can

derive the session key and decrypt all the stored messages. Not all decrypted information is

important, but some information like credit card and address details are important even

after a few years. This spot is the motivation factor for the PFS.

13

Figure 1: SSL handshaking

In PFS, instead of using the single session key to encrypt all the communication

messages, a client (browser) periodically creates a new session key. Both client and server

contribute to the key generation and use a random value for each key. The client and server

forget this random value after the key creation. Even if an attacker managed to obtain a

private key, he would not know the random value generated by the client and the server so

could not reconstruct the session key [3].

Derivation of the session key is the key factor to determine whether a connection

has PFS or not. While creating a secure connection, the Transport Layer Security (TLS)

handshake protocol is responsible for the authentication and key exchange. The TLS

protocol essentially performs three key things: cipher suite negotiation, authentication of a

server and key exchange [4]. The cipher suite is responsible for the derivation of the

session key.

In the beginning of the SSL handshake, the client browser sends a list of supported

cipher suites to the server. The server then picks one of the cipher suites, based on the

14

ranking defined in the SSL configuration file of the server, and then informs the client

about the usage of the cipher suite in future communication. Cipher suites, which use

ephemeral Diffie-Hellman (DHE) or the elliptic-curve Diffie-Hellman (ECDHE) for the

key generation, give PFS.

A webserver needs to be configured to enable PFS. Usually the SSL configuration

file on the web server has information about a list of cipher suites which are supported by

the server. While determining the cipher suite for the connection, the web server starts

scanning the list of cipher suites in order and returns the first match which is sent by the

client. Thus the order of cipher suites is also important. In order to enable PFS, DHE and

ECDHE, cipher suites should be given higher order in the configuration file.

For Apache server, PFS requires Apache version 2.3.3 or higher. Figure 2 shows

the configuration setting in the “httpd-ssl.config” file to enable PFS on Apache server.

Figure 2: Settings in httpd-ssl.config file to enable PFS

There are certain challenges in enabling PFS, the first being that it uses Diffie-

Hellman key exchange. In this exchange a new session key is generated for each request.

This key generation takes significant time, thus PFS can increase the server response

time. The second challenge is from the client’s side, which is that not all browsers support

necessary cipher suites. Most browsers assign less priority to the cipher suites that

support PFS. Figure 3 shows the browser support for PFS (Data is taken from the

Netcraft's SSL survey conducted in September 2013).

15

*Opera does not include its TLS 1.2 cipher suites.

Figure 3: Browser support for PFS [5]

3.2 PFS verification and PFS Checker Script

There are many ways to verify whether a website supports PFS or not. The SSL

scan utility and SSL lab website are good sources to verify it. I have used the SSL scan

utility to demonstrate that Yioop supports PFS. Figure 4 shows PFS verification of Yioop

using the SSL scan utility. As shown in Figure, Yioop prefers a cipher suite

DHE_RSA_AES256-SHA for the connection and hence it supports PFS.

PFS checker is a PHP script written by us to verify whether a website supports PFS

or not. The input to the script is a URL of the website. The script tries to make the

connection with the website using different cipher suites and verifies whether the website

supports PFS or not. In the results, all the ciphers marked with the blue color are the ones

which support PFS and are supported by the website. The ciphers in red support PFS but

are not supported by the website. The “PFS Support” field indicates whether websites

16

support PFS or not. The snapshot of the result of PFS verification of Yioop is shown in

Figure 5.

Figure 4: PFS verification of Yioop using SSL scan utility

17

Figure 5: PFS verification of Yioop using PFS checker script

I have used the “SSL Lab Test” website to test which search engines support PFS

and the result for the same is as shown in table 1.

Table 1: PFS test on various search engines [6].

Website Name Supports PFS or Not

Yioop.com Yes

Google.com Yes

Yahoo.com Yes

Bing.com No

Duckduckgo.com Yes

AOL.com No

3.3 Conclusion

 PFS provides long-term security to the data communicated over the network. It

protects previous communications from retrospective decryption. On April 7, 2014 a

serious security bug was found in the OpenSSL (which is widely used to implement

Transport Layer Security Protocol). It is estimated that half a million sites were affected

by this bug and the data of millions was compromised [7]. The impact of the Heartbleed

bug could have been alleviated if most of the servers and clients had enabled the PFS.

18

CHAPTER 4
CRAWLING TOR

NETWORK

The Onion Router (Tor) is an open source software used by journalists, the

military, corporates, and many others for anonymous internet surfing. Originally it was

designed and developed to protect the U.S. navy’s confidential communication [8].

 Tor network prevents the “Traffic analysis” attack which is a special kind of

attack to deduce the pattern information from the communication pattern. In this attack,

the attacker observes the flow of data packets between two entities in a system. This

attack can be used to identify who is talking with whom on the internet.

4.1 Overview of the Tor network

Tor uses an Onion routing system. It maintains a list of the available machines

(a.k.a nodes) and uses them to direct traffic over the Internet. Tor distributes the

transaction among different nodes so there is no single point connection between the

sender and receiver. Since the transaction is distributed among many nodes, it is difficult

to do traffic analysis [9].

For example, User A uses Tor network to send data to user B. User A’s Tor client

obtains a list of the available nodes from the Tor server and randomly selects three nodes

(e.g. Node 1, node 2 and node 3). Then it applies multiple layer of encryption on the data

using the public key of the selected nodes so each of the selected nodes can decrypt the

incoming packet using their private keys. Instead of sending data packet directly from A

to B, Tor network sends encrypted packet from A to Node 1. Tor client on Node 1

decrypts the first layer of encryption and identifies the next node where it needs to send

the packet. This process continues till Node 3, where it receives the location of the user B

and finally transmits the unencrypted message. Each node in the Tor circuit has
19

knowledge of only two nodes: the node from which it receives the packet, and the node

to which it sends the packet. Randomness in the node selection process is very important.

For each request from A to B, Tor client selects different nodes so it would be very

difficult for the network interceptor to associate data packets with any node.

Figure 6: working of the Tor network [10]

4.2 Yioop as a Tor hidden service

Tor hidden service allows publishers to publish the service without revealing

their identity (IP address). Users can connect to a hidden service without knowing

publisher of the service using the rendezvous point. This type of anonymity provides

protection against distributed DoS attacks as an attacker would not know the IP address

of a service [11].

20

We have published Yioop running on localhost as a hidden service and the steps

to create it are stated below:

1. Install a web server locally

2. Configure the hidden service to point to the local web server

3. Open the torrc file located at: \Tor\Tor Browser\Data\Tor \torrc

4. Now add an entry like below in the torrc file

a. HiddenServiceDir D:\Tor\HiddenService

b. HiddenServicePort 80 127.0.0.1:80

5. Save the torrc file and restart the Tor client

HiddenServiceDir is a place where the Tor stores the information about a hidden

service. Tor will generate a hostname file in this folder, which has an Onion URL for the

service. Tor has generated the onion URL for this service, which is

http://x2emztb4ndxvhzt6.onion/. We have accessed this hidden service using the Tor

browser and the result page is as shown in Figure 7.

Figure 7: Example of Tor hidden service

21

4.3 Crawling Tor network

Our goal was to implement the code in Yioop so it can crawl the Tor network. To

achieve this, the first thing, we did was to gain knowledge of the Tor network and Tor

hidden service. The next step was to install the Tor client. The Tor bundle is available for

all major operating systems. We downloaded the Tor bundle for Windows 7 and

configured the proxy settings in the Tor browser. Figure 8 shows various proxy setting

options available in Tor.

Figure 8: Proxy settings in Tor browser

Once we understood the working of the Tor network, the next step was to

implement the code in Yioop so it can crawl the Tor network. We have added code in the

functions: “getPages”, “prepareUrlHeaders”, and “getPage” of the fetch_url.php. Tor

network has an issue that it increases the access time of the website as it needs to bounce

the internet packet among Tor nodes. We have written code in such a manner that during

crawl, fetcher will use Tor network only when it is crawling an Onion URL. Figure 9

shows proxy server settings in Yioop. Admin user can configure these settings to use the

Tor network during the crawl.
22

To verify whether Yioop can actually crawl the Onion URL, we did crawl on the

onion URL and Yioop was able to crawl it successfully. Figure 10 shows the snapshot of

the crawl. After the crawl, we had set up the crawl data as search index and performed

the search query. Figure 11 shows the snapshot of the search query and result.

Figure 9: Tor proxy settings in Yioop

Figure 10: Yioop crawling an Onion URL

23

Figure 11: Onion URL search query on Yioop

4.4 Tor proxy link

In the client-server communication, a proxy server acts as an intermediate

machine which hides the internal clients from an external network. It is a substitute for

connecting directly to the web.

Ixquick is a popular search engine which provides proxy links for each query

result, so the users can surf websites anonymously. We have decided to implement a

similar kind of feature in Yioop so it can generate a proxy link for each query result.

When user clicks on the proxy link, request first comes to the Yioop server, which in turn

forwards the request to the website and returns the result page to the user. In this case,

Yioop server acts as a forward proxy server, which gets the HTTP request from a client

and forwards it to the requested website, thus provides anonymity to the client IP. In

addition to that, Yioop server uses Tor connection to make a request to website, so

Yioop’s identity can be kept hidden.

We have implemented code in “search_view.php” file to create a dynamic proxy

link. Also, we have added class “ProxyURL” to receive a URL from the user and to

make a request to the website through the Tor network. The snapshot of the proxy link

feature is as shown in Figure 12.

24

Figure 12: Proxy link feature in Yioop

4.5 Conclusion

Tor network and Tor hidden service have gained popularity in recent times. Duck

Duck Go is a popular search engine, which is published as the Tor hidden service [12]

and its onion URL is https://3g2upl4pq6kufc4m.onion/. The ability to crawl the Tor

network will allow Yioop to index the Tor hidden services and display them in the search

result. The proxy link feature will provide anonymous web surfing experience to the

user.

25

 CHAPTER 5
 HASH CAPTCHA

CAPTCHA stands for Completely Automated Public Turing test to tell

Computers and Humans Apart. It is a type of a challenge response test to find whether a

user is human or machine [13]. CAPTCHA prevents spam submission by automated

software thus improving the quality of the software, and is mainly used in registration

functionality, forgot password functionality, and in the comment field for a blog post.

5.1 Existing CAPTCHA system

In today’s world, there are different types of CAPTCHAs available. The first and

a very popular type of CAPTCHA is a standard distorted word with an audio option. This

CAPTHCA uses twisted letters and a background color gradient to hide the message.

From a security point of view, this CAPTCHA is reliable as the distorted word is hard to

crack by machine. However, sometimes legitimate users also face difficulty in

deciphering it. The picture identification CAPTCHA is also very popular. In this

CAPTCHA, a few images and a question are shown to a user where he needs to identify

the correct image based on the question. This CAPTCHA is very user-friendly. The

math-solving CAPTCHA and 3D CAPTCHA are also popular [14].

CAPTCHA implementation is very important factor from a security point of

view. In earlier CAPTCHA implementation, the hidden fields were used to store the

questions and answers of CAPTCHA on the client side where it was verified using

JavaScript. A smart machine can easily read the values of these hidden fields, thus can

solve the CAPTCHA. Therefore, any implementation which stores CAPTCHA’s data on

the client side is highly vulnerable.

26

Figure 13: Different types of CAPTCHAs [14]

Recently a few attacks exploited the server-side weakness of CAPTCHA

implementation. Randomness in CAPTCHA generation is very important. Theoretically

server should not utilize the fixed set of CAPTCHA; it should generate a random

CAPTCHA for each new request. Many of the sites use predefined sets of CAPTCHA.

Each CAPTCHA is associated with an identifier which can either be a numeric or a

fixed-length character string. The rainbow attack can exploit websites which use a static

identifier. In this type of attack, the attacker creates the lookup table of CAPTCHA

identifiers and its solution. The attacker solves all the CAPTCHAs manually and at

runtime uses this table to find the CAPTCHA’s answer [15]. Table 2 shows an example

of rainbow table.

27

Table 2: Example of rainbow table [15]
Identifier CAPTCHA Solution

0 95C7A 95C7A

1 58412 58412

2 9038F 9038F

3 49F1C 49F1C

4 A8887 A8887

5 K89D K89D

998 IOP9 IOP9

999 KLO7 KLO7

Figure 14 illustrates users' responses on CAPTCHA. Most of the users bother by

the CAPTCHA. Another issue with difficult CAPTCHA is that it not only prevents

spam, but also prevents search engine bots. The search engine bot will not be able to

parse the web page, thus the page will not appear in the search results. This way it can

reduce the popularity of the website.

Figure 14: User's response on CAPTCHA

28

 We were looking for some technique that is user-friendly and at the same time

does not compromise security. Bitcoin’s hashcash implementation has motivated us to

implement hash CAPTCHA.

5.2 Cryptographic HASH function:

Hash CAPTCHA uses the concept of a cryptographic hash function. A hash

function takes an arbitrary length string as input and returns a fixed-size string as output.

Any minor change in the input should result in a completely different output string.

Figure 15 shows example of cryptographic hash function. The ideal cryptographic hash

function has four main properties: First, for any given string it should be easy to calculate

the hash. The input string may contain alphabets, digits or special characters. Second, it

is infeasible to generate a message that has a given hash. Third, even a slight change in

the input string should result in a completely different hash. Fourth, two different input

strings should not produce the same hash value [17].

Figure 15: Example of cryptographic hash function [18]

29

SHA-1 and SHA-256 are very popular hash functions. They were designed by

United States National Security Agency. SHA-1 generates 160-bit (20-byte) hash value

and SHA-256 generates 256-bit (32-byte) hash value [19].

Table 3: Example of a cryptographic SHA1 function

Input String Output (Hexadecimal Value)

Abcde 03de6c570bfe24bfc328ccd7ca46b76eadaf4334

Abcdx a96e144dfdc6380c8a4ae43bea1c81cb01215020

Abcdo debc9595cdf63a07efb18141692dcaab67f115fc

ABCDO 58ba5a974fa794df712866f355c9c63ac162d4d2

1x%&b!!B 52f4190f30e51d55bb03220f9bf47fae538dc1f8

Table 4: Example of a cryptographic SHA256 function

I/P Output: Hexadecimal Value

abcde 36bbe50ed96841d10443bcb670d6554f0a34b761be67ec9c4a8ad2c0c44ca42c

abcdx f2d58ae536dc5d52ff1c83332ea1184be67febd39eaab1c98118a6cb33b9aa2a

abcdo ffb2fa8d1f9c02b9b3dfb3a465399a294533f7f131e6d3d773b2be786918b377

ABCDO d8d219fd83565b7d122b0c7ac7629478649a429118d94dbd0c983ac054e7a262

1x%&b!!B 6b1d09646c61379166432352cfdec05c839dc2cb37df910742171b3edeb68799

So we had two choices, either use SHA1 or SHA256 to generate a hash value for

the input string. We have written a JavaScript to compare the execution time of SHA1

and SHA256 functions and CryptoJS library to calculate the SHA1 and SHA256 values.

Figure 16 shows an execution time comparison of the SHA1 and SHA256 function. We

did 50 iterations for each input so the execution time can be compared in milliseconds.

30

After the experiment, we have realized that SHA1 and SHA256 calculations take

almost same amount of time in hash generation, so I have decided to use SHA1 as it is

very popular.

5.3 Hash CAPTCHA

Hash CAPTCHA is based on the hash cash proof of work concept. A proof of

work is a piece of data which is difficult to produce as it must satisfy certain

requirements. A client needs to perform some operations on the data at client side. This

operation costs certain CPU cycles to the client. On the server side, it should be very

easy to check whether the data sent by the client satisfies certain requirements or not.

This setup prevents spam submission and denial attack by the client as for each

submission, the client needs to carry out certain calculations which will cost some CPU

cycles.

Table 5: Execution time comparison of the SHA1 and SHA256 function

Random String SHA1 Time
(ms)

SHA256 Time
(ms)

1 041006c58b8168eb4096e3f34d0a16e4 11 8

2 1503130d07c2933db297e5fec1cb016b 7 3

3 1cea132c84b7311467e9d47f187af16c 2 7

4 c74b803684c192bb487137c2739cc0c7 3 3

5 e62e08814a6242ee7081c52c6f18a500 2 1

6 6f3174ec55e7499c676dfbd21dff31a1 3 3

7 295e64d28a763357da183c00421f0ec8 1 3

8 6e482115606c2377abbcc4545be62556 2 4

9 99621044dd037e730b9f96c344949413 1 2

31

Random String SHA1 Time
(ms)

SHA256 Time
(ms)

10 d01a5d7696818fa79e0a7101c0b76c48 3 2

11 dcc73ab38e6ef10083de0617edd9c425 3 2

12 2b4babddd3511e2d4fcf5158d9805a14 1 5

13 a81664ba0b59b14cadad4f9bffebf77a 4 2

14 40eb5e28864484711466dfc0604f3037 3 2

15 a5ce82caf8066931746e49c4ec28b313 4 1

In our implementation, the server sends a random string to the client. JavaScript

attached to the requested page calculates SHA1 on this random string. The script takes

the random string sent by the server as an input and concatenates the integer value

known as nonce at the end of the input string. The script then calculates SHA1 on the

resultant string. If the resultant hash begins with ‘00’ then script returns nonce value;

otherwise, nonce is incremented by 1 and the entire process starting from string

concatenation is repeated. For example, we have taken “Test” as the random string and

started nonce from 0. For the string “Test: 135,” SHA1 produces a hash that starts with

the two leading zeroes. The script stores the nonce value in the hidden text field and it is

sent to the server when the client submits the request.

Table 6: Example of hash CAPTCHA proof of work

Input String SHA1 hash

Test:0 0b96f625c18f94dcebf01ab6bf84413743952f10

Test:1 6e8125d1846308969fb7cd4694b096333f310c4b

Test:2 b2da2df3450dab8c0797d9e7da357d1bde454c07

32

Input String SHA1 hash

Test:3 0deb0e1be1b9889bddd4778f71eaa1c8c84845dd

Test:133 7985064947063366a79195bc11a423a491ff542f

Test:134 8575c8682f9fbb79034370fcfd0b17d5253a9ee2

Test:135 0022bd9826082dd8af48c412dde45beba7a1c3d3

On the server side, it is very easy to check whether the concatenation of the input

string and nonce produces the desired number of leading zeroes or not. In modern

computers, 135 calculation of SHA1 function does not take much time. To generate a

hash of two leading zeroes, it generally takes fractions of a second. So this calculation

would not affect the genuine client, but for the spammers it would be a highly CPU-

intensive task.

One advantage of this system is that it is very simple to increase the client side

calculation by simply varying the desired number of leading zeroes of the generated hash

value. By simply changing this integer variable from 2 to 34, the client side calculation

time will increase from approximately 1 second to 4 hours.

5.4 Hash CAPTCHA in Yioop

Yioop is using text CAPTCHA for “create an account” and “suggest URL”

functionality. In the admin panel, we have added an option to toggle between text

CAPTCHA and hash CAPTCHA. Figure 16 shows CAPTHCA mode option in Yioop.

When a user requests for CAPTCHA enabled page, the server first determines the

CAPTCHA mode and in the case of hash CAPTCHA, the server generates a random

string and returns the requested page to the client. Once the page is loaded on the client

browser, hash CAPTCHA script is called, which performs hash cash proof of works on

33

the string sent by the server. It finds the nonce value for which the hash of the given

string produces the desired number of leading zeroes.

Figure 16: CAPTCHA mode option in Yioop

When a client submits the form, the server checks that for the given nonce

passed, and the random string produces the desired number of leading zeroes or not. If

the validation passes, then the server proceeds with the requested action; otherwise, it

gives a “hash code validation failed” error and sends the page back to the client with a

new random string. On the server side, I have used PHP’s SHA1 function for

verification.

Ideally, the server should generate a random string for each new request. If the

server uses a predefined set of random strings or very common algorithm to generate a

random string, then an attacker may do some pre-calculations on the input strings and

can tweak the JavaScript to avoid client-side calculation. To generate a random string,

we have concatenated two parameters: the time of request and the auth_key of Yioop and

performed md5 hash on the resultant script. Figure 17 shows a snapshot of “Suggest

34

URL” module and Figure 18 shows a snapshot of “Create Account” module after hash

CAPTCHA implementation.

Figure 17: Hash CAPTCHA in “Create Account” module

Figure 18: Hash CAPTCHA in “Create Account” module

In hash CAPTCHA, JavaScript on the client side calculates SHA1 hash on the

input string and it is important to verify whether JavaScript calculates correct SHA1 or

not, otherwise it will never pass the CAPTCHA check at the server side. On the server

we have used PHP’s SHA1 function for verification.

We have decided to write the test cases for SHA1. One challenging task was to

test the JavaScript function on the server side. PHP is a server-side scripting language,
35

whereas JavaScript is a client-side scripting language. I have found one external PHP

library called V8Js class. This library allows testing the JavaScript function at the server

side.

 The primary goal of Yioop’s design is that it should run on default PHP

configuration and it should not have any dependency on the external library. Therefore,

we have decided not to use any external library and write our own class to test the SHA1

function. I have written a class called JavaScriptTest which extends the existing UnitTest

class. It has a blank implementation of all the required functions of the Unit test

framework. I have added a class called SHA1Test, which extends a class JavaScriptTest

and compares the result of a JavaScript‘s SHA1 function to the PHP’s SHA1 function.

Figure 19 shows the output of the test run.

Figure 19: Test run of SHA1 test case

5.5 Conclusion

 Text CAPTCHA is good from a security point of view, but it is not very user-

friendly. Hash CAPTCHA can be used to replace the text CAPTCHA as it is very easy to

implement and user-friendly. In Yioop, the admin has an option to toggle between text

CAPTCHA and hash CAPTCHA.

36

CHAPTER 6
ZERO KNOWLEDGE

AUTHENTICATION SYSTEM

Authentication is a process of verifying a user’s identity and it plays an important

role in a security of web applications. There are many ways by which users can provide

their identity, such as by providing a username and password, using a biometric card, or

swiping the card.

6.1 Traditional Authentication System

 In the typical web authentication system, the user provides their username

and password and the system displays a results page according to the user’s privileges.

Figure 20 illustrates the workflow of the traditional login system. In the past few years, a

number of attacks have been made to sniff usernames and passwords. The eavesdropper

attack is the most common attack in which the attacker intercepts the authentication data

transfer over the network and if the data is not encrypted then the attacker can easily

retrieve the username and password. In the man in the middle attack, the attacker stands

between the prover and the verifier and acts as the prover to the verifier and the verifier

to the prover. In the replay attack, the attacker records the successful authentication data

and can use it later on for the authentication. The easiest thing an attacker can do is try a

few common passwords such as “12345”, “password”, or “admin” to login to the specific

account.

It is unsafe to send a plain text password or hash of a password over the network.

Sometimes the attacker gets access to a password file stored on a server and if the server

has stored passwords in the simple text file then the attacker can easily get all the

credentials within.

37

Figure 20: Workflow of the traditional login system [20]

Figure 21 shows a summary of the various authentication systems and possible attacks

on the authentication systems

Figure 21: Possible attacks on various authentication systems [21]
38

The above problems are motivational factors to implement the zero knowledge

authentication system. The zero knowledge system allows user to prove that they know

the secret (i.e. password) without revealing the actual secret. In this system, a user does

not need to share the actual password over a network. The server also does not store the

password or the hash of the password, instead it stores the numerical password derived

from the user’s actual password. The idea of the zero knowledge authentication system is

based on an authentication scheme developed by Fiege, Fiat and Shamir, usually known

as simply Fiat-Shamir.

6.2 Fiat-Shamir Protocol

Let's say Alice wants to convince Bob that she knows the password without

revealing the actual password to him. It sounds impossible, but there is a probabilistic

process by which Bob can verify that Alice knows the password to an arbitrarily high

probability [22].

Fiat-Shamir has developed a protocol for the authentication that relies on the fact

that finding a square root modulo N is comparable to the difficulty of factoring. The

complete protocol is as described below [22].

One time setup:

1. In this protocol, the trusted center selects modulus 𝑁 = 𝑝. 𝑞 where p and q are

secret large prime numbers and N is public.

2. Alice knows secret S such that S is co-prime to N and 1 ≤ 𝑆 ≤ 𝑁 − 1. She

computes = 𝑆2 𝑚𝑜𝑑 𝑁 . Here, S is private and V is public.

Protocol:

1. Alice selects random number r and sends 𝑥 = 𝑟2 𝑚𝑜𝑑 𝑁 to Bob. This step is

called a commitment phase.

39

2. Bob sends either 0 or 1 to Alice. This step is called a challenge phase.

3. Alice sends 𝑦 = 𝑟. 𝑆𝑒 𝑚𝑜𝑑 𝑁 to Bob. This step is called a response phase.

Verification:

1. Bob verifies 𝑦2 = 𝑥.𝑉𝑒 𝑚𝑜𝑑 𝑁. Here 𝑉 = 𝑆2 𝑚𝑜𝑑 𝑁 and 𝑥 = 𝑟2 𝑚𝑜𝑑 𝑁

Figure 22: Fiat-Shamir protocol

 In this protocol, a random value is used by Alice during a commitment phase and

by Bob during a challenge phase. Let’s say Bob does not use a random value for e in the

second message and uses a fixed value e of either 0 or 1. In the case of 𝑒 = 0, Trudy

(attacker) sends 𝑥 = 𝑟2 𝑚𝑜𝑑 𝑁 in the first message and 𝑦 = 𝑟 𝑚𝑜𝑑 𝑁 in the third

message. In this case, Trudy isn’t required to know the secret so she can generate any

random number and convince Bob that she knows the secret. In the case of 𝑒 = 1, Trudy

will send 𝑥 = 𝑟2.𝑉−1 𝑚𝑜𝑑 𝑁 in the first message and 𝑦 = 𝑟 𝑚𝑜𝑑 𝑁 in the third

message. Bob tries to calculate 𝑦2 = 𝑥 .𝑉𝑒 𝑚𝑜𝑑 𝑁 so the left part of an equation would

be 𝑟2 𝑚𝑜𝑑 𝑁 and right part would be 𝑥.𝑉𝑒 𝑚𝑜𝑑 𝑁 = 𝑟2.𝑉−1.𝑉 𝑚𝑜𝑑 𝑁 = 𝑟2 𝑚𝑜𝑑 𝑁

thus Bob is convinced that Trudy knows the secret. Thus, it is necessary for Bob to

choose a random value for e. Trudy can only fool Bob with a probability of ½ and, after

n iterations, Trudy can fool Bob by the probability: (1/2)𝑛 [21].

Alice also needs to choose the random value r for each iteration. Suppose Alice

chooses a constant value for all iterations. In the case of 𝑒 = 0 and Alice sends 𝑟 𝑚𝑜𝑑 𝑁

40

in the third message. And in the case of 𝑒 = 1, Alice sends 𝑟.𝑆 𝑚𝑜𝑑 𝑁. Here Trudy can

record all the communication and learn about 𝑟 𝑚𝑜𝑑 𝑁 and 𝑟. 𝑆 𝑚𝑜𝑑 𝑁. It is very easy

for Trudy to derive S from 𝑟 𝑚𝑜𝑑 𝑁 and 𝑟. 𝑆 𝑚𝑜𝑑 𝑁 [21].

Figure 23 shows an example of Fiat-Shamir protocol. For this example, I have

assumed the password 𝑆 = 5 and random value 𝑟 = 3. I have also assumed that Bob

sends 𝑒 = 1 in the third message, so without knowing r and S, Bob can actually

authenticate Alice using V, y and N.

6.3 Zero Knowledge Authentication in Yioop

Yioop has functionality for creating user accounts. Once the account is created

for the user, it can login to the system using login credentials. We have decided to

implement zero knowledge authentications for the login module and also want to provide

an option of toggling between normal authentication and ZKP authentication. The admin

user has an option to select the authentication mode. Figure 24 displays authentication

mode options in an admin panel of Yioop.

On the server side, the first step was to implement database-related code. In the

existing system Yioop uses a USERS table to store the login credentials. In Yioop,

“profile_model.php” has all the create table queries so we have added one more create

table query to it to create the USERS_ZKP table in database. Whenever a Yioop is set up

for the first time, it accesses “createdb.php” to create database tables and create a default

root user. We added a query in “createdb.php” to insert the root user in the USERS_ZKP

table.

Once the database is set up, the next step was to implement the code in the controller and

models to support this feature. In Yioop admin controller contains the entry point

function “processRequest” for the sign in module. I have rewritten this function to

41

 support both authentication modes. This function calls “checkValidSignin” function of

the signIn model to validate the user credential

Figure 23: Example of Fiat-Shamir protocol

 We have added a function “checkValidSigninForZKP” to validate the user in

case of the ZKP authentication. The user model also has a few functions which access

and alter the various information of the USERS table. In this implementation, all the

model class needs to identify is on which table it needs to perform the requested

operation. I have written a function “getUserTableName” which reads the user profile

file and determines the authentication mode. If the authentication mode is “Normal

42

Authentication” then it sets the user table name as USERS and if the mode is “ZKP

Authentication” it sets the table name as USERS_ZKP. Instead of copying this function

to the every model class I have kept it in the model class file as every class in the models

directory extends it.

Figure 24: Authentication mode option in Yioop

One of the limitations of the zero knowledge system is that it can only work with

numbers as it is based on mathematical expressions, therefore we need to find some

technique to convert the user’s password to numbers. We have implemented SHA1

JavaScript that has a function to calculate a 40 bit hexadecimal value from the input

string, so we have decided to use the SHA1 function to convert the user’s password to a

numeric value.

The biggest challenge in the implementation was to perform the mathematical

operations like multiplication, power and modulo on very large number at the client’s

side. The zero knowledge authentication system was difficult to break only when we

43

used very large prime numbers (e.g. 160 bits or more). We have thus used jsbn library

which is a fast and portable implementation of large-number mathematical operations in

pure JavaScript.

The user can create the account using the “create account” module. In the case of

the ZKP system the registration module will be as shown in Figure 25. When the user

clicks on the submit button after filling in all the details of the create account page, the

JavaScript “zkp.js” attached to the page calculates Fiat-Shamir parameter V and submits

the username and parameter V along with other form details. The server then stores the

username and parameter V in the USERS_ZKP table.

Figure 25: Registration module in Yioop

 The Fiat-Shamir protocol is an example of an interactive proof system. In order

to authenticate the user with a very low probability of error, there should be at least 20

iterations between the server and client. So if we use this protocol for the sign in module

then the user needs to provide the password 20 times.

44

Figure 26: Login module in Yioop

This restriction makes this feature counterintuitive. To overcome this restriction, we have

implemented a JavaScript function which will make an AJAX call to the server and

sends Fiat-Shamir parameters. The server validates the parameters and sends random

No

Server retrieves V from the database and validates compares y2 = x
* Ve mod N.

Yes

Yes

NoValidation
Pass?

20th
Iteration?

User authenticated

Client request for the login page

Server sends the login page and e

First iteration?

Client enters the username and password and click on submit.

ZKP java script calculates Fiat-Shamir paramters and make AJAX
call to sends parameters to the server

No

Increments iteration
count and sends e

45

value in response. The script will calculate new parameters and sends it to the server.

This process continues for the given number of iterations. For the last iteration, the script

sends form data to the server and server sends the appropriate view page. Thus the

user’s password is never shared over the network. The flow diagram of the login module

is as shown in Figure 26.

6.4 Conclusion

The zero knowledge authentication system is a unique way to authenticate the

user. There are few advantages of this system. First, it does not send a password over the

network so even if an attacker breaks into the network; he will not be able to obtain any

useful details. Second, it does not require any additional hardware such as a token

generator or biometric scanning devices to verify the user. Third, there is no change in

the system from the user’s point of view.

46

CHAPTER 7
CONCLUSION

In this project, I have got a chance to learn about various security protocols. The

first protocol I studied was the Diffie-Hellman key generation protocol. The cipher-suite

which uses this protocol provides Perfect Forward Secrecy (PFS). PFS prevents

retrospective decryption of previously intercepted traffic. We have also written a PFS

check script, which can be used to check whether a website supports PFS or not. Yioop

supports PFS; thus, it provides long-term security to the user data.

Tor network provides anonymous Internet surfing to users. It also allows

publishers to publish the service without revealing their identity (IP address). We have

incorporated code so Yioop can crawl the Tor hidden services and display them in the

search result.

We have used hashcash algorithm to design the hash CAPTCHA. Hash

CAPTCHA prevents spam submissions, thus improves the quality of the website. It can

be used to replace text CAPTCHA, which is not very user-friendly. We have

implemented hash CAPTCHA in Yioop and also provided an option to toggle between

existing text CAPTCHA and hash CAPTCHA.

 The zero knowledge authentication system is based on Fiat-Shamir protocol.

Users can log in to the account without sharing their actual password. This system

provides security to the user’s password as it is not sent over the network and also not

stored on the server. On the login page, the user needs to give the password and

JavaScript attached to the page will generate Fiat-Shamir parameters from the user’s

password. We have incorporated zero knowledge authentication in Yioop’s login

module.

47

CHAPTER 8
REFERENCES

[1] Introduction and Feature list of Yioop. Retrieved on September 09, 2013 from
https://www.seekquarry.com/?c=main&p=documentation.
[2] Tilborg, Henk C. A. Van, and Sushil Jajodia. "Perfect Forward Secrecy."
Encyclopedia of Cryptography and Security. New York: Springer, 2011. 921-22.
[3] Stamp, Mark. "Simple Authentication Protocols." Information Security: Principles
and Practice. Hoboken: John Wiley & Sons, 2011. 21820.
[4] TLS Handshake protocol. Retrieved on September 09, 2013 from
http://msdn.microsoft.com/en-us/library/windows/desktop/aa380513(v=vs.85).aspx
[5] Browser support for PFS. Retrieved on September 30, 2013 from
http://news.netcraft.com/archives/2013/06/25/ssl-intercepted-today-decrypted-
tomorrow.html.
[6] SSL lab test. Retrieved on September 30, 2013 from https://www.ssllabs.com/
[7] What happened in heartbleed. Retrieved on April 10, 2014 from
http://www.forbes.com/sites/josephsteinberg/2014/04/10/massive-internet-security-
vulnerability-you-are-at-risk-what-you-need-to-do/
[8] Inception of Tor. Retrieved on October 01, 2013 from
https://www.torproject.org/about/overview.html.en
[9] "Tor: The Second-generation Onion Router." Proceeding SSYM'04 Proceedings of
the 13th Conference on USENIX Security Symposium 13 (2004): 21. ACM. Web. 01
Oct. 2013.
[10] Why we need Tor. Retrieved on October 01, 2013 from
https://www.torproject.org/about/overview.html.en
[11] Lasse Overlier , Paul Syverson, Locating Hidden Servers, Proceedings of the 2006
IEEE Symposium on Security and Privacy, p.100-114, May 21-24, 2006
[12] Duck duck go Tor hidden service. Retrieved on April 14, 2014 from
http://www.reddit.com/r/onions/comments/1a4rmf/duck_duck_go_hidden_service/
[13] CAPTCHA. Retrieved on April 14, 2014 from
http://en.wikipedia.org/wiki/CAPTCHA
[14] Different types of the CAPTCHAs. Retrieved on April 14, 2014 from
http://www.findexamples.com/5-examples-of-different-types-of-captchas/
[15] Gursev Singh Kalra."Attacking CAPTCHAs for Fun and Profit." McAfee®
Foundstone® Professional Services. Retrieved on 14 April from
http://www.mcafee.com/us/resources/white-papers/foundstone/wp-attacking-captchas-
for-fun-profit.pdf
[16] Users response on CAPTCHA. Retrieved on April 14, 2014 from
http://www.experienceu.com/news/guidelines-for-website-creators-and-designers
[17] Cryptographic hash function. Retrieved on April 14, 2014 from
http://en.wikipedia.org/wiki/Cryptographic_hash_function
[18] Example of a cryptographic hash function. Retrieved on April 14, 2014 from
http://en.wikipedia.org/wiki/Cryptographic_hash_function
[19] Secure Hash Algorithm. Retrieved on April 14, 2104 from
http://en.wikipedia.org/wiki/Secure_Hash_Algorithm

48

[20] Lum Jia Jun, Brandon."Implementing Zero-Knowledge Authentication with Zero
Knowledge." The Python Papers Monograph. Retrieved on April 14, 2014 from
http://ojs.pythonpapers.org/index.php/tppm/article/download/155/142
[21] Applicability of attacks in different authentication mechanisms. Retrieved on April
14,214 from http://www.isaca.org/Journal/Past-Issues/2007/Volume-3/Pages/Analyzing-
the-Security-of-Internet-Banking-Authentication-Mechanisms1.aspx
[22] Stamp, Mark. "Simple Authentication Protocols." Information security: Principles
and practice. Hoboken: John Wiley & Sons, 2011. 226-30

49

	San Jose State University
	SJSU ScholarWorks
	Spring 2014

	INCORPORATING PRIVACY AND SECURITY FEATURES IN AN OPEN SOURCE SEARCH ENGINE A Project Report Presented to
	Akash Patel
	Recommended Citation

