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ABSTRACT 

 

Comparative Analysis of Naive Bayes and Tree Augmented Naive Bayes Models 

 

 

by Harini Padmanaban 

 

 

Naive Bayes and Tree Augmented Naive Bayes (TAN) are probabilistic graphical models used 

for modeling huge datasets involving lots of uncertainties among its various interdependent 

feature sets. Some of the most common applications of these models are image segmentation, 

medical diagnosis and various other data clustering and data classification applications. A 

classification problem deals with identifying to which category a particular instance belongs to, 

based on previous knowledge acquired by analysis of various such instances. The instances are 

described using a set of variables called attributes or features. A Naive Bayes model assumes that 

all the attributes of an instance are independent of each other given the class of that instance. 

This is a very simple representation of the system, but the  independence assumptions made in 

this model are incorrect and unrealistic.  The TAN model improves on the Naive Bayes model by 

adding one more level of interaction among attributes of the system. In the TAN model, every 

attribute is dependent on its class and one other attribute from the feature set. Since this model  

incorporates the dependencies among the attributes, it is more realistic than a Naive Bayes 

model. This project analyzes the performance of these two models on various datasets. The TAN 

model gives better performance results if there are correlations between the attributes but the 

performance is almost the same as that of Naive Bayes model, if there are not enough 

correlations between the attributes of the system. 
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CHAPTER 1 

INTRODUCTION 
 

      Probabilistic Graphical Model (PGM) is a framework that helps in modeling systems that 

involve features with lots of uncertainties. This model helps predict the future results based on 

information obtained from past observations through probabilistic methods. Some of the main 

applications of PGMs are medical diagnosis, image segmentation and many other classification 

and clustering applications [2]. For example, in medical diagnosis, a doctor needs to analyze 

various aspects related to a person, such as the person's body temperature, blood pressure, sugar 

levels, height, weight, allergies, pain and various other factors in order to decide whether the 

person has a particular disease [2].  Also, the doctor cannot be very certain about all the 

observations as these are dependent on symptoms that the patient describes. So the data that the 

doctor has, involve lots of uncertainty and the doctor needs to decide if a person has a disease or 

not based on these symptoms and analyzing the probabilities that they would lead to a disease. In 

case of image segmentation, we need to determine whether a portion of an image belongs to a 

person, house, road etc, based on the given huge set of pixels. All these applications have 

uncertainties in the form of variables involved in them such as fever level, pain, head ache, etc or 

pixels of various parts of image [2]. These uncertainties can be modeled in the form of a graph, 

which depicts the interdependencies among these variables. Such a model, based on the 

probabilities of the observations, can then be used to find the state of a query variable given the 

state of other variables in the dataset.  

 

The overview of the chapters is as follows. Chapter 2 discusses some of the probability theory 

concepts that are required for understanding PGM. Chapter 3 explains the concepts of Bayesian 

networks. Chapters 4 and 5 discuss the structure and implementations of two special types of 

Bayesian networks viz., Naive Bayes model and Tree Augmented Naive Bayes model 

respectively. Chapter 6 presents the results of both the Naive Bayes and TAN models on various 

datasets and analyzes the results. Finally, based on the comparative analysis of the results of 

TAN and NB models, we conclude that, the TAN model performs better if there are correlations 

between the variables in a system.  
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CHAPTER 2 

Probabilistic Graphical Models 

2.1 Introduction    

Probabilistic graphical model is basically a graph that models the interdependencies among the 

variables in a dataset and helps in determining probabilistically the state of a query variable 

given the state of one or more variables in the data set [1] [2]. This can be done by representing 

the information at hand in the form of a graphical model and execute various reasoning 

algorithms on that model, in order to arrive at sensible predictions about the state of a variable in 

the system. A graphical model is used because it is a more common form of data structure that 

can be used to represent data and information relating to various fields and facilitates sharing of 

algorithms and techniques among different fields [2]. Probabilistic models are used because 

probability theory is the efficient way for handling uncertainty. A probabilistic model is more 

liberating as it helps in accommodating exceptional cases that are not currently observed in the 

system but also cannot be completely neglected. This is achieved by assigning small probabilities 

to such states. It also helps in learning from the observations. Probabilistic graphical model has 

three critical components viz., Representation, Inference, and Learning [2]. Representation refers 

to the modeling of the complex system that involves uncertainties close to the reality. Inference 

refers to the ability to query the model and get the relevant information. Learning is the process 

of obtaining this distribution based on the data at hand and some expert knowledge [2].  

A probabilistic model is built based on the interaction between the variables that are involved in 

the system. These variables are called as random variables. For example, in a medical diagnostic 

system, height, weight, pain, fever, diseases, test results etc., form the random variables[2]. The 

system is built capturing the interaction between these variables and how they influence each 

other. This model can then predict the state of a variable in the system, given the states of some 

of the other variables in the system. It also models the independencies among those variables. In 

what follows, we introduce concepts, that are essential for understanding probabilistic graphical 

models. 

A random variable is a variable whose value is subject to variations. It can either be discrete or 

continuous. A discrete random variable can take a value form a set of possible different values 
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where each of the values is associated with a probability [13]. Continuous random variables can 

take from an infinite number of possible values associated with probability density function [13]. 

In a medical diagnosis system, a symptom such as pain can take values such as high, low, no 

pain and another variable like temperature can take values from a range of continuous values [1] 

[2]. The selection of these variables and their values is a very important factor that has a great 

impact on the queries that a model could answer. 

2.2 Marginal and Joint Distribution 

A random variable X can take a set of possible states or values. A probability distribution over 

the states that can be taken by a random variable X is called the marginal distribution over the 

random variable X.  Let us consider an example that models the details about the student 

population. This example is taken from [2] and the tables relating to these examples are 

reproduced from [2]. The random variables involved in the student model example are difficulty, 

intelligence, grade, SAT and letter. 

 Difficulty refers to the difficulty of the course that the student takes and it can take two 

values {hard- d1, easy-d0} 

 Intelligence refers to the intelligence level of the student and it takes the values  {low i0, 

High i1} 

 Grade refers to the grade scored by the student and it takes the values {A-g1, B- g2, C- 

g3} 

 SAT refers to the SAT score of the student and it takes values {Low s0, High s1} 

 Letter refers to the quality letter of recommendation that the student received {good, bad} 

A  marginal distribution of the student intelligence and course difficulty is described in Table 1 

Table 1: Marginal Probability distribution of difficulty and intelligence in student model [2].  

 

   

 

 

         (A)      (B)                   

 

D P(D) 

d0 0.6 

d1 0.4 

I P(I) 

i0 0.7 

i1 0.3 
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One very important property in probability theory is that the sum of the probabilities of the states 

that a random variable can take must equal 1. For example, in Table 1 the sum of the 

probabilities of difficulty = high and difficulty = low adds up to one. 

∑  𝑃(𝑥𝑖) = 1

𝑛

𝑖=1

 

Sometimes queries on the states of more than one random variable need to be answered. An 

event of occurrence of a combination of states of different random variables may be of 

interest[2]. For example, events where the difficulty = high and grade = A, may need to be 

captured in order to determine the performance of students. In such cases, a joint probability 

distribution over both the random variables needs to be considered [2].  

A joint distribution over a set of random variables (X1,.., Xn) is given by P (X1.... Xn). This 

distribution assigns probability for all the states that are described by these random variables [2]. 

A joint distribution over a set of random variables must also be consistent with the marginal 

distribution of those variables[2]. This is called the rule of marginalization and is defined as 

follows: 

𝑃(𝑥) = ∑ 𝑃 (𝑥, 𝑦)

𝑦

 

For example, a joint distribution over the random variables student grade and intelligence, as 

given in [2] is shown in Table 2. 

Table 2: Joint Probability distribution of difficulty and intelligence in student model [2].  

 

  Intelligence  

Sum Low High 

 

Grade 

A 0.07 0.18 0.25 

B 0.28 0.09 0.37 

C 0.35 0.03 0.38 

 Sum 0.7 0.3 1 

 

In Table 2, if the probabilities of the random variable intelligence is summed across all the 

events that it describes viz., high and low then it results in the marginal distribution of the 
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random variable grade. Similarly the summation of the probabilities of all the events described 

by grade viz., A, B and C results in the marginal distribution of the random variable intelligence.  

In a joint probability distribution, the sum of all the entries in the distribution must add up to 1. 

In Table 2, the sum of all the six entries adds up to 1. 

2.3  Conditional Probability 

Conditional probability is a notion in probability theory that explains how the occurrence of an 

event can affect the probability of occurrence of another event. That is, given that an event A has 

occurred, what impact does it have on the occurrence of another event B. For example, in a 

medical diagnosis system, given that a person has muscle pain what is the probability that he has 

the flu[2]. The conditional probability of B given A is defined as: 

P(B|A) = P(A,B) / P(A) 

where P(A,B) is the joint probability of events A and B and P(A) refers to the marginal 

probability of event A. Another important concept in probability theory based on the conditional 

probability is the chain rule. The chain rule helps in determining the probability of combined 

occurrences of various states of the random variables involved in the system. It is calculated as a 

product of probability of occurrence of first event, the probability of occurrence of the next 

event,  given the previous events and so on [2]. Given a set of random variables X1 to Xn, the 

chain rule for finding the joint probability distribution is given by [2], 

P(X1, X2, X3,..., Xn) = P(X1) ∙ P(X2| X1) ∙ P(X3| X1, X2) ∙... ∙ P(Xn| X1... Xn-1). 

Conditional probability also leads to another important concept in the probability theory called 

Bayes' rule [2], which is defined as: 

P(A|B) = P(B|A)∙P(A) /P(B) 

 

Conditional distribution of random variable can be obtained by reducing their joint distribution. 

This is done by conditioning on one a particular value that the random variables can take and 

renormalizing the resulting distribution so that the probability values add up to 1. For example, 

let us consider the joint distribution of the random variables grade (G), intelligence (I) and 

difficulty (D) of the student model, as given in Table 3. 

 



 

6 
 

Table 3: Joint probability distribution of random variables intelligence, difficulty and grade [2]. 

 

I D G   P(I,D,G) 

i0 d0 g1 0.126 

i0 d0 g2 0.168 

i0 d0 g3 0.126 

i0 d1 g1 0.014 

i0 d1 g2 0.07 

i0 d1 g3 0.196 

i1 d0 g1 0.162 

i1 d0 g2 0.0144 

i1 d0 g3 0.0036 

i1 d1 g1 0.06 

i1 d1 g2 0.036 

i1 d1 g3 0.024 

 

From Table 3, the conditional probability distribution of  I and D conditioned on G=g1 is 

obtained by removing all the entries in Table 3 for which the value of the random variable is not 

g1.  We then renormalize the resulting entries from the table so that they sum up to one. Table 4 

explains this procedure.  

 

Table 4: Conditioning and Renormalization of a joint distribution[2]  

        

 

 

  

   

 

 

 

    (A)      (B) 

 

In Table 4 (A), the sum of all the entries in the last column do not add up not one. So it is 

renormalized by summing up all the entries in the last column and dividing each of the entry 

with the sum. The resulting Table 4 (B), is a conditional probability distribution of the 

intelligence and difficulty given grade = A. 

 

I D G P(I,D,g1) 

i0 d0 g1 0.126 

i0 d1 g1 0.014 

i1 d0 g1 0.162 

i1 d1 g1 0.06 

Sum 0.362 

I D P(I,D | g1) 

i0 d0 0.3481 

i0 d1 0.0387 

i1 d0 0.4475 

i1 d1 0.1657 
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The next chapter discusses Bayesian Networks, which is a type of probabilistic graphical model, 

that encodes the interactions between the variables involved in a system using directed acyclic 

graphs [2].  
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CHAPTER 3 

Bayesian Networks 

3.1 Motivation 

A probabilistic graphical model for an application is mainly based on the random variables 

involved in the system and the interaction between them. The joint distribution of random 

variables in a system gives the probability of occurrence of all possible combinations of all 

possible values, that the random variables in the system can take. From this it can be concluded 

that, given the joint distribution of the random variables involved in a system, any queries 

regarding the state of any random variable can be answered. But this is not easy in reality. For 

example, let us consider a system which has n random variables and all those variables can take 

only binary values. Thus, the joint distribution of such a system would have 2n entries. In reality,  

the value of 'n' will be very large, and most of the random variables would take more than two 

values. Hence, constructing such a huge joint distribution is inefficient for probabilistic 

inference, as only a smaller part of the huge distribution would only be used frequently and it 

also inefficient in terms of space (memory).  

To tackle this problem, the interdependencies between the random variables should be studied 

and independent random variables need to be identified. If two random variables are independent 

of each other, the joint distribution of those two random variables would not provide any 

additional information. Thus, it helps in the reducing the complexity of the model as these 

interactions can be eliminated from the joint distribution. A Bayesian network can be viewed as a 

"data structure that provides the skeleton for representing a joint distribution compactly in a 

factorized way and a compact representation for a set of conditional independence assumptions 

about a distribution" [2] 

One of the best ways for modeling the interdependencies between the random variables in a 

system is by using graphs. The nodes of the graphs represent the random variables and the edges 

represent the relationship between the connected nodes. There are 2 types of graphs. A graph can 

either be directed or undirected. Bayesian Networks is a commonly used graphical  model that 

represents the complete probability distribution and the independencies involved in the system in 

the form of directed graphs. Markov Networks is another commonly used graphical model that 
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uses undirected graphs. The next chapters will completely focus on Bayesian Networks, its types 

and properties and its representation as a probabilistic graphical model.  

3.2 Conditional Independence 

One of the key aspects in representing a system as a probabilistic graphical model is the 

identification of independent random variables in the system. Two random variables X and Y are 

independent if for any state x of X and any state y of Y, the joint probability distribution of X=x 

and Y=y is the product of marginal probability of X=x and marginal probability of Y=y. This is 

given by: 

𝑃(𝑥, 𝑦) = 𝑃(𝑥) ∙ 𝑃(𝑦) 

Also, the following statements hold true: 

The conditional probability of X conditioned on a state y of Y does not depend on y. 

𝑃(𝑥 | 𝑦) = 𝑃(𝑥) 

Similarly, the conditional probability of Y conditioned on a state x of X is independent of x. 

𝑃(𝑦 | 𝑥) = 𝑃(𝑦) 

Consider the example for the random variables intelligence and difficulty in the student model. 

Table 5: Joint distribution of intelligence and difficulty in student model [2]. 

 

I D P(I,D) 

i0 d0 0.42 

i0 d1 0.28 

i1 d0 0.18 

i1 d1 0.12 
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Table 6: Marginal distributions of intelligence and difficulty in student model [2] 

 

I P(I) 

i0 0.7 

i1 0.3 
                                  (A)                               (B) 

 

Table 5 gives the joint distribution of random variables I and D and Table 6 (A) and (B) give the 

marginal distribution of random variables intelligence and difficulty. It can be observed that each 

of the entries in Table 5 is the product of the probability of corresponding states of random 

variables given in Table 6. Since the joint distribution is a product of the marginal distribution, it 

means that the random variables are independent of each other.  

The previous example explains the independence between two random variables. Conditioning 

on a particular values of a random variable, can make the rest of the random variables in the 

system both gain and lose independence. Let us consider each of these cases in detail, using the 

student model example.  

Table 7: Joint distribution of intelligence, SAT and grade [2]. 

I S G P(I,D,G) 

i0 s0 g1 0.133 

i0 s0 g2 0.2261 

i0 s0 g3 0.3059 

i0 s1 g1 0.007 

i0 s1 g2 0.0119 

i0 s1 g3 0.0161 

i1 s0 g1 0.0444 

i1 s0 g2 0.01008 

i1 s0 g3 0.00552 

i1 s1 g1 0.1776 

i1 s1 g2 0.04032 

i1 s1 g3 0.02208 

 

D P(D) 

d0 0.6 

d1 0.4 
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From the joint distribution given in Table 7 we can see that, all the three random variables are 

interrelated. Now, conditioning the entries in Table 7 on i0, we get Table 8 (A). 

Table 8: Conditional distribution of intelligence, SAT and grade [2]. 

              

S G P(S,G| i0)                                                      

s0 g1 0.19 

s0 g2 0.323 

s0 g3 0.437 

s1 g1 0.01 

s1 g2 0.017 

s1 g3 0.023 

                                                  (A)                                

      

     

 

 

          

It can be observed that the entries in Table 8 (A) can be obtained by the multiplication of the 

conditional probabilities of SAT given i0and grade given i0 given in Table 8 (B) & (C). This 

implies that, given information about the intelligence, the random variables SAT and grade are 

no more dependent on each other.  

P(S,G|i0) = P(S|i0) ∙ P(G|i0) 

Intuitively, if no information is given about the intelligence of the student, then a SAT score may 

help predict that the student would score a good grade in his course. But given the student is 

intelligent, that in itself helps predict that the student would get good grades in his course, and 

the SAT score does not provide additional information. Thus, grade and SAT are independent  

given class [2]. Thus, conditioning on a random variable has resulted in gaining independence 

between two other random variables. A graphical depiction of this is given in Figure 1. 

G P(G|i0) 

g1 0.2 

g2 0.34 

g3 0.46 

S P(S|i0) 

s0 0.95 

s1 0.05 

(B) (C) 
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Figure 1: Conditioning can lose independence [2]. 

 

In Figure 1, I is the cause and G and S are the effects. Evidence (information) about the parent I 

affects the dependency between the children G and S. 

 

Conditioning can also lose independence. Consider the joint distribution between the random 

variable intelligence(I) and difficulty(D) of the student model, given in Table 5. Table 6 gives 

the marginal distribution of  intelligence(I) and difficulty(D). From these two tables it can be 

seen that random variables I and D are independent of each other. 

P(I,D) = P(I) ∙ P(D) 

Now, conditioning the distributions on G = g1, results in the distribution in the Table 9. 

Table 9: Conditional distribution of intelligence and difficulty [2]. 

 

I D P(I,D | g1) 

i0 d0 0.348066 

i0 d1 0.038674 

i1 d0 0.447513 

i1 d1 0.165745 

(A) 

 

 

 

                      

      

D P(D | g1) 

d0 0.79558 

d1 0.204419 

I P(I | g1) 

i0 0.38674 

i1 0.61325 

(C) (B) 
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From Table 9 (A), (B) and (C), it can be seen that P(I,D |G) is not (P(I|G) ∙ P(D|G)). Hence, 

P(I|G) and P(D|G) are not independent anymore. Thus, conditioning on the random variable G 

has lead to the loss of independence between random variables I and D. 

 

Intuitively, without having any information about the grade, the difficulty of the grade has 

nothing to do with the intelligence. Hence, they are independent. Now, given that a student has 

scored A in a difficult course, it makes sense that the student can be intelligent. Hence, given 

some evidence about grade the random variables difficulty (D) and intelligence (I) depend on 

each other.  A graphical depiction of this is given in Figure 2 [2]. 

 

Figure 2: losing independence between variables by conditioning [2]. 

 

In Figure 2, D and I form the cause and G is the effect. Given some evidence (information) about 

the child G affects the dependency between the parents D and I. Thus, the relationship between 

the random variables can be depicted in the form of a parent child relationship in a graph. Also, 

the concept of loosing and gaining independence between the random variables due to 

conditioning plays a key role in determining the flow of influence between the random variables 

in a graphical model. 

 

An important concept in Bayesian networks is the depiction of the probability distribution in the 

form of a graph. All the independence relations that are true in the distribution must also be true 

in the graph. Formalizing this concept we have the following theorem.  

Def 1: Let G be a graph over the random variables X1,....,Xn. The distribution P Factorizes over 

G if  

P(X1, … , Xn) =  ∏ P(Xi|ParG (Xi))

i

 

where ParG refers to parent of G [2].  
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That is, a distribution P factorizes over a graph G if the joint distribution of the random variables 

in P equals the product of conditional probability distribution of the random variables given its 

parent. 

3.4 Bayesian Networks Defined 

Def 2: A Bayesian network is defined as a directed acyclic graph(DAG) whose nodes represent 

the random variables Xi,...,Xn  and for each Xi there is a conditional probability 

distribution(CPD) P(Xi|ParG(Xi)) [2].  

It is a directed acyclic graph (DAG) in which nodes are represented by random variables while 

the edges indicate the influence of one node on another[3]. Figure 3 is an example of Bayesian 

network for the student model [2]. 

 

 

Figure 3: Bayesian network for the student model [2] 

 

The chain rule for the joint distribution of random variables P(D,I,G,S,L) is given as [1]:  

P(D,I,G,S,L) = P(I) P(D|I) P(G|I,D) P(L|G,I,D) P(S|I,D,G,L) 

This can be reduced by the chain rule for the Bayesian networks to [1]: 

P(D,I,G,S,L) = P(D) P(I) P(G|I,D) P(S|I) P(L|G) 
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3.4 Flow of Influence in Bayesian Networks 

The flow of influence in Bayesian networks is a notion that explains when can one random 

variable can influence another in the network[2]. Two random variables that are directly 

connected in a graph influence each.  Another notion that helps in understanding flow of 

influence is the active trail. A trail is a path in the network between two random variable. The 

path between two random variable in a Bayesian network is said to be active, only if the two 

random variables in consideration can influence each other. An active path is an active trail. In 

case of direct connections between nodes (representing other random variables), the trail is 

always active. If the random variables in consideration are separated by intermediate nodes 

(representing other random variables) in the graph, then the existence of an active trail between 

the two random variables depends on the direction of the edges in the path and also on the 

availability of evidence about intermediate nodes. Table 10 explains all possibilities of an active 

trail in a Bayesian network. The contents of Table 10 was obtained from [2].  

Note : In Table 10, X         Y implies a trail between X and Y. In Table 10, X, Y and Z represent 

three distinct sets of random variables rather than a single random variable. 
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Table 10: Active Trail in Bayesian Networks [2]. 

Trail Type Example Explanation Z Not 

Known 

Z 

Known 

Direct Trail   

 

   X           Y 

 

 
(Y) : P(G1) = 0.362 [probability of 

student getting good grade G1.] 

(X => Y ) : P(G1|I0) = 0.2 [Probability 

of student getting a good grade(G1) 

conditioned on less/non intelligence I0]  

 

Active 

 

Active 

Direct Trail  

  

   Y            X 

 

 

(X) : P(I1) = 0.3 [ Probability of 

student being intelligent ] 

(Y=> X ): P(I1|G1) = 0.61325 [ 

Probability of student being intelligent 

given that he scored a good grade G1] 

 

Active 

 

Active 

Causal Trail 

 

 
(Y ): P(L1) = 0.50236 [ Probability of 

getting a good recommendation letter] 

(X =>Y): P(L1|I0) = 0.3886 [ 

Probability of student getting a good 

letter L1 given that he is less intelligent 

I0]   

 

Active 

 

Not 

active 

Evidential 

Trail 

 

 
(X) : P(I0) = 0.7 [ Probability of a 

student being less intelligent] 

(Y => X): P(I0|L1) = 0.5418 [ 

Probability of the student being less 

intelligent I0 given the evidence that 

student has got a good letter L1 

 

Active 

 

 

Not 

active 
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Common 

Cause 

 

 

(Y) : P(S1) = 0.275 [ Probability of 

student getting good score in SAT] 

( X => Y): P(S1|G1) = 0.5099 [ 

Probability of student scoring well S1 

given that he has got good grade G1 in 

his course]  

 

 

Active 

 

 

Not 

active 

Common 

Effect 

 

 

(Y) : P(I1)= 0.3 [ Probability of 

student being intelligent ]  

(Z=>Y) : P(I1|G3) = 0.07894 [ 

Probability of the student being 

intelligent given a low grade G3] 

(X,Z = > Y) : P(I1|G3,D1) = 0.10909 [ 

Probability of the student being 

intelligent given low grade G3 in a 

difficult course D1]   Note: Without 

information about Z (grade) X 

(difficulty) cannot influence 

(intelligence) 

 

 

Not 

active 

 

 

Active 

 

The first column of Table 10 gives the type of active trail. The second column gives an example 

for the type of trail from the student model followed by its explanation in the third column. The 

last two columns specify whether the intermediate nodes in the trail are observed or not.  

By studying the active trails and the independence properties, it can be concluded that "if P 

factorizes over a graph G, then we can read those independencies from the structure of the 

graph"[1]. More formally, it is stated as, "If P factorizes over graph G, then in P, any variable is 

independent of its non descendants given its parents " [1].  
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Figure 4: Bayesian network depicting parent child relationship [2]. 

From Figure 4, it can be observed that,  

 D and I are non descendants of each other . Hence, they are independent of each other. 

 D and G are non descendants of S and I is the parent of S. Hence, {D, G} and S are 

independent given I 

 D, I and S are non descendants of L and G is the parent of L.  Hence, {D, I, S} and L are 

independent given evidence about G 

From the above observations, it can be concluded that, the structure of a graph of Bayesian 

network  can be used to infer the independencies in the distribution also to reduce and represent 

the joint distribution in a compact form.  

3.5 Complexity of Bayesian Network 

If we do not have any knowledge about the structure of the Bayesian network, and we are to 

determine the correlations among various random variables in the network from a given dataset, 

the complexity of such a process is exponential. Since there is no knowledge about the 

dependencies among variables, the joint distribution cannot be reduced. So in order to build a 

classification model, we need to determine the joint distribution of all the variables conditioned 

on class. The formula is given by, 

𝑃(𝐶 | 𝑥1 … 𝑥𝑛) =
𝑃(𝐶) ∙ 𝑃(𝑥1 … 𝑥𝑛 | 𝐶)

𝑃(𝑥1 … 𝑥𝑛)
 

The denominator can be ignored as it is the same for all labels of the Class. Hence, we can 

classify by finding the maximum values of the numerator among all the class labels.  
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Thus, the value 𝑃(𝑥1 … 𝑥𝑛 | 𝐶) is calculated for all possible values that the random variables can 

take for each of the class label. These values need to be computed and stored before calculating   

𝑃(𝐶 | 𝑥1 … 𝑥𝑛).  

 

The complexity for calculating 𝑃(𝑥1 … 𝑥𝑛 | 𝐶), is discussed in what follows. 

Let C be the total number of class labels in the dataset. 

Let N be the total number of attributes in the dataset. 

Let {S1,...,SN} be the total number of values that each attribute can take. 

Let Smax be the max { S1,...,SN }. 

Let R be the total number of training instances. 

Now, we need to calculate probabilities for all possible combinations (𝑥1 … 𝑥𝑛) for all the 

attributes conditioned on class. For example, if attribute A1 can take 3 values and attribute A2 can 

take 4 values, then we have 12 combinations. Thus, the total number of values that needs to be 

calculated is (12 x number of class labels). 

Assuming that, the count of all the combinations can be done by scanning once through all the 

rows in the dataset, the total number of probability values needed to be calculated is given by 

 

Total computations  = (S1 ∙ S2 ∙ … ∙ Sn) ∙ C 

    ≤   𝑆𝑚𝑎𝑥 
𝑁 ∙ 𝐶. 

 

Thus, the complexity of calculating the joint probabilities of all the attributes is exponential. To 

reduce the complexity, we need to impose restrictions on the level of interaction between 

variables while modeling the Bayesian network for a system.  

 

In the next chapters, we discuss reducing the computational complexity of Bayesian networks by 

imposing restrictions on the level of interaction between attributes. We also discuss the impact of 

such restrictions on the performance of the models. 
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CHAPTER 4 

Naive Bayes Model 

4.1 The Model 

The Naive Bayes model is a special form of Bayesian network. This model is mainly used for 

classification problems. The important feature of Naive Bayes model is that, it has very strong 

independence assumptions [2]. The structure of a Naive Bayes model is shown in Figure 5. 

 

Figure 5: Naive Bayes Model [5] 

In Figure 5, C represents a class label to which each instance needs to be classified. It can hold a 

finite set of class labels {C1,...Cn} and X1,...Xn are the random variables involved in the system. 

The independence assumption in this model is that given the class variable, all the random 

variables are independent of each other. But this assumption is rarely true in reality. In any real 

time system, the variables involved in the system are related to each other. For example, consider 

a model which decides whether or not to play tennis based on certain conditions of the day[6]. 

Let the variables involved in the system be, outlook, humidity, temperature, wind and location. 

The class variable can take 2 values {yes, no}, which predicts whether the weather is suitable to 

play tennis or not. In this example, if the outlook is sunny, then it is more probable that the 

temperature is high, and if the humidity is high, it is more probable that the temperature is high. 

As all these variables are related to each other, assuming independence between these variables 

is incorrect. But even with such assumptions, this model has performed better for various 

practical problems. From Figure 5, it can be seen that the joint distribution of the random 

variables is reduced to, 

P(X1, … , Xn) =  P(C) ∏ P(Xi|C)

i
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 In this model, the conditional probabilities of all the feature set or variables given the class label 

is calculated during the training. During the testing stage, the posterior probability for each of the 

class labels is calculated as a product of the prior probability and the conditional probabilities of 

all the variables. The class label with the maximum posterior probability value is assigned for 

that instance[5]. From the Bayesian rule we have,  

P(C | X1, … , Xn) =  P(X1, … , Xn | C) ∙ P(C) / P(X1, … , Xn) . 

The denominator P(X1, … , Xn) in the above equation, is the same for all the class labels for a 

given test instance. As the denominator does not play a role in maximizing P(C | X1, … , Xn) over 

C, it can be ignored and only the numerator can be considered in order to classify the instances. 

4.2 Example for NB Model 

Let us consider a text classification problem for the Naive Bayes model. The problem is to 

classify each of the document to the category label. Formalizing the problem statement, we have,  

"Given collection of documents D1,…Dn Belonging to categories C1,…Ck , a vocabulary V is 

defined containing the possible terms that can occur in the documents. Now given a new 

document D, find to which category the document belongs to "[1][8].  

The Naive Bayes model for the system has one variable for every word in the dictionary, and it 

can take two values viz., { 0 ,1}. A value of 0 represents that the word is absent in the document 

and a value of 1 represents that the word is present in the document [1]. The Naive assumption in 

this model is that, "the event of one word occurring in the document is independent of the 

occurrence of another word in the document given the class label" [1]. 

This model calculates the conditional probability of the terms in the dictionary, given the class 

label. The formula for calculating the conditional probability of the terms, as defined in [1] [7], is 

given by:  

Nr = Number of documents in class C in which the word Wi occurs. 

Dr = Total number of docs in class C. 

Pr( Wi|C) = Nr/Dr 

The calculation of the prior probability as given in [7] is given by:  
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P(Ci) = Number of documents with class label Ci / Total number of documents in the training set. 

The conditional probability for each document given the class label is calculated using the 

following formula as given in [7][8]. 

P(C| D)   =  (𝑃(𝐶)  ∙  ∏ P(Wi |C)

i

) / P(D) 

Since the denominator P(D) is the same for all the class labels, it can be ignored and the 

document is classified only using the numerator. The class label with the maximum value is 

assigned to that document.  

Table 11: Simple Text classification corpus example [7]  

 DOC Contents Class 

Training D1 Dog Cat Dog Sell Pets 

 D2 Dog Cat Duck Pets 

 D3 Dog Parrot Duck Pets 

 D4 Buy Sell Sell Dog Finance 

 D5 Buy Sell Buy Sell Finance 

Test D6 Dog Dog Dog Sell ? 

 D7 Dog Cat Buy Dog Dog ? 

 

Table 12: Conditional probability distribution of terms given the class label [7]  

 

 

     

 

 

Table 11, reproduced and modified from [7] is a simple example for text classification model. 

Table 12 (A) & (B) give the conditional probabilities of the terms in the documents for each of 

P(Wi| C ) Prob 

Pr(Dog|P) 3/3 

Pr(Cat|P) 2/3 

Pr(duck|P) 2/3 

Pr(Parrot|P) 1/3 

Pr(Sell|P) 1/3 

P(Wi| C ) Prob 

Pr(Dog|F) 1/2 

Pr(Buy|F) 2/2 

Pr(Sell|F) 2/2 

(A) (B) 
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the class label. For example, from Table 11, the prior probabilities of the two classes can be 

computed as follows:  

P(Pets) = 3/5 and P(Finance) = 2/5 

 Also, according to Bayes rule: P(C | D) = P(D | C) ∙ Pr(C)/ P(D),  where C refers to the class 

label and D refers to the document instance. Ignoring the denominator as it is the same across all 

class labels, we have, 

P( Pets | d6) = 1 ∙ 1 ∙  1 ∙ (1/3) ∙ (3/5) = 0.2 

P(Finance | d6) = (1/2) ∙ (1/2) ∙(1/2) ∙ 1 ∙ (2/5) = 0.05 

Class(d6) is max { P( Pets|d6) , P(Finance|d6) }. Hence, the document d6 is classified as a pets 

document by a Naive Bayes model. 

Laplace Correction 

In the text classification example, consider a situation where the test document is D7 given in 

Table 11. In that case, P(Pets|d7)=0 and P(Finance|d7)=0.  

This is because P(Buy|P) = 0 and P(Cat|F) = 0. The word buy never occurred in the document 

pets and the word cat never occurred in the document finance during training. Thus, it results in 

the total probability of the class, given the document, to be zero.  

Thus, it can be observed that if a random variable Xi that has not occurred during the training 

happens to show up during testing, then P(Xi| C) will be estimated to be zero. This will in turn 

lead to the final class probability, given the test sample, to become zero, no matter how other 

random variables in the model favor classification of the instance as Ci [8].  

In order to accommodate for unobserved instance that may occur in the future, a small 

probability can be assigned to those values of the variable. This can be achieved by upping all 

the counts of values of variables by a constant. Table 13 shows the conditional probability 

distribution of the terms in Table 11, after applying Laplace correction. The Laplace constant 

used for computing the values in Table 13 is one. 

Table 13: Conditional probability distribution of terms after Laplace correction[7] 



 

24 
 

 

  

 

 

 

 

 

Handling Underflow 

Since calculating the posterior probabilities involves multiplication of the conditional 

probabilities of all the random variables, the values of which are very small, it might lead to the 

problem of underflow. That is, the values might fall below the smallest value that can be stored 

in memory. Hence, those values get replaced by negative values or zeros, depending on the data 

type. In order to avoid such a situation, we can take log of all the probabilities and then add them 

up. Since we are finding the maximum likelihood, the absolute value of the probabilities does not 

matter [8] .  

4.3 Implementation 

The steps to be followed to implemented the Naive Bayes model are described below. 

Initialization : 

 

attrList ← List of attributes in the dataset 

attrStates[i] ← list of possible values that attribute 'i' can take. 

N ← total number of instances in training set 

C ←list of possible class labels 

lc ← Laplace constant 

tst [x1,...xn] = test sample with attribute values [x1,...xn] 

Note : len(C) =  Count of values in C and len(attrStates[i]) = Count of values in attrStates[i]   

Computation:  

Training: 

 

for each c in C 

P(Wi| C ) Prob P(Wi| C ) Prob 

Pr(Dog|P) 4/4 Pr(Dog|F) 2/3 

Pr(Cat|P) 3/4 Pr(Cat|F) 1/3 

Pr(duck|P) 3/4 Pr(duck|F) 1/3 

Pr(Parrot|P) 2/4 Pr(Parrot|F) 1/3 

Pr(Sell|P) 2/4 Pr(Sell|F) 3/3 

Pr(Buy|P) 1/4 Pr(Buy|F) 3/3 
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 Nc  = total number of occurrences of c 

 Nr = Nc + lc 

 Dr = N + (lc ∙ len(C))   

 prior[c] = Nr / Dr 

       

 for each i in attrList 

  Count[i,c] = total number of combined occurrences of 'i' and 'c' 

  Nr = Count[i,c] + lc 

  Dr = Nc + (lc ∙ len(attrStates[i])) 

  CondProb [x | c] = Nr / Dr   

 

return prior, CondProb 

 

Testing: 

 

for each c in C  

 posterior(c | [x1,...xn])   = log(prior[c]) + ∑ log(CondProb [xi |c])𝑛
1   

testClass = max { posterior[c] } 

 

4.4 Flowchart Representing Naive Bayes Implementation  
 

The important modules in building a NB model, namely, prior probability computation, 

conditional probability computation and classifying test instances are depicted in the flowcharts 

of Figure 6, Figure 7 and Figure 8, respectively. 
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Figure 6: Flowchart Representing Computation of Prior Probability 
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 Figure 7: Flowchart Representing Conditional Probability Computation 
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Figure 8: Flowchart representing testing of NB model 
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4.5 Complexity of Naive Bayes 

The computation intensive steps that are involved in the NB model are the prior probability 

calculation and conditional probability calculation for all the attributes given a class label. 

Let C be the total number of class labels in the dataset. 

Let N be the total number of attributes in the dataset. 

Let {S1,...,SN} be the total number of values that each attribute can take corresponding to the 

attributes {A1,...,AN}. 

Let Smax be the max { S1,...,SN }. 

Let R be the total number of training instances. 

Let us assume that, counting the number of occurrences of each of the class labels and attribute 

states can be done in a single scan through the entire set of training instances. Hence, the 

complexity of the process is O(R). 

To calculate the prior probability, we need to find the probability of each of class labels in the 

training dataset. The complexity for this process is O(C). 

To calculate the conditional probability of each of the attributes, we need to find the probability 

of occurrences of every state of all the attributes conditioned on each of the class labels. Hence, 

the total number of values computed in this process is given by: 

 

𝑇𝑜𝑡𝑎𝑙 𝑣𝑎𝑙𝑢𝑒𝑠 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑑 =  ∑ 𝐶 ∙ 𝑆𝑖

𝑁

𝑖=1

 

                                                = 𝐶 ∙ 𝑆1 +  𝐶 ∙ 𝑆2 + ⋯ +  𝐶 ∙ 𝑆𝑁 

                                                ≤ 𝐶 ∙  (𝑆𝑚𝑎𝑥 + 𝑆𝑚𝑎𝑥 + ⋯ + 𝑆𝑚𝑎𝑥) 

                                                 ≤ 𝑁 ∙ 𝐶 ∙  𝑆𝑚𝑎𝑥 . 

Thus, the complexity of training the classifier is determined by the computation of conditional 

probability, which is given by 𝑁 ∙ 𝐶 ∙  𝑆𝑚𝑎𝑥. 

After training, the conditional probabilities and prior probabilities are stored and can be retrieved 

during the process of classification in constant time. When classifying the test data, the model 

needs to find the probabilities of each instance to belong to each of the class labels. To calculate 

each of those values, the operation loops over each class variable, over each of the attribute for 

every test instance. Hence, the process takes C∙N∙R time complexity. Thus, the time complexity 
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of the Naive Bayes model is mainly determined by the complexity of finding the conditional 

probabilities. 

 

The next chapter describes the TAN model, which is an improvement over the Naive Bayes 

model by augmenting a tree structure among the attributes in the system. 
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CHAPTER 5 

Tree Augmented Naive Bayes Model 

5.1 Introduction 

The Naive Bayes model discussed in the previous chapter, encodes incorrect independence 

assumptions that, given the class label, the attributes are independent of each other. But in the 

real world, the attributes of any system are mostly correlated and the case as in Naive Bayes 

rarely happens. In spite of such incorrect independent assumptions, the Naive Bayes model 

seems to perform fairly well. So, if the model also takes into account the correlations between 

the attributes, then the classification accuracy can be improved [5].  

Bayesian networks capture all the correlations in the random variables in the form of a graph. 

Using such a Bayesian network, we can first calculate the conditional probabilities of all the 

random variables given its parents. Then using the independence statements encoded in the 

network, we can calculate the joint distribution using the local conditional probabilities[5]. But 

learning such a Bayesian network is very complex because there may be many random variables 

in a network, and each random variable may take many values. Also a single random variable 

can have many parents and finding the conditional distribution conditioned on all those parents 

increases the complexity. Above all, the main parameter that determines the classification in a 

Naive Bayes model, P(C | X1,...,Xn) takes into account all the variables. But a general Bayesian 

network may not have edges from the class node to all the variables.  This might sometimes lead 

to lower accuracy in classification. Hence, we can conclude that, for better classification 

performance, we need a Bayesian network that encodes the structure of the Naive Bayes model 

and in addition to that, also captures the correlations between the variables in the system[5].  

The solution to this issue can be an augmented Naive Bayesian network. An augmented Naive 

Bayesian network, maintains the structure of the Naive Bayesian network and augments it by 

adding edges between the variables in order to capture the correlations between the attributes. 

But this processes increases the computational complexity. "While the induction of the Naive 

Bayesian classifier requires only simple book keeping (storing conditional probabilities given the 

label), the induction of Bayesian networks requires searching the space of all possible networks, 

i.e., the space of all possible combination of edges."[5]  
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In order to reduce the computational complexity and also take into account the correlations 

between the variables, restrictions need to be imposed on the level of interaction between the 

variables. One such model, is the Tree Augmented Naive Bayesian (TAN) model. This model 

imposes a restriction on the level of interaction between the variables to one. In a TAN model, 

all the variables are connected to the class variables by means of direct edges. Hence, it takes 

into account all the variable while determining P(C | X1,...,Xn).  In addition to that, each variable 

can be connected to another variable in the network [5]. That is, each variable in the graph can 

have two parents viz., the class node and another variable node, except for one variable which is 

called root. The computational complexity of this model, is greatly reduced, as each variable has 

a maximum of two parents. "Thus TAN maintains the robustness and computational complexity 

of the Naive Bayes model and at the same time displays better accuracy" [5].  

5.2 The Model 

A Tree Augmented Naive Bayes model (TAN) imposes a tree structure on the Naive Bayes 

model, by restricting the interaction among the variables to a single level. A TAN model for a 

simple medical diagnostic system is shown in Figure 9. 

 

Figure 9: TAN model learned for a data set called Pima [5].  

Figure 9 shows the TAN model for the Pima dataset, to classify if a patient tests positive or 

negative for diabetes. The variables in this data set are all derived from patients who were 

women more than 21 years of age. In this dataset, the variables glucose and insulin are closely 

related in determining the class variable. For example, very low glucose level, seen 

independently is surprising. But given the fact that the insulin level is also high, then it becomes 

unsurprising[5]. This correlation can be captured in the TAN model. But in case of Naive Bayes 
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model, they are considered as two separate abnormal events. Thus, the Naive Bayes classifier 

will over penalize the class label[5]. 

 

In Figure 9, it can be observed that, all the attributes, except the attribute pregnant,  have two 

parents viz., the class and another attribute. The interactions between the attributes is shown 

using solid edges and the interaction between the class and an attribute is shown using dotted 

edges in Figure 9. The attribute pregnant is the root node of the tree and it has only one parent 

i.e. the class. By removing the edges from class to all the attributes (all the dotted edges),  a tree 

structure can be visualized. Also, it can be observed that all the edges in the tree point outward 

from the root node pregnant.  This is an example of a tree structure, constructed between the 

attributes of the system, in a TAN model. 

5.3 Implementation (Algorithm) 

The key feature in the TAN model is the tree structure. In order to construct a tree, the parent of 

each of the attributes needs to be identified. Also, only the most correlated attributes must be 

connected to each other. Chow and Liu [9] describe a procedure for building this tree structure. 

"This procedure reduces the problem of constructing a maximum likelihood tree to a maximum 

weighted spanning tree in a graph"[5].  

One other important notion that plays a key role in constructing the tree is the mutual 

information. To construct the tree, we need to measure the correlation between each pair of 

variables in the system and add edges only between those variables that are highly correlated. If 

there are N variables in a system, then the corresponding tree structure will have N nodes. Thus, 

N-1 edges should be added, to get a tree structure that connects all the nodes in the graph. Also, 

the sum of the weights of all these edges needs to be the maximum weight among all such tree 

structures. The measure of the correlation between two variables that forms the weight of an 

edge in the graph is called the mutual information. 

The mutual information between two random X and Y variables as given in [5] is defined as: 

     

𝐼𝑝(𝑋; 𝑌) =  ∑ 𝑃(𝑥, 𝑦) log (
𝑃(𝑥, 𝑦)

𝑃(𝑥)𝑃(𝑦)
)

𝑥,𝑦
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Given a pair of variables, this function measures how much information one variable provides 

about the other. To construct a tree for the TAN model, we use conditional mutual information 

between two attribute to determine the edges that will form the tree.  The conditional mutual 

information used for constructing TAN as given in [5], is defined as: 

𝐼𝑝(𝑋; 𝑌 | 𝑍) =  ∑ 𝑃(𝑥, 𝑦, 𝑧) log (
𝑃(𝑥, 𝑦 | 𝑧)

𝑃(𝑥 | 𝑧)𝑃(𝑦 | 𝑧 )
)

𝑥,𝑦,𝑧

 

The algorithm to construct a tree for the TAN model is as follows [5]: 

"The tree construction procedure consists of 5 main steps 

1. Compute Ip( Xi ; Xj | C) between each pair of attributes i ≠ j. 

2. Build a complete undirected graph in which the vertices are the attributes X1,...,Xn. And 

annotate the weight  of an edge connecting Xi to Xj by Ip( Xi ; Xj | C). 

3. Build a maximum weighted spanning tree. 

4. Transform the resulting undirected tree to a directed one by randomly choosing a root 

variable and setting the direction of all the edges outward from the root" [5]. 

After the construction of the tree, the conditional probability of each of the attributes conditioned 

on its parent and class label is calculated and stored. Also, the conditional probability of the root 

variable conditioned on class is computed and stored. Then, the posterior probability for each of 

the class label: P(C | X1,...,Xn),  is calculated as a product of the prior probability, the conditional 

probability of root variable and conditional probability of all the attributes. The class label with 

the maximum posterior probability value, is assigned to the test sample. The TAN 

implementation also uses the same Laplace correction and under flow handling techniques 

discussed for the Naive Bayes model. In this project, the root variable is always the very first 

variable found in the dataset. The formula for the TAN classification is given by [5]: 

P(C | X1, … , X𝑛) = P(C) ∙  P(Xroot | C )  ∏ P(Xi | C , X𝑝𝑎𝑟𝑒𝑛𝑡)

i
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5.4 Flowchart Representing TAN Implementation 

The important modules in building the TAN model: calculating pair wise probability, 

construction of tree and classifying test instances are depicted in the form of flowcharts in Figure 

10, Figure 11 and Figure 12, respectively. The TAN model also includes modules to calculate 

prior and conditional probabilities. These are similar to the computations done in the NB model 

and their flowcharts are represented in Figure 6 and Figure 7, respectively. 
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Figure 10: Flowchart Depicting Pair-wise Conditional Probability Computation 
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Figure 11: Flowchart Representing Procedure to Construct Tree in TAN Model 
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Figure 12: Flowchart Representing the Flow of Testing Procedure in TAN Model 
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5.5 Complexity of  TAN 

The computation intensive steps that are involved in the TAN model are: the prior probability 

calculation, the conditional probability calculation for every attribute conditioned on its parent 

and class and calculation of mutual information for every pair of attributes. 

Let C be the total number of class labels in the dataset. 

Let N be the total number of attributes in the dataset. 

Let {S1,...,SN} be the total number of values that each attribute can take. 

Let Smax be the max { S1,...,SN }. 

Let R be the total number of training instances. 

Let us assume that, counting the number of occurrences of each of the class labels and pair wise 

occurrences of attribute states, conditioned on class, can be done by a single scan through the 

entire set of training instances. Hence, the complexity of the process is O(R). 

Prior Probability 

The complexity of prior probability calculation for TAN is the same as for the NB. I.e., O(C). 

Mutual Information 

The total number of pairs for N attributes is  (
𝑁(𝑁−1)

2
). 

For each of the pairs, we need to calculate the probabilities of all combinations of all the states, 

that each attribute can take. By upper bounding the number of attribute states for both the 

attributes to 𝑆𝑚𝑎𝑥, the number of operations that should be performed to find the mutual 

information is given by: 

 Total number of operations ≤  (
𝑁(𝑁 − 1)

2
) ∙  𝑆𝑚𝑎𝑥

2  

                                                      ≤  (
(𝑁2 − 𝑁)

2
) ∙  𝑆𝑚𝑎𝑥  

2 . 

 

 



 

40 
 

Conditional Probability 

The number of operations for each conditional probability, differs slightly from NB. In TAN we 

need to find the conditional probability of each of the attributes, conditioned on its parent and 

class. Hence, the number of states of parent also needs to be multiplied. This is given by: 

for i ←1 to N 
  calculate 𝑃(𝐴𝑖 = 𝑥 | 𝐴𝑗 = 𝑦, 𝐶 = 𝑧) 

where 𝐴𝑗 is the parent  of 𝐴𝑖 

𝑥 ← (1 to 𝑆𝑖)  i.e., each of the states in 𝑆𝑖. 

𝑦 ← (1 to 𝑆𝑗) i.e., each of the states in 𝑆𝑗. 

 

Hence, the time complexity for calculating conditional probability is given by: 

=  ∑ 𝐶 ∙ 𝑆𝑖

𝑁

𝑖=1

∙  𝑆𝑗 

 

≤     𝑁 𝑆𝑚𝑎𝑥
2 ∙ 𝐶. 

 

Thus, by observing the complexities of the tree operations, it can be concluded that the 

complexity of the TAN model, is highly influenced by the mutual information calculation, which 

increases with the increase in the number of attributes. 

  

It can also be observed that, the complexity of the TAN model is polynomial, while the 

complexity of the Bayesian network is exponential. Thus, by restricting the level of dependency 

between the attributes , we can have a less complex model. Generally, it is a trade of between the 

complexity and performance. Models that have higher levels of dependency tend to perform 

better, but are very complex. On the other hand, models that have lower dependencies may not 

always perform in par with complex models. 

 

The next chapter presents the results of Naive Bayes and TAN models on various datasets and 

analyzes the results. 
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CHAPTER 6 

Analysis of Datasets and Results 
 

The datasets for this project were obtained from the KEEL dataset repository [10]. It comprises 

both discrete and continuous valued datasets. All data need to undergo some preprocessing steps, 

to make them suitable for using as input to the program. The training and testing of the Naive 

Bayes and TAN classifiers on these datasets is done by using ten-fold cross validation 

methodology. 

 

6.1 Data Preparation 

The data files considered for this project were in KEEL format. "They have the following 

structure. 

 @relation: Name of the data set 

 @attribute: Description of an attribute (one for each attribute) 

 @inputs: List with the names of the input attributes 

 @output: Name of the output attribute 

 @data: Starting tag of the data 

The rest of the file contains all the instances belonging to the dataset in comma separated values 

format"[10]. 

The description of each of the attributes specifies whether it is discrete or continuous valued and 

in case of continuous, specifies if the attribute is of the type integer or real. 

 

Data Discretization 

If the dataset has attributes that are continuous valued, then those attributes are first discretized 

and then used by the classifier. The method used to discretize the data in this project is called 

equal width binning or equal width partitioning[4]. The steps used in this method are: 

 Find the minimum and maximum values that the attribute can take. 

 Calculate the range by finding the difference between minimum and maximum values. 

 Divide the range into N equal parts. Each part corresponds to a bin with a sub range. 
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 Assign each of the attribute values to the corresponding bin (i.e. to the bin within whose 

sub range the attribute value fits).  

The value of N depends on the range of the attribute and the number of classes in the dataset[4]. 

 

6.2 Ten-Fold Cross Validation 

In a ten-fold cross validation, the original data set is divided into ten equal parts. Out of those ten 

parts, one part of the dataset is used for validation or testing and the remaining nine parts are 

used for training the classifier. This process is then repeated ten times and each of the ten parts is 

used as testing data, exactly once[11]. The accuracy for each fold, is measured as a percentage of 

correctly classified instances and an average of the accuracy across all the folds gives an overall 

estimation about the performance of the model. The advantage of this method is that it ensures 

each instance in the dataset is used both, as a training and testing sample and every instance is 

used exactly once as a testing sample[11]. 

 

6.3 Implementation  

The Naive Bayes and TAN models were implemented using the programming language Python. 

A separate module named attr_extract, was coded to extract the attribute and class 

information from the training file. Another module named drawGraph, was coded to display the 

tree structure of attributes in the TAN model. We next explain the details of the methods used in 

building the classifier models. 

 

Naive Bayes Model: 

There are five methods used in the NB model viz., calcPriorProb, calcCondProb, NBTest,  

calcFoldAccuracy and OverallAcc. The method calcPriorProb is used to calculate the 

prior probabilities of all the class labels in the training data and store it in a dictionary. The 

method calcCondProb is used to calculate and store the conditional probabilities of each of the 

attribute values, conditioned on class label. The NBTest method, calculates the posterior 

probability of each of the class labels for all the test instances and classifies the test instances 

appropriately. The methods calcFoldaccuracy and OverallAcc are used to calculate the 

accuracies of the model for each fold and the final accuracy across all folds, respectively.  
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TAN Model: 

The main methods in the TAN model are calcPWCondProb, mutualInfo,  constructTree, 

calcTANCondProb, TANTestProb. Apart from these methods, TAN also uses the methods 

described in the NB model: calcPriorProb, calcCondProb, calcFoldAccuracy and 

OverallAcc . The method calcPWCondProb calculates the pair wise conditional probability 

of attribute values, conditioned on class and stores it in a dictionary. The method mutualInfo, 

calculates and stores the mutual information of all pairs of attributes sorted in descending order 

in an array. The constructTree method is used to construct the tree structure using the mutual 

information between attribute pairs. The TANCondProb method, computes the conditional 

probability of each attribute given its parent and class label and stores it in a dictionary. Finally 

the TANTestProb method, calculates the posterior probability of each of the class labels, for all 

the test instances and classifies the test instances appropriately. 

 

The data structures mainly used for the implementation of both classifiers are data frames, 

dictionaries and lists. Data frame is a data structure that is similar to the table, with rows and 

columns. The rows have indexes and the columns have column headers. It is used to store the 

training and testing instances. Dictionaries are similar to hash tables and are used to store the 

probability values, with attributes and class labels as keys and probabilities as values. List are 

used to store data, such as list of attributes, list of values taken by each attribute etc. 

 

6.4 Need for Better Classification Models 

Let us consider a simple classification problem which has only two classes. For such a problem, 

it is possible that, by classifying the instances randomly as one of two classes, we might end up 

classifying fifty percent of the instances correctly. Hence, using any sophisticated model, that 

does not perform significantly better than such a randomized model, does not make any sense. 

 

Classifying instances based on the prior probability of class labels, is another method, that might 

perform slightly better than random classification. In this method, firstly we need to find the  

prior probability of each of the class labels from the training set. Then we can classify all the test 

instances to the label that has the highest prior probability. Considering a simple two class 

model, this method will result in correct classification of at least fifty percent of the instances. 
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This is better than a random classification model because, in case of a two class model, a random 

classification model gives an accuracy around fifty percent. But using a prior probability 

classification gives at least fifty percent accuracy.   

 

These two methods act as a baseline for any classifier model. Thus, any other sophisticated 

model, needs to perform significantly better than these methods. The performance increase must 

be worth the increase in the complexity of the model. 

6.5 Analysis of Results 

Now let us consider the performance of these baseline methods and more complex models such 

as Naive Bayes and TAN with some datasets. Another important aspect to be considered, is the 

way the performance scales with the increase in the number of classes. 

Tables 14, 15, and 16 give the ten-fold cross validation results for three different datasets across 

four models. The description of the terms used in tables and in all further discussions is as 

follows: 

RC: Random Classification (randomly choosing a class label). 

PPC: Prior Probability Classification (classifying all the samples to the class having maximum 

 prior probability). 

NB: Naive Bayes model. 

TAN: Tree Augmented Naive Bayes model. 

Weka: A free machine learning software, that has a collection of data analysis algorithms [11]. 

  Weka NB refers to the Naive Bayes model in the Weka package. 

Note: The overall accuracy for RC, given in the tables, is the average of the ten-fold accuracies 

calculated over 100 iterations. 

 

 

 

 

 

 

 

 



 

45 
 

Table 14: Ten-fold cross validation results of various data models on Pima dataset 

Dataset Name: Pima               Classes : 2                       Attributes: 8 

Description: Pima Indians diabetes dataset. The attributes are, test results of  women patients, of at least 

21 years of age. The classification problem is to identify based on the patient features, whether she tests 

positive or negative to diabetes [10]. 

 

Fold RC PPC NB TAN 

1 45.45 64.93 70.13 80.52 

2 57.14 64.93 70.13 76.62 

3 42.31 64.10 73.08 75.64 

4 55.26 65.79 82.89 76.32 

5 59.74 64.93 72.73 79.22 

6 54.54 64.93 75.32 79.22 

7 48.68 65.79 69.74 80.26 

8 54.54 64.93 79.22 83.12 

9 50.00 65.79 78.95 78.95 

10 45.45 64.93 72.73 66.23 

Overall Accuracy 50.11 65.10 74.48 77.60 

Weka NB accuracy :                                                                              78.12 

 

From Table 14, it can be inferred that, for the Pima dataset, the accuracy of NB and TAN models 

are better when compared to RC and PPC methods. The performance for RC method is the worst 

among the four. 
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Figure 13: Augmented Tree structure of Attributes for the TAN model on the Pima Dataset 

Figure 13 presents the augmented tree structure obtained by the TAN implementation of this 

project on the Pima dataset. In Figure 13, the thick end of the edges denote an arrow pointing 

towards that node. The graph depicts the relationship among various attributes in the dataset. 

The description of each of the attribute names is as follows [12]: 

preg: Number of times pregnant 

Plas:  Plasma glucose concentration 

Pres:  Diastolic blood pressure 

Skin:  Triceps skin fold thickness 

Insu: 2-Hour serum insulin 

Mass:  Body mass index 

Pedi:  Diabetes pedigree function 

Age:  Age 

 

From Figure 13, it can be observed that, the attribute Preg has no parents. Hence, it is the root 

node of the tree. It can also be seen that all the nodes are pointing away from the root node. This 

is a typical structure of a tree of TAN model. The tree has N- 1 edges. It can be seen that 

attribute Insu (Insulin) is the parent of Plas (Plasma glucose). This implies that Insu and Plas are 

among the highly correlated attributes in the dataset. This is not surprising since insulin and 
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glucose levels are dependent on each other in real life. If the insulin is high, then the glucose 

level is low and vice versa. Hence, the TAN model captures the inherent dependency among the 

attributes in dataset. On the other hand, the NB model considers the occurrence of very low 

glucose level and very high insulin level as two separate abnormal events and hence over 

penalizes the class label [5]. But the TAN model captures the dependency among these feature 

and considers it as a single event.  From Table 14 it can be seen that the performance of TAN is 

slightly better when compared to the NB model. 

 

Table 15: Ten-fold cross validation results of various data models on Iris dataset 

Dataset Name: Iris                         Classes : 3                     Attributes: 4 

Description: Each class refers to a type of iris plant. Attributes are the petal and sepal features of the 

plant. The classification problem is to identify the type of the iris plant, based on the attribute values [10]. 

 

Fold RC PPC NB TAN 

1 20.00 33.33 100.00 100.00 

2 40.00 33.33 93.33 100.00 

3 60.00 33.33 66.67 86.67 

4 46.67 33.33 93.33 93.33 

5 26.67 33.33 100.00 100.00 

6 40.00 33.33 93.33 100.00 

7 6.67 33.33 93.33 93.33 

8 46.67 33.33 100.00 93.33 

9 40.00 33.33 93.33 100.00 

10 20.00 33.33 93.33 100.00 

Overall Accuracy 33.35 33.33 92.67 96.67 

Weka NB accuracy :                                                                              94.00 

 

The Iris dataset has three class labels. The ten folds of this dataset are divided such that, each of 

the training files contains 135 instances, with 45 instances belonging to each class label. The test 

files have 15 instances in total, with 5 instances belonging to each class label. Since this dataset 

has 3 class labels, a random classification should give an accuracy of 33.33 %. Also, the way in 

which the training and test files divided (containing equal number of instances of each class 
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label), should lead to an accuracy value of  33.33% for PPC method as well. This can be 

observed in the results shown in Table 15. On the other hand the performance results of NB and 

the TAN models are far better, as they give around 60% more accuracy, when compared to the 

baseline models (RC and PPC). Another important fact to be noted is that, the overall accuracy 

for 3 class dataset, is worse for PPC and RC, when compared to the 2 class dataset. 

 

Table 16: Ten-fold cross validation results of various data models on Zoo dataset 

Name: Zoo               Class : 7                       Attributes: 16 

Description: The classification problem here is to classify all the instances into a type of animal, based 

on the features of the animals specified in the attributes[10]. 

 

Fold RC PPC NB TAN 

1 8.33 33.33 100.00 91.67 

2 25.00 33.33 91.67 100.00 

3 0.00 44.44 100.00 100.00 

4 0.00 50.00 100.00 100.00 

5 12.50 50.00 100.00 100.00 

6 30.00 40.00 100.00 100.00 

7 33.33 44.44 100.00 100.00 

8 10.00 40.00 90.00 90.00 

9 20.00 33.33 86.67 80.00 

10 0.00 50.00 100.00 100.00 

Overall Accuracy 14.19 40.59 96.04 95.05 

Weka NB accuracy :                                                                              95.05 

  

Table 16 shows the ten-fold cross validation results for Zoo data set. This dataset has 7 classes. 

From the results in Table 16, it can be observed that, the RC method performs very poorly when 

compared to the 2 class and 3 class datasets. The performance of PPC method is poor when 

compared to the NB and TAN model accuracies.  

 

From Table 14, Table 15 and Table 16,  it can be inferred that NB and TAN models perform far 

better when compared to the baseline methods. Also, as the number of class labels increases, the 

performance of RC and PPC tends to decrease. But the performance of NB and TAN models 
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does not depend only on the number of class labels. This explains the need for sophisticated 

models such as NB and TAN. 

 

Now, let us compare the performance of NB and TAN models. By looking at the accuracy results 

in Table 14 and Table 15, it can be observed that, TAN performs slightly better than the NB 

model. This implies that, there is more correlation among the attributes of Iris and Pima datasets. 

Hence, these correlation patterns are captured by the TAN model, leading to better performance. 

But in case of Zoo dataset, the performance of NB and TAN models is almost the same. Hence, 

it can be said that there was not enough correlations between the attributes of those datasets. In 

such cases, a simple NB model is more suitable for classification, as it is computationally less 

complex when compared to TAN, but gives results similar to TAN.  Table 17 gives the overall 

accuracy results of NB, TAN, and Weka NB models for various datasets. 

 

Table 17: Accuracy results on various datasets of different classifier models  

 

 Dataset RC NB Accuracy TAN 

Accuracy 

Weka NB 

Accuracy 

Attributes Classes 

Iris 33.42 (±7.08) 94.00 (±4.67) 96.67 (±4.47) 94. 00 4 3 

Letter 3.81 (±0.32) 73.64 (±0.61) 86.84 (±0.58) 74.04 16 26 

Pima 50.03 (±4.29) 74.87 (±3.57) 76.69 (±2.86) 78.12 8 2 

Vehicle 24.99 (±3.48) 61.11 (±2.97) 72.22 (±4.31) 62.65 18 4 

Led7digit 10.27 (±2.95) 72.20 (±4.75) 71.60 (±4.63) 73.20 7 10 

Car 25.00 (±2.46) 86.11 (±2.42) 94.73 (±1.97) 85.53 6 4 

Chess 50.03 (±1.89) 87.73 (±1.39) 92.15 (±1.37) 87.89 36 2 

Zoo 14.19 (±9.39) 94.06 (±5.68) 95.05 (±6.60) 95.05 16 7 

Heart 50.05 (±6.34) 82.96 (±6.87) 80.74 (±8.25) 83.33 13 2 

Breast  49.70 (±6.95) 74.01 (±8.07) 67.87 (±9.33) 71.68 9 2 

TicTac 50.06 (±3.54) 69.31 (±4.01) 75.89 (±2.47) 69.62 9 2 

 

Let us consider the performance of NB and TAN models on the Led7digit dataset. From Table 

17, it can be seen that, there is not much difference between the performance of NB and TAN for 
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this dataset. Now let us analyze the data. "The data contains seven Boolean attributes, one for 

each light-emitting diode of a 7-segment display" [10]. The classification problem is to identify 

the digit in the display based on the attribute values. This dataset perfectly fits the NB model. 

This is because, given the class label, there is no dependency among the attributes. For example, 

given the digit is 7,  the attributes do not depend on each other. The class label itself helps in 

deciding which of the seven led segments would glow. The glowing of one segment is not 

dependent on the other, given the number in the display. Hence, there is not much of an 

improvement in the performance of the TAN model, when compared to the NB model.  The tree 

structure for the Led7digit dataset is given in Figure 14. 

 

 
 

 

Figure 14: Tree structure of TAN model on Led7digit Dataset 
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Figure 15: Augmented Tree structure of TAN model on Car Dataset 

 

Now, let us consider the performance of NB and TAN models on the Car dataset. It can be 

observed that TAN performs far better when compared to the NB model. Figure 15 gives the 

augmented tree structure of TAN model. Now let us look into the dataset. Based on the values of 

the attributes: buying, maintenance, safety, persons, door and luggage boot, the classifier needs 

to evaluate the car as acceptable, unacceptable, very good and good[12]. From Figure 15, we can 

get some intuitive understanding about the attribute buying price. This attribute is directly 

connected to the attributes safety and maintenance price. It makes sense that, a car with high 

buying price would have less maintenance costs and good safety in order to be categorized as a 

good car. Similar correlations between various other attributes can be captured by the TAN  

model, hence leading to a better performance. 
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Table 18: Accuracy results of classifier models across various text data sets 

Dataset RC NB TAN Weka NB  Classes Attributes 

Trade 49.98 (±0.71) 95.08 (±0.10) 96.02 (±0.21) 95.06 2 100 

Corn 49.99 (±0.71) 97.61 (±0.20) 99.33 (±0.01) 97.61 2 100 

Grain 49.99 (±0.76) 97.52 (±0.03) 98.10 (±0.23) 97.54 2 100 

Wheat 50.01 (±0.65) 97.84 (±0.16) 98.81 (±0.02) 97.84 2 100 

Acq 50.01 (±0.76) 90.86 (±0.58) 92.95 (±0.46) 90.84 2 100 

Crude 50.03 (±0.78) 98.08 (±0.21) 98.57 (±0.34) 98.05 2 100 

Earn 50.09 (±0.62) 96.13 (±0.01) 96.30 (±0.25) 96.12 2 100 

Money 50.03 (±0.66) 94.30 (±0.11) 95.32 (±0.47) 94.28 2 100 

Interest 50.00 (±0.62) 94.71 (±0.49) 96.22 (±0.02) 94.69 2 100 

Ship 49.98 (±0.62) 98.93 (±0.21) 99.18 (±0.19) 98.91 2 100 

CornGrain- 

Wheat 

33.45 (±1.96) 76.86 (±0.33) 81.13 (±1.20) - 3 173 

 

Table 18 provides the results for NB and TAN models on text datasets. In Table 18, the first ten 

rows correspond to ten binary class datasets. The classifier problem is to identify if an instance 

belongs to the type of the dataset. For example, for Trade dataset, the classifier needs to identify 

if the instance belongs to the label Trade or not. Similarly for corn, wheat, grain and so on. Both 

the NB and the TAN models give almost the same performance for all the datasets. Though the 

TAN model seems to perform slightly better in some of the datasets, the improvement in the 

performance is not significant enough. Hence, it can be said that, there was not enough 

correlations between the attributes in these datasets. For such datasets NB model is preferable, as 

it is less complex and gives good performance results. 

 

By analyzing the corn, wheat and grain dataset,  it was found that, they have many overlapping 

attributes. Hence, these datasets were combined. All the negative classes in each of these datasets 

were removed. The combined dataset had three class labels: corn, grain and wheat. The classifier 

needs to classify each of the test instance to one of these class labels. The accuracy results of the 

classifier on the combined dataset is shown in Table 18. It can be observed that, the TAN model 
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performs much better for this three class dataset. This can be attributed to the fact that, 

combining all the datasets resulted in bigger training set. So the model might be trained well. 

Also, combining the datasets has resulted in the increase in the number of attributes. So, 

correlations among the attributes, in the initial uncombined dataset of each class label, can be 

captured by the TAN model. For example, the correlation between the set of all attributes 

belonging to the original uncombined corn dataset, would be captured by the TAN model in the 

combined dataset. Hence, it would lead to a better performance of the TAN model.  
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CHAPTER 7 

Conclusion and Future Work 
 

The comparative analysis on the performance of TAN and NB models shows that, the TAN 

model performs better in many cases. Even if there are no inherent correlations between the 

variables in a system, the accuracy results of the TAN model are close to the NB model. This 

implies that, taking into account the correlations between the variables in a system, would lead to 

better performance. Thus, in this project, by adding one level of dependency among the attributes 

has given better accuracy results for many datasets. Hence, by increasing the level of interaction 

among the attributes we can achieve performance gains. But we also need to take into 

consideration the complexity of the model. The NB model is very simple and less complex. 

Thus, for datasets that do not have correlations between variables, NB model is the best. Using 

the TAN model for such datasets is a waste of both time and space, as it will not give better 

results than the NB model and is also more complex when compared to the NB model. 

From the comparative analysis of the algorithms on multiple datasets, we observe that the gain 

from TAN over NB is considerable only in some data sets. Determining which data sets will 

benefit from TAN without running the TAN training algorithm can be a useful feature. Also, root 

selection is done by randomly picking a node. It needs to be explored if there is potential for 

performance gain with improved root selection mechanism. 

There is always a trade of between the performance gain and complexity of classifiers. If the 

interaction among the attributes increases, the complexity of the model also increases. But higher 

level of interaction might not always lead to better performance results. For example, 

considering that all the attributes of a system are correlated may not be useful because, in reality, 

not all the attributes of the system are correlated. So connecting irrelevant attributes may not give 

good performance results, worth the increase in complexity. It might sometimes lead to worse 

performance results. Thus, finding the optimal level of interaction among attributes for various 

systems becomes necessary to model better classifiers.   
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