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San José State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

by

Surabhi Gaur

May 7, 2014



c©2014

Surabhi Gaur

ALL RIGHTS RESERVED



The Designated Project Committee Approves the Writing Project Titled

HIDING BEHIND THE CLOUDS:

EFFICIENT, PRIVACY-PRESERVING QUERIES VIA CLOUD

PROXIES

by

Surabhi Gaur

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE
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Abstract

This project proposes PriView, a privacy-preserving technique for querying third-party ser-

vices from mobile devices. Classical private information retrieval (PIR) schemes are diffi-

cult to deploy and use, since they require the target service to be replicated and modified.

To avoid this problem, PriView utilizes a novel, proxy-mediated form of PIR, in which

the client device fetches XORs of dummy query responses from each of two proxies and

combines them to produce the required result. Unlike conventional PIR, PriView does not

require the third-party service to be replicated or modified in any way. We evaluated a

PriView implementation for the Google Static Maps service utilizing an Android OS front-

end and Amazon EC2 proxies. PriView is able to provide tunable confidentiality with low

overhead, allowing bandwidth usage, power consumption, and end-to-end latency to scale

sublinearly with the provided degree of confidentiality.
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1 Introduction

The emergence of ubiquitous, high-bandwidth 3G/4G connectivity has enabled a new

class of Internet services designed to be accessed from smartphones and tablets. Examples

range from mundane services such as maps and restaurant reviews to more exotic applica-

tions such as augmented reality (e.g., the Google Glass [1]). Unfortunately, the convenience

of ubiquitous connectivity comes at the price of privacy. When a user accesses a map of her

immediate surroundings, she reveals her location to the mapping service. When she looks

up the price of a house or a car, she provides information to marketers. When she browses

restaurant reviews, she reveals her dietary preferences to the review website.

1.1 Existing solutions for privacy-preservation

Existing solutions protect privacy by sacrificing either efficiency or accuracy. In the first

category are solutions where the user’s device makes multiple ‘dummy’ queries to the

Internet service for each valid query [2]. For example, a user accessing a mapping service

might provide multiple locations in order to hide her actual location; the service then knows

that she is at one of the locations but does not know which one. However, this approach

results in multiple responses (in this example, maps) being returned to the device from

the service, wasting both bandwidth and power on the device. A solution of the second

category involves ‘jittering’ the input [3], preventing the service from knowing the exact

input (e.g., the exact location of the user); however, this means that the user is returned

approximate answers (e.g., a map of a nearby location), which may not always be useful.

A different type of solution places a cloud-hosted proxy between the user and the service;

however, this requires the user to completely trust the cloud provider, who is aware of both

the identity of the user as well as the contents of the query.
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1.2 Introduction to PriView

In this paper, we present PriView, a new technique that allows mobile devices to access

Internet services without sacrificing privacy, efficiency or accuracy. In Priview, to send

a query to an Internet service, the device includes it along with a single set of dummy

queries that it sends to two different cloud-hosted proxies. Each cloud proxy relays the set

of queries to the third-party service and sends back an XOR of a predetermined subset of

the responses to the device. The subsets are chosen a priori by the client such that they

are identical across the two proxies, except that one contains the actual query’s response

while the other does not. This ensures that combining the two XORs cancels out dummy

responses and provides the response to the actual query.

The PriView technique preserves data confidentiality. When a user issues a query using

it, no entity in the system can determine whether it’s a real or dummy query. Each cloud

proxy is aware of the identity of the querying device but does not know the actual query

being issued, since it is provided with a set of dummy queries. The Internet service knows

neither the exact query being issued nor the identity of the querying device. Unless the two

cloud proxies collude with each other, no single entity is aware of the exact query that was

issued. In practice, our assumption that cloud proxies do not collude can be satisfied by

running each proxy in a different cloud provider (e.g., on Amazon EC2 [4] and Microsoft

Azure [5]).

Importantly, PriView achieves these privacy properties efficiently. For each query, the

device sends two outgoing messages (one to each proxy), each of which is a list of dummy

query inputs that fits into a single network packet. It receives back two XORs, each of

which is the size of a regular response. Accordingly, the bandwidth and power consumption

of our technique scale sub-linearly with the degree of confidentiality (i.e., the size of the

dummy set), in contrast to the linear scaling provided by conventional dummy queries.
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Increasing the size of the dummy set – and hence, increasing the degree of confiden-

tiality – has a sub-linear impact on bandwidth and power consumption. The number of

messages sent and received do not change (until the dummy set no longer fits in a single

outgoing network packet). In other words, changing the degree of confidentiality from 8 to

16 increases the bandwidth and power consumption by much less than a factor of two. As

a result, a PriView query uses approximately twice the bandwidth of a conventional query,

and uses up a correspondingly larger amount of battery life. In addition, each query re-

quires extra computation in the form of the XOR operation to retrieve the actual response,

which results in increased power consumption. Unlike existing schemes based on dummy

inputs, increasing the size of the dummy set – and hence, increasing the degree of confiden-

tiality – has an insignificant impact on bandwidth or power consumption, since the number

of messages sent and received do not change (until the dummy set no longer fits in a single

outgoing network packet).

PriView can be viewed as an adaptation of classical Private Information Retrieval (PIR)

schemes [6]. Such schemes typically require the service (or database) to be replicated

multiple times, as well as modified to return compact summaries (such as XORs) of mul-

tiple items. Replication or modification is typically not possible with real-world Internet

services. Instead, PriView inserts a replicated proxy layer between the end user and the

Internet service, and then uses PIR between the client and the proxies. This allows PriView

to implement a PIR-like scheme against an unmodified, unreplicated third-party service

such as Wikipedia or Google Static Maps [7].

We implemented a PriView client for Google Static Maps on the Android platform,

with cloud proxies running Amazon EC2. In our evaluation on an Android device, we

compare PriView against the strawman solution of issuing dummy queries. For a degree

of confidentiality equivalent to that obtained by issuing 64 dummy queries in the strawman

solution, PriView uses 14% of the bandwidth and 16% of the power consumed by the

3



strawman, while delivering responses at 40% of the latency.

The rest of this report is organized as follows. In section 2 we discuss the existing work

in the field of user/query privacy. Section 3 explains the PriView system in detail, includ-

ing setup of the PIR scheme and implementation of the model proposed. A performance

evaluation is conducted in section 4 and section 5 concludes the paper.
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2 Background

Our primary goal is the following: when a user Bob sends a query Q to an Internet service

S using a mobile device, our goal is to guarantee that the service S cannot determine that

“Bob searched for Q”. Further, we want to provide this guarantee without adding too much

overhead on the client device in terms of bandwidth usage, end-to-end latency, or power

consumption. Finally, we want to make minimal assumptions about the trustworthiness of

third party entities such as cloud providers.

Existing solutions can be categorized according to the privacy guarantees they provide:

2.1 Anonymity

One option is to prevent service S from knowing who issued the query. This can be done

by inserting an anonymizing proxy between the device and the service. If a single proxy is

used, this approach has the disadvantage that the proxy can now see both the query as well

as the source IP address. End-to-end encryption at the application level between the client

device and the service S eliminates this problem; now the proxy can only see who sent

the request, while the service S can only see the contents of the request. However, traffic

analysis can still tease out the relationship between the request sent by the device and that

received by the service S; this problem can be solved by using more sophisticated proxying

techniques such as Onion Routing that use a network of proxies between the client and the

server.

Unfortunately, while techniques such as Onion Routing can effectively hide the network

address of the user’s device, the service can still discover the identity of the user’s device

from semantic information in the query itself [3]. For example, if the user searches for

“Thai restaurants near 42 Marlin Drive”, the service can infer that the person who lives at

42 Marlin Drive likes Thai food, and use public databases to identify this person as Bob.
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2.2 k-Anonymity

Accordingly, a second class of solutions attempts to prevent the service S from know-

ing who exactly out of a group of k people issued the query (a guarantee known as k-

anonymity [8]). In the case of location-based services, this can be achieved via ‘spatial

cloaking’, where the location included in the query is jittered slightly so that any person

within a particular radius of a location could have issued it. For example, the query might

become “Thai restaurants near 46 Marlin Drive”, in which case the service S does not know

which resident of Marlin Drive actually issued the query. However, this solution only works

for applications where the input domain is continuous and can be jittered without rendering

the output unusable; for example, if Bob wants to search for “the history of Thailand” on

Wikipedia, it’s not clear how we would jitter this input, and whether the resulting output

would still be useful to Bob. As a result, spatial cloaking is useful mostly in the context of

location-based applications where certain population density conditions are met, and is too

specific for our use case of querying general-purpose Internet services.

A different way to achieve k-anonymity is to generate a set of dummy queries in addi-

tion to its original query; for example, the client might send the queries “Thai restaurants

near 42 Marlin Drive”, “Thai restaurants near 77 Turtle Ave”, and “Thai restaurants near

24 Swordfish Road”, in which case the service cannot determine which of the three users

issued the query. One problematic aspect of this approach is that it requires a trusted

anonymizing proxy that knows identifying attributes (e.g., location) of sufficient users in

the system so that it can generate valid queries identifying them. Eliminating the trusted

proxy and generating dummy queries on the client is possible, but requires distributed

mechanisms that allow each client to know the identifying attributes of other clients in the

system, which in turn requires clients to trust each other.
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2.3 Confidentiality

A promising alternative is for the client to eschew k-anonymity and instead use randomly

generated dummy queries to provide a different guarantee, in which the service S knows

exactly who issued the query, but does not know which query was actually issued. In this

case, the client simply generates a set of random dummy queries that do not necessarily

correspond to other users in the system, but simply constitute valid, arbitrarily chosen in-

puts to the service (e.g., “X restaurants near GPS coordinates Y”, where X is a random

cuisine type and Y is a random street address) . Such schemes have been proposed in

the context of DNS privacy [9, 10]. While these dummy queries can be generated by the

device inexpensively without coordinating with other clients or a trusted proxy, the prob-

lem still remains this scheme introduces overhead that increases linearly with the degree of

confidentiality required; a dummy query set of k messages results in k extra requests and

responses, massively increasing the bandwidth usage, power consumption, and end-to-end

latency of the original query.

2.4 PIR (Private Information Retrieval)

To make random dummy queries efficient, one avenue is Private Information Retrieval [6].

In the simplest form of PIR, the service is replicated twice, and the client makes a query to

each replica with a set of inputs. The sets of inputs in the two queries are identical, except

that one contains the actual input and the other doesn’t. Each of the replicas returns a single

XOR of the requested responses, which the client then combines to retrieve the response to

its actual input.

PIR is defined as follows: a server S holds a database with n bits, X = (X1 . . .Xn). A

user u has a particular index i and wishes to retrieve the value of Xi, without disclosing to

S the value of i. The PIR concept was introduced in [6] in an information theoretic setting,
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Figure 1: Use of dummies and fuzzy location for location privacy.

requiring that even if S had infinite computational power, it could not find i. It is proven in

[6] that in any solution with a single server, you must receive the entire database. Neverthe-

less, in practice, it is sufficient to ensure that S cannot find i with polynomial-time compu-

tations; this problem is known as Computational PIR. The concept of PIR has been around

since 1998, but it has been considered a more theoretical solution for database issues. In

the recent years, the technology of cloud computing has shown tremendous potential and

hence researchers have tried making PIR work with cloud to make it more practical. In

2008, Ghinita et al. studied a case similar to this project’s – they studied the privacy of

location-based information queried via mobile phones. They propose a framework for pri-

vate location-dependent queries, which uses PIR protocols and eliminates the need for any

trusted third party. They developed algorithms for approximate and exact private near-

est neighbor search and utilized data mining techniques to optimize query execution. [11]

Their experimental results suggest that PIR approaches incur reasonable overhead and are

8



applicable in practice. They however, do not use a cloud as server but use a traditional

server for the purpose of their study which might be able to reduce the high CPU cost they

encounter.

Such a scheme has the advantage that it provides a strong guarantee – each replica of the

service does not know which of the requested inputs is the actual one – in a very efficient

manner, requiring the device to send two requests and receive two responses, regardless

of the number of dummy inputs involved. However, PIR comes at a significant cost; it

requires the service to be replicated, which may not be possible with real-world services

such as Google Maps or Wikipedia. Additionally, PIR requires the service to be modified

so it returns some compact function of the set of responses (an XOR in the case of the

2-replica scheme), which again may not be possible with third-party services.

9



3 The PriView Technique

PriView implements PIR without requiring the target service to be modified. It achieves

this goal by inserting a layer of proxies in between the client device and the service. In

effect, each proxy appears to the device as a replicated copy of the service, modified to

return XORs instead of first-class responses.

3.1 The Basic scheme

• Step 1. When the client wants to issue a query A to a service, it first generates K − 1

other random dummy queries (K is 3 in the figure, and the dummy queries are B and

C). It then sends a message requesting the set of queries {A,B,C} to both proxies.

Each proxy can see the identity of the client but does not know which of the three

queries is the actual one.

• Step 2./3. Each proxy separately issues each of the queries A, B and C to the target

service and receives the responses A′, B′, and C ′. The target service does not know

the identity of the client, and cannot determine which of the three queries is the actual

one.

• Step 4. When a proxy gets back all the responses from the service, it combines

a subset of them into an XOR. A bitmask determining this subset is provided by

the client to the proxy in each request message. The subsets XORed by the two

proxies are identical, except that one contains the actual query and the other doesn’t.

For example, in the figure, one proxy returns {A′, B′} while the other returns {B′}.

Whether a particular query’s response is included in the XOR or not does not reveal

any information to the proxy, since it could be a dummy query in either case: if it is

included in the XOR, it could also be included in the other proxy’s XOR, and if it’s

not, it might be missing in the other proxy’s XOR.
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EC2 

Each cloud proxy knows Bob’s identity 
and set of possible requests, but does 
not know that A is the actual request 

Azure 

Query: A,B,C 

Responses: A,B,C 

Bob’s device Internet Service 

 
Bob’s device only sends 2 
small messages, receives 2 
responses, and performs 
one XOR for each actual 
request. 
 

 
Service does not 
know Bob’s identity 
and does not know 
that A is the actual 
request. 

 

(1A’+1B’+0C’) 
+ 

(0A’+1B’+0C’) 
=  
A’ 

Figure 2: The PriView technique: each proxy accepts a set of dummy queries from
the client, issues them to the service, and returns an XOR of a subset of the responses
to the client. The subsets are chosen so that the actual response required (A′ in this
example) can be reconstructed by the client.

When the client receives both XORs, it combines them to reconstruct the response to the

actual query. In figure 1., (A′ +B′) + (B′) = A′.

This simple scheme provides the client data confidentiality with respect to the proxies.

In other words, the proxy knows the identity of the client and a set of possible queries, but

does not know exactly which query was issued by the client. It provides both confidentiality

and anonymity with respect to the target service, which knows neither the identity of the

client device or the exact query it issued.

In terms of efficiency, each first-class query issued by the client results in two outgoing

messages, containing a list of K queries and a bitmask of K bits determining the subset to

be returned, and two incoming messages, each of which is an XOR of multiple responses.

Increasing the value of K provides a higher degree of confidentiality without increasing

11



overhead significantly at the client; each additional dummy query results in a few extra

bytes on the outgoing message. The size of the response XOR only increases if the newly

added dummy query happens to generate the largest response out of all the queries.

3.2 Multiple proxies for lower latency

In the two-proxy scheme described above, the client has to always wait for the slowest

of the two proxies to respond before reconstructing the answer. Using more proxies can

mitigate this problem, with each proxy returning a linear combination of the responses it

receives (rather than the XOR of a subset as before). The linear combinations generated

by different proxies are identical, except that they use different coefficients for the actual

query response. This allows the client to reconstruct the actual query response from the

first two proxies that respond. For example, if a device wants to make an actual query A, it

constructs a dummy set of queries {A,B,C,D} and sends this to three proxies P1 and P2

and P3. The proxies then return:

P1 returns A′ + αB′ + βC ′ + γD′

P2 returns 2A′ + αB′ + βC ′ + γD′

P3 returns 3A′ + αB′ + βC ′ + γD′

The client can then extract the value of A′ from these two linear combinations, since

B′, C ′ and D′ cancel out by virtue of having equal coefficients. To implement this scheme,

the client includes a set of coefficients in its request message to the proxies, instead of a

bitmask as before. Note that the simpler two-proxy XOR-of-subset scheme is equivalent to

the case where the linear combination exclusively uses binary coefficients; the bitmask can

be thought of as a set of binary coefficients.

Unfortunately, it does not provide confidentiality with respect to the service. Since the
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service is not replicated, it can observe all incoming queries and infer the actual query. In

Figure 2, the service sees the following sequence of requests arrive in a short time span:

(A,B,C,B,C). From this sequence, it can infer that A is the actual query made by the

client, even though it doesn’t know the network address of the client. For some applications,

knowing the actual query is often enough to compromise the identity of the user (as in the

previously mentioned example where the user searches for restaurants near her house).

To support confidentiality for such applications, we modify the PriView technique to

use linear combinations of responses instead of simple XORs. In this scheme, the dummy

query sets sent to each proxy are perfectly identical; they all include the actual query,

unlike the XOR-based scheme where one of the sets did not include the actual query. The

proxies no longer reply with simple XORs of the query responses; instead, they return

linear equations of the query responses, where the coefficients of each dummy response are

identical across proxies but the coefficients of the actual response are different. The device

can then solve the resulting system of linear equations to extract the actual response.

The resulting scheme provides confidentiality with respect to the proxies, which see a

set of queries as in the earlier XOR-based scheme, as well as confidentiality with respect to

the service, which now sees the stream of requests (A,B,C,A,B,C) from the two proxies

and hence cannot determine that A is the actual query being made.

Linear combinations also enable us to use more than two proxies to reduce request la-

tency. In the two-proxy scheme, the client has to always wait for the slowest of the two

proxies to respond before reconstructing the answer. Using more proxies can mitigate this

problem, with each proxy returning a linear combination with a different coefficient for the

actual query response, so that the client only has to wait for the first two proxies to respond.

For example, in addition to proxies P1 and P2 above, the client might also use proxy P3,

which returns:

P3 returns 3A′ + αB′ + βC ′ + γD′
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The latency benefit of using more than two proxies comes at a cost. It requires the

device to send out more network packets for each query, one per proxy. In addition, the

device receives multiple responses back, one from each proxy; it can attempt to short-

circuit these responses by notifying the remaining proxies once it has heard back from the

first two, this requires more outgoing packets that may not always reach the proxies in time.

Each wasted response increases the bandwidth and battery overhead for the query.

This approach results in improved latency, since the device now has to only wait for

the fastest two responders out of a potentially large number of proxies. However, it has

a number of drawbacks. First, it requires more complex and battery-draining logic on the

device to solve linear equations, rather than the simple XOR operations of the two-proxy

solution. Second, it requires the device to send out more network packets for each query,

one per proxy. Third, the device receives multiple responses back, one from each proxy; it

can attempt to short circuit these responses by notifying the remaining proxies once it has

heard back from the first two, but each extra proxy that responds increases the bandwidth

and battery overhead for the query.

The downside of using linear combinations instead of simple XORs is increased com-

plexity and possibly higher power consumption on the client device. In this paper, we

implement and evaluate the XOR-based scheme; in the future, we intend to quantify the

performance and power implications of using linear combinations.

3.3 Generating dummy queries

The PriView technique requires an effective, inexpensive way to generate random dummy

queries. Some services provide hooks for generating random queries; for example, Wikipedia

provides a special URL (http://en.wikipedia.org/wiki/Special:Random)
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that returns the article corresponding to a random query. For other applications, random

queries can be generated algorithmically; for example, a Google Maps query is simply a

latitude/longitude pair.

However, a truly random dummy query can fail to provide sufficient privacy. If a proxy

is presented with a dummy set of multiple latitude/longitude pairs, of which one is in a

major urban center while the others are in less populated areas, it can deduce that the

former is the actual query being made. Accordingly, care has to be taken that dummy

queries are indistinguishable from actual queries; in the case of geographical locations, this

can be achieved by biasing the sampling process, such that the probability that a location is

chosen is proportional to its population density.

3.4 Limitations

PriView does have limitations. It requires the Internet service to respond deterministically

to a given query; if the two cloud proxies can get different responses for the same dummy

queries, the device can no longer retrieve the original query’s response by combining the

two returned XORs. In addition, PriView is not relevant for services that require a user

login and store user-specific state, such as email or social networks; in this case, the service

already knows the identity of the user. Finally, as described above, it assumes that an

efficient means exists for generating random dummy queries to the service.

More than two proxies: PriView adds latency to queries by interposing proxies be-

tween the device and the Internet service. Not only does this add an extra hop to the query

path, but the device now has to wait for both proxies to respond, allowing query latency to

be determined by the slower of the two proxies.

To mitigate the problem of increased latency, PriView allows the use of more than two

proxies; the device sends a set of dummy queries to each proxies, and then waits for the first
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two that reply. This multi-proxy scheme is different from the two-proxy case in two ways.

First, the dummy query sets sent to each proxy are perfectly identical; they all include the

actual query, unlike the two-proxy case where one of the sets did not include the actual

query. Second, the proxies no longer reply with simple XORs of the query responses;

instead, they return linear equations of the query responses, where the coefficients of each

dummy response are identical across proxies but the coefficients of the actual response are

different. The device can then solve the resulting system of linear equations to extract the

actual response.

For example, if a device wants to make an actual query A, it constructs a dummy set of

queries (A,B,C,D) and sends this to three proxies (P1, P2, P3). If the response for A is

A′, the proxies then return:

P1 returns A′ + αB′ + βC ′ + γD′

P2 returns 2A′ + αB′ + βC ′ + γD′

Any two of these three equations can be used to reconstruct the value of A′, since B′,

C ′ and D′ cancel out by virtue of having equal coefficients.

3.5 Network attacks

We implemented two security attacks on PriView. Each of these attacks can be perpetrated

at the two levels of communication: between the application or user and the cloud and

between the cloud and the query server.

3.5.1 Attack on client-cloud connection

We implemented a man-in-the-middle attack in the communication between the user and

the cloud. This way the attacker will be able to eavesdrop on the connection thus making
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the private querying process no more private.

Man-in-the-Middle: The term ”Man-in-the-middle attack” (MITM attack) refers to the

type of attack where the attacker intrudes into the communication between the endpoints

on a network to inject false information and intercept the data transferred between them.

In cryptography, the man-in-the-middle attack or bucket-brigade attack (often abbreviated

MITM), sometimes Janus attack, is a form of active eavesdropping in which the attacker

makes independent connections with the victims and relays messages between them, mak-

ing them believe that they are talking directly to each other over a private connection when

in fact the entire conversation is controlled by the attacker. One of the objectives for MITM

attacks is to gain access to the client’s messages and modify them before finally transmitting

them to the server end. Other objectives of MITM can be to mislead the communicators at

the client or server end, to intercept pertinent information (e.g., identity, address, password,

or any other confidential information for malicious purposes) and also, at times, manipulate

transactions.

In this case, we are using MITM to intercept and eavesdrop on the location information

that the user sends to the cloud. The way these queries are formed is following - one of

the queries is entered by the user through the text box in the Android application. The user

(client) code then generates n number of random coordinates within a defined coordinate

space. The actual query, a string, is different from the randomly generated numbers as co-

ordinates. With a freely available sniffing software like Wireshark, any malicious attacker

using the same network as the client phone will be able to see all the packets coming and

going to and from all IP addresses on that network. This scenario can easily be envisioned

in a WiFi hotspot, like a cafe. We join the same free network on our phone as several other

people in the cafe. We use our phone to scout the map of the area on Google Maps, and

we use the secure application. We type the query in the textbox and hit send. While we are

using TCP socket connections in the code, the packets are still unencrypted. A Wireshark
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Figure 3: MITM using Wireshark.
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Figure 4: Log file generated by the tampered code

user is monitoring the packets on the free network in the cafe and they can see which IP

addresses are sending what information. In our case, the location string is easily visible,

with the IP addresses of source and destination machines. Thus, the privacy of our query is

compromised.

Suggested solution: There are two things that can be done to avoid the attack described

above. (a.) Provide end-to-end authentication, and (b.) Encrypt the query going from the

user to the cloud.

3.5.2 Attack on cloud-query server connection

One of the assumptions we made while creating this system was that the cloud instances

used for querying and XORing the results do not talk to each other. Let us assume the cloud
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provider we are using has a vested interest in checking all the requests sent to and from the

instances - for example, Amazon wants to personalize your holiday shopping experience

and knows that you have an AWS account. It wants to monitor the requests made through

this cloud to different query servers for any kind of clue. Amazon has access to your cloud

code and all it needs to do is to insert a small piece of code in it that will generate a log

file for all the requests made in all the instances you use. When it checks the two log files

generated by the two instances we use for this project, it is very easy to see what the user is

interested in it. Though highly unethical, if a cloud provider decides to use the information

you store on their servers, they can.

As an experiment, we put in a small piece of code that created a log file in each instance.

Figure 4 shows what the log file stored at the end of the run:

Suggested solution: The way to ensure that this does not happen is postulated in the so-

lution originally proposed - use two different cloud providers so they see the set of queries

each and can’t know accurately which one is the query user is actually interested in. An-

other assumption made for this project was that the service was deterministic. We can try

changing the content of the queries (for example, a Wikipedia page that is one of the queries

can be edited) between the time taken by the two clouds to query the same page.

3.6 SSL Encryption

SSL(Secure Socket Layer) is a protocol developed by Netscape for transmitting private

documents via the Internet. SSL uses a cryptographic system that uses two keys to encrypt

data a public key known to everyone and a private or secret key known only to the recipi-

ent of the message. Both Netscape Navigator and Internet Explorer support SSL, and many

Web sites use the protocol to obtain confidential user information, such as credit card num-

bers. By convention, URLs that require an SSL connection start with https: instead of http.
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SSL aims to provide applications with a secure socket like toolkit. SSL addresses three

important security issues: 1.It provides authentication, which helps ensure the legitimacy

of the entities involved in a dialog. 2.It provides privacy. SSL helps warrant that a third

party cannot decipher the dialog between two entities. 3.It maintains integrity. The use of a

MAC (message authentication code), which is similar to a checksum, helps guarantee that

a dialog between two entities is not modified by a third party.

SSL relies heavily on both public-key and secret-key cryptography. It uses secret-key

cryptography to bulk-encrypt the data exchanged between two applications. SSL provides

the ideal solution because secret-key algorithms are both secure and fast. Public-key cryp-

tography, which is slower than secret-key cryptography, is a better choice for authentication

and key exchange.

3.6.1 SSLSocketFactory Class

SSLSocketFactory can be used to validate the identity of the HTTPS server against a list of

trusted certificates and to authenticate to the HTTPS server using a private key. SSLSock-

etFactory will enable server authentication when supplied with a trust-store file containing

one or several trusted certificates. The client secure socket will reject the connection dur-

ing the SSL session handshake if the target HTTPS server attempts to authenticate itself

with a non-trusted certificate. In special cases the standard trust verification process can

be bypassed by using a custom TrustStrategy. This interface is primarily intended for al-

lowing self-signed certificates to be accepted as trusted without having to add them to the

trust-store file. The following sequence of actions is used to generate a key-store file:

(i) Use JDK keytool utility to generate a new key:

keytool-genkey-v-alias"myclientkey"-validity365-keystoremy.keystore

For simplicity use the same password for the key as that of the key-store.
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(ii) Issue a certificate signing request (CSR):

keytool-certreq-alias"myclientkey"-filemycertreq.csr-keystoremy.

keystore

Send the certificate request to the trusted Certificate Authority for signature. One may

choose to act as her own CA and sign the certificate request using a PKI tool, such as

OpenSSL.

(iii) Import the trusted CA root certificate:

keytool-import-alias"mytrustedca"-filecaroot.crt-keystoremy.

keystore

(iv) Import the PKCS7 file containg the complete certificate chain:

keytool-import-alias"myclientkey"-filemycert.p7-keystoremy.keystore

(v) Verify the content the resultant keystore file:

keytool-list-v-keystoremy.keystore

3.6.2 Implementation of SSL Sockets

To implement SSL sockets, we generated the key using the keytool and embedded it in the

client code and copied it to each cloud instance. Also, a boolean was placed in the code

so that a flip can be made between the normal Socket connection and the SSL connection.

This was mainly to generate and compare unencrypted and encrypted data when needed.

When this boolean was true, the connection was made by the SSL sockets. The client

aunthenticates itself with the cloud using the stored keys. Then, encrypted requests are

sent to the cloud and responses coming back from the cloud are encrypted as well. When

the WireShark tool is used, as in stage 1, to sniff packets, it can be seen in figure 5 that all

the transactions are encrypted.
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Figure 5: Encrypted requests and responses.
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4 Evaluation

4.1 Experimental setup

We implemented an Android-based PriView client for the Google Static Maps [7] service,

with proxies running on Amazon EC2. We evaluated this client on a MK802 Android Mini-

PC running Android 4.0.3, as well as a Samsung S5570 Galaxy Mini running Android

2.3.3. Our comparison point was a client that issued multiple dummy requests for each

query directly from the device. Both PriView and this strawman client offer the same

confidentiality guarantee: if we use K dummy requests for each actual query, the service

cannot tell which of K + 1 requests the device actually made. We call K the degree

of confidentiality. The strawman client running with degree of confidentiality K = 0

corresponds to an unmodified, conventional client that does not provide any confidentiality.

We do not plotK = 0 for PriView, since our mechanism requires at least one dummy query

to be issued.

4.2 Bandwidth usage

Figure 6 shows the average bandwidth used by each query as we increase the degree of

confidentiality by issuing more dummy requests per query. As PriView issues more dummy

requests, the size of its outgoing messages go up linearly while the size of the returning

messages increases sub-linearly; each returning message is an XOR of multiple responses,

hence its size is equal to that of the largest response. Since each outgoing message is

simply a list of dummy inputs to the service (e.g., GPS coordinates or Wikipedia URLs),

it is much smaller than the returning message, which can be roughly 25 KB in the case of

Google Static Maps. As a result, total bandwidth used by PriView increases sub-linearly as

the number of dummy requests is increased and the degree of confidentiality rises.
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Figure 6: As the degree of confidentiality (i.e., the total number of requests seen by
the service per query) is increased, bandwidth increases sub-linearly for PriView as
request packets become larger, and linearly for conventional dummy queries.

In contrast, we expect our comparison strawman to show a linear increase in bandwidth

usage, since it sends and receives K + 1 distinct requests and responses for each query,

in order to get a degree of confidentiality equal to K. Interestingly, we instead see sub-

linear scaling of bandwidth for small numbers of dummy queries; for example, going from

K = 1 toK = 2 does not double bandwidth used. This is an artefact of naive dummy query

generation; since we pick random GPS coordinates for each dummy query, they are likely

to fall on the ocean and return a highly compressible image of 2 to 3KB with no features. As

a result, adding dummy queries does not necessarily double bandwidth for the strawman.

However, if we used more intelligent dummy query generation based on population density,

the returned maps would be feature-rich and non-compressible, in which case we would

observe linear scaling of bandwidth. In summary, this graph makes two important points:

PriView is bandwidth-efficient compared to conventional dummy requests, and it does not

add much bandwidth overhead over an unmodified, non-confidential client (as seen by the

K = 0 data point).
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Figure 7: As the degree of confidentiality is increased, latency increases sub-linearly
for PriView.

4.3 End-to-end delay

Figure 7 shows a similar trend for end-to-end latency. With the degree of confidentiality

at 1, the number of messages at the device is the same for both approaches, but PriView

has higher latency since it routes messages through its cloud proxies while the strawman

directly accesses the service. PriView begins to outperform the strawman once the degree

of confidentiality is reasonably high, since its large bandwidth advantage over the strawman

outweighs the delay imposed by its proxy layer.

4.4 Power consumption

Finally, Figure 8 plots the power consumed per query for PriView and the strawman. Since

the MK802 device we used does not have an internal battery and relies on external AC

power, we were able to measure instantaneous power draw with a Kill A Watt [12] mon-

itor. As shown in the graph, PriView’s power consumption stays nearly constant even as

the degree of confidentiality is increased, while the strawman client’s power consumption

increases rapidly.
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Figure 8: Power consumption increases sub-linearly for PriView as degree of confi-
dentiality is increased.

5 Conclusion

Enabling privacy-preserving access to existing Internet services from mobile devices is a

challenging problem: devices are resource-constrained, while services cannot easily be

modified or replicated. PriView uses a novel approach to Private Information Retrieval that

utilizes cloud-based proxies to provide confidentiality, without imposing high overhead

on the device or requiring the target service to be modified or replicated. Our evaluation

showed that PriView works with existing services and provides tunable confidentiality that

imposes a sub-linear cost in terms of latency, bandwidth usage and power consumption.

In this project, we focused on fine-tuning the foundations of PriView and developing a

robust and functional solution to the problem of query privacy. To further reinforce the pri-

vacy aspect and improve the scalability of the system, we plan to calibrate Priview to make

further improvements, as part of our future work. A few of them are: addition of multiple

proxies using different cloud providers, improving the quality of the dummy queries and

adding multi-service capability to extend the system into a general-purpose, secure query-

ing platform. Ultimately, PriViews goal is to provide a general-purpose, privacy-preserving

querying platform for real-world services.
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